SAND2015- 1456 PE

Sandia
Exceptional service in the national interest National
Laboratories

density

8.315e-01
6.496e-01
4877e01
2.858e-01

1.038e-01

Ken Franko

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

U.S. DEPARTMENT OF WA ' .' DD:Q‘

ENERGY #VA iy

Outline) &

= Mathematical Problem/Numerical Method

= MiniAero Code Design including use of Kokkos
= Comparison with Full Application

= Asynchronous Many-Task Parallelism

= Conclusions

Equations) i,

Compressible Navier-Stokes Equations

dp Opu,
I — O Mass
Ot (3’:vj
: I 1 Wq PdL — - omentum
ot O, (it o+ Do) or;

OpE Opu; H 0q; | Ou;Tiy

8t (%j 8xj | 8xj

Solution Method)

Finite Volume:

Volume 1 Volume 2 Volume 3
—_ —_—

Flux 1 Flux 2

» Cell-centered(MiniAero) or Node-
centered(Aero)

« 1storder or 2" order in space

* Flux boundary conditions

* Inviscid/Viscous option.

Explicit RK4 Time Marching (classic RK4) (MiniAero)
Point Implicit Solver for Implicit Time Marching (Aero)

Finite Volume Details)t

NV v + / (F; — G,;)dA; =0
o Ot 50

8—UdV ~ ou Ve

q Ot ot

/59(]?3 — (.::‘rg)dA‘7 — Z (F:: _ G;C)Ajf

Aero/MiniAero Summary

= Fully 3D unstructured finite volume
= Explicit or Implicit time marching
= |nviscid Roe Flux

= Newtonian Viscous Flux
= |deal Gas Model

Sandia
National _
Laboratories

Sandia

MiniAero MPI Implementation) e

= Decompose in multiple directions and use ghosting.

1->2 2->1

1->2 2->1

Processor Boundary

Physics Kernels L

MiniAero

= Kokkos::Views are used to store the multi-dimensional arrays
that are needed.
= Heavy object-oriented design needs to be avoid.
= Everything is an array (connectivity, flow state, indices)

= Functors apply a specific operation based on an index

= Parallel_for, parallel_reduce, and parallel_scan.
= Heavy use of template for polymorphism.
Aero
= Uses Sierra Toolkit (STK).
= Loop-based — main loop is edge loop.
= Heavy use of class and virtual functions for polymorphism.

MiniAero Assembly — Thread safety @

Volume 1 Volume 2 Volume 3
—_ —_>

Flux 1 Flux 2

Options

1. Store fluxes at Faces. Two loops — over faces and then over
volumes. Downside: Performance and need to store flux direction
for each volume.

2. Stores fluxes for each face on volume. Two loops — over
faces and then over volumes. AKA: Gather-sum
Downside: Increased memory use

3. Atomic operations. Single loop over faces and no additional
memory required.
Downside: Could be slow with large number of conflicts.

MiniAero and Aero

Sandia
National _
Laboratories

MiniAero

Cell-centered

Explicit time-marching only
1st and 2" order in space
Green-Gauss Gradients
MPI1+X

Kernel Based

Threaded

Array-based mesh

Aero

Node-centered

Explicit and implicit

1st and 2" order in space
Green-Gauss Gradient
MPI only

Loop Based

Not threaded

Uses STK mesh

MiniAero: Data versus Task Parallel [

Data Task

[Task 2 Task 3

Threads/vectorization / \ / \

Sandia

Why Task Parallel?) e,

Standard MPI Task Parallel
Task1 Task1
Comm1 Comm1 Task2
Task2 Task3 Comm?2
Comm? Task4
Task3
Task4

Task-Parallel Mini-Aeros) i

= Different approach than data-parallel, can be
complementary.

= Part of L2 milestone with Dharma project(based in
Sandia-CA)

= Evaluate different existing task-parallel programming
models

= Uintah
= Legion
= Charm++

Conclusions)

= MiniAero and Aero solve similar equations with similar
methods

= Largest difference is between explicit and implicit time
marching.

= Programming models are very different

= MiniAero: heavy template use, kernels as functors, and threaded.

= Aero: heavy run-time polymorphism, loop heavy, and MPl-only

Questions) i

