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Preamble

The Southern Ocean (SO) is the stormiest place on earth, buffeted by winds and waves that circle the
ice of Antarctica, sheathed in clouds that mantle a dynamic ocean with rich ecosystems, and remote
from most human influences. It influences the atmospheric and oceanic circulation of the entire
southern hemisphere and beyond.

The remoteness from anthropogenic and natural continental aerosol sources makes the SO a
unique testbed for our understanding of cloud-aerosol interaction, both for liquid and ice clouds,
and the role of marine biogenic aerosols and their precursors. Weather forecast and climate models
almost universally underpredict the amount of low-lying cloud in the cold sector of mid-latitude
cyclonic storm systems, and this is particularly
prominent over the SO, where such systems are
ubiquitous year-round.

Absorbed Shortwave Radiation Mean Error - CMIPS
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Climate models are challenged by
uncertainties and biases in the simulation of SO
clouds, aerosols, and air-sea exchanges which trace to
poor physical understanding of these processes in
this unique component of the climate system. These
biases affect the simulated global energy budget (Fig.
1), the location of tropical rainfall belts, and
simulation of anthropogenic indirect aerosol effects
on climate, and may impact simulated global cloud
feedbacks and carbon-cycle feedbacks on climate

change. These biases further limit our understanding T A S RUE AN A

of the vast uptake of carbon dioxide into the SO. The  Figure 1: CMIP5 model clouds do not reflect

SO surrounds Antarctica and therefore interacts enough sunlight. Ensemble mean error for CMIP5

closely with massive ice shelves whose stability to models in shortwave radiation absorbed by the Earth

climate change is uncertain but could be catastrophic. SyStem Positive values indicate too much shortwave
radiation absorbed.

There have been sparse and infrequent
observations of clouds, aerosols, precipitation, radiation and the air-sea interface in this region (see
section 1). Consequently, much is unknown about atmospheric and oceanographic processes and
their linkage in this region. We believe that the time is ripe for a major new in-situ measurement
campaign to study clouds, aerosols and the air-sea interface in the SO. This white paper provides a
more detailed motivation, including scientific themes and testable hypotheses, leading to a
proposed implementation plan for the SO Clouds, Radiation, Aerosol Transport Experimental Study
(SOCRATES).

The scientific and modeling challenges addressed by SOCRATES are nationally and internationally
acknowledged to be high priorities for climate science. The World Climate Research Program (WCRP)
recently formulated six grand challenge problems, one of which is Clouds, Circulation and Climate
Sensitivity!. WCRP note that ‘/imited understanding of clouds is the major source of uncertainty in
climate sensitivity, and also contributes substantially to persistent biases in modelled circulation
systems’. A recent draft report of the Geosciences Division of the U.S. National Science Foundation
has called out the Southern Ocean as one of five research frontiers, noting many of the themes
central to SOCRATES. SOCRATES complements NSF’s Southern Ocean Carbon and Climate
Observations and Modeling (SOCCOM), running from 2014-2020, which will focus on SO
biochemistry, circulation, and carbon uptake. In particular, SOCRATES aims to stimulate atmospheric
model improvements that will lead to a better representation of the entire earth system by reducing
errors in SO surface energy balance and winds. This could improve not just the simulation of physical
climate, but also of carbon uptake and other biogeochemical processes, as well as Antarctic sea ice
and ice shelves.

! See http.//www.wcrp-climate.org/index.php/gc-clouds
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Prior observations Table 1: Past intensive observational studies focused on the study of
clouds and aerosols over the Southern Ocean

Our current level of understanding of Field Experiment | Time Range | Primary Science
cloud and aerosol processes over the Southern Ocean Jul 1993: Cloud Microphysics
SO is based upon data gathered from Cloud Experiments Jan ' 40°- Characterization
previous observations and associated (SOCEX I & 11 1995 S i)
model studies (Table 1 shows SHEEE B bounds -
. L . . Aerosol Atmospheric
influential intensive observations). The | characterization Nov/Dec 40°- Chemistry
SOCEX aircraft campaigns, with two Experiment (ACE 1) 1995 55°S | Secondary cloud
phases: summer (Jul 1993, Boers et al. Bates et al. 1998 microphysics obs.
1998) and winter (Jan-Feb 1995, Boers | HIAPER Pole to Pole Global Atmospheric
et al. 1996), measured cloud droplet Observations 5 flights 43:- Chemistry;
concentrations that were a factor of 2-3 (HIPVITIO) 2009-11 67°S secondary cloud
ofsy et al. 2011 microphysics obs.

higher in summer than winter,
suggestive of an important seasonal cycle in SO aerosol budgets and cloud-aerosol interaction. The
SOCEX measurements were conducted at latitudes 40-43°S and did not have comprehensive aerosol
composition measurements.

The first Aerosol Characterization Experiment (ACE-1, Bates et al. 1998a) was a
comprehensive field experiment in 1995 involving two ground sites (Macquarie Island and Cape
Grim), two research vessels, and the NSF/NCAR C-130 aircraft aimed at improved quantification of
chemical and physical processes controlling atmospheric aerosol relevant to radiative forcing and
climate. ACE-1 documented the role of dimethylsulfide (DMS)-derived sulfate aerosols over the SO
including the potential for new particle formation and growth (Bates et al. 1998b), vertical aerosol
structure including subsidence of near-cloud-nucleated aerosols from the free troposphere (Clarke
et al. 1998, Weber et al. 1998), and the importance of sea-spray aerosol (Bates et al. 1998).
However, sampling in ACE-1 stayed north of 54°S and largely away from clouds. More recently, the
HIPPO campaigns using the NSF/NCAR G-V aircraft (Wofsy et al. 2011) have provided the only in-situ
dataset on clouds and aerosols south of Macquarie Island (54°S), with four transects extending down
to latitudes of 67°S.

Ground based atmospheric chemistry observations are ongoing at Lauder and Baring Head
(New Zealand) and Cape Grim (Australia). A long record of surface aerosol measurements from Cape
Grim (41°S, 145°E) led to an understanding of the strong seasonality in CCN concentrations with a
likely cause being greater ocean biogeochemical activity during summer (Ayers and Gras 1991).

2. Climate model biases and observational knowledge gaps

A central motivation for SOCRATES is to provide measurements to support the improvement of
climate model simulations of planetary boundary layer (PBL) processes, shallow convection, clouds,
and aerosols over the SO. Satellite observations identify systematic SO cloud and aerosol biases in
climate models, and global modelling studies demonstrate the importance of these biases. A
comprehensive suite of in-situ measurements across the seasonal cycle is critical for supporting and
testing improved process representations in the models, as well as for making better use of the
satellite observations available to constrain models.

Clouds over the SO are poorly represented in global climate model simulations (Trenberth
and Fasullo 2010) and even present-day reanalysis products (Naud et al. 2014). The CMIP5 ensemble
mean error in annual mean absorbed shortwave radiation (Fig. 1) between 55°S and the Antarctic
coast indicates systematically too much absorbed shortwave radiation, especially during Austral
summer, inducing warm SST biases year-round over the SO. This bias is mainly due to too little
cloud, though sea-ice may also contribute.

The large radiation biases interact with the location of the Southern Hemisphere jet in
climate models (Ceppi et al. 2012, 2014), influence the tropical circulation (Hwang and Frierson,
2013) and may correlate with climate sensitivity (Trenberth and Fasullo 2010). Recent analyses of
model simulations suggest several possible reasons for the model radiative errors in the SO. A major
contributor is a lack of clouds in the cold sectors of cyclones (Fig. 2). Errors in the representation of



mid-topped clouds in the warm conveyor :
belt of shallow cyclones near the Antarctic 3 }
continent have also been documented

(Mason et al., 2014). The minority of
climate models with enough zonal-mean
reflected shortwave radiation do so by
compensating this error with overly bright
high clouds in the warm sector of cyclones.
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Likely contributors to these errors
include (1) model deficiencies in vertical
turbulent transport due to both cumulus
and PBL parameterization, (2) interaction :
between parameterized cumulus . = 4 1 Q«I\,}
convection and stratiform cloud processes, SR s T

[ eee—
e.g., through processes such as condensate 50 -40 <30 20 <10 10 20 30 40 50(Wm?)

detrainment, (3) microphysical deficiencies, Figure 2: Cyclone compositing indicates consistent patterns
e.o. excessivelv rapid glaciation of of insufficient reflected shortwave in the cold, dry regions of

8 - y . piag . the cyclones. Figure shows bias in absorbed shortwave radiation
supercooled liquid cloud or excessive for AMIP models from Bodas-Salcedo et al. (2013).
precipitation from cumulus, (4) errors in

representing sub-grid condensate variability, and (5) inadequate resolution of the circulation
systems in which the clouds evolve (Govekar et al. 2014).

Natural aerosols are a major source of uncertainty in the effective radiative forcing by
aerosols (Ghan et al. 2013, Carslaw et al. 2013). This hinders our ability to use historical observations
to constrain estimates of Earth’s climate sensitivity (Kiehl 2007) or to test climate model simulations
of anthropogenic aerosol impacts on climate change. The SO is an important testbed for climate
model simulations of aerosols and aerosol-cloud interaction. It is far from most continental aerosol
sources, and climate models suggest only weak anthropogenic aerosol impacts.

The datasets that do exist for the SO show there is a large seasonal cycle in cloud and
aerosol properties including cloud condensation nuclei concentration (Ayers and Gras 1991), aerosol
optical depth, aerosol composition (Sciare et al. 2009), and cloud droplet number concentration,
with extremely low cloud droplet number concentrations in the winter (<40 cm™) and much larger
values during summer (Boers et al. 1998). The summertime peak is likely due to marine biogenic
sources, but the pathway remains uncertain (Quinn and Bates 2011). Concentrations of efficient ice
nuclei have been observed to be very low and may be an important factor in explaining the
prevalence of supercooled water clouds over the SO; the importance of marine IN sources is an
important modelling uncertainty (Burrows et al. 2013) as is the role of secondary ice production
processes that may play an important role in these pristine environments.

CMIP5 climate models struggle to represent aerosol processes and to achieve accurate
simulations of the annual mean and seasonal cycle of CCN and cloud droplet concentration over the
SO. This may also contribute to the SO shortwave biases in some climate models. In particular, it is
not clear if the time variability (and
especially the seasonal cycle) of the
albedo of liquid clouds over the SO is
strongly controlled by the
corresponding time variability of
CCN/IN, or whether other physical

Table 2: Observational and modelling requirements for SOCRATES

To narrow the manifold uncertainties in representing key
processes in climate models, a comprehensive dataset is
SOCRATES | needed to document PBL structure, and associated
observational | vertical d_istribqtions of liquid and mixed-phase cloud and
requirement aerosol (including CCN and IN) over the Southern Ocean,

controls on cloud cover dominate. across th_e year under a range of synoptic set;ings. These
observations will also be used to evaluate active and
Table 2 presents the key passive satellite observations.
observatlonal and modellmg For such a dataset to have broad impact on climate
requirements to guide the SOCRATES | modelling, the modelling community must be an integral
development of SOCRATES modeling part of the SOCRATES design and be involved in a
measurements and associated requirement systematic confrontation of leading climate models with

SOCRATES datasets, €. g. using short-term hindcasts as

modelling. in the VOCALS model assessment (Wyant et al. 2014).




3. Science themes

There is already great value in gathering an in situ dataset for constraining and improving process
representations in climate models. Parameterization uncertainties also trace to a fundamental lack
of understanding about many aspects of the SO cloud-aerosol-ocean system, which we categorize
into four overlapping science themes underpinning SOCRATES. By design, these themes also
encompass much of the aforementioned climate modelling uncertainty, but they are organized at a
process level that flows into falsifiable hypotheses that SOCRATES is designed to test.

Theme 1: Documenting the synoptically-varying vertical structure of Southern
Ocean boundary layers and clouds

In this theme, we consider issues that principally involve planetary boundary layer (PBL) vertical
structure and turbulent transport, as well as their synoptic-scale context. SO PBLs and clouds are
creatures of constantly evolving synoptic environments associated with the frequent passage of mid-
latitude cyclones along the SO storm track. The SO includes an oceanic front (a zone of strong
meridional SST gradients and complex ocean eddy and biogeological productivity structure) at 55-
60°S in the Australia/New Zealand sector, across which air-sea temperature differences and the PBL
structure of advecting air masses change quickly. Modern global atmospheric models can resolve,
assimilate and forecast this synoptic variability, which is a strong control on the relative humidity
and hence the cloud distribution, even without a representation of aerosol variability (Naud et al.
2012). This shows the primacy of synoptic forcing in determining cloud macrophysical properties.

However, global models still suffer significant regime-dependent errors in their simulated
cloud microphysical and radiative properties, including cloud cover. Deficiencies in turbulent and
cumulus parameterizations may contribute. At Macquarie Island, well-mixed stratocumulus-topped
PBLs less than 1 km deep are frequent (Huang et al. 2012a). In such PBLs, much can be inferred from
surface measurements, e.g. the cloud base is tied to the near-surface lifted condensation level, and
cloud-base aerosol concentrations are tied to near-surface aerosol concentrations. Despite their
simple vertical structure, well-mixed cloud-topped PBLs have proved challenging for climate models
to parameterize and simulate in other parts of the world such as the subtropics, due to insufficient
vertical resolution, uncertainties about entrainment, and strong cloud-radiation feedbacks.

Over the SO, the lower troposphere often has more complex thermodynamic and aerosol
structure, with multiple layers interacting with strong wind shear (e.g. Russell et al 1998; Jensen et al
2000) that are not well represented in reanalyses (Hande et al. 2012). Decoupled and cumuliform
PBLs are also evident in satellite imagery of the SO. During ACE-1, ‘buffer layers’ were often seen
above the lowest cloud layer (Russell et al. 1997), with thermodynamic and aerosol properties
intermediate between the PBL and the overlying free troposphere. Buffer layers are poorly
understood and inadequately documented; they might form due to synoptic lifting and differential
advection, or due to shallow cumulus convection that detrains above the PBL.

Shallow convective microphysics/detrainment: Because shallow cumulus convection is common in
the cold sector of mid-latitude cyclones, it is an important determinant of simulated SO cloud
properties in climate models. Park et al. (2014) shows that in the CAMS5 climate model, most of the
simulated ice water path over the SO is within the updrafts of shallow cumulus clouds, even though
most of the liquid water is in stratus clouds. This suggests that CAMS5’s cloud climatology might be
sensitive to the phase partitioning of cumulus updraft condensate, which is a specified function of
temperature. Indeed, Kay et al. (2014) found that if all cumulus updraft condensate in CAM5 is
forced to remain liquid down to -20°C, the simulated cloud cover and albedo increase substantially
over the SO and approximately match satellite observations.

Presumably, shallow convection is equally important in reality in determining the vertical
structure and phase of SO clouds, as well as in vertical aerosol transport and processing. In
particular, the above discussion suggests that:

Hypothesis 1.1: A primary reason that most climate models simulate too little cloud in the cold sector
of mid-latitude cyclones is inadequate liquid water reaching the tops of parameterized shallow
convective clouds, due to vertical transport and microphysical biases.




The interaction of cumulus convection and mixed-phase microphysics is not well observed, aside
from a few observations during SOCEX (Table 1). SOCRATES will naturally sample and document this
important process with modern in situ and airborne remote sensing instrumentation.

Aerosol transport: A plausible consequence of the dynamic synoptic environment of the SO, and of
regional variability in ocean productivity across the strong SST gradients characterizing this region, is:

Hypothesis 1.2: Over the SO, there is substantial free-tropospheric aerosol variability that is mainly
tied to synoptically-varying long-range transport from remote oceanic and continental sources. Within
the boundary layer, local processes such as surface sources and precipitation scavenging are also
important contributors to aerosol variability.

So far, free-tropospheric aerosol measurements over the SO are too sparse to test this hypothesis,
but SOCRATES can bring to the table a powerful combination of more aerosol measurements in and
above the boundary layer, modelling and back-trajectory analysis, and satellite remote sensing.
Within the PBL, we anticipate that climate models will be particularly challenged to simulate
observed aerosol concentrations, due to aerosol interactions with parameterization challenges such
as cumulus convection or turbulence-microphysics interaction.

A logical and testable follow-on to Hypothesis 1.2 is that the aerosol variability is not just
substantial, but significant for cloud properties:

Hypothesis 1.3: Synoptic-scale aerosol variability has measurable effects on the cloud microphysical
and radiative characteristics through its influence on cloud droplet and ice crystal concentrations.

This hypothesis can be tested by relating the measured cloud particle concentrations to relevant
measures of aerosol, assuming there is sufficient space-time variability of both within clouds forming
in a given broad meteorological regime.

Comparison with models: 1t is a challenge to compare models with a necessarily limited dataset in
such a complex and variable environment, in which model errors in dynamics, clouds, aerosols, and
surface properties quickly become intertwined. One strategy that holds promise for SOCRATES is
running global climate models in a nudged-meteorology mode in which the three-dimensional wind
field is constantly nudged toward a global reanalysis over the observation period (allowing the
model to freely predict the associated temperature, humidity, cloud and aerosol fields), and the
model is sampled at the time and location of the observations (Fig. 3).

To achieve a representative comparison, it is important to sample across synoptic regimes and
latitudes, not just cold-sector or warm-sector clouds in one area. To average across synoptic
variability requires a longer dataset than an airborne field campaign can collect; in this environment,
extended-time observations are a critical complement to intensive in situ measurements.
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Figure 3: Comparison of measurements of cloud phase from a HIPPO flight (black flight track and colored symbols, green
for supercooled water and blue for ice) with simulations from the CAM5 climate model, nudged to maintain observed
meteorological conditions (shading in upper panel, blue for ice, black for liquid cloud). Latitude is shown in red along the top.
Courtesy Andrew Gettelman (NCAR).




Theme 2: Understanding seasonal and synoptic variability in Southern Ocean cloud
condensation and ice nucleus concentration and the role of local biogenic sources.

Processes that determine cloud-forming aerosol properties in pristine marine environments such as
the SO remain poorly understood (Carslaw et al. 2010, Quinn and Bates 2011). Uncertainties in our
understanding of aerosols in the preindustrial environment impede our ability to quantify the
radiative forcing from anthropogenic aerosols over the industrial era (Carslaw et al. 2013, Ghan et al.
2013). Model studies indicate that a significant fraction of global anthropogenic aerosol forcing is
associated with aerosol-cloud interactions over the northern extratropical oceans (e.g. Kooperman
et al. 2012, Zelinka et al. 2014), while the SO contributes negligibly (Korhonen et al., 2008). As a
result, the SO has the potential to serve as a modern surrogate for aerosol conditions in the
preindustrial era.

Lower tropospheric source and sink terms in the CCN and IN budgets over the SO are not
well understood. Major unresolved issues are (a) the relative importance of local surface sources
compared with long-range transport of primary aerosol and gas phase precursors; (b) the relative
contributions of different surface-generated species to the surface source; and (c) the importance of
spatiotemporally-varying sinks, most notably precipitation. Surface sources contributing to the CCN

budget include primary sea-spray emissions composed of A —

both sea salt and biogenic organic components (Quinn et 5 . g
al. 2014). In addition, there are surface sources of 1000 ™, (Ca;te Grim,
biogenic gas phase aerosol precursors, including Ayers and Gras)
dimethylsulfide (DMS) and organic species. Model studies 80 b
(e.g., Korhonen et al. 2008) indicate that the impact of €
DMS on CCN concentrations over the SO primarily occurs =
. . . . © 60

via nucleation of new particles in the upper free =
troposphere (FT) with subsequent transport and = i
subsidence back to the PBL. Observations are limited, but & 40

. . c
support the FT being an important aerosol transport S _
pathway over the SO. Mean profiles of both total particle 20 '

. Cloud drop conc.

number (Clarke et al., 1998a) and CCN concentrations B Boarsatal.
(Hudson et al. 1998) from ACE-1 indicate higher . 40-60°S ¢ MODIS
concentrations in the FT than in the PBL, consistent with 0 2 4 6 8 10 12
an FT source of aerosols impacting the PBL CCN budget. ) Month

. . o Figure 4: Seasonal cycles of cloud drop

Observations from Cape Grim, Tasmania (Fig. 4) concentration (Ng) and CCN concentration

show striking seasonality, with a clear summertime peak in  over the Southern Ocean. Nqdata are derived
CCN concentration that corresponds to the peak in from passive visible/near-IR data from MODIS

. . . N red) and from limited aircraft flights durin
methane sulphonic acid (MSA), an atmospheric oxidation &/int)er and summer (black squages). The 9

product of DMS. The correspondence in the seasonal cycles seasonal cycle of CCN at 0.3% supersaturation
of CCN and MSA has led to the hypothesis that increasing ~ from measurements at Cape Grim (Ayers and
biological emissions of DMS from the ocean during warmer forﬁgezgl‘?agolﬁ #Zzsgr%%nérig ?r;%cl‘(s)g%cér)(zplet
months when ocean productivity increases leads to an campaigns (Table 1).

increase in CCN concentration (Ayers and Gras 1991).

Satellite data imply a corresponding summertime maximum in cloud droplet concentration (Ng4) over

the entire SO (from 40-60°S, Fig. 4). This motivates:

Hypothesis 2.1: Entrainment of biogenically-derived aerosols from the free troposphere constitutes a
major source of CCN for Southern Ocean PBL clouds during summer, but sea-salt aerosols are the
dominant CCN source in winter.

To test this hypothesis, in situ measurements of aerosol physicochemical properties, their vertical
structure and their CCN activity are needed, especially over the unexplored southern latitudes of the
SO. The striking seasonal contrast (Fig. 4) motivates the need to make measurements during both



summer and winter. Figure 5 provides a summary of the primary sources and production

mechanisms for CCN and IN.

Major progress has been made in the development of new techniques for the
characterization of aerosol composition and sources since ACE-1. Aerosol mass spectrometers are
now available that are able to quantify size and chemical mass concentrations of aerosol species. In
addition, new techniques for determining organic composition, isotopic composition, and genetic

Free troposphere:
* Long range of conti
= Homogeneous nucleation of DMS oxidation products

Ice Nucled
Cloud Condensation Nuclei

Entrainment
rate

5 it
so,” 2a sal

Marine boundary layer:

= Particle growth — condensation,
coagulation, cloud processing

= Secondary organic aerosol formation

Wind speed
Bubble bursting

Seawater carbon poal
Biological activity

Surfactants
Bubble bursting

Biological activity
Wind speed

Marine aggregates

Figure 5. Major sources and production mechanisms for
CCN and IN in the remote marine boundary layer. DMS
contributes to the MBL CCN population primarily via particle
nucleation in the FT in cloud outflow regions with subsequent
subsidence. Sea salt and organics are emitted as a result of

markers have made it possible to search for
similarities between surface seawater and
atmospheric aerosol properties. Methods are
now available for generating freshly emitted sea
spray aerosol before it is altered by interactions
with existing atmospheric gases and particles
(Keene et al., 2007; Bates et al., 2012). These
techniques make it possible to isolate nascent
sea spray aerosol and determine its cloud-
forming properties.

Ice nuclei: The lack of extensive landmasses in
the Southern Hemisphere extratropics limits the
amount of dust able to serve as IN (Choi et al.
2010). Surface and satellite lidar observations
indicate a higher frequency of supercooled
liquid water clouds over the SO compared with
other ocean regions, a finding that may indicate

wind-driven bubble bursting. a lack of IN over the SO (Kanitz et al. 2011, Hu et

al. 2010).

Given the lower dust and anthropogenic aerosol loadings than at comparable northern
latitudes, there remain important questions regarding what aerosols nucleate ice over the SO, their
number concentrations and seasonal variations (Burrows et al., 2013). Recent laboratory studies
have confirmed a source of IN directly from sea spray particles (Prather et al., 2013), and have
isolated some marine phytoplankton as active IN (Knopf et al., 2011), but little has been done to
systematically characterize ocean-derived particles for their IN ability. Existing measurements of IN
concentrations over the SO are limited to a single set of observations from 1969-1972 (Bigg, 1973).
These measurements are an order of magnitude lower than concentrations measured over land
regions by equivalent methods at that time (Pruppacher and Klett, 1997). Reported IN
concentrations from other oceanic regions are broadly consistent with these results, but with some
reports of patchy regions of very high IN concentrations occurring in regions of high biological
productivity (Rosinski et al., 1987). An association of IN abundance with plankton was suggested by
Schnell and Vali (1976). Additional measurements indicate that marine IN range in size from 50 to
300 nm (Bigg and Leck, 2001; Rosinski et al., 1987). Specific ice nucleating bacteria or viruses from
oceans have not been clearly identified, suggesting the possibility that unidentified organic species
are the primary source of marine IN. This suggests:

Hypothesis 2.2: Biogenic particles are the dominant source of ice nuclei over the Southern Ocean

There is a great need for new spatiotemporally-resolved measurements of IN over the SO. The
current measurement community appears poised to take up this challenge with a suite of real-time
and offline measurement methods that have shown good agreement in recent intercomparisons
(e.g., DeMott et al., 2011; Garcia et al., 2012). Previously mentioned single particle analytical
instruments, and new biological probes to specifically identify the action of marine organisms versus
other organic aerosol types should add greatly to our understanding of sources and properties of IN
over the SO (Hill et al., 2014).



Theme 3: Supercooled liquid and mixed-phase clouds

Supercooled liquid water clouds are common over high latitudes (Hu et al. 2010), especially over the
SO. Satellite observations suggest that low-level clouds (with tops below 3 km) are dominant over
the SO. These clouds are rarely glaciated at cloud-top, even at temperatures down to -25°C
(Morrison et al. 2011, Huang et al 2012b). Beneath cloud-top there is a high degree of uncertainty in
assigning the thermodynamic phase, especially in the common situation of multiple cloud layers
(Mace 2010). These observations and their uncertainties motivate:

Hypothesis 3.1: Supercooled liquid clouds contribute substantially to observed cloud reflectance
over the Southern Ocean.

Although the remote sensing of supercooled clouds is challenging (see theme 4), satellite
retrievals suggest that the SO features a greater occurrence of mixed-phase clouds with supercooled
water (Hu et al. 2010, Morrison et al. 2011, Chubb et al. 2013) compared with similar latitudes in the
Northern Hemisphere (Fig. 6). Because the
partitioning of condensate into ice and liquid
impacts cloud albedo (Sun and Shine 1994), the
high frequency of supercooled water over the SO
may play a role in the shortwave radiation bias
discussed in section 2. Indeed, changes in
supercooled water from warming and stability
changes may control SO climate feedbacks (Kay et
al. 2014).

A key to understanding and modeling
microphysical processes in mixed-phase and

supercooled clouds lies in characterizing their babilitv of cloud ed
; ; ; Figure 6: Probability of cloud containing supercoole
physical properties. Much is unknown about the liquid water between -40 and 0 °C, retrieved using

frequency of occurrence of supercooled water, the  ca11PSO depolarization measurements from DARDAR
sizes and concentrations of cloud droplets, their algorithm of Delanoé and Hogan (2008)

vertical distribution, their formation mechanisms

and the meteorological conditions supporting them. Mechanisms responsible for the production and
evolution of ice in mixed-phase systems are not understood. A primary objective of SOCRATES is to
collect a data set suitable to study interactions between microphysics, dynamics and radiation in
mixed-phase and supercooled clouds. The resulting dataset will be used to develop and evaluate
parameterizations in models with a variety of spatial and temporal scales, as well as for ground- and
space-based remote sensing retrievals that can provide information on properties of such clouds.
SOCRATES data will reach far beyond that available from the HIPPO project (Table 1), which
effectively sampled cold clouds over the SO on only two flights, finding large amounts of
supercooled water up to 0.5 g m3, widespread drizzle, and infrequent ice at temperatures as low as -
22°C (Chubb et al. 2013).

Ground-based remote sensing studies over the Arctic (e.g., Shupe et al. 2001, 2005; Intrieri
et al. 2002) have shown that supercooled water and mixed-phase clouds occur frequently and are
radiatively significant (Dong et al. 2001; Dong and Mace 2003; Zuidema et al. 2005). Compared to
the properties of supercooled and mixed-phase clouds measured in situ over the Arctic (e.g., Lawson
et al. 2001; Rangno and Hobbs 2001; Korolev et al. 2003; Preni et al. 2009; Earle et al. 2011; Lance et
al. 2011), the limited data over the SO (Chubb et al. 2013) suggest there is more frequent drizzle, less
frequent ice, smaller liquid droplet concentrations and larger liquid particles over the SO. However,
there are insufficient in situ and remote sensing data to validate this conclusion over a wide range of
meteorological conditions, leading to:




Hypothesis 3.2: At similar temperatures and latitudes, there are systematic differences in the sizes
and concentrations of supercooled drops, as well as in the mass contents and concentrations of ice
crystals between Northern and Southern Hemisphere clouds.

In addition to obtaining observations in the Southern Hemisphere to compare against previous
observations in the Northern Hemisphere, it is vital to identify the large-scale forcing and surface
processes responsible for the formation and maintenance of supercooled water in SO clouds, and
understand how these 0.8 0.8 0.8
a) —ISDAC b) c)
processes are modulated by
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polluted Arctic spring clouds _

compared to cleaner fall clouds 0‘2_ _ 02 4|—|_|\ _ 03

(McFarquhar et al. 2007), o— " L 0— I—|_.__ 0
0 100 200 300 O 10 20 0 5 10

larger liquid droplet N [emd r,, [um] N
concentrations, smaller liquid _ fa ) , ,
ffective radii and lower ice Figure 7: Normalized histograms of (a) (supercooled droplet concentration Ni,
€ ) (b) liquid cloud effective radius re, and (c) ice crystal concentration Nice (D>125
crystal concentrations were um) from single-layer stratus and stratocumulus measured in Arctic during more
measured in situ. Thus, it is polluted spring (ISDAC) and cleaner fall (MPACE); decrease in rer and Nice and
plausible that the lower aerosol increase in Nig with more polluted conditions shows evidence of indirect effect

concentrations over the SO and (adapted from Jackson et al. 2012).

the scarcity of efficient ice nuclei, such as dust particles, could explain the pervasiveness of
supercooled water there:

-1
ice D =125 pm [L ]

Hypothesis 3.3: The activity of IN is the main modulator of the range of temperatures at which
supercooled stratus clouds are observed.

Data collected over the SO offer an opportunity to evaluate this hypothesis and various
indirect aerosol effects on clouds and radiation because of the unique pristine environment that will
be sampled. Although the primary processes by which aerosols indirectly affect liquid clouds
(Twomey 1974; Albrecht 1989; Hansen et al. 1997) and the associated dynamical responses (Pincus
and Baker 1994; Boers and Mitchell 1994) are well established, the dominant indirect effects in ice
and mixed-phase clouds (e.g., Lohmann 2002; Borys et al. 2003; Rangno and Hobbs 2001) are not as
well known. Further, since aerosol effects cannot be studied in isolation of meteorological and
surface forcing, understanding from Arctic cloud studies may not apply to the SO. From the Arctic, it
is known that the commonly observed structure of a liquid cloud top with precipitating ice below
(Hobbs and Rangno 1998; Curry et al. 2000) can persist for a long time only when an appropriate
balance between cloud top radiative cooling, microphysical heating, ice sedimentation and large-
scale forcing exists (e.g., Pinto 1998; Harrington et al. 1999, Morrison et al. 2008; Luo et al. 20083,
2008b). This balance critically depends on ice crystal fall speeds, ice nucleation mechanisms and
large-scale forcing (e.g., Jiang et al. 2000; Harrington and Olsson 2001; Lohmann 2002; Morrison et
al. 2003; Fridlind et al. 2007; Xie et al. 2008; Avramov and Harrington 2010). Given expected
differences in IN, surface forcing and meteorology between the Arctic and SO, additional data over
the SO should help better understand the balance and physical processes the can lead to the
persistence of mixed-phase and supercooled clouds.

Over the SO, ocean-produced aerosols dominate because of the scarcity of land. As
discussed in theme 2, there remains an important question of what aerosols nucleate ice over this
region with lower dust and anthropogenic loadings than comparable latitudes in the Northern
Hemisphere. The scarcity of aerosols and ice nuclei might also enhance the importance of secondary
ice crystal production processes (Hallett and Mossop 1974), about which much is also unknown
(Cantrell and Heymsfield 2005).
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Because of the prevalence of frontal systems over the SO (e.g., Mace 2010), it is vital to understand
how the structure, frequency and characteristics of supercooled water depend on the synoptic
meteorology and frontal dynamics. Studies in mid-latitude wintertime cyclones have shown that
generating cells 1-2 km deep with horizontal scales of 0.5-2 km and vertical velocities of 1-2 m s are
ubiquitous near cloud tops with supercooled water present at temperatures as low as -31°C (e.g.,
Rosenow et al. 2014; Plummer et al. 2014; Rauber et al. 2014; Kumjian et al. 2014), with these cells
subsequently generating ice that continues to grow by diffusion, riming and aggregation in fall
streaks. The extent to which similar processes occur in SO frontal systems, and the relative
importance of such systems, as opposed to shallow convection in the boundary layer, for generating
supercooled water is unknown. SOCRATES observations will determine the role of supercooled
water during the lifecycle of PBL and frontal clouds, and thus address hypothesis 3.1 as well as 3.2.

SOCRATES data will be critical in the development of parameterizations for, and evaluation
of simulations from models. Comparison of the limited HIPPO observations with a simulation from
CAMS5 nudged to observed meteorology, showed the model positioned the ice and water cloud well,
but simulated liquid water droplet and ice crystal concentrations were far too high (Andrew
Gettelman, personal communication). Clearly a more extensive dataset is needed for such
evaluations. Model simulations, combined with sensitivity studies can predict the importance of
different mechanisms (e.g., liquid activation and riming, primary ice nucleation, secondary ice
nucleation) for producing ice and liquid over the SO. In addition, ground-based remote sensing
observations, in combination with models and in situ data, can be used to examine the role of
albedo and precipitation susceptibility in the summer and winter. A-train retrievals (Mace et al.
2014) suggest that albedo susceptibility is significant in summer and winter, but that precipitation
susceptibility diminishes in winter consistent with modelling studies of Feingold et al. (2013).

Theme 4: Advancing satellite retrievals related to clouds, precipitation, and
aerosols, over the Southern Ocean

Satellite-derived products are crucial for our understanding of SO cloud, precipitation, aerosol and
surface fluxes, and for the evaluation and improvement of global models. However, the accuracy of
many satellite datasets over the SO is questionable, due to a lack of in situ reference measurements,
the use of empirical relationships in retrievals derived almost entirely on Northern Hemisphere
datasets, themselves often limited, and specific challenges presented by the SO region. We organize
these issues around three hypotheses to be addressed by SOCRATES, involving (1) satellite remote
sensing of difficult SO cloud types and precipitation, (2) SO aerosol-liquid cloud interaction, and

(3) boundary-layer aerosol over the windy, cloudy SO.

Before introducing these hypotheses, we stress that there are other SO satellite remote
sensing issues that SOCRATES datasets may help address. One important example is satellite
estimates of surface energy and water flux components (broadband radiation, as well as sensible
and latent heat fluxes), which are important observational benchmarks for climate models. These
can be compared with ship and Macquarie Island observations. One example of the need for such
comparison is the spread of over 20% in current satellite-based estimates for the seasonal cycle of
SO latent heat fluxes (Bourassa et al. 2013, Yu et al. 2011). This spread is due in part to high winds
(Fig. 9) that create large waves and have a strong impact on bulk aerodynamic flux formulations, as
well as increase white capping which brightens the surface at visible wavelengths and can affect
aerosol retrievals. As noted by the U.S. CLIVAR Working Group on High Latitude Surface Fluxes, SO
satellite surface flux estimates must be also validated against careful multiyear region-specific
measurements, such as the NSF OOl SO flux reference buoy west of southern Chile.

Hypothesis 4.1: Large errors in current remote-sensing estimates of SO mixed-phase and multilayer
cloud properties, and precipitation can be reduced by using detailed in-situ observations to constrain
the retrieval assumptions
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The SO features a greater occurrence of multi-layer and mid-level clouds (Heidinger and Pavolonis
2005, Mace et al. 2009, Marchand et al. 2010, Huang et al. 2014) and mixed-phase clouds with
supercooled liquid water (Hu et al. 2010, Morrison et al. 2011, Chubb et al. 2013, Huang et al. 2014)
than comparable latitudes in the Northern Hemisphere (Fig. 6). Property estimation for multi-layer,
mixed-phase and precipitating clouds is prone to large errors because of the difficulty in robustly
identifying when these conditions occur, as well as the additional unknowns that must be
determined or specified as part of the retrieval. Even advanced multi-instrument retrievals from the
A-Train generally treat mixed-phase clouds empirically (Mace 2010), and there are inconsistencies in
the retrieved distribution of cloud-top thermodynamic phase between various instruments and
methods (Fig. 8). Mixed-phase conditions and frequent light precipitation of the SO storm track are
challenges for satellite estimation of precipitation, with factor-of-two differences between cloud
radar (CloudSat) and microwave (e.g., AMSR-E) estimates (Haynes et al. 2009, Behrangi et al. 2012,
2014). Ground-based and airborne observations in these complex vertical cloud structures
collocated with satellite overpasses (or high-altitude aircraft carrying equivalent remote sensing
instrumentation) are critical for developing and testing better algorithms, as well as for more fully
documenting the successes and limitations of those currently in use over the broad range of SO
synoptic conditions.
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Figure 8: Vertical distribution of cloud top phase retrieved from MODIS operations product (Platnick et al. 2003), CALIOP
(Hu et al. 2010) and DARDAR algorithm (Delanoé and Hogan 2010). The operational MODIS retrieval shows less high cloud
and a warm bias (expected) with much less SLW below -20°C and a lot of “uncertain”. CALIPSO does not distinguish
between SLW and Mixed Phase, while DARDAR records considerable glaciation (ice-only) at cloud-top between 0

and -30°C, which is not reported by either CALIPSO or MODIS. From Huang et al (2014b).

Hypothesis 4.2: Current satellite VIS based estimates of SO liquid cloud droplet concentration and
LWP have important biases, particularly in winter, due to the persistently low sun angle and difficulty
in separating the effects of cloud liquid, cloud ice, and precipitation. These biases can be reduced by

more careful consideration of horizontal inhomogeneity and cloud phase screening.

Liquid cloud droplet number concentration and liquid water path (LWP) are key indicators of
aerosol-cloud interaction. They are often inferred from MODIS and other satellite datasets using a
combination of visible (VIS) radiances and other measurements, such as shortwave-infrared
radiances, radar-reflectivity and lidar backscatter. These retrievals assume a locally plane-parallel
cloud layer. In a real horizontally inhomogeneous cloud layer, such a retrieval is sensitive to zenith
angle, with the largest uncertainties at the high zenith angles typical of the SO at higher latitudes
and in winter (Varnai and Marshak 2007, Grosvenor and Wood 2014). In addition, if the upper part
of the cloud layer includes either ice crystals or a substantial density of precipitation, the retrieved
droplet effective radius will no longer correspond to the typical cloud droplet size, and negatively
impact the retrieval estimate of number concentration and LWP.
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Satellite VIS based retrievals suggest that that the SO features a strong seasonal and latitudinal
dependence in cloud droplet number concentration (Fig. 4 above, Hu et al. 2007, Bréon and Tanré
2002), broadly consistent with very limited in situ observations. However, this may not be
accurately characterized by current satellite products. In general, satellite retrievals of cloud
microphysics have seen little to no detailed in situ validation at large zenith angles. SOCRATES can
address this through airborne sampling of SO liquid cloud layers at large solar zenith angles, ideally
collocated with satellite overpasses (or high-altitude aircraft carrying equivalent remote sensing
instrumentation), as well as using surface-based remote sensing.

Satellite VIS based retrievals of low cloud cannot be performed under mid and high-altitude
clouds, which are frequent over the SO. Hence, they represent highly-conditionally-sampled datasets
whose climatological representativeness must be assessed. LWP can be also obtained from passive
microwave retrievals valid over a broader range of conditions. However, microwave retrievals have
other important issues. Lebsock and Su (2014) found large and seasonally dependent differences
between MODIS and passive microwave (AMSR-E) LWP retrievals over the SO, which they attributed
primarily to microwave retrieval errors related to wind speed and partitioning between cloud and
rain water that can be better understood using, SOCRATES measurements.

Hypothesis 4.3: Better satellite estimates of accumulation-mode aerosol within the SO boundary
layer can be developed with the help of SO surface and airborne observations.

Satellites could be a powerful tool to generalize SOCRATES observations of SO boundary-layer
accumulation-mode aerosol number concentration and mass and their dependence on synoptic
regime and season. MODIS and MISR provide widely used datasets characterizing aerosol optical
depth (AOD) at visible through shortwave IR wavelengths, along with the fine-mode fraction and
other measures of aerosol particle size and aerosol type (e.g., Kahn et al. 2010). Over the SO, where
most of the large aerosol is in the boundary layer and sea-spray produces copious large salt particles,
AOD is thought to mainly measure coarse-mode aerosol, but the fine-mode fraction may also give
useful information about boundary-layer accumulation mode aerosol concentration.

However, these satellite products have serious shortcomings over the windy, cloudy SO.
Both MODIS and MISR show a band of increased AOD over the SO that is inconsistent with Maritime
Aerosol Network (MAN) observations from ship-borne Microtop sun-photometers that suggest small
aerosol optical depths of 0.04-0.1 (Smirnov et al. 2011). Contamination of the satellite estimates by
clouds or cloud-adjacency effects are thought :
to contribute (Zhang and Reid 2006, Witek et **{-,
al. 2013), but a recent study (Toth et al. 2013)
suggests they cannot fully explain the
discrepancy. Kleidman et al. (2012) noted the
AOD discrepancy also increases with
observed wind speed, perhaps due to
increased surface albedo at higher wind
speed due to whitecapping, an effect
neglected in MODIS Collection 5 but which is
being considered in MODIS Collection 6.
High surface winds speeds are a frequent
occurrence over both the Northern and
Southern Hemisphere oceans at latitudes poleward of 40° (Fig. 9). Even neglecting AOD biases,
aerosol size and type retrievals become uncertain when AODs are low, even, suggesting caution in
interpreting studies such as Remer et al (2008), who found a seasonally varying SO fine mode
fraction in MODIS retrievals consistent with biomass burning aerosols.
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Figure 9: Frequency of winds exceeding 25 m s from QuikSCAT
(1999-2009). Taken from Bourassa et al. (2013).

CALIPSO (lidar) retrievals show small aerosol optical depth over the SO similar to the MAN
datasets (Winker et al. 2013, Redemann et al. 2012), and in principle can be used to separate
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boundary layer and free tropospheric contributions to the total aerosol optical depth. However,
CALIPSO has difficulty detecting aerosols in low concentration, which is the usual case for the SO
free-troposphere (Winker et al. 2013). We are not aware of any studies examining the accuracy of
free-tropospheric aerosols over the Southern Ocean.

The validity of MISR, MODIS and even CALIPSO aerosol optical depth and aerosol size
characterization remains unclear over the Southern Oceans with a strong need for high-quality in
situ and surface observations that SOCRATES will provide. SOCRATES also presents an opportunity to
examine the relationships between these satellite products, SO boundary layer accumulation-mode
aerosol and cloud droplet concentration, a central link in studying SO cloud-aerosol interaction.

4. Implementation Strategy

To address the scientific issues and questions raised in the previous section, we propose a set of
focused observations over the SO, that will be coordinated with process and large scale modelling
spanning a variety of temporal and spatial scales. This coordinated observational and modelling
program will also make extensive use of existing and future planned satellite datasets that include
retrievals of cloud and aerosol properties, surface ocean state, and other meteorological variables.
To focus the observational requirements, the following overarching objectives are proposed:

(i) To characterize the physical properties of lower-tropospheric cloud systems around mid-
latitude cyclones over the Southern Ocean during summer and winter;

(ii) To characterize microphysical and chemical properties of aerosols and aerosol precursor
compounds, including DMS, that may play a role in regulating cloud condensation nuclei
(CCN) and ice nuclei (IN) over the Southern Ocean and to investigate their relative
significance for cloud and precipitation formation, and radiative properties;

(iii) To characterize surface seawater properties, including organic matter concentration and
composition and biological activity, that may impact the composition and cloud-nucleating
ability of ocean-derived CCN and IN;

(iv) To assess the quality of satellite cloud, aerosol, precipitation, and upper ocean products, to
develop new ones, and to use these products to address the science questions;

(v) To evaluate and improve the skill of models at different scales to reproduce the observed
properties of Southern Ocean cloud systems, aerosol physicochemical properties, and
aerosol-cloud-precipitation interactions, and to use such models to develop a process-
oriented understanding of mechanisms controlling the properties of the cloud systems.

A Southern Ocean measurement program is needed to address the challenges in understanding the
vertical distribution of aerosols, the seasonal cycle of aerosols, the conditions favouring supercooled
liquid cloud, the generation and atmospheric evolution of marine CCN and IN and precursors, and
the lower-tropospheric dynamics and PBL context for these processes. There are strong gradients in
aerosol and cloud properties (and model biases) across the latitudes of the Southern Ocean between
40°S and the Antarctic coast (~65°S), and ideally this entire gradient should be sampled. The
observations required to address the objectives include both fine-resolution, intensive observations
from airborne and shipboard platforms (e.g., measurements of cloud and aerosol concentrations
and physical characteristics), and longer timescale observations that capture the seasonal cycle. No
single measurement campaign can fully address the program objectives, and so a combination of the
following activities is proposed:

e Continuous ground-based observations from island sites that span the seasonal cycle;

e Intensive but short duration (1-2 month) airborne observations during both summer and
winter, including in situ and remote sensing observations made by low- and high-level aircraft
platforms;

e Intensive, short duration (1-2 month) shipboard observations during summer and winter,
including atmospheric in situ and remote observations and microlayer, surface, and sub-
surface seawater observations;
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e ARM Mobile Facility measurements on an Antarctic supply vessel to capture broader seasonal
variability (spring through autumn) in aerosol and cloud properties at different latitudes
across the SO, especially at latitudes south of 60°S.

e Routine profiling of lower atmospheric properties from Macquarie Island and deployed
research vessels, including operation of unmanned aerial systems (UAS) for enhanced space-
time sampling and for aerosol profiling.

e Analysis of cloud, aerosol and meteorological parameters retrieved from satellites;

e Construction and analysis of model simulations over a variety of temporal and spatial scales
(e.g., using large eddy simulations, cloud resolving models, regional climate models and global
climate and chemical/aerosol transport models).

We present a strategy for each of these components in this section that includes ground-based,
shipborne and aircraft measurements that together form SOCRATES. It is anticipated that
multi-agency support and international cooperation will be required to accomplish SOCRATES
objectives given the scope of the program and the challenge of working in the remote SO region.

4.1 SOCRATES Curtain Concept

The following sections describe the planned SOCRATES activities organized by platform type,
including ground-based observations, ship observations, aircraft observations and satellites.

Figure 10 shows a map of the proposed platform sampling during SOCRATES, which focuses upon
mapping cloud and aerosol properties along a north-south meridian we are terming the SOCRATES
Curtain. The curtain encapsulates our need for sampling at a range of latitudes across the Southern
Ocean. The Australasian sector of the Southern Ocean is selected because it is representative of the
SO as a whole (e.g. Figs 1, 6 and 9), because Macquarie Island is among the few island sites in the
Southern Ocean without major orography and is an active scientific station, and because of the
availability of the Australian-supported R/V Investigator (see section 4.3).
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4.2 Ground-Based and Buoy Observations

Macquarie Island and Davis: Australia operates stations at Macquarie Island (54°S 159°E) and Davis,
Antarctica (69°S, 78°E) where meteorological measurements and daily balloon soundings are made.
Continuous cloud radar and lidar observations are planned for a full year at Macquarie (2016) and
Davis (2019) as part of the Australian Antarctic Division (AAD) proposed Antarctic Clouds and
Radiation Experiment (ACRE). An ARM Intensive Observation Period proposal has also been
submitted to supplement the ACRE Macquarie instrumentation with a variety of surface
radiometers, including microwave radiometers, surface broadband radiometers and either a sun
photometer or a Multi-filter Rotating Shadowband Radiometer in 2016 and 2017. The continuous
data collected at these ground-based sites will complement short-duration, intensive ship-borne and
aircraft campaigns over the SO. The ACRE data will quantify the seasonal cycle of various cloud and
radiation properties and enable satellite validation and model evaluation in the Southern Ocean and
coastal east Antarctic. In addition, a proposal currently under consideration at the AAD involves the
deployment of “polarsondes” on the routine rawinsondes launched at Macquarie Island. The
polarsonde is an inexpensive instrument designed to detect the phase of cloud particles by analysis
of the changes in polarisation of backscattered light. Polarsondes have been tested in Greenland and
Belgium and have successfully picked out the layer of supercooled liquid at the top of Arctic stratus.
Other ground based measurements: Several months of aerosol measurements were taken at
Palmer Station (65°S, 64°W) on the Antarctic Peninsula during 10/2013-3/2014 by researchers at
Scripps, and continued and enhanced measurements from this site are planned. The DOE supported
ARM West Antarctic Radiation Experiment (AWARE) will make extensive cloud and aerosol
measurements at McMurdo base on Antarctica (78°S, 167°E) from October 2015 until March 2016.
The CAPE Grim station on Tasmania (41°S, 145°E) continues to provide long-term baseline DMS and
aerosol measurements.

NSF Ocean Observatories Initiative (OOI) buoy: A long-term NSF OOI climate reference buoy making
meteorological and upper ocean measurements, including surface downwelling radiative fluxes, is
planned for installation in Jan 2015 at 55°S, 90°W west of Punta Arenas (Chile). There is significant
power provision on the OOl buoy to house novel instrumentation beyond that typically deployed on
ocean moorings, and it would be useful to explore the potential for cloud and aerosol measurements
to enhance the proposed SOCRATES sampling.

Australian IMOS buoy: An Australian buoy was deployed to (47°S, 142°E), southwest of Tasmania,
from March 2010 to October 2013 and collected a range of observations at the sea surface including
meteorological parameters and downwelling radiation. The buoy was operated and maintained by
the Integrated Marine Observing System (IMOS) and the Australian Bureau of Meteorology. The
buoy will be reinstalled once the Australian Marine National Facility ship R/V Investigator is
operational. Additional instruments could be deployed on the buoy for field campaigns. The existing
data are freely available and IMOS would welcome any collaboration for SO campaigns which might
use the buoy’s data and strengthen the case for its redeployment in years to come.

4.3 Shipborne Observations

SOCRATES requires shipborne observations to characterize SO seawater properties and near-surface
conditions that determine the amount and composition of biogenic aerosol fluxed from the ocean
into the PBL. Ships can also be invaluable platforms for the remote sensing of cloud macro- and
microphysical properties, precipitation, and aerosol properties required to improve our
understanding of cloud and aerosol processes over the SO and their parameterizations in models.
Ships sample around the clock for many days, complementing episodic aircraft sampling while still
being mobile. SOCRATES will use ships for (i) characterizing seawater properties, near-surface
aerosol size distribution and composition across the polar front and more broadly, the SOCRATES
curtain, (ii) collecting remote sensing observations of cloud, precipitation, and aerosol properties,
(iii) evaluating satellite derived cloud and aerosol products, rainfall, and surface ocean properties;,
and (iv) providing data to evaluate and improve earth system modelling of the SO region. We
stress, that coordinating aircraft in situ measurements with ship collections is a critical element in
addressing SOCRATES hypothesis.
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R/V Investigator: Accurately predicting the structure and evolution of fronts and associated cloud
systems in weather prediction and climate models is of great practical importance for Australia. As a
result the Australian-funded CAPRICORN project (Clouds, Aerosols, Precipitation, Radiation, and
atmospherlc Composition Over the southeRn oceaN), will involve two one-month cruises into the
Southern Ocean during austral summer 2015-2016 and austral winter 2017, and a two-month cruise
in austral summer 2017-2018 during the time period of the extensive SOCRATES aircraft
observations (section 4.4), with a new research vessel (R/V), the Investigator, equipped with
extensive cloud, precipitation, aerosol, atmospheric composition, oceanographic, and air-sea flux
instrumentation (see Table 3). The main objectives of CAPRICORN are to: (i) characterize the cloud
macrophysical and microphysical properties, atmospheric composition, and precipitation properties
of atmospheric frontal cloud systems and associated interactions; (ii) evaluate CloudSat-CALIPSO
cloud microphysics, CloudSat and GPM rainfall properties, CALIPSO lidar-derived ocean products,
and CALIPSO aerosol/cloud discrimination, and (iii) evaluate the current skills of the Australian
Community Climate and Earth System Simulator (ACCESS) model at different scales (from high-
resolution models resolving convection explicitly to weather forecast and climate models with
coarser resolution) to reproduce the properties of SO frontal cloud systems.

U.S. Research Vessel: A U.S. ship is proposed for austral summer 2017-2018. The global class vessel
should have a large foredeck located high on the ship that accommodates the placement of up to
five 20’ instrumented containers. This location on the ship allows for the sampling of aerosols and
gases with minimal flow distortion issues and contamination from the ship’s stack. The aft main deck
should accommodate several more 20’ containers for housing measurements of surface seawater
properties from the ship’s uncontaminated seawater line or remote sensing instrumentation. The
complement of remote and in situ observations will allow for a full characterization of cloud,
precipitation, aerosol, atmospheric composition, surface and sub-surface seawater, and air-sea
fluxes across the polar front. A nascent sea spray aerosol generator (Sea Sweep; Bates et al., 2012)
could be deployed to characterize the chemical, physical, and cloud-nucleating properties of freshly
emitted sea spray aerosol. Information acquired from Sea Sweep will be coupled with
measurements of microlayer and surface seawater properties to assess the impact of ocean
biogeochemistry on sea spray aerosol.

These two ships will sample different latitudes along the SOCRATES curtain (Fig. 10) between
45°S and the Antarctic Circle to complement the aircraft and Macquarie ground-based
measurements by providing comprehensive sampling on both sides of the polar front. The two ships
will also collect samples across oceanic (north-south) gradients collocate at some point for a direct
measurement comparison (nominally near Macquarie Island).

ARM Mobile Facility: Addressing SOCRATES hypothesis requires both intensive shipborne
measurements and longer term measurements to document the seasonal aerosol and cloud
microphysical evolution. The longer term measurements at Macquarie Island (section 4.2) is well
situated to document seasonal variability in the center of the SO storm track, but there is also a need
for seasonal sampling south of 60°S in the subantarctic waters. The installation of the DOE ARM
Mobile Facility (AMF) on a ship or icebreaker supplying stations in the Antarctic is proposed to
address this measurement need. Given the supply ships cover a much wider area than will the R/V
Investigator or U.S. research vessel, the aerosol and chemical properties will be measured and the
cloud will be retrieved over a much wider geographic area and hence will provide a context for
interpreting the data obtained over the more limited SOCRATES domain. Although observations may
not be possible in the deep winter, such a strategy could provide multiple cruises, including
measurements of aerosols and chemistry, to document the evolution of the seasonal cycle from
spring (October) to autumn (April) in a previously undersampled region. Following the success of the
Marine ARM GPCI (GCSS Pacific Cross-section Intercomparison) Investigation of Clouds (MAGIC) field
campaign, a ship sailing a predefined route will be the platform for the AMF. Possible platforms
include the French ship L'Astrolabe that transits between Hobart, Tasmania and the French Station
Dumont d’Urville, the Australian icebreaker Aurora Australis that transits between Hobart and four
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Australian stations (three on coastal East Antarctica plus Macquarie Island), and American ships (R/V
Laurence M. Gould) that transit between Argentina and US bases in Antarctic.

4.4 Airborne Observations

Airborne in-situ and remote sensing observations play a critical role in detailed, vertically-resolved
sampling of the coupling of SO cloud microphysics, aerosol processes, turbulence and radiation.

The biggest challenge is the requirement for observations south of 60°S where model shortwave
cloud biases are most acute (Figs 1 and 2 above), a problem exacerbated by the scarcity of suitable
air bases over the region as well as potential icing conditions. Because of the lack of surface sites and
the limitations of satellite observations, airborne remote sensing forms a critical context for
interpreting the in situ observations. Recent analysis from the Profiling of Winter Storms Project
(PLOWS, Plummer et al. 2014a, 2014b; Rosenow et al. 2014) showed airborne radar and lidar
observations that can provide the context to interpret the microphysical processes acting in
generating cells and accompanying fall streaks.

Figure 10 shows a schematic of the aircraft sampling envisioned, using a mid-level profiling
aircraft such as the NCAR/NSF G-V, a high altitude remote sensing aircraft such as the NASA ER-2,
and a low-level boundary aircraft such as the NOAA P-3. Although the data from each aircraft can be
used alone to address specific hypotheses, great synergy is gained from coincident in situ and
remote sensing data sets. Our preferred aircraft strategy relies on the coordinated use of multiple
aircraft so that the cloud and aerosol vertical structure can be remotely sensed at the same time the
relevant cloud and aerosol parameters are sampled in situ, but one vertically-profiling aircraft could
be used with some compromise in data collocation. Cloud radar and lidar from the remote sensing
aircraft could measure the vertical structure of cloud macrophysical properties of virtually all clouds.
Cloud radar-lidar algorithms (e.g., Mace 2010; Delanoe and Hogan, 2008; Deng et al. 2010) can also
be used to characterize the vertical structure of the microphysical properties and thermodynamic
phase of clouds. However, these algorithms hold assumptions that will need to be thoroughly
evaluated using the detailed microphysical measurements from the in situ aircraft. The
characterization of aerosol-cloud-precipitation interactions can also be achieved using the
characterization of aerosols from the combined lidar/in situ measurements from two aircraft.
Because sampling at a variety of heights in the PBL is required and because such low-level flying with
altitude changes limits the range of the lower altitude aircraft, the use of multiple aircraft would also
allow the G-V aircraft to transit south of 60°S, thus allowing better sampling of the pristine air
masses that would otherwise not be possible. The use of two aircraft also ensures that the remote
sensing observations are always useful: retrievals are typically only useful for straight and level legs,
which will not be flown when one aircraft is profiling the clouds.

NSF/NCAR G-V: The G-V would be the primary measurement platform characterizing microphysical
properties of mid-level (z>2 km) and high-level (z>4 km) clouds with a complete set of microphysical
probes. The primary flight pattern of the G-V will be sawtooth ascents and descents along the SO
Curtain from 5 km to as close to the ocean surface as possible. The longer range of the G-V
compared to the P-3 will allow it to fly to 63°S or beyond, almost as far south as the Antarctic coast.
Similar, but much deeper patterns were flown during HIPPO; the shallower SOCRATES sawtooths will
provide many more cloud and aerosol profiles, and will include enhanced in situ and remote sensing
capabilities for measuring clouds and aerosols, including a new Doppler cloud radar and lidar. The G-
V will also fly level remote sensing legs between the ramped ascents and descents and release
dropsondes. We are also planning for the installation of a multi-wavelength radiometer, such as the
MAS or MASTER, which would provide cross-track scanning for retrieval of cloud, aerosol and
surface properties. The G-V is the only aircraft with the range to fly south of 60°S where climate
model biases are largest (Fig. 1). We envision both a summer and a winter G-V campaign to provide
critical information on the seasonal cycle needed to address SOCRATES hypotheses.

High-altitude remote sensing aircraft: A high-altitude remote sensing aircraft would provide
comprehensive context for the in situ data from the mid-level and boundary-layer aircraft and for
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evaluating and improving satellite retrieval schemes, including the problematic case of high zenith
angles. We propose to use the NASA ER-2 with active and passive remote sensing instruments for
profiling clouds and aerosols (e.g., MASTER for passive retrieval of cloud, aerosol and surface
properties, Doppler radar and lidar for active cloud, aerosol and precipitation measurements,
HAMSR for retrieving vertical temperature, water vapour and liquid water profiles, the High Altitude
Imaging Wind and Rain Airborne Profiler (HIWRAP); the Conical Scanning Millimeter-wave Imaging
Radiometer, CoSMIR; the Advanced Microwave Precipitation Radiometer, AMPR; and Air-MSPI for
multi-directional multi-wavelength retrievals of clouds and aerosols with a high accuracy polarization
imager. The ER-2 remote sensing data provide comprehensive data (at higher resolution than from
satellite remote sensors and throughout the flight) with spatial coverage not possible from ground-
based remote sensors; its combination with in situ data from the P-3 and G-V would allow validation
of the retrievals of supercooled cloud microphysical properties in a region where no other data are
currently available. Planned underflights of satellites (see Section 4.5) will also aid in satellite
validation objectives, e.g., SOCRATES data obtained from the G-V and ER-2 could be used to test
GPM algorithms in the climatologically important but poorly sampled high-latitude oceanic storm
track regime.

NOAA P-3: The P-3 will be equipped with a complete range of cloud and aerosol probes, measuring
both solid and liquid hydrometeors, and the concentration and compositions of aerosols, including
CCN and IN counters. A CVIinlet and measurements of aerosol chemistry are needed to understand
seasonal and synoptic variability in SO cloud CCN and IN concentration, and the role of local biogenic
sources. The P-3 would fly a combination of straight and level legs together with profiles through the
boundary layer clouds to characterize both cloud microphysical properties and aerosol
concentrations and composition above and below cloud. Level legs as close to the ocean surface as
safety allows would sample aerosols originating from the ocean surface, and would hence determine
how concentrations of sea salt and biogenic aerosols vary with wind speed. Higher altitude level legs
from the P-3 would characterize aerosols in the free troposphere to address whether entrainment of
biogenically-derived aerosols from the lower free troposphere constitutes a major source of CCN
during the summer, as well as examining the long range transport of continental emissions. The P-3
level legs within cloud would characterize cloud microphysical properties, and together with
observations of aerosols above and below cloud would permit investigations of the relationship
between cloud properties, CCN and aerosols. Depending on cloud depth, ramped ascents and
descents could be executed to sample cloud vertical structure.

Unmanned aircraft: Because of operational limitations associated with the endurance and altitude
range of the P-3 and G-V manned aircraft, and cost limitations on the number of flights which can be
performed by these aircraft, there is potential for unmanned aircraft systems (UAS) in SOCRATES.
The SO is a challenging operating environment for a UAS, particular for shipboard deployment.
Nevertheless, a variety of different platforms and sensors are under consideration to provide
information on PBL thermodynamic and dynamic structure, aerosol properties and variability, for
which UAS would have great advantages. They can be operated routinely over extended time
periods to accumulate statistics within different synoptic regimes and provide high-frequency
profiling of PBL temperature, humidity, and winds. UAS can operate down to 5-10 m above the
ocean surface.

Routine UAS flights from Macquarie Island could help document vertical profiles of aerosol
properties at Macquarie Island and document situations in which ground-based aerosol
measurements may not be representative of the particles entrained into cloud. UAS could be used to
investigate the transition between land and ocean surface around Macquarie Island, as context for
the long-term, land-based instrumentation there.

Small UAS could operate from the deck of research vessels involved with SOCRATES to
supplement the vertical profiling available from ship-launched radiosondes by measuring
meteorological parameters (e.g., temperature, humidity, pressure, winds) and aerosol properties
(e.g., number concentration and size distribution, light scattering and absorption, chemical
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composition). Ship-borne UAS launch and recovery can be challenging, though several techniques
have historically been used in such operations. Examples include UAS with vertical take-off and
landing (VTOL) capabilities, as well catapult launch and wire-capture recovery devices.

Currently, a proposal complementary to ACRE involving UAS is under review with the AAD. This
proposal calls for the operation of the DataHawk UAS (Lawrence and Balsley, 2013) for the summer
of 2016/2017 with an extension into 2017/2018 to support SOCRATES. The small, low-cost
DataHawk will be used to estimate surface fluxes and measure the thermodynamic structure of the
PBL over and around Macquarie Island.

4.5 Satellite observations

Validation and characterization of satellite retrievals is an important objective for SOCRATES. This is
important not only for satellite studies, model evaluation, and long term monitoring but will also
play an important role in addressing SO hypotheses. For example, hypothesis 1.1 (which looks at
boundary layer cloud properties and thermodynamic vertical structure) or hypothesis 3.1 (which
looks at the relationship between supercooled liquid water and cloud reflectivity) will benefit from
coordinated data acquisition with satellite overpasses. The unique role of validated satellite
observations and products in the investigation of the complex SO processes will be to provide
invaluable insights into the regional, intraseasonal, and inter-annual variability of the cloud, aerosol,
and boundary layer processes and their interactions. While aircraft can provide in situ
measurements of cloud and IN properties that are useful in addressing these hypotheses, these
measurements will sample only a small volume of the atmosphere and satellite data are needed to
put them in context by providing information on differences between those particular areas sampled
and the larger region, as well as, providing information on larger scale variability and increasing
statistical certainty. SOCRATES will include coordinating acquisition of field data with satellite
overpasses, to the extent possible. However, the intent is to include a high-altitude remote sensing
aircraft that can reproduce many satellite observations (see previous section). Coordination with
wide-swath satellite instruments such as MODIS, CERES, a various microwave instrument (e.g.
AMSR-E, GPM) should not be difficult to achieve. Although more challenging to achieve,
coordinated flights along CloudSat radar and CALIPSO lidar measurements (if we are fortunate
enough for these systems to continue operations sufficiently long), as well as radar and lidar that will
be part of GPM and the upcoming EarthCare missions will also be given a high priority as part of
experiment planning including flight and ship positioning.

As detailed in science theme 4, there is a wide variety of satellite products in need of
evaluation, and addressing hypotheses 4.1 and 4.3 will require a wide variety of field observations
including cloud microphysical properties (especially liquid and ice water contents and water paths,
as well as cloud, drizzle and precipitation drop size distributions and particle habits), aerosol
microphysical properties (particle size distributions, hygroscopicity, CCN, composition, and ice-
nucleating properties at various activation thresholds), optical and radiative properties (cloud and
aerosol optical depth/extinction, as well as surface downward and upward shortwave and longwave
broadband fluxes with some supporting narrow-band data), as well as surface sensible and latent
heat fluxes. Not all of these quantities need be (or are likely to be) made from a single platform or
even strictly from aircraft. While it is desirable to have this complete set of observations, subsets of
these measurements can advance particular satellite retrievals and evaluations using multi-month
observations from islands or ships will help establishing statistical certainty and help in the
evaluation of diurnal and seasonal variability.

4.6 Measurement requirements

The Science Traceability Matrix (STM, Table 3) includes measurement requirements that are
subjective estimates based on three main considerations.

The first is basic science, as laid out in the SOCRATES hypotheses. For aerosol properties,
especially potential ice nuclei, and for mixed and ice phase cloud processes, and for aerosol sources
and sinks across the seasonal cycle, the existing level of understanding and SO observational context
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is weak, so SOCRATES should aim for the best feasible accuracy. Requirements estimated in this way
are labelled ‘S’ (science) in the NEED column of the STM

The second consideration is importance for SO shortwave radiative fluxes, whose errors in
CMIP climate models are tens of W m2in the mean, and larger in cold-sector cloud regimes (e. g.
Figs. 1-2). To provide a useful observational constraint for reducing these biases, and for improving
remote-sensing retrievals with the same goal, we insist that measured cloud (e.g., liquid water path
and ice water path), radiation or aerosol data should be accurate enough to constrain instantaneous
shortwave radiative forcing within 10 W m if they could be achieved over the entire atmospheric
column. Measurement requirements estimated in this way are labelled ‘R’ (radiation-constrained) in
the STM.

The third consideration is model comparison. Because of the complex and rapidly varying
synoptic environment we plan to compare our observations with nudged global model simulations
as in Fig. 3. To evaluate the model in this way, we need to test whether the model is adequately
simulating the observed regional atmospheric conditions in addition to the observed cloud and
boundary layer structures; both types of observations must be sufficiently accurate (e. g. within 10%
of characteristic synoptic variability) and representative to usefully constrain the models.
Measurement requirements estimated in this way are labelled ‘M’ (model comparison) in the STM.
There is considerable uncertainty and controversy in estimating the best achievable accuracies in
many of the quantities included in Table 3. At the time of SOCRATES, we will use the best possible
uncertainty estimates available, and determine how those uncertainties cascade to uncertainties in
radiation and model comparisons.

Multiple instruments and platforms are listed in the STM when they provide estimates of a
particular quantity (e. g. cloud particle size and phase) with complementary sampling properties.
Indeed, obtaining collocated samples with different platforms is a key part of the SOCRATES design;
tying together the spatial context provided by satellites, with the temporal and seasonal sampling
provided by ground-based site and ships, with the detailed vertical profiles obtained by aircraft.
Individual experiment proposals will document more thoroughly how the specific measurements can
be used to test specific scientific hypotheses.

4.7 Proposed timeline

Timeline of proposed SOCRATES activities. . already funded | requested
] 2016 2017 2018 2019
Platform (campaign) Jan- | Apr- | Jul- | Oct- | Jan-| Apr-| Jul-| Oct-| Jan-| Apr-| Jul-| Oct-| Jan-| Apr-| Jul-| Oct-

Mar | Jun | Sep | Dec | Mar| Jun| Sep| Dec| Mar| Jun| Sep| Dec| Mar| Jun| Sep| Dec

Macquarie Ground (ACRE)

Macquarie Island (ARM part of ACRE)
UAS deployments from Macquarie
Davis station (ACRE)

NSF OOl Climate Reference buoy
Australian IMOS buoy

R/V Investigator cruises (CAPRICORN)

US Research Vessel cruises

ARM Mobile Facility at McMurdo (AWARE)
ARM Mobile Facility marine deployment
NSF/NCAR GV deployments

NOAA P3 deployment

NASA ER2 deployment

Satellte observations N e v v
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Table 3: Science traceability matrix (STM) linking observations with scientific themes and hypotheses

; — Scientific Required Instrument type Scientific Field Measurement
o DR Parameter Accuracy [platform(s)] Hypotheses Requirements
Profiles of : :
+1 K (M Dropsondes, radiosondes, in | 1.1, 3.2, 3.3
EAEENTE i) situ probes, and satellite
Profiles of moisture | £5% (M) retrievals will all contribute | 1.1
T - Profiles of wind | 1 m s (M) [alc, ships, ground, sat, uas] 17113
Synoptically Cloud cover +0.05 (R) Va:jr_ious:trada[\;,/ Iidarr]! 12,31,41
; ; radiometers [a/c, ships
Zﬁ[:yé?ugr ;/irftlgg Cloud base, top | £100 m (R) ground, satelite] 12,31,41
Radar [a/c, ships and
Vertical velocity +0.5ms?t (M) ground], In situ turbulence | 1.1,1.2,1.3
probe [a/c]
Turbulence probe, high freq.
Turbulent fluxes 20% (S) temp and moisture [a/c] 11,21
Aerosol 0 -
ST ETR T +20% conc. (S) | Aerosol spectrometers [a/c, |1.3,2.1,2.2, | e Intensive field
size dist. +.07 pm size (S) | ships, ground, uas] 32,43 measurements with
adequate sampling of
CCN counters [a/c, ships, synoptic regimes,
CCN conc. +20% (S) ground] 21,22, seasonal cycle, and
IN conc. +50% (S) Various methods [a/c, ships] | 2.2, 3.1, 3.2 vertical structure
Theme 2: Aerosol Aerosol mass 13 21 2.2 |*® Measurements along a
Seasonal & composition spectrometers, filter samples 3.2’ e routine flight track
synoptic variability [alc, ships] : across the SO from
of CCN and IN Aerosol optical Nephelom. [afc, ships] ~40°S to at least 65°S
tties & AOD Lidar and/or NB radiances | 1.3,2.1 :
prope [ground, ships, satell.] e Airborne and surface
Gas chemistry: CO, In situ probes [alc, ships], | 4 321 remote sensing to
O3 NB radiances [satellite] e provide context for in
Ocean surface situ measurements
biogeochem. q ; ;
. Sea-sweep and ship o Sampling that permits
g}/l: g&%%?écs‘ seawater inlet [ships] 12,21,22 assessment of variability
TR tension) in clouds and aerosols
Reflectivity profiles | +1 dBZ (S from surface fo 6 km
m dromegc?r = ©) mm and cm radars [a/c, altitude.
sgee ds +0.2 ms? (S) ships, ground, satellite] o Airborne, ship and
Polarization Ratio 1.2,3.1,4.1 1 ground based sampling
and Lidar Lidars, including HSRL [a/c, 42 during both summer and
Scattering Cross- ships, ground, satellite] winter
section o Aircraft observations of
Cloud liquid water 10gm2(R Passive microwave radiom. | 1.1, 3.1, 4.1, cloud and aerosol
path g (R) [ships, ground, satellite] 42 microphysics taken in
Radiometer, SW context of remote
-2 y Y
Themes 3 and | Broadband LW/SW (iRS)% ol L spectrometer [ships, ground, | 3.1, 4.1-4.3 sensing data
4: Remotely g/c, Sfte"'(tf] s Tal e Boundary layer
Sensed and in sity | Multi—A Passive | 2% refl; sa?teefli{g]r asizln;%:étsrc[)mce]ter 3.1-3.4, 3.5, observations from
supercooled & Radiation +1KTIR(S) [ground, ships] 4.1,42,43 | aircraft, UAS, ship and
mixed-phase various retrievals: ground sites.
clouds Cloud optical +20% (R) Radar/Lidar/Radiometers, | 3.1-3.4, 4.1,
properties =con sunphotometer [ships, 4.2
ground, satellite]
Cloud/drizzle +3 um, 1.3,28,3.1-
part|c|e15|ze F“St' £20% (5) Particle spectrometer probes Bty Bl A2
I(ﬁgtpasrﬁgfezlze +10 pm, and particle imagers [a/c] 22 3.2-34,
(gl ' +20% (S) 41,42
Bulk liquid & ice ’ Liquid water and ice particle | 1.3, 3.1-3.4,
water content £059m*(S) probes [a/c] 41,42
Disdrometer [ships, ground],
Surface precip. 10% (S) radar [a/c, ships, ground, 1.2,4.1,4.2

sat]
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5. Modelling program

SOCRATES is in large part motivated by challenges in simulating Southern Ocean cloud and aerosol in
the current climate that also may affect their responses to future anthropogenic climate change.
Recalling section 2, these challenges include representing cold-sector lower-tropospheric cloud, the
background aerosol distribution in the region, and their interaction with each other within a
constantly changing atmosphere above a dynamic, biologically active ocean.

A first important step toward improving models will be to better understand aspects of their
cloud and aerosol simulations using analyses of existing model intercomparison datasets such as the
CMIP5 archive. Basic features such as simulated frequency of occurrence, microphysical properties,
and vertical structure of SO mixed phase cloud have not yet been documented across a suite of
climate models; similarly for effective radius or measures of the vertical distribution of aerosols.

Some known biases and uncertainties are already being addressed through ongoing
international efforts. The Global Atmospheric System Study (GASS) has been conducting model
intercomparison projects related to Arctic mixed-phase boundary-layer clouds, based on
observations from the Mixed-Phase Arctic Cloud Experiment (MPACE, Klein et al. 2009) and the
Indirect and Semi-Direct Aerosol Campaign (ISDAC, Ovchinnikov et al. 2014). These have compared
single-column version of climate models (SCMs) with very high-resolution large-eddy simulations
(LES). The LES process-modeling component has helped to identify fundamental modelling
uncertainties (e. g. ice nucleation processes) as well as providing a comparison for the SCMs. A
current GASS case is to simulate an aircraft-sampled North Atlantic winter cold-air outbreak (Field et
al. 2013) in which the cloud structure is more cumuliform. In this case, another focus is large-scale
model performance across a range of horizontal resolutions from 1-20 km in which shallow cumulus
convection is partly, but not well, resolved; mixed phase processes are also important. This latter
case may be a good Northern Hemisphere analogue for addressing Southern Ocean cold-sector
boundary-layer cloud biases, although the observations are limited.

By the time of SOCRATES, these studies will have laid a foundation for confronting climate
and detailed process models with a large and complex new dataset on SO cloud-aerosol-surface
interaction. We will formulate further model intercomparison cases that draw both on SOCRATES
observations and on associated improvements in remote sensing datasets. The SOCRATES model
intercomparison would blend process modelling with global model simulations nudged toward
observed wind fields (as in Fig. 3) so that they can be directly compared with in situ observations,
and would be coordinated with GASS. SOCRATES datasets (particularly the curtain sampling across
the SO) would also be used to constrain models as part of the AEROCOM project. Improved remote
sensing datasets could feed into the Cloud Feedbacks Model Intercomparison Project (CFMIP), which
has popularized and systematized cutting-edge methodologies such as instrument simulators (Klein
and Jakob 1999; Bodas-Salcedo et al. 2011; Klein et al. 2013) for evaluating climate model output
using new remote-sensing approaches.

6. Educational outreach program

As with recent NSF deployments such as RICO (Rauber et al. 2007) and IDEAS (see
www.eol.ucar.edu/raf/Projects/IDEAS) a strong educational component is planned as part of
SOCRATES. Opportunities will be provided for participation in activities for students at all
educational background, including K-12, undergraduate and graduate students. The following
activities will be planned:

1) Funded proposals of SOCRATES science team members will support graduate student travel
to the field to participate in data collection, and provide funding for subsequent analysis of
data and attendance at SOCRATES science team meetings and professional conferences. It is
expected that these students will write peer-reviewed articles using SOCRATES data.

2) A grant will be written to the NSF Research Experience for Undergraduate (REU) program to
fund travel for undergraduates to the field, and provide summer internships for processing
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3)

4)

5)

6)

7)

8)

and analysis of SOCRATES data. It is anticipated students will participate in a variety of
activities, including at the flight center and on the research vessels.

During SOCRATES, in-field educational activities will be provided for all undergraduate and
graduate students, as well as any postdoctoral associates. We anticipate participation from
students from the United States, Australia and New Zealand in these activities. Scientists
working on SOCRATES will provide in-field seminars in their area of expertise, and
instrument scientists will provide the students with hands-on experience with all of the
major instrumentation platforms.

The final mission of SOCRATES will be completely planned and executed by the students,
two of whom will be selected to serve as mission and co-mission scientist. The students will
decide in the manner the field assets should be deployed (e.g., aircraft, UAS, R/V, etc.). The
only non-students participating will be those regarded as essential (e.g., pilots, technical
instrument operators, etc.)

A team of students from various universities will be selected to manage the project forecast
operations for SOCRATES, with assistance from relevant science team members and
forecasters in Australia and New Zealand.

Educational outreach will be provided to schools in the local deployment sites (anticipated
to be New Zealand or Tasmania). Members of the SOCRATES science team, and students,
will volunteer to give presentations at local elementary and high schools, as well as to
universities.

Following the model set by the DOE project MAGIC, a regular newsletter for non-scientists
and scientists interested in SOCRATES will be published and made available by email on the
web, where SOCRATES activities will be described in layman terms.

Because the remoteness of the planned field activities will necessarily limit the numbers of
students who can travel to the field site, other activities are planned to maximize the
educational impact of the project. The lead scientists for SOCRATES will write an on-line blog
to document their experiences in the field, the science questions being addressed on a daily
basis, and strategies for addressing them. In addition, we will set up a web site following the
lead from PREDICT and other projects (e.g., https://www.eol.ucar.edu/content/predict-
educational-resources) we will make educational resources aimed at K-12 students available,
referring to activities underway within SOCRATES. An on-line question and answer site, “Ask
Socrates” will be set up, where students or other members of the public will pose questions
related to the role of clouds and aerosols on climate change, which will be answered by
SOCRATES scientists.

7. Broader Impacts

SOCRATES is a program of research that will shed important light into key processes controlling
aerosols, clouds and their interactions over the Southern Ocean, which is an under-sampled and
remote region. The new process level understanding gained from SOCRATES will directly impact
climate model development in a region where models perform particularly poorly. Improved models
will have broader impacts on our understanding of Antarctic climate change, cloud feedback
processes, anthropogenic climate forcing from aerosol-cloud interactions, and ocean biogeochemical
processes.
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Password: 8A9W+2G9H+5B2N

ALL MEETING ROOMS ARE IN THE HUSKY UNION BUILDING (HUB)

Tuesday March 18, 2014: Presentations on Prior Work done on Southern Ocean

800 to 815: Registration [HUB Lyceum)|

Session 1: Workshop Introduction and SOCRATES [HUB Lyceum]

815 to 830: Greg McFarquhar, Introduction and Goals of Workshop, and Relationship to SOCRATES
Proposal: Greg McFarquhar

830 to 845: Rob Wood, SOCRATES: Overarching goals and science hypothesis guiding development of a
Southern Ocean experiment

845 to 900: Alain Protat, CAPRICORN (Clouds, Aerosols, Precipitation, Radiation and atmospheric
Composition Over the SoutheRN Ocean)

Session 2: Plenary: Overview talks on the Southern Ocean [HUB Lyceum]: Chairs Chris Bretherton/Roj
Marchand

900 to 920: Jennifer Kay, Processes controlling Southern Ocean shortwave climate feedbacks in CESM
920 to 940: Dennis Hartmann, Large-scale environment of Southern Hemisphere clouds

940 to 1000: Keith Williams, The causes of Southern Ocean flux biases in CMI5 and TAMIP simulations
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1000 to 1030 Break

1030 to 1050: Nicholas Meskhidze, Sea spray aerosol and climate assessments: Model results and
remotely sensed data

1050 to 1110: Steve Ghan, Importance of characterizing natural aerosol for estimates of anthropogenic
aerosol indirect effects

1110 to 1130: Trish Quinn, The Sea surface carbon pool and organic matter enrichment in sea spray
aerosol

1130 to 1150: Paul DeMott, Marine ice nucleating particles and the need for Southern Ocean
measurements

1150 to 1210: Steven Siems and Greg McFarquhar, Observations of supercooled liquid water from in-
situ and remote sensing observations

1210 to 1230: Carol Anne Clayson, Air-sea satellite flux datasets and what they do (and don't) tell us
about the air-sea interface in the Southern Ocean

1230 to 1330: Lunch [HUB Lyceum, Box Lunch Provided]
Session #3 and #4 run concurrently
Session 3: Clouds and meteorology, [HUB Lyceum] Chairs: Roj Marchand/ Steve Siems /Alain Protat

1330 to 1345: Kali Furtado, Mixed-phase theory to application in a global model — effects on SO bias in
the UM

1345 to 1400: Erica Dolinar, Evaluation of CMIP5 AMIP simulation clouds and TOA radiation budgets in
the Southern mid-latitudes

1400 to 1415: Ryan Stanfield, Assessment of NASA GISS CMIP5 and post-CMIP5 simulated clouds using
satellite observations

1415 to 1430: Paulo Ceppi, The response of the Southern Hemisphere eddy-driven jet to future changes
in shortwave radiation

1430 to 1445: Ying Li, Instantaneous linkages between cloud vertical structure and large-scale climate
over the extratropics

1500 to 1515 Break [HUB Lyceum]
1515 to 1530: Roj Marchand, Recent changes in Southern Ocean clouds

1530 to 1545: Daniel McCoy, The effect of Southern Ocean cloud properties on the upwelling shortwave
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1545 to 1600: Jay Mace, Southern Ocean cloud processes as derived from A-Train

1600 to 1615: Steven Siems, Analysis of Boundary layer structure and precipitation from analysis of
meteorological observations over Macquarie Island

1615 to 1630, Adrian James McDonald, Atmospheric science in the "Deep South" National Science
Challenge

1630 to 1645: Kalli Furtado and Steve Abel, Aircraft observations and high resolution NWP simulations
of Northern Hemisphere cold-air outbreaks

1645 to 1700: Tom Lachlan-Cope, Antarctic cloud measurements
1700 to 1715: Simon Alexander, The Antarctic Cloud Radiation Experiment (ACRE)

1715 to 1730: Scott Collis, Observing precipitating cloud systems at centimeter wavelengths: What we
can do and lessons for Southern Hemisphere studies

1730 to 1745: Jeff Stith, NCAR tools for airborne cloud physics and some recent examples from Southern
Ocean flights

1745-1800: Gijs de Boer, Small UAS for SOCRATES: Potential platforms and scientific applications

Session 4: Aerosols and their interaction with clouds [HUB 250], Chairs Greg McFarquhar/Rob Wood/
Chris Bretherton

1330 to 1345: Theodore Wilson, Ice nuclei in the sea surface microlayer

1345 to 1400: Susannah Burrows, The potential influence of marine biological activity on ice nuclei
concentrations over the Southern Ocean

1400 to 1415: Cassandra Gaston, Single-particle insights into the influence of biological activity on sea
spray aerosol mixing-state

1415 to 1430 Lynne Russell, Particle sources and growth

1430 to 1445: Yan Feng, Characterization of deposition and mineralogy of dust export to the Southern
Ocean

1445 to 1500: Tony Clarke, Aerosol properties, processes and fields over the Southern Oceans
1500 to 1515: Break [HUB Lyceum]
1515 to 1530: Greg Roberts, Aerosol and CCN observations at Palmer Station

1530 to 1545: Barry Huebert (presented by Tim Bates), How could one test the hypothesis, primary
marine aerosols dominate CCN, with in situ observations?
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1545 to 1600: Jorgen Jensen, Sea spray and warm rain in cold clouds over the windiest ocean

1600 to 1615: Harvey Mike, SOLAS (Surface Ocean Aerosol Production) SOAP experiment and biogenic
aerosols

1615 to 1630: Jim Hudson, Detailed CCN spectral measurements

1630 to 1645: Rob Wood, The seasonal cycle of warm cloud microphysics and aerosols over the
Southern Ocean

1645 to 1700: Richard Moore, Model and satellite-based sensitivity of cloud properties to aerosol
changes in the Southern Ocean

1700 to 1715: Chris Bretherton, LES of boundary-layer cloud-aerosol interaction under Southern Ocean-
like conditions

1715 to 1730 Yongxiang Hu, CALIPSO Phytoplankton Particulate Backscatter Coefficient Measurements
of the Southern Oceans

1730 to 1745: Xiaohong Liu (given by Steve Ghan), Effect of aerosols on the phase partitioning of mixed-
phase clouds through comparison of Community Atmospheric Model (CAM5) and CALIPSO observations:
implication for cloud radiative forcing in the Southern Ocean in CAM5

1745 to 1800: Chris Hostetler, The NAAMES ship-aircraft mission concept and ocean profiling and
aerosol/cloud lidar

Wednesday March 19, 2014:

Session 5: Plenary [HUB Lyceum]

0800 to 0830: Review of Session 3

0830 to 0900: Review of Session 4

0900 to 0920: Sarah Gille, Oceanographic issues in the Southern Oceans

0920 to 0935: Chris Fairall, Cloud, aerosol and surface-flux observations from ships
0935 to 1000: Break

Attendees will divide into two or three breakout discussion groups. Exact themes for the breakout
groups are yet to be determined. Each group will address the topics listed below before rejoining for
plenary discussions.

1000 to 1230: Breakout Session 1 [HUB Lyceum, Room 250, Room 332]
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Formulate key questions on role of aerosols/clouds/air-sea interactions in Southern Oceans
1230 to 1330: Lunch [HUB Lyceum, Box Lunch Provided]

1330 to 1415: Summary of Breakout Session 1 [HUB Lyceum]

15 minute summary talks from each of the groups, 15 minutes general discussion

1415 to 1615: Group Discussion [HUB Lyceum]

What are needed measurements/retrievals/simulations needed to address hypotheses?
1615 to 1630: Break [HUB Lyceum]

1630 to 1700: Summary discussion, science questions and wrap-up

March 20: Steering Committee Meeting
800 to 1100: Meeting of Steering Committee
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Workshop on Clouds, Aerosols, Radiation and Air-Sea
Interface of the Southern Ocean: Establishing
Directions for Future Research

ORGANIZERS

Roj Marchand, Robert Wood, Chris Bretherton, University of Washington, Seattle, Washington
Greg McFarquhar, University of Illinois, Urbana, Illinois

Alain Protat, Bureau of Meteorology, Melbourne, Australia

Steven Siems and Christian Jakob, Monash University, Melbourne, Australia

Bob Weller, Woods Hole Oceanographic Institute, Woods Hole, Massachusetts

Tuesday March 18, 2014: Presentations on Prior Work done
on Southern Ocean

Session 1: Workshop Introduction and SOCRATES

815 to 830: Greg McFarquhar, Introduction and Goals of Workshop, and Relationship to
SOCRATES Proposal: Greg McFarquhar (ppt)

830 to 845: Rob Wood, SOCRATES: Overarching goals and science hypothesis quiding
development of a Southern Ocean experiment (ppt)

845 to 900: Alain Protat, CAPRICORN (Clouds, Aerosols, Precipitation, Radiation and
atmospheric Composition Over the SoutheRN Ocean) (ppt)

Session 2: Plenary: Overview talks on the Southern Ocean:
Chairs Chris Bretherton/Roj Marchand

900 to 920: Jennifer Kay, Processes controlling Southern Ocean shortwave climate feedbacks in
CESM (ppt)

920 to 940: Dennis Hartmann, Large-scale environment of Southern Hemisphere clouds
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940 to 1000: Keith Williams, The causes of Southern Ocean flux biases in CMI5 and TAMIP
simulations (ppt)

1030 to 1050: Nicholas Meskhidze, Sea spray aerosol and climate assessments: Model results
and remotely sensed data (ppt)

1050 to 1110: Steve Ghan, Importance of characterizing natural aerosol for estimates of
anthropogenic aerosol indirect effects (ppt)

1110 to 1130: Trish Quinn, The Sea surface carbon pool and organic matter enrichment in sea
spray aerosol (ppt)

1130 to 1150: Paul DeMott, Marine ice nucleating particles and the need for Southern Ocean
measurements (ppt)

1150 to 1210: Steven Siems and Greg McFarquhar, Observations of supercooled liquid water
from in-situ and remote sensing observations (ppt) Observations of supercooled liquid water -

part 2

1210 to 1230: Carol Anne Clayson, Air-sea satellite flux datasets and what they do (and don't)
tell us about the air-sea interface in the Southern Ocean (ppt)

Session 3: Clouds and meteorology,
Chairs: Roj Marchand/ Steve Siems /Alain Protat

1330 to 1345: Kali Furtado, Mixed-phase theory to application in a global model — effects on SO
bias in the UM (ppt)

1345 to 1400: Erica Dolinar, Evaluation of CMIP5 AMIP simulation clouds and TOA radiation
budgets in the Southern mid-latitudes (ppt)

1400 to 1415: Ryan Stanfield, Assessment of NASA GISS CMIP5 and post-CMIP5 simulated
clouds using satellite observations (ppt)

1415 to 1430: Paulo Ceppi, The response of the Southern Hemisphere eddy-driven jet to future
changes in shortwave radiation (ppt)

1430 to 1445: Ying Li, Instantaneous linkages between cloud vertical structure and large-scale
climate over the extratropics (ppt)

1515 to 1530: Roj Marchand, Recent changes in Southern Ocean clouds

1530 to 1545: Daniel McCoy, The effect of Southern Ocean cloud properties on the upwelling
shortwave

1545 to 1600: Jay Mace, Southern Ocean cloud processes as derived from A-Train (ppt)
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1600 to 1615: Steven Siems, Analysis of Boundary layer structure and precipitation from
analysis of meteorological observations over Macquarie Island (ppt)

1615 to 1630, Adrian James McDonald, Atmospheric science in the "Deep South" National
Science Challenge (ppt)

1630 to 1645: Kalli Furtado and Steve Abel, Aircraft observations and high resolution NWP
simulations of Northern Hemisphere cold-air outbreaks (ppt)

1645 to 1700: Tom Lachlan-Cope, Antarctic cloud measurements (ppt)

1700 to 1715: Simon Alexander, The Antarctic Cloud Radiation Experiment (ACRE) (ppt)

1715 to 1730: Scott Collis, Observing precipitating cloud systems at centimeter wavelengths:
What we can do and lessons for Southern Hemisphere studies (ppt)

1730 to 1745: Jeff Stith, NCAR tools for airborne cloud physics and some recent examples from
Southern Ocean flights (ppt)

1745-1800: Gijs de Boer, Small UAS for SOCRATES: Potential platforms and scientific
applications (ppt)

Session 4: Aerosols and their interaction with clouds,
Chairs Greg McFarquhar/Rob Wood/ Chris Bretherton (ppt)

1330 to 1345: Theodore Wilson, Ice nuclei in the sea surface microlayer

1345 to 1400: Susannah Burrows, The potential influence of marine biological activity on ice
nuclei concentrations over the Southern Ocean (ppt)

1400 to 1415: Cassandra Gaston, Single-particle insights into the influence of biological activity
on sea spray aerosol mixing-state (ppt)

1415 to 1430 Lynne Russell, Particle sources and growth

1430 to 1445: Yan Feng, Characterization of deposition and mineralogy of dust export to the
Southern Ocean

1445 to 1500: Tony Clarke, Aerosol properties, processes and fields over the Southern Oceans

1515 to 1530: Greg Roberts, Aerosol and CCN observations at Palmer Station

1530 to 1545: Barry Huebert (presented by Tim Bates), How could one test the
hypothesis, primary marine aerosols dominate CCN, with in situ observations?

1545 to 1600: Jorgen Jensen, Sea spray and warm rain in cold clouds over the windiest ocean
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1600 to 1615: Harvey Mike, SOLAS (Surface Ocean Aerosol Production) SOAP experiment and
biogenic aerosols

1615 to 1630: Jim Hudson, Detailed CCN spectral measurements

1630 to 1645: Rob Wood, The seasonal cycle of warm cloud microphysics and aerosols over the
Southern Ocean

1645 to 1700: Richard Moore, Model and satellite-based sensitivity of cloud properties to aerosol

changes in the Southern Ocean

1700 to 1715: Chris Bretherton, LES of boundary-layer cloud-aerosol interaction under Southern
Ocean-like conditions

1715 to 1730 Yongxiang Hu, CALIPSO Phytoplankton Particulate Backscatter Coefficient
Measurements of the Southern Oceans

1730 to 1745: Xiaohong Liu (given by Steve Ghan), Effect of aerosols on the phase partitioning
of mixed-phase clouds through comparison of Community Atmospheric Model (CAM5) and
CALIPSO observations: implication for cloud radiative forcing in the Southern Ocean in CAM5

1745 to 1800: Chris Hostetler, The NAAMES ship-aircraft mission concept and ocean profiling
and aerosol/cloud lidar

Wednesday March 19, 2014

Session 5: Plenary [HUB Lyceum]

0800 to 0830: Review of Session 3 (ppt)

0830 to 0900: Review of Session 4

0900 to 0920: Sarah Gille, Oceanographic issues in the Southern Oceans

0920 to 0935: Chris Fairall, Cloud, aerosol and surface-flux observations from ships (ppt)

0935 to 1000: Break

Attendees will divide into two or three breakout discussion groups. Exact themes for the
breakout groups are yet to be determined. Each group will address the topics listed below before
rejoining for plenary discussions.

1000 to 1230: Breakout Session 1 [HUB Lyceum, Room 250, Room 332]



http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Session4/harvey.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Session4/harvey.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Session4/hudson.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Session4/wood.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Session4/wood.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Session4/moore.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Session4/moore.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Session4/Bretherton.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Session4/Bretherton.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Session4/hu.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Session4/hu.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Session4/liu.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Session4/liu.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Session4/liu.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/depts.washington.edu/thehub/home/directions/
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Wed_AM/Protat_Session3_Summary.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Wed_AM/ppt/Summary_Session_3_final.ppt
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Wed_AM/McFarquhar_Session4_Summary.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Wed_AM/Gille.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Wed_AM/Fairall.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/Wed_AM/ppt/fairall__SOCRATES_shipCloud+UW2014.ppt
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/depts.washington.edu/thehub/home/directions/

Formulate key questions on role of aerosols/clouds/air-sea interactions in Southern Oceans
1230 to 1330: Lunch [HUB Lyceum, Box Lunch Provided]

1330 to 1415: Summary of Breakout Session 1 [HUB Lyceum]

15 minute summary talks from each of the groups, 15 minutes general discussion

Clouds and Meterology Aerosols and Clouds  Science Questions

1415 to 1615: Group Discussion [HUB Lyceum]

What are needed measurements/retrievals/simulations needed to address hypotheses?
1615 to 1630: Break [HUB Lyceum]

1630 to 1700: Summary discussion, science questions and wrap-up

March 20: Steering Committee Meeting

800 to 1100: Meeting of Steering Committee


http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/depts.washington.edu/thehub/home/directions/
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/BreakoutSummary/Breakout1_Clouds_and_Meterology.doc.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/BreakoutSummary/Breakout2_Aerosols_and_Clouds.pdf
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/BreakoutSummary/ppt/science_questions.pptx
http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/depts.washington.edu/thehub/home/directions/
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