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Drought-induced tree death mechanisms remain uncertain 14 

Sudden and widespread forest die-back and die-off (e.g., Huang & Anderegg, 2012) and increased 15 

mortality rates (e.g., Peng et al., 2011) in many forest ecosystems across the globe have been linked to 16 

drought and elevated temperatures (Allen et al., 2010, Fig. 1). These observations have caused a focus 17 

on the physiological mechanisms of drought-induced tree mortality (e.g., McDowell et al., 2008) and 18 

many studies, both observational and manipulative, have been carried out to explain tree death during 19 

drought from a physiological perspective (see Table 1 for examples). Despite this recent wealth of 20 

research on the interplay of physiological mechanisms of drought-induced tree death(McDowell, 2011), 21 

there are still major knowledge gaps limiting understanding of widespread tree mortality and its 22 

prediction in a changing climate. For example, we still do not know answers to basic questions like 1) 23 

whether mortality is increasing globally, 2) why some trees survive and others die in a given drought, 3) 24 

which components of tree physiology are critical to modeling tree mortality, and 4) what types and 25 

elements of drought are most important in predicting mortality. 26 

 27 

Interdisciplinary approaches are required for maintaining research progress 28 

While tree death is a phenomenon occurring at the organism level, forest mortality comprises processes 29 

that span across spatial, organizational and temporal scales. Because many different disciplines are 30 

involved across these scales, interdisciplinary approaches are required for maintaining research 31 

progress. To facilitate collaboration across disciplines, an International Interdisciplinary Workshop on 32 

Tree Mortality was recently held at the Max-Planck Institute for Biogeochemistry in Jena, Germany. By 33 

bringing together scientists from a wide range of disciplines, the workshop aimed to: (1) brainstorm and 34 

identify research needs, in terms of conceptual and theoretical questions but also on methodological 35 



issues, (2) develop concrete research ideas, (3) establish networks for future collaborations, and (4) 36 

organize the writing of proposals and synthesis papers. 37 

 38 

Burning questions on drought-induced tree mortality 39 

More than 60 leading scientists from 18 different countries and from 6 continents gathered at the MPI 40 

in Jena. Participants brought a diversity of expertise in a wide range of disciplines, scales of 41 

observation/experimentation, and the geographical focus of study, providing an excellent basis for 42 

synthesizing the current state of knowledge but also for identifying knowledge gaps and research needs. 43 

Several key areas of research received much discussion in the workshop and participants identified, 44 

during individual breakout sessions, the need to: 1) compile and analyze the ecological and societal 45 

consequences of drought-induced tree mortality, 2) define tree death from a functional perspective, 3) 46 

identify traits that allow drought avoidance or facilitate drought recovery, 4) define interdisciplinary 47 

future research avenues as a means to speed up progress, and 5) monitor global tree mortality and 48 

investigate mechanisms and processes in hot spot areas. 49 

Consequences of tree mortality were addressed with a focus on post-disturbance ecological trajectories, 50 

as any consequences will ultimately depend on community and ecosystem processes that follow tree 51 

mortality (Adams et al., 2012; Anderegg et al., 2013a). The wide variety of research specialties and 52 

geographic expertise among members of this research group fostered a discussion comparing and 53 

contrasting variation in mortality agents (e.g., drought, temperature, insects, pathogens), ecological 54 

transitions following tree mortality, and post-mortality interactions with other disturbances (e.g. 55 

wildfire, harvesting), for multiple ecosystems from around the world. A lack of scientifically-informed 56 



guidance for land managers facing elevated or widespread tree die-off emerged as a key research gap 57 

from this discussion. 58 

The definition of tree death, which greatly influences our conceptual framework for designing 59 

experiments and monitoring mortality, but is also essential to model forest dieback (Anderegg et al., 60 

2012a) was addressed in another breakout group meeting. While hydraulic failure and declining carbon 61 

availability are generally considered to be major mechanisms that may force a tree to the point of no 62 

recovery, our understanding of lethal levels of embolism (Urli et al., 2013) and whether trees require a 63 

critical amount of carbon availability, needs more research and consideration of a larger taxonomic 64 

range of species. It was also emphasized that more research is needed to quantify cellular death. A 65 

cellular focus on plant death tied to whole-plant physiology also challenges our understanding of 66 

vascular transport, xylem-phloem interactions, and connectivity between aboveground and 67 

belowground tissues. In fact, plants may be highly segmented with an independently redundant 68 

modular design at different anatomical and developmental scales (Schenk et al., 2008), which means 69 

that various organs or tissues may fatally desiccate while other tissues such as apical, cambial and/or 70 

root meristems may survive and will keep a plant alive. Finally, chlorophyll fluorescence was suggested 71 

as one promising parameter to predict mortality for evergreen and non-resprouting plant species, 72 

especially if remote sensing data for large forest areas will become available (e.g., NASA’s carbon 73 

mapping satellite OCO-2). 74 

Unresolved questions remain around costs, trade-offs and life history strategies that allow mortality 75 

avoidance and recovery from severe drought stress. It was hypothesized that some plants use different 76 

structures, processes and life-history strategies to avoid stress. These strategies may include isohydry, 77 

rooting depth, hydraulic segmentation and the hydraulic fuse hypothesis (Bucci et al., 2012; West et al., 78 

2012; Thomsen et al., 2013). In contrast, it was hypothesized that others plants tolerate high levels of 79 



stress, or percent loss of conductivity in the xylem and subsequently recover from this drought-stress 80 

using the strategies of above- or below-ground resprouting (Zeppel et al., 2014) or embolism repair 81 

(Brodersen & McElrone, 2013). However the costs, trade-offs and life history strategies involved in 82 

recovery remain a key research gap but also a prerequisite for developing better models of tree 83 

mortality. 84 

Another major discussion revolved around costs, trade-offs and life history strategies that allow 85 

mortality avoidance and recovery from severe drought stress. It was hypothesized that some plants use 86 

different structures, processes and life-history strategies to avoid stress, including isohydry, rooting 87 

depth, hydraulic segmentation and the hydraulic fuse hypothesis (Bucci et al., 2012; West et al., 2012; 88 

Thomsen et al., 2013), while others plants tolerate high levels of stress, or percent loss of conductivity in 89 

the xylem and subsequently recover from this drought-stress using the strategies of above- or below-90 

ground resprouting (Zeppel et al., 2014) or embolism repair (Brodersen & McElrone, 2013). 91 

Detailed physiological knowledge gaps and research needs at larger organizational and spatial scales 92 

have been identified elsewhere already (e.g., Allen et al., 2010; McDowell, 2011). However, there has 93 

been very little progress in filling these gaps or in directing research efforts in these directions. Past 94 

research may have been focusing too much on specific processes (carbon starvation vs. hydraulic failure) 95 

and a more holistic approach of research may be required for both developing mitigating strategies and 96 

for improving our understanding of the underlying processes. Focusing on hot spots of drought-induced 97 

tree mortality as study systems, a combination of field assessments and manipulative experiments both 98 

in the field and in the lab will provide empirical data on thresholds of drought tolerance as a 99 

management tool but will also yield mechanistic insights into tree mortality useful for modeling. 100 

 101 



Global trends in tree mortality and its potential to have ecological and climatalogical 102 

consequences remain highly uncertain 103 

The participants of the workshop recognized that four years following an assessment documenting the 104 

global extent of widespread tree mortality (Allen et al., 2010), there is yet no forest health assessment 105 

to determine whether tree mortality is increasing globally, or whether it can be attributed to increasing 106 

drought or temperatures. Therefore, global trends in tree mortality and their potential to have 107 

ecological and climatalogical consequences remain highly uncertain. To determine the patterns and 108 

trends of forest mortality, researchers urged the development of a global-scale monitoring network on 109 

forest conditions. Such data are considered not only critical to motivate action from governments, policy 110 

makers and forest managers but also to devise specific action strategies to mitigate the problem. 111 

Challenges to be considered here include: (1) access to large inventory networks from both the public 112 

and the private sector and (2) obtaining data for forested areas not regularly or not at all inventoried. 113 

For such forests, remote sensing data may be the only feasible strategy, but ground validation of 114 

satellite data is difficult. Securing access to inventory data requires collaboration among forest 115 

managers, policy makers and scientists which must be initiated at high administrative or even political 116 

levels. Participants at the workshop acknowledged the amplitude of such an initiative and the need for 117 

further discussions on these issues. A working group has been charged with the funding and 118 

organization of a follow-up workshop focusing on the coordination of a global monitoring network. 119 

Please visit https://www.bgc-jena.mpg.de/bgp/index.php/Main/MortalityWorkshop for information on 120 

further developments. 121 

Setting a final keynote to the workshop, Christian Koerner (University of Basel, Switzerland) gave an 122 

insightful closing lecture on the unlikelihood of general carbon limitation in trees and hence of carbon 123 

starvation as a causal mechanism in drought-induced mortality. Although the evidence he presented 124 

https://www.bgc-jena.mpg.de/bgp/index.php/Main/MortalityWorkshop


was not interpreted as a refutation of carbon starvation by all participants, his thoughts surely 125 

highlighted the need for future research to consider a much broader range of processes than carbon 126 

starvation vs. hydraulic failure (Table 1). Major challenges ahead that researchers working on tree 127 

mortality will need to address over the next years include xylem-phloem (hydraulic-carbon) interactions, 128 

lethal embolism stress thresholds, potential recovery of xylem, genetic and epigenetic mechanisms 129 

associated with tree ageing and fitness, morphological constraints or adaptations to senescence and 130 

death at the whole plant level (e.g. resprouting capacity, production of durable organs vs organ 131 

replacement), pests and pathogens, species interactions as well as ecological and societal consequences 132 

of mortality. 133 
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Table 1.  A summary of recent experimental and observational research on the physiology of drought-263 
induced tree mortality. This list is not comprehensive and comprises mainly studies focused on carbon 264 
starvation or hydraulic failure causes mortality. 265 

Study Type of Study Species Location 
(Adams et al., 2009; Adams 
et al., 2013) 

Experiment Pinus edulis Arizona, USA 

(Anderegg et al., 2012b; 
Anderegg et al., 2013b) 

Observational  Populus tremuloides Colorado, USA 

(Anderegg & Anderegg, 
2013) 

Experiment Juniperus osteosperma, Pinus 
edulis 

Colorado, USA 

(Breshears et al., 2009) Observational  Pinus edulis New Mexico, USA 
(Duan et al., 2013) Experiment Eucalyptus radiata New South Wales, 

Austalia 
(Fisher et al., 2007) Experiment multiple tropical tree species Brazil 
(Galiano et al., 2011) Observational  Pinus sylvestris Spain 
(Galvez et al., 2013) Experiment Populus balsamea, Populus 

tremuloides 
Alberta, Canada 

(Gaylord et al., 2013) Experiment Pinus edulis New Mexico, USA 
(Hartmann et al., 2013a; 
Hartmann et al., 2013b)  

Experiment Picea abies Germany 

    
(Metcalfe et al., 2010) Experiment multiple tropical tree species Brazil 
(Mitchell et al., 2013) Experiment Eucalyptus globulus, Eucalyptus 

smithii, Pinus radiata 
Tasmania, 
Australia 

(O'Brien et al., 2014a; 
O'Brien et al., 2014b) 

Experiment multiple tropical tree species Malaysia 

(Piper, 2011) Experiment Nothofagus dombeyi, 
Nothofagus nitida 

Chile 

(Plaut et al., 2012; Dickman 
et al., 2014) 

Experiment Pinus edulis New Mexico, USA 

(Quirk et al., 2013) Experiment Sequoia  sempervirens UK 
(Sevanto et al., 2013) Experiment Pinus edulis New Mexico, USA 
  266 



Fig. 1 267 

 268 

Fig. 1 Locations of substantial drought- and heat-induced tree mortality around the globe since 1970 269 

(global forest cover and other wooded regions based on FAO, 2005). Studies compiled through 2009 270 

(red dots) are summarized and listed in Allen, C.D. et al. (2010). Localities and measurement networks 271 

not included in Allen, C.D. et al. (2010), which are largely from post-2009 publications, have been added 272 

to this map (white dots and shapes) © IPCC. Fig. 4-7 from (Settele et al., 2014 and references within). 273 
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