
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

MiniAero and Aero: An
Overview

Ken Franko

SAND2015-1456PE

Outline

 Mathematical Problem/Numerical Method

 MiniAero Code Design including use of Kokkos

 Comparison with Full Application

 Asynchronous Many-Task Parallelism

 Conclusions

Equations

Mass

Momentum

Energy

Compressible Navier-Stokes Equations

Solution Method

Flux

Flux 1

Volume 1

Flux 2

Volume 2 Volume 3

• Cell-centered(MiniAero) or Node-
centered(Aero)

• 1st order or 2nd order in space
• Flux boundary conditions
• Inviscid/Viscous option.

Finite Volume:

Explicit RK4 Time Marching (classic RK4) (MiniAero)

Point Implicit Solver for Implicit Time Marching (Aero)

Finite Volume Details

Aero/MiniAero Summary

 Fully 3D unstructured finite volume

 Explicit or Implicit time marching

 Inviscid Roe Flux

 Newtonian Viscous Flux

 Ideal Gas Model

MiniAero MPI Implementation

 Decompose in multiple directions and use ghosting.

Processor Boundary

1->2

1->2

2->1

2->1

1 2

Physics Kernels

MiniAero

 Kokkos::Views are used to store the multi-dimensional arrays
that are needed.
 Heavy object-oriented design needs to be avoid.

 Everything is an array (connectivity, flow state, indices)

 Functors apply a specific operation based on an index
 Parallel_for, parallel_reduce, and parallel_scan.

 Heavy use of template for polymorphism.

Aero

 Uses Sierra Toolkit (STK).

 Loop-based – main loop is edge loop.

 Heavy use of class and virtual functions for polymorphism.

MiniAero Assembly – Thread safety

Flux

Flux 1

Volume 1

Flux 2

Volume 2 Volume 3

Options
1. Store fluxes at Faces. Two loops – over faces and then over

volumes. Downside: Performance and need to store flux direction
for each volume.

2. Stores fluxes for each face on volume. Two loops – over
faces and then over volumes. AKA: Gather-sum
Downside: Increased memory use

3. Atomic operations. Single loop over faces and no additional
memory required.
Downside: Could be slow with large number of conflicts.

MiniAero and Aero

MiniAero Aero

Cell-centered Node-centered

Explicit time-marching only Explicit and implicit

1st and 2nd order in space 1st and 2nd order in space

Green-Gauss Gradients Green-Gauss Gradient

MPI+X MPI only

Kernel Based Loop Based

Threaded Not threaded

Array-based mesh Uses STK mesh

MiniAero: Data versus Task Parallel

Data Task

Threads/vectorization

Task 1

Task 2 Task 3

Task 4 Task 5 Task 6

Why Task Parallel?

Task1

Task2

Task3

Standard MPI

Comm1

Comm2

Task1

Task2

Task3

Comm1

Comm2

Task4

Task4

Task Parallel

Task-Parallel Mini-Aeros

 Different approach than data-parallel, can be
complementary.

 Part of L2 milestone with Dharma project(based in
Sandia-CA)

 Evaluate different existing task-parallel programming
models

 Uintah

 Legion

 Charm++

Conclusions

 MiniAero and Aero solve similar equations with similar
methods

 Largest difference is between explicit and implicit time
marching.

 Programming models are very different
 MiniAero: heavy template use, kernels as functors, and threaded.

 Aero: heavy run-time polymorphism, loop heavy, and MPI-only

Questions

