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M-Adapting Low Order Mimetic Finite Differences for Dielectric

Interface Problems

V. Gyrya, G. Manzini, D. A. McGregor

Summer 2015

Abstract

We consider a problem of reducing numerical dispersion for electromagnetic wave in the domain with
two materials separated by a flat interface in 2D with a factor of two difference in wave speed. The
computational mesh in the homogeneous parts of the domain away from the interface consists of square
elements. Here the method construction is based on m-adaptation construction in homogeneous domain
that leads to fourth-order numerical dispersion (vs. second order in non-optimized method). The size of
the elements in two domains also differs by a factor of two, so as to preserve the same value of Courant
number in each. Near the interface where two meshes merge the mesh with larger elements consists
of degenerate pentagons. We demonstrate that prior to m-adaptation the accuracy of the method falls
from second to first due to breaking of symmetry in the mesh. Next we develop m-adaptation framework
for the interface region and devise an optimization criteria. We prove that for the interface problem
m-adaptation cannot produce increase in method accuracy. This is in contrast to homogeneous medium
where m-adaptation can increase accuracy by two orders.

1 Introduction

Numerical solution of wave equations in the time domain is a fundamental problem for modeling numerous
physical phenomena in heterogeneous media and in domains with complicated geometry that does not
allow for a tractable analytical solution. In this report we a focused on electromagnetic waves, but all the
same difficulties and solution strategies apply to most other wave phenomena (acoustics, elasticity, etc.).

The two main challenges are method accuracy and efficiency. The main contributing factors to the long-
time integration error for wave problems is numerical dispersion - artificial dependence of the numerical
speed of the wave on its frequency, the discretization mesh, and the direction of propagation with respect
to the mesh.

There are a number of strategies that are being used in order to reduce the numerical dispersion.
Increasing the order of the numerical discretization is one of such strategies. This is a good approach for
explicit Finite Difference (FD) schemes, but is rather inefficient for Finite Element (FE) schemes due to
the presence of non-diagonal mass matrix in front of the unknown time-step solution. For example, for
acoustics when using central difference discretization in time one has to solve the following linear problem
at every time step

MUn+1 = MUn−1 + ∆tAUn,

where M is the mass matrix approximating identity and A is the stiffness matrix approximating Laplace
operator. In FD methods the mass matrix M is replaced by identity.

Another strategy that works for rectangular and square meshes is based on forming a parameterized
family of methods and optimizing the parameters to improve the dispersion properties. In the FD frame-
work such a family is typically formed by combining several discretizations of the same differential operator
(e.g. Laplace operator) that use different stencils. This includes rotated stencils and stencils of larger size.
For Maxwell’s equation in 3D this approach was taken Smith et.al. in [1]. In the FE framework such
a family is obtained using modified quadrature approach. Here one varies the positions of quadrature
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points. This changes the approximation error of the integrals (i.e. changes mass and stiffness matrices)
for higher order polynomials. This approach for example was taken in [2] for acoustic equation by Yue
and Guddati. Mimetic Finite Difference (MFD) methods are relatively new family of methods that share
common features with FD and FE methods, see e.g. [3, 4] for the introduction and an overview of these
methods. In MFD parameters appear due to flexibility of choosing non-polynomial basis functions. This
can be viewed as analogous to the modified quadrature approach in FE discretizations, but not quite the
same. The process of adapting free parameters in MFD is dubbed m-adaptation, see e.g. [5] for various
applications of m-adaptation. M-adaptation was used for dispersion reduction in acoustics [6, 7] and for
electromagnetic equation [8].

M-adaptation showed excellent results on rectangular and square meshes in homogeneous domains,
where numerical dispersion was reduced by at least two orders. The next level of difficulty is to consider
wave propagation in a domain with two materials separated by a flat interface. For simplicity of presentation
suppose a jump in wave speed with a factor of two between the two materials. If one decides to partition
the domain using a uniform square mesh the CFL stability condition for these domains then will dictate
the largest time step size that is also different by a factor of two. This would mean that in the domain
with slower wave speed the numerical scheme is half as efficient as it could be. From the point of view
of efficiency when using a uniform time step throughout the domain the best partitioning of the domain
would reflect the jump in the wave speed. That is in the part of the domain with faster wave speed one
would use mesh that is half the size of that in the slower part of the domain, see Figure 2. FD methods
do not have a natural way of discretization for such a mesh. MFD methods for such a mesh, on the other
hand, work as well as for a uniform mesh.

The main idea for our work was to consider a mesh with double refinement based on MFD discretization.
In principle, the refinement can be by any factor, but double refinement is a good start as a proof of
principle. In the homogeneous parts of the domain (away from the interface) we assume use of parameters
obtained in [8] using m-adaptation. Around the interface we will try to choose the parameters so as to
obtain the method with smallest dispersion error possible.

The report is organized as follows. In Section 2 we present a continuum PDE model to be considered
in 2D, its plane wave solution in homogeneous medium and the extension of plane wave to the interface
problem which consists of incident, transmitted and reflected waves. In Section 3 we present MFD con-
struction on general meshes and method optimization (m-adaptation) of the method on square meshes
for homogeneous medium. In Section 4 we present the problem of dispersion reduction for the interface
problem, detailed solution strategy, analysis, and main results. Finally, in Section 5 we present conclusions
for our analysis and identify future directions for research.

2 Continuum Modelling

We begin by presenting the transverse electric (TE) formulation of Maxwell’s equations in 2D. In this
formulation one assumes that all functions are constant in z-direction. This assumption allows to decouple
Maxwell’s equations into two sets of independent equations in 2D. We will focus on the equations governing
the electric induction field, D, the current density, J, the magnetic field, H, the magnetic induction, B,
the electric field, E, and the charge density, ρ:

∂tD + J = curl H, (Ampere-Maxwell Law)

∂tB = −curl E, (Faraday’s Law)

∇ ·D = ρ. (Gauss’ Law)

The 3D curl operator was replaced by two operators curl and curl. The first one is a vector curl, defined
as curlf = (∂yf,−∂xf)T , and the second one is a scalar curl, defined as curlv = ∂xv2 − ∂yv1.
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We will assume linear constitutive laws:

D = εE, (2.1)

B = µH, (2.2)

J = σE + Jext, (2.3)

where ε is the electrical permittivity, µ is the magnetic permeability, σ is the electrical conductivity, and
Jext an external current density. We will assume that there are constants such that

0 < c ≤ ε, µ ≤ c <∞ (2.4)

0 ≤ σ ≤ c <∞. (2.5)

Given that we have three differential equations and three algebraic equations we eliminate variables
down to three equations. Our preference is for what we refer to as E-B formulation, namely, we eliminate
D and H to end up with

∂tεE + σE = curl µ−1B − JEXT, (Ampere-Maxwell Law)

∂tB = −curl E. (Faraday’s Law)

∇ · εE = ρ (2.6)

By taking the divergence of the Ampere-Maxwell law we can derive the Continuity Equation which governs
conservation of charge.

∇ · ∂tεE +∇ · σE +∇ · JEXT = ∇ · curlµ−1B (2.7)

∂tρ = −∇ · (σE + JEXT) (2.8)

The continuity equation informs us that the divergence of E is governed by its initial conditions, the pres-
ence of external sources, and the conductivity of the media. In a source free domain without conductivity
we would expect that ∇ ·E = 0 for all time assuming that at time zero the field was divergence free.

2.1 Plane Wave Solutions

For source free (i.e. JEXT ≡ 0) Cauchy problems we can construct plane-wave solutions to Maxwell’s
Equations. Even on bounded domains, planewaves are dense in the solution space of Maxwell’s equations.
We will now proceed with a classical dispersion analysis and then perform mode-matching to generate
plane-wave solutions at a simple dielectric interface. Suppose that (ε, µ, σ) are constant on R2. Then we
can construct a plane-wave solution to the system using the dispersion relationship derived by assuming
the solution of the form

E = E0 exp i(k · x− ωt) (2.9)

B = B0 exp i(k · x− ωt). (2.10)

This can then be substituted into the equation to produce the following system of equations

(−iωε+ σ)E0 = iµ−1k×B0 (2.11)

−iωB0 = ik×E0 (2.12)

We can then eliminate the B0 and this will produce the following dispersion relationship(
− ω2 − iω

σ

ε

)
E0 = c2k× k×E0 (2.13)
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This leads to an 2x2 eigenvalue problem. Note that the matrix which encodes k×k× has eigenvectors k⊥

and k and respective eigenvalues −|k|2 and 0. The k⊥ component will obey the relationship

− ω2 − i
σ

ε
ω = −c2|k|2 (2.14)

ω = −i
σ

2ε
±
√
c2|k|2 − σ2

4ε2
(2.15)

E = k⊥ exp

(
ik · x− t

(
σ

2ε
± i

√
c2|k|2 − σ2

4ε2

))
(2.16)

To determine B0 then solve using Equation (2.12) and (2.16).

B =
|k|2

ω
exp

(
ik · x− t

(
σ

2ε
± i

√
c2|k|2 − σ2

4ε2

))
. (2.17)

Now considering the k eigenvalue we are left with the following algebraic system.

− ω
(
ω + i

σ

ε

)
= 0 (2.18)

ω = −i
σ

ε
ω = 0 (2.19)

We will neglect the case ω = 0 as the continuity equation is consistent with ω = −iσε . In the case σ = 0
we have that the k mode will be forced to zero (i.e. the planewave will be divergence zero). In the more
general case there are two classes of waves transient, decaying waves and evanescent (stationary, decaying)
waves.

E = k exp
(

ik · x− σ

ε
t
)

B ≡ 0 (2.20)

We will neglect the case ω = 0 as the continuity equation is consistent with ω = −iσε . In the case σ = 0
we have that the k mode will be forced to zero (i.e. the planewave will be divergence zero). In the more
general case there are two classes of waves transient, decaying waves and evanescent (stationary, decaying)
waves.

We will begin with a simple interface problem. Let G1 be the upper half plane, G2 be the lower half
plane, and Γ be the real line. Let

ε(x, y) =

{
ε1 y > 0
ε2 y < 0

(2.21)

µ(x, y) =

{
µ1 y > 0
µ2 y < 0

(2.22)

σ = 0 (2.23)

We know that we can construct solutions to Maxwell’s equations in the top and bottom half planes
respectively. One technique to compute a global solution is to take linear combinations of solutions on
each subdomain and then try and satisfy some interface condition. Interface conditions for Maxwell’s
equations are well known and can be derived from the integral formulation of the system, c.f. [9]. Let τ
be the unit-tangent vector to Γ and n be the unit normal vector to Γ.(

E|G1 −E|G2

)
· τ = 0 (2.24)(

(εE)|G1 − (εE)|G2

)
· n = 0 (2.25)(

(µ−1B)|G1 − (µ−1B)|G2

)
= 0 (2.26)

See Figure 1 for an illustration of our problem of interest. A solution to the mode matching can be found
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Figure 1: Simple transmission at an air-water interface

using the following Ansatz:

E(x, t) =


Ẽi exp i(ki · x− ωt) + Ẽr exp i(kr · x− ωt) ∈ G1 × T,

Ẽt exp i(kr · x− ωt) ∈ G2 × T,
(2.27)

ki = ki(− sin θi, cos θi)
T kt = kt(− sin θt, cos θt)

T kr = kr(− sin θr, cos θr)
T , (2.28)

Ẽi = k⊥i Ẽt = Etk
⊥
t Ẽr = Erk

⊥
r . (2.29)

Repeating the classical exercise, c.f. [9], we can write Er, Et, kr, kt, θr, θt as functions of the incident
variables.

ki = kr = ω
√
ε1µ1 kr = ω

√
ε2µ2 (2.30)

kr = ki(− sin θi,− cos θi)
T (2.31)

sin θt =
ε1µ1

ε2µ2
sin θi (2.32)

(2.33)

To determine the quantities Et, Er we have to introduce additional quantities.

α =
cos θt
cos θi

(2.34)

β =
ε2
ε1

(2.35)

Er =
α− β
α+ β

Ei (2.36)

Et =
2

α+ β
Ei (2.37)
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3 Low Order Mimetic Finite Differences

The mimetic finite difference method has seen development for a long time particularly for electromagnetic
applications, c.f. [3]. In this section we will present the modern theory of the method found in [10] and
apply it to our specific problem.

Let G be our computational domain and T be a mesh on G with edges E and cells (or faces) F . We
will consider a Mimetic discretization where E ≈ Eh ∈ Eh and B ≈ Bh ∈ Fh. These discrete spaces are
defined by their interpolants and their domains.

IEh : H(curl, G)→ Eh (3.1)

IEh(E) =

(
1

|e|

∫
e
E · τde, e ∈ E

)
(3.2)

IFh : L2 → Fh (3.3)

IFh(B) =

(
1

|f |

∫
f
Bdf, f ∈ F

)
(3.4)

To denote the restriction of the interpolant to a a structure (e.g. e ∈ E or f ∈ F ) we use an appropraite
subscript. We define a discrete scalar curl called curlh by the commutativity relationships

curlh ◦ IEh = IFh ◦ curl. (3.5)

We therefore will calculate IFh
f (curlE) and rewrite it as a linear combination of the degrees of freedom of

IEh
f .

IFh
f (curlE) =

1

|f |

∫
f

curlE df =
1

|f |
∑
e∈∂f

∫
e
τ ·E de (3.6)

=
1

|f |
∑
e∈∂f

σe,f |e|IEh
e (E) (3.7)

Here σe,f = ±1 is an orientation vector which corrects for the possible discrepancy in the global orientation
of edges and the necessary counter-clockwise orientation of the circulation integral.

Our inner product matrices will satisfy the following

IEh
f (E)TME |fIEh

f (D) =

∫
f

E ·D +O(h) (3.8)

IFh
f (B)TMF |fIFh

f (C) =

∫
f
BC +O(h) (3.9)

The inner product matrices MS are constructed locally and we use the notation that the local matrix
restricted to a grid cell f is given denoted MS,f . We use similar notation for the local degrees of freedom
and differential operators. Given that our degrees of freedom for F functions are average values, the local
construction is straight forward.

Mµ−1

F ,fBh,Q = |f |µ−1Bh,f µ−1 =
1

|f |

∫
f
µ−1 (3.10)

The above description implies that MF ,f = |f |µ−1. This approximation is order h accurate which suffices.
To construct the edge based we rely on a so called polynomial consistency condition.

Definition 3.1. Let M be a mass matrix restricted to a local cell P . Then M obeys polynomial consitency
if there exist matrices N and R such that
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• MN = R

• NTR is symmetric positive definite.

Lemma 3.1. Let N ∈ Rn×m be rank m, Im(Q) = Ker(NT ), and let NTR be symmetric positive definate.

M = R(NTR)−1RT + P (3.11)

P = QCQT (3.12)

then

1. MN = R

2. Im(N) = Im(R)

3. if C is spd then M is spd.

Proof. The proof of (1) is an immediate calulation.

R(NTR)−1RTN = R NTR symmetric (3.13)

QCQTN = 0 QTN = 0 (3.14)

We will now prove (2). Note that Rn = Im(N)⊕ Im(Q). Assume that x ∈ Ker(R) is non-zero. As RTN is
spd we know that x = Qy.

∴ Ker(RT ) ⊂ Im(Q) (3.15)

∴ (Im(R))⊥ ⊂ Im(Q) Closed Range Theorem (3.16)

∴ (Im(R))⊥ ⊂ (Im(N))⊥ By Assumption (3.17)

However as NTR is spd we have that R and N are of the same rank therefore the dimension of their
orthogonal compliments must be the same. Pidgeon whole principal therefore implies the following.

(Im(R))⊥ = (Im(N))⊥ =⇒ Im(R) = Im(N) (3.18)

We will now show (3). Let C be spd. Then symmetry and non-negativity of M are immediate. Let
z = Nx + Qy.

zTMz = (RT z)T (NTR)−1(RT z) + (QT z)TC(QT z) (3.19)

= (RTNx)T (NTR)−1(RTNx) + (QTQy)C(QTQy) (3.20)

= xT (NTR)x + yT (QTQ)TC(QTQ)y (3.21)

Note that q = QTQy = 0 if and only if y = 0 as Q is full rank, and Im(Q) ⊥ Ker(QT ). Therefore

yT (QTQ)TC(QTQ)y = 0 ⇐⇒ y = 0 (3.22)

xT (NTR)−1x = 0 ⇐⇒ x = 0 (3.23)

Q.E.D.

To make use of the theorem, one must determine appropriate, computable, forms of the matrix N and
R. We choose to pick the values of N and R through consistency relationships. To determine N, we rely
upon a matrix of the degrees of freedom of the standard unit vectors e1, e2 as they form the basis of P0.

Ni,j =

(
1

|ei|

∫
ei

ej · τ : ei ∈ ∂f
)
. (3.24)
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Let (xc, yc) be the barycenter of f . We know that M will encode integration against another, arbitrary,
grid function we know that R must be determined by the following integral

e1 = curl (y − yc) := curlp1 e2 = curl(−x+ xc) := curlp2 (3.25)∫
f
εE · ei dx =

∫
f
εE · curl pi dx (3.26)

=

∫
f

(curl εE) pi dx−
∑
e∈∂f

∫
e
εE · τ pi ds (3.27)

To resolve the above integrals, we must introduce an approximation. Namely we will neglect the area
integral as it O(h) and we will approximate the edge integrals as follows. Let de be the degree of freedom
associate with an edge. Let xe be the midpoint of an edge e.∫

f
εE · ei = −

∑
e∈∂f
|e|seε(xe)de(E)pi(xe) +O(h) (3.28)

Here se is the orientation scalar as defined in the operator curlh. We define the matrix R as follows

Ri,j =
1

|f |

(
|ej |sej ε(xej )pi(xej ) : ej ∈ ∂f

)
. (3.29)

We will now show the spd property.

NTi Rj =

∫
f

ei · ej = |f |δij (3.30)

which is obviously symmetric positive definate.
Given this approach, we can construct the edge-based mass matrix. While one could compute using

the inverse of appropraite mass matrices using standard techniques, for example using conjugate gradients,
we will instead use a non-standard mass lumping technique. Namely we wish to create an approximate
inverse matrix which satisfies

WR = N (3.31)

using the above theorem we can then construct W by

W = N(NTR)−1NT + QUQT (3.32)

Note that the Q available in this construction can be selected to be the same matrix as in the M construction
by the preceeding Lemma, namely as Im(R) = Im(N). Note the following:

WMN = WR = N (3.33)

MWR = MN = R (3.34)

3.1 Fully-Discrete Scheme

We will now present two full discrete schemes. We use MFD in space and staggered-leap frog in time. The
first scheme when electrical conductivity is not neglected.

En+1
h = Wε+∆tσ

E

(
Mε−∆tσ

E En
h + ∆tcurlThM

µ−1

F B
n+1/2
h

)
(3.35)

B
n+3/2
h = B

n+1/2
h −∆tcurlhE

n+1
h (3.36)
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In the case of negligable conductivity the scheme will be simpler.

En+1
h = En

h + ∆tWε
E curlThM

µ−1

F B
n+1/2
h (3.37)

Bn+3/2 = Bn+1/2 −∆tcurlhE
n+1 (3.38)

Regardless of the case we will use the notation to denote each time step

En+1
h = S1(En

h, B
n+1/2
h ) (3.39)

Bn+3/2 = S2(En+1
h , B

n+1/2
h ) (3.40)

3.2 M-Adaptation

M-adaptation is the process of picking the matrix C or U in the definition of our inner product or approx-
imate inner product inverse matrices to optimize the scheme for some objective. In our case we will be
picking U to attempt to minimize the numerical dispersion of our discrete scheme.

The general idea is to pick a criteria to minimize, like the difference between numerical frequency and
physical frequency and expand in a Taylor series. One then picks terms to eliminate terms of this series.
In some circumstances though, this approach is not tractable. Instead we can reduce the local truncation
error of a plane-wave ansatz after a time timestep.

This technique has been applied in [8] to reduce the dispersion error for Maxwell’s equations in uniform
media. Namely by choosing the local stabilization matrix

P|f =
|f |
12


1 0
0 1
−1 0
0 −1

(4− ν2 −ν2

−ν2 4− ν2

)(
1 0 −1 0
0 1 0 −1

)
(3.41)

where ν = c∆t
h is the Courant number. This choice eliminates the second order dispersion error so that

ω2
n = c2k2 +O(kh)4 (3.42)

where ωn is the numerical frequency and k is the physical wave number.
For our interface problem we will assume above stabilization matrix in the uniform regions. Our goal

will be to produce stabilization matrices which reduce dispersion accross the material discontinuity.

4 Discrete Dielectric Interface Problem

Our representative problem is given as follows. Assume a global domain G which is subdivided into Gt
and Gb. Will discretize with uniform, square cells in both domains but Gb will be twice as refined as
Gt. There will be different dielectric properties in each subdomain, (εt, µt), and (εb, µb). For an air/water
interface we would have εb > εt (for example at 20◦ C, εb = 81ε0 while εt ≈ ε0) and µb ≈ µt. Let
ct = (εtµt)

1/2, cb = (εbµb)
−1. The difference in material properties will lead to slower propagation in the

Gb with a contraction in wavelength by a factor of cb
ct

. For the purpose of the following analysis we will

assume that cb = 1
2ct.

In Figure 2 we describe degrees of freedom necessary for a single step at several degrees of freedom.
For our purposes we will refer to degrees of freedom as Eyi , E

x
j , and B` for i, j, ` integers appearing in the

figure. Initial values are given as follows
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The exact solution is given as follows with αt, αr defined as above. There is some naive non-dimensionalization
in place here, namely we have divided by a reference electric field |Eref| (for example by V

m).

Eyi (x, y, t) =

{
kx exp i(kxx+ kiyy − ωt) + αrkx exp i(kxx− kiyy − ωt) y ≥ 0

αtkx exp i(kx + ktyy − ωt) y < 0
(4.1)

Exi (x, y, t) =

{
−kiy exp i(kxx+ kiyy − ωt) + αrk

i
y exp i(kxx− kiyy − ωt) y ≥ 0

−kty exp i(kxx+ ktyy − ωt) y < 0
(4.2)

B(x, y, t) =

{ |ki|2
ω

(
exp i(kxx+ kiyy − ωt) + αr exp i(kxx− kiyy − ωt)

)
y ≥ 0

αt
|kt|2
ω exp i(kxx+ ktyy − ωt) y < 0

(4.3)

We will consider a special mesh where for y > 0 we will have a uniform Cartesian mesh with side-length
h and for y < 0 we will have uniform Cartesian mesh with side length h/2.At y = 0 we will have all the
degrees of freedom associated with the bottom mesh. For our purposes we will split edges e ∈ Eh into
vertical edge v and horizontal edges r. While this decomposition is meaningless on a truly general mesh,
yet is standard practice in the Yee-scheme. Further, instead of exactly calculating integrals along edges,
we will use the midpoint quadrature on every edge and on every cell center.

Further we introduce simplifying constants which reduce the total number of parameters necessary to
describe a given initial condition.

kx = kix ky = kiy (4.4)

c0 = (ε1µ1)−1/2 ε0 = ε2ε
−1
1 (4.5)

µ0 = µ2µ
−1
1 k =

√
k2
x + k2

y (4.6)

kx = k cos θ ky = k sin θ (4.7)

kTy = k

√
(ε0µ0 − 1) cos2 θ + sin2 θ ω = c0k (4.8)

αr =

√
1 + (1− ε−1

0 µ−1
0 ) cot2 θ − ε−1/2

0 µ
−3/2
0√

1 + (1− ε−1
0 µ−1

0 ) cot2 θ + ε
−1/2
0 µ

−3/2
0

(4.9)

αt =
2√

1 + (1− ε−1
0 µ−1

0 ) cot2 θ + ε
−1/2
0 µ

−3/2
0

(4.10)

Given the Ansatz, it is clear that in the entire domain our solution has the property that if a degree
of freedom di is located at position (x, y) and degree of freedom dj is at (x+ h, y), then dj = exp(ikxh)di.
Further we will assume that for cells not adjacent to the interface have their choice of parameters determined
by the homogeneous M-adaptation. Namely the local stabilization matrix is chosen as

P|f =
|f |
12


1 0
0 1
−1 0
0 −1

(4− ν2 −ν2

−ν2 4− ν2

)(
1 0 −1 0
0 1 0 −1

)
(4.11)

where the ν is the Courant number, ν = ∆tct
h . There are eight degrees of freedom which determine the

value of the discrete plane wave at all degrees of freedom. Refer to Figure for numbering, but of interest
are edges r7, r13, r14, r19, r20, h9, h14, and h15. To compute the discrete wave after a time step from exact

data, we must also compute S2(B
−1/2
h ,E0

h) and curlThS2(B
−1/2
h ,E0

h) at all degrees of freedom
However, for those cells adjacent to the interface we have two stabilization matrices which we will work

with. We differentiate between the five-edged, course grid cells and the four edged, fine grid cells by the

10
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17 18 19 20 21

22 23 24 25

26 27

1

2 3 4

5 6 7 8

9 10 12 13

14 15 16 17

18 19

11

Figure 2: Boxed degrees of freedom represent unique values up to translation by (h, 0). We must multiply
by the mass matrix in the darker shaded cells. Lighter shaded cells are needed only to form the curlTh .

subscript 5 and 4 respectively.

P5 = |f |


1 1 0
−1 0 0
0 0 1
0 −1 0
0 0 −1


q1 q2 q3

q2 q4 q5

q3 q5 q6

1 −1 0 0 0
1 0 0 −1 0
0 0 1 0 −1

 (4.12)

P4 = |f |


1 0
0 1
−1 0
0 −1

(m1 m2

m2 m3

)(
1 0 −1 0
0 1 0 −1

)
(4.13)

With our matrices constructed we interpolate the Ansatz on our stencil and calculate

S1(S2(B
−1/2
h ,E0

h),E0
h)|e −E( · , ∆t)|e := RESe (4.14)

11
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where the subscript e denotes a particular edge. It is the goal to produce a residual at all r7, r13, r14, r19,
r20, v9, v14,and v15 with

RESe = O(h2) (4.15)

Theorem 4.1. There is no choice of parameters independent of k and θ for which RESe = O(h2) for all
edges e.

Proof. We will show begin with edge v9 which is sufficient.

RESv9 = ihk2µ2
0ν cos θ

β1

β2
+O(h2) (4.16)

β1 = ε0µ0

(
8
√
ε0µ0 − c4

0

(
8
√
ε0µ0(1 + 2q5) + ε0µ0(1− 16q5)

))
(4.17)

− 8
√
ε0µ0(ε0µ0 − 1)

(
c4

0(1 + 2q5)− 1
)

cot2 θ (4.18)

+ 8c2
0νq5 cos θ

(√
ε0µ3

0(ε0µ0 − 1) cot2 θ + ε0µ0

(
(ε0µ0 − 1) cot2 θ

√
ε0µ3

0 (4.19)

+ ε0µ0

(√
ε0µ3

0 +

√
1 + ε−1

0 µ−1
0 cot2 θ

)))
(4.20)

+ ε0µ0(8 + c4
0

(
ε0µ0 cot2 θ(16q5 − 1)

√
ε0µ3

0 − 8(1 + 2q5

)(
1 +

√
ε0µ3

0

√
1 + (1− ε−1

0 µ−1
0 ) cot2 θ

)
(4.21)

β2 = 4c2
0

√
ε0µ3

0

(
1 +

√
ε0µ3

0

√
1 + (1− ε−1

0 µ−1
0 ) cot2 θ

)2

(4.22)

This rather complicated residual cannot be reduced to something O(h2) without selecting q4 dependent
on wave parameters (k and θ). In order to correct for this introduced a convolution operator which would
average nearby edges at time step n+ 1 to attempt to cancel additional errors. For example

vn+1
9 =

(
1− γ1 + γ2(exp(ikh cos θ)− 1) + γ3(exp(−ikh cos θ)− 1)

)
En+1
h |v9 + γ1E

n+1
h |v4 . (4.23)

Here the γ2, γ3 are contributions from vertical edges to the left and right of v9. Symmetry of these
parameters is critical a method which will work for all possible angles. This therefore would produce a
contribution of γ2(cos(kh cos θ)− 1) which will be of order O(h2) and therefore unable to cancel the lowest
order errors present in the residual. We will therefore set γ2 = γ3 = 0.

The γ1 term seems more promising. However investigating the new residual with this term added
presented difficulties. Call the new residual R̃ESv9 .

R̃ESv9 = p(ε0, µ0, c0, γ1, q5, k, θ) +

√
1− 2ε0µ0 + cos 2θ

−ε0µ0 + ε0µ0 cos 2θ
g(ε0, µ0, c0, γ1, q5, k, θ) +O(h2) (4.24)

In this formulation we had p and g with no internal dependence on the square root term appearing in
the expansion. This suggested that the only hope of eliminating one term was to eliminate the other and
hope that g = p. However, the it is impossible to force g = 0. This can be shown by subsitituting the
the variable x = exp(iθ). g can then be expanded in Dirchlet series from x−4 to x4. With this in place it
can be shown that the term is zero only if the coefficients for each term are identically zero. However, the
over-determined system has no solution.

Q.E.D.

This leads to our first result, which is unfortunately negative. While the technique of applying both
M-adaptation and convolution (averaging) provably does not work there is another option. To this end
we will now focus on increasing accuracy at the interface by increasing the order of local polynomial
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approximation. We will theen have the layer adjacent to the interface with polynomial order 1 (as opposed
to the lowest order which is only zero). The next layer out will now have hanging degrees of freedom
associated with this higher refinement and we will apply M-adaptation to this reduce dispersion over the
non-physical interface the local increase in order will create.

5 Conclusions

In this work we attempted to extend previously successful m-adaptation ideas for Mimetic Finite Difference
(MFD) discretizations of electric wave equation from homogeneous regions partitioned using uniform rect-
angular mesh to a flat interface problem with a factor of two wave speed difference. Our analysis showed
that even in such ideal conditions of a flat interface and a factor of two mesh refinement this extension is
not possible.

Our understanding of the reasons behind inability to successfully perform m-adaptation at the interface
are the following. Even though MFD discretization, just like Yee scheme, is second order accurate on
rectangular mesh this accuracy is achieved due to mesh symmetry. The same MFD scheme on unstructured
mesh is only first order accurate. A factor of two refinement at the interface breaks mesh symmetry,
therefore, defaulting the scheme to first order of accuracy at the interface. M-adaptation in homogeneous
region effectively balanced the errors in spatial and temporal discretization, both of which were of second
order. At the interface this balance is no longer possible as these error are now of different order.

We also attempted a convolution approach, where we applied an additional averaging operator along
the interface. Here the hope was that the first order error, being of odd order could be eliminated. Yet,
this did not allow us to eliminate the error for all forms of incident waves, only for a particular ones, which
is not sufficient for time domain formulations.

Our current vision of the discretization necessary for the interface problem is as follows. We need to
encapsulate the interface and the parts of the homogeneous domains in a thin not necessarily structured
mesh. Use a higher order implicit scheme on this mesh and couple it on both sides with the explicit solver.
The advantages of this approach is that (i) it allows to deal with general interfaces (not necessarily flat
ones); (ii) any jump in wave speed could be treated the same way; (iii) there are no restrictions on the time
step (i.e. CFL condition) other than thickness of the interface layer due to implicit form of the method.
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