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Drought-induced tree death mechanisms remain uncertain

Sudden and widespread forest die-back and die-off (e.g., Huang & Anderegg, 2012) and increased
mortality rates (e.g., Peng et al., 2011) in many forest ecosystems across the globe have been linked to
drought and elevated temperatures (Allen et al., 2010, Fig. 1). These observations have caused a focus
on the physiological mechanisms of drought-induced tree mortality (e.g., McDowell et al., 2008) and
many studies, both observational and manipulative, have been carried out to explain tree death during
drought from a physiological perspective (see Table 1 for examples). Despite this recent wealth of
research on the interplay of physiological mechanisms of drought-induced tree death(McDowell, 2011),
there are still major knowledge gaps limiting understanding of widespread tree mortality and its
prediction in a changing climate. For example, we still do not know answers to basic questions like 1)
whether mortality is increasing globally, 2) why some trees survive and others die in a given drought, 3)
which components of tree physiology are critical to modeling tree mortality, and 4) what types and

elements of drought are most important in predicting mortality.

Interdisciplinary approaches are required for maintaining research progress

While tree death is a phenomenon occurring at the organism level, forest mortality comprises processes
that span across spatial, organizational and temporal scales. Because many different disciplines are
involved across these scales, interdisciplinary approaches are required for maintaining research
progress. To facilitate collaboration across disciplines, an International Interdisciplinary Workshop on
Tree Mortality was recently held at the Max-Planck Institute for Biogeochemistry in Jena, Germany. By
bringing together scientists from a wide range of disciplines, the workshop aimed to: (1) brainstorm and

identify research needs, in terms of conceptual and theoretical questions but also on methodological
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issues, (2) develop concrete research ideas, (3) establish networks for future collaborations, and (4)

organize the writing of proposals and synthesis papers.

Burning questions on drought-induced tree mortality

More than 60 leading scientists from 18 different countries and from 6 continents gathered at the MPI
in Jena. Participants brought a diversity of expertise in a wide range of disciplines, scales of
observation/experimentation, and the geographical focus of study, providing an excellent basis for

synthesizing the current state of knowledge but also for identifying knowledge gaps and research needs.

Several key areas of research received much discussion in the workshop and participants identified,
during individual breakout sessions, the need to: 1) compile and analyze the ecological and societal
consequences of drought-induced tree mortality, 2) define tree death from a functional perspective, 3)
identify traits that allow drought avoidance or facilitate drought recovery, 4) define interdisciplinary
future research avenues as a means to speed up progress, and 5) monitor global tree mortality and

investigate mechanisms and processes in hot spot areas.

Consequences of tree mortality were addressed with a focus on post-disturbance ecological trajectories,
as any consequences will ultimately depend on community and ecosystem processes that follow tree
mortality (Adams et al., 2012; Anderegg et al., 2013a). The wide variety of research specialties and
geographic expertise among members of this research group fostered a discussion comparing and
contrasting variation in mortality agents (e.g., drought, temperature, insects, pathogens), ecological
transitions following tree mortality, and post-mortality interactions with other disturbances (e.g.

wildfire, harvesting), for multiple ecosystems from around the world. A lack of scientifically-informed
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guidance for land managers facing elevated or widespread tree die-off emerged as a key research gap

from this discussion.

The definition of tree death, which greatly influences our conceptual framework for designing
experiments and monitoring mortality, but is also essential to model forest dieback (Anderegg et al.,
2012a) was addressed in another breakout group meeting. While hydraulic failure and declining carbon
availability are generally considered to be major mechanisms that may force a tree to the point of no
recovery, our understanding of lethal levels of embolism (Urli et al., 2013) and whether trees require a
critical amount of carbon availability, needs more research and consideration of a larger taxonomic
range of species. It was also emphasized that more research is needed to quantify cellular death. A
cellular focus on plant death tied to whole-plant physiology also challenges our understanding of
vascular transport, xylem-phloem interactions, and connectivity between aboveground and
belowground tissues. In fact, plants may be highly segmented with an independently redundant
modular design at different anatomical and developmental scales (Schenk et al., 2008), which means
that various organs or tissues may fatally desiccate while other tissues such as apical, cambial and/or
root meristems may survive and will keep a plant alive. Finally, chlorophyll fluorescence was suggested
as one promising parameter to predict mortality for evergreen and non-resprouting plant species,
especially if remote sensing data for large forest areas will become available (e.g., NASA’s carbon

mapping satellite 0CO-2).

Unresolved questions remain around costs, trade-offs and life history strategies that allow mortality
avoidance and recovery from severe drought stress. It was hypothesized that some plants use different
structures, processes and life-history strategies to avoid stress. These strategies may include isohydry,
rooting depth, hydraulic segmentation and the hydraulic fuse hypothesis (Bucci et al., 2012; West et al.,

2012; Thomsen et al., 2013). In contrast, it was hypothesized that others plants tolerate high levels of
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stress, or percent loss of conductivity in the xylem and subsequently recover from this drought-stress
using the strategies of above- or below-ground resprouting (Zeppel et al., 2014) or embolism repair
(Brodersen & McElrone, 2013). However the costs, trade-offs and life history strategies involved in
recovery remain a key research gap but also a prerequisite for developing better models of tree

mortality.

Another major discussion revolved around costs, trade-offs and life history strategies that allow
mortality avoidance and recovery from severe drought stress. It was hypothesized that some plants use
different structures, processes and life-history strategies to avoid stress, including isohydry, rooting
depth, hydraulic segmentation and the hydraulic fuse hypothesis (Bucci et al., 2012; West et al., 2012;
Thomsen et al., 2013), while others plants tolerate high levels of stress, or percent loss of conductivity in
the xylem and subsequently recover from this drought-stress using the strategies of above- or below-

ground resprouting (Zeppel et al., 2014) or embolism repair (Brodersen & McElrone, 2013).

Detailed physiological knowledge gaps and research needs at larger organizational and spatial scales
have been identified elsewhere already (e.g., Allen et al., 2010; McDowell, 2011). However, there has
been very little progress in filling these gaps or in directing research efforts in these directions. Past
research may have been focusing too much on specific processes (carbon starvation vs. hydraulic failure)
and a more holistic approach of research may be required for both developing mitigating strategies and
for improving our understanding of the underlying processes. Focusing on hot spots of drought-induced
tree mortality as study systems, a combination of field assessments and manipulative experiments both
in the field and in the lab will provide empirical data on thresholds of drought tolerance as a

management tool but will also yield mechanistic insights into tree mortality useful for modeling.
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Global trends in tree mortality and its potential to have ecological and climatalogical

consequences remain highly uncertain

The participants of the workshop recognized that four years following an assessment documenting the
global extent of widespread tree mortality (Allen et al., 2010), there is yet no forest health assessment
to determine whether tree mortality is increasing globally, or whether it can be attributed to increasing
drought or temperatures. Therefore, global trends in tree mortality and their potential to have
ecological and climatalogical consequences remain highly uncertain. To determine the patterns and
trends of forest mortality, researchers urged the development of a global-scale monitoring network on
forest conditions. Such data are considered not only critical to motivate action from governments, policy
makers and forest managers but also to devise specific action strategies to mitigate the problem.
Challenges to be considered here include: (1) access to large inventory networks from both the public
and the private sector and (2) obtaining data for forested areas not regularly or not at all inventoried.
For such forests, remote sensing data may be the only feasible strategy, but ground validation of
satellite data is difficult. Securing access to inventory data requires collaboration among forest
managers, policy makers and scientists which must be initiated at high administrative or even political
levels. Participants at the workshop acknowledged the amplitude of such an initiative and the need for
further discussions on these issues. A working group has been charged with the funding and
organization of a follow-up workshop focusing on the coordination of a global monitoring network.

Please visit https://www.bgc-jena.mpg.de/bgp/index.php/Main/MortalityWorkshop for information on

further developments.

Setting a final keynote to the workshop, Christian Koerner (University of Basel, Switzerland) gave an
insightful closing lecture on the unlikelihood of general carbon limitation in trees and hence of carbon

starvation as a causal mechanism in drought-induced mortality. Although the evidence he presented
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was not interpreted as a refutation of carbon starvation by all participants, his thoughts surely
highlighted the need for future research to consider a much broader range of processes than carbon
starvation vs. hydraulic failure (Table 1). Major challenges ahead that researchers working on tree
mortality will need to address over the next years include xylem-phloem (hydraulic-carbon) interactions,
lethal embolism stress thresholds, potential recovery of xylem, genetic and epigenetic mechanisms
associated with tree ageing and fitness, morphological constraints or adaptations to senescence and
death at the whole plant level (e.g. resprouting capacity, production of durable organs vs organ
replacement), pests and pathogens, species interactions as well as ecological and societal consequences

of mortality.
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Table 1. A summary of recent experimental and observational research on the physiology of drought-

induced tree mortality. This list is not comprehensive and comprises mainly studies focused on carbon

starvation or hydraulic failure causes mortality.

Study Type of Study Species Location
(Adams et al., 2009; Adams  Experiment Pinus edulis Arizona, USA
et al., 2013)

(Anderegg et al., 2012b;
Anderegg et al., 2013b)

(Anderegg & Anderegg,

2013)

(Breshears et al., 2009)

(Duan et al., 2013)

(Fisher et al., 2007)
(Galiano et al., 2011)
(Galvez et al., 2013)

(Gaylord et al., 2013)
(Hartmann et al., 2013a3;
Hartmann et al., 2013b)

(Metcalfe et al., 2010)
(Mitchell et al., 2013)

(O'Brien et al., 2014a;
O'Brien et al., 2014b)
(Piper, 2011)

(Plaut et al., 2012; Dickman
etal., 2014)

(Quirk et al., 2013)
(Sevanto et al., 2013)

Observational
Experiment

Observational
Experiment

Experiment
Observational
Experiment
Experiment
Experiment
Experiment
Experiment
Experiment
Experiment

Experiment

Experiment
Experiment

Populus tremuloides

Juniperus osteosperma, Pinus
edulis

Pinus edulis

Eucalyptus radiata

multiple tropical tree species
Pinus sylvestris

Populus balsamea, Populus
tremuloides

Pinus edulis

Picea abies

multiple tropical tree species

Eucalyptus globulus, Eucalyptus

smithii, Pinus radiata
multiple tropical tree species

Nothofagus dombeyi,
Nothofagus nitida
Pinus edulis

Sequoia sempervirens
Pinus edulis

Colorado, USA
Colorado, USA

New Mexico, USA
New South Wales,
Austalia

Brazil

Spain

Alberta, Canada

New Mexico, USA
Germany

Brazil
Tasmania,
Australia
Malaysia

Chile
New Mexico, USA

UK
New Mexico, USA




267 Fig.1

Global forest cover

7] Other wooded regions

@  Localities compiled through 2009 (: ized and listed in Allen et al., 2010}
O Examples not included in Allen et al, 2010, largely from post-2009 publications
[C] Broad areas described by particular post-2009 publications
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269 Fig. 1 Locations of substantial drought- and heat-induced tree mortality around the globe since 1970
270  (global forest cover and other wooded regions based on FAO, 2005). Studies compiled through 2009
271 (red dots) are summarized and listed in Allen, C.D. et al. (2010). Localities and measurement networks
272 not included in Allen, C.D. et al. (2010), which are largely from post-2009 publications, have been added

273  to this map (white dots and shapes) © IPCC. Fig. 4-7 from (Settele et al., 2014 and references within).
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