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Figure 2 | Relaxation of the local density for different interaction strengths. We plot the measured traces of the odd-site population nodd(t) for four
different interaction strengths U/J (circles). The solid lines are ensemble-averaged results from t-DMRG simulations without free parameters. The dashed
lines represent simulations including next-nearest neighbour hopping with a coupling matrix element JNNN/J ' 0.12 (a), 0.08 (b), 0.05 (c) and 0.03 (d)
calculated from the single-particle band structure.

lattices, which gives rise to a significant amount of longer-ranged
hopping. When including a next-nearest neighbour hopping term
�JNNN

P
j(â

†
j âj+2 + h.c.) in the t -DMRG simulations we obtain

quantitative agreement with the experimental data (dashed line
in Fig. 2). For larger values of U/J and correspondingly deeper
lattices, the tight-binding approximation is valid. For U/J ⇠> 10
(Fig. 2d), larger deviations are found. We attribute these to residual
inter-chain tunnelling and non-adiabatic heating. Both of these
effects become more relevant for larger values of U/J , because we
adjust this ratiomainly by tuning the tunnel coupling J .

The results of the density measurements can be related to the
expectations for an infinite chain with K = 0. There, the time
evolution can be calculated analytically in the case of either non-
interacting bosons (U/J = 0) or infinite interactions (U/J ! 1;
refs 17,18). These limiting cases can be understood well through
the mechanism of local relaxation by ballistically propagating
excitations. The on-site densities follow zeroth order Bessel
functions describing oscillations that are asymptotically dampened
by a power law with exponent �0.5. The damping we observe in
the interacting system, however, is much faster. As we will show
below, the dynamics is approximated well by a power law with an
exponent<�0.5 for the first tunnel oscillations. This behaviour has
also been found in t -DMRG simulations of homogeneous Hubbard
chains with finite interactions17,18. The exact origin of this enhanced
relaxation in the presence of strong correlations constitutes one of
themajor open problems posed by the results presented here.

Measurements of quasi-local currents
Employing the bichromatic superlattice, we were also able to detect
themagnitude and direction of quasi-local density currents. Instead
of raising the short lattice at the end of step (2), we ramped up the

long lattice to suppress the tunnel coupling through every second
potential barrier in the chain (Fig. 3a). At the same time, we set
the short lattice to a fixed value to obtain always the same value of
(U/J )DW ' 0.2 in the emerging double wells. By tuning the relative
phase between the long and short lattice we were able to selectively
couple sites with index (2j,2j + 1) (‘even–odd’, j integer) or
(2j�1,2j) (‘odd–even’).We recorded the time evolution in the now
isolated double wells using the same final read-out scheme as for the
densities (see Fig. 3b). We find sinusoidal tunnel oscillations which
dephase only slowly and decrease in amplitude with increasing
relaxation time t . The phase � and amplitude A of these oscillations
were extracted from a fit of a sine wave to the data and are plotted
in Fig. 3c as a function of the relaxation time for U/J = 5.16(7).
The phase contains the information about the direction of the mass
flow, whilst the amplitude is a combination of the local population
imbalance and the strength of the local current.

We find � to evolve linearly in time, giving strong evidence that
the excitations in the system expand approximately ballistically,
as suggested in refs 17,18. Furthermore, its value does not change
when coupling even–odd or odd–even sites, indicating the absence
of centre-of-mass motion in the system. The amplitude A, on
the other hand, decays to zero on the same timescale as the
oscillations in the local densities dampen out—in fact the quantities
(1 ± A)/2 provide envelopes to the traces nodd and neven (see
Supplementary Information). On short timescales, 0< 4Jt/h< 3,
we find the decay of the amplitude—and therefore also that of
the density oscillations—to follow an approximate power law/t�↵

with ↵ =0.86(7). This behaviourmight change for longer evolution
times, where no significant amplitude was measurable. We extract
the power-law coefficients ↵ for a wide range of U/J (right inset to
Fig. 3c). In all cases, the absolute values of the coefficients are larger
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the other side quantum correlations persist indefinitely. Hence the MBL
transition sets a sharp boundary between a macroscopic world showing
quantum phenomena and one governed by classical physics.

While Anderson localization of non-interacting particles has been
experimentally observed in a variety of systems, including light scat-
tering from semiconductor powders in 3D [25], photonic lattices in 1D
[26] and 2D [27] and cold atoms in 1D and 3D random [28, 29, 30]
and quasi-random [31] disorder, the interacting case has proven more
elusive. Initial experiments with interacting systems have focused on
the superfluid [32, 33] or metal [34] to insulator transition in the ground
state. Evidence for inhibited macroscopic mass transport was reported
even at elevated temperatures [34], but is hard to distinguish from ex-
ponentially slow motion expected from conventional activated transport
or effects stemming from the inhomogeneity of the cloud. Until now
conclusive experimental evidence for many-body localization at finite
energy density has thus been lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-randomly disordered lattice potential. We identify the
many-body localized phase by monitoring the time evolution of local
observables following a quench of system parameters. Specifically,
we prepare a high-energy initial state with strong charge density wave
(CDW) order (as shown in Fig. 1A) and measure the relaxation of this
charge density wave in the ensuing unitary evolution. Our main observ-
able is the imbalance I between the respective atom numbers on even
(Ne) and odd (No) sites

I =

Ne �No

Ne +No
, (1)

which directly measures the CDW order. While the initial CDW (I &
0.9) will quickly relax to zero in the thermalizing case, this is not true in
a localized system, where ergodicity is broken and the system cannot act
as its own heat bath (Fig. 1B) [35]. Intuitively, if the system is strongly
localized, all particles will stay close to their original positions during
time evolution, thus only smearing out the CDW a little. A longer local-
ization length ⇠ corresponds to more extended states and will lead to a
lower steady state value of the CDW. The long-time stationary value thus
effectively serves as an order parameter of the MBL phase and allows us
to map the phase boundary between the ergodic and non-ergodic phases
in the parameter space of interaction versus disorder strength. In par-
ticular, in the non-interacting system the CDW vanishes asymptotically
as / 1/⇠2 [36]. In contrast to previous experiments, which studied the
effect of disorder on the global expansion dynamics [28, 31, 32, 34, 33],
the CDW order parameter acts as a purely local probe, directly capturing
the ergodicity breaking.

Our system can be described by the one-dimensional fermionic
Aubry-André model [37] with interactions [35], given by the Hamil-
tonian

ˆH =� J
X

i,�

⇣
ĉ†i,� ĉi+1,� + h.c.

⌘

+�

X

i,�

cos(2⇡�i+ �)ĉ†i,� ĉi,� + U
X

i

n̂i,"n̂i,#.
(2)

Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ†i,� (ĉi,�) denotes the creation (annihilation) operator for a fermion
in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, characterized by the ratio of lattice periodicities

�, disorder strength � and phase offset �. Lastly, U represents the on-
site interaction energy and n̂i,� = ĉ†i,� ĉi,� is the local number operator
(see Fig. 1C).

U/J=4.7(1)
U/J=10.3(1),   

'/J=8
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Figure 2: Time evolution of an initial charge-density wave. A charge den-
sity wave, consisting of fermionic atoms occupying only even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential. After
variable times the imbalance I between atoms on odd and even sites is measured.
Experimental time traces (circles) and DMRG calculations for a single homoge-
neous tube (lines) are shown for various disorder strengths �. Each experimental
datapoint denotes the average of six different realizations of the disorder potential
and the error bars show the standard deviation of the mean. The shaded region
indicates the time window used to characterise the stationary imbalance in the
rest of the analysis.
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Figure 3: Stationary values of the imbalance I as a function of disorder �

for non-interacting atoms. The Aubry-André transition is at �/J = 2. Circles
show the experimental data, along with Exact Diagonalization (ED) calculations
with (red line) and without (grey line) trap effects. Each experimental data point
is the average of three different evolution times (13.7⌧ , 17.1⌧ and 20.5⌧ ) and
four different disorder phases �, for a total of 12 individual measurements per
point. To avoid any interaction effects, only a single spin component was used.
The ED calculations are averaged over similar evolutions times to the experiment
and 12 different phase realizations. Error bars show the standard deviation of the
mean.

This quasi-random model is special in that, for almost all irrational
� [36], all single particle states become localized at the same critical
disorder strength �/J = 2 [37]. For larger disorder strengths the lo-
calization length decreases monotonically. Such a transition was indeed
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S(⇢)  S̃(hXi, hY i)
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