

LA-UR-14-29321 (Accepted Manuscript)

Research frontiers in drought-induced tree mortality: crossing scales and disciplines

Hartmann, Henrik
Adams, Henry David
Anderegg, William
Jansen, Steve
Zeppel, Melanie

Provided by the author(s) and the Los Alamos National Laboratory (2016-02-18).

To be published in: NEW PHYTOLOGIST ; Vol.205, iss.3, p.965-969, FEB 2015

DOI to publisher's version: 10.1111/nph.13246

Permalink to record: <http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-14-29321>

Disclaimer:

Approved for public release. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

1 **Research frontiers in drought-induced tree mortality: crossing scales and disciplines**

2 International Interdisciplinary Workshop on Tree Mortality, Jena, Germany, October 2014.

3

4

5

6

7

8 Word count: 1784

9 Tables: 1

10 Figures: 1

11 Keywords: interdisciplinary, stress, global warming, plant-water relations, carbon availability,

12 desiccation, remote sensing, biotic agents

13

14 **Drought-induced tree death mechanisms remain uncertain**

15 Sudden and widespread forest die-back and die-off (e.g., Huang & Anderegg, 2012) and increased
16 mortality rates (e.g., Peng *et al.*, 2011) in many forest ecosystems across the globe have been linked to
17 drought and elevated temperatures (Allen *et al.*, 2010, Fig. 1). These observations have caused a focus
18 on the physiological mechanisms of drought-induced tree mortality (e.g., McDowell *et al.*, 2008) and
19 many studies, both observational and manipulative, have been carried out to explain tree death during
20 drought from a physiological perspective (see Table 1 for examples). Despite this recent wealth of
21 research on the interplay of physiological mechanisms of drought-induced tree death (McDowell, 2011),
22 there are still major knowledge gaps limiting understanding of widespread tree mortality and its
23 prediction in a changing climate. For example, we still do not know answers to basic questions like 1)
24 whether mortality is increasing globally, 2) why some trees survive and others die in a given drought, 3)
25 which components of tree physiology are critical to modeling tree mortality, and 4) what types and
26 elements of drought are most important in predicting mortality.

27

28 **Interdisciplinary approaches are required for maintaining research progress**

29 While tree death is a phenomenon occurring at the organism level, forest mortality comprises processes
30 that span across spatial, organizational and temporal scales. Because many different disciplines are
31 involved across these scales, interdisciplinary approaches are required for maintaining research
32 progress. To facilitate collaboration across disciplines, an International Interdisciplinary Workshop on
33 Tree Mortality was recently held at the Max-Planck Institute for Biogeochemistry in Jena, Germany. By
34 bringing together scientists from a wide range of disciplines, the workshop aimed to: (1) brainstorm and
35 identify research needs, in terms of conceptual and theoretical questions but also on methodological

36 issues, (2) develop concrete research ideas, (3) establish networks for future collaborations, and (4)
37 organize the writing of proposals and synthesis papers.

38

39 **Burning questions on drought-induced tree mortality**

40 More than 60 leading scientists from 18 different countries and from 6 continents gathered at the MPI
41 in Jena. Participants brought a diversity of expertise in a wide range of disciplines, scales of
42 observation/experimentation, and the geographical focus of study, providing an excellent basis for
43 synthesizing the current state of knowledge but also for identifying knowledge gaps and research needs.

44 Several key areas of research received much discussion in the workshop and participants identified,
45 during individual breakout sessions, the need to: 1) compile and analyze the ecological and societal
46 consequences of drought-induced tree mortality, 2) define tree death from a functional perspective, 3)
47 identify traits that allow drought avoidance or facilitate drought recovery, 4) define interdisciplinary
48 future research avenues as a means to speed up progress, and 5) monitor global tree mortality and
49 investigate mechanisms and processes in hot spot areas.

50 Consequences of tree mortality were addressed with a focus on post-disturbance ecological trajectories,
51 as any consequences will ultimately depend on community and ecosystem processes that follow tree
52 mortality (Adams *et al.*, 2012; Anderegg *et al.*, 2013a). The wide variety of research specialties and
53 geographic expertise among members of this research group fostered a discussion comparing and
54 contrasting variation in mortality agents (e.g., drought, temperature, insects, pathogens), ecological
55 transitions following tree mortality, and post-mortality interactions with other disturbances (e.g.
56 wildfire, harvesting), for multiple ecosystems from around the world. A lack of scientifically-informed

57 guidance for land managers facing elevated or widespread tree die-off emerged as a key research gap
58 from this discussion.

59 The definition of tree death, which greatly influences our conceptual framework for designing
60 experiments and monitoring mortality, but is also essential to model forest dieback (Anderegg *et al.*,
61 2012a) was addressed in another breakout group meeting. While hydraulic failure and declining carbon
62 availability are generally considered to be major mechanisms that may force a tree to the point of no
63 recovery, our understanding of lethal levels of embolism (Urli *et al.*, 2013) and whether trees require a
64 critical amount of carbon availability, needs more research and consideration of a larger taxonomic
65 range of species. It was also emphasized that more research is needed to quantify cellular death. A
66 cellular focus on plant death tied to whole-plant physiology also challenges our understanding of
67 vascular transport, xylem-phloem interactions, and connectivity between aboveground and
68 belowground tissues. In fact, plants may be highly segmented with an independently redundant
69 modular design at different anatomical and developmental scales (Schenk *et al.*, 2008), which means
70 that various organs or tissues may fatally desiccate while other tissues such as apical, cambial and/or
71 root meristems may survive and will keep a plant alive. Finally, chlorophyll fluorescence was suggested
72 as one promising parameter to predict mortality for evergreen and non-resprouting plant species,
73 especially if remote sensing data for large forest areas will become available (e.g., NASA's carbon
74 mapping satellite OCO-2).

75 Unresolved questions remain around costs, trade-offs and life history strategies that allow mortality
76 avoidance and recovery from severe drought stress. It was hypothesized that some plants use different
77 structures, processes and life-history strategies to *avoid* stress. These strategies may include isohydry,
78 rooting depth, hydraulic segmentation and the hydraulic fuse hypothesis (Bucci *et al.*, 2012; West *et al.*,
79 2012; Thomsen *et al.*, 2013). In contrast, it was hypothesized that others plants *tolerate* high levels of

80 stress, or percent loss of conductivity in the xylem and subsequently *recover* from this drought-stress
81 using the strategies of above- or below-ground resprouting (Zeppel *et al.*, 2014) or embolism repair
82 (Brodersen & McElrone, 2013). However the costs, trade-offs and life history strategies involved in
83 recovery remain a key research gap but also a prerequisite for developing better models of tree
84 mortality.

85 Another major discussion revolved around costs, trade-offs and life history strategies that allow
86 mortality avoidance and recovery from severe drought stress. It was hypothesized that some plants use
87 different structures, processes and life-history strategies to *avoid* stress, including isohydry, rooting
88 depth, hydraulic segmentation and the hydraulic fuse hypothesis (Bucci *et al.*, 2012; West *et al.*, 2012;
89 Thomsen *et al.*, 2013), while others plants *tolerate* high levels of stress, or percent loss of conductivity in
90 the xylem and subsequently *recover* from this drought-stress using the strategies of above- or below-
91 ground resprouting (Zeppel *et al.*, 2014) or embolism repair (Brodersen & McElrone, 2013).

92 Detailed physiological knowledge gaps and research needs at larger organizational and spatial scales
93 have been identified elsewhere already (e.g., Allen *et al.*, 2010; McDowell, 2011). However, there has
94 been very little progress in filling these gaps or in directing research efforts in these directions. Past
95 research may have been focusing too much on specific processes (carbon starvation vs. hydraulic failure)
96 and a more holistic approach of research may be required for both developing mitigating strategies and
97 for improving our understanding of the underlying processes. Focusing on hot spots of drought-induced
98 tree mortality as study systems, a combination of field assessments and manipulative experiments both
99 in the field and in the lab will provide empirical data on thresholds of drought tolerance as a
100 management tool but will also yield mechanistic insights into tree mortality useful for modeling.

101

102 **Global trends in tree mortality and its potential to have ecological and climatalogical**
103 **consequences remain highly uncertain**

104 The participants of the workshop recognized that four years following an assessment documenting the
105 global extent of widespread tree mortality (Allen *et al.*, 2010), there is yet no forest health assessment
106 to determine whether tree mortality is increasing globally, or whether it can be attributed to increasing
107 drought or temperatures. Therefore, global trends in tree mortality and their potential to have
108 ecological and climatalogical consequences remain highly uncertain. To determine the patterns and
109 trends of forest mortality, researchers urged the development of a global-scale monitoring network on
110 forest conditions. Such data are considered not only critical to motivate action from governments, policy
111 makers and forest managers but also to devise specific action strategies to mitigate the problem.

112 Challenges to be considered here include: (1) access to large inventory networks from both the public
113 and the private sector and (2) obtaining data for forested areas not regularly or not at all inventoried.
114 For such forests, remote sensing data may be the only feasible strategy, but ground validation of
115 satellite data is difficult. Securing access to inventory data requires collaboration among forest

116 managers, policy makers and scientists which must be initiated at high administrative or even political
117 levels. Participants at the workshop acknowledged the amplitude of such an initiative and the need for
118 further discussions on these issues. A working group has been charged with the funding and
119 organization of a follow-up workshop focusing on the coordination of a global monitoring network.

120 Please visit <https://www.bgc-jena.mpg.de/bgp/index.php/Main/MortalityWorkshop> for information on
121 further developments.

122 Setting a final keynote to the workshop, Christian Koerner (University of Basel, Switzerland) gave an
123 insightful closing lecture on the unlikelihood of general carbon limitation in trees and hence of carbon
124 starvation as a causal mechanism in drought-induced mortality. Although the evidence he presented

125 was not interpreted as a refutation of carbon starvation by all participants, his thoughts surely
126 highlighted the need for future research to consider a much broader range of processes than carbon
127 starvation vs. hydraulic failure (Table 1). Major challenges ahead that researchers working on tree
128 mortality will need to address over the next years include xylem-phloem (hydraulic-carbon) interactions,
129 lethal embolism stress thresholds, potential recovery of xylem, genetic and epigenetic mechanisms
130 associated with tree ageing and fitness, morphological constraints or adaptations to senescence and
131 death at the whole plant level (e.g. resprouting capacity, production of durable organs vs organ
132 replacement), pests and pathogens, species interactions as well as ecological and societal consequences
133 of mortality.

134

135 **Acknowledgements**

136 The authors thank all participants of the workshop for valuable discussions and contributions. SJ
137 acknowledges the German Research Foundation (DFG) for financial support. HDA was supported by the
138 Los Alamos National Laboratory LDRD program, and the U.S. Department of Energy Office of Science,
139 Biological and Environmental Research.

140

141

142 **Henrik Hartmann¹*, Henry D. Adams², William R.L. Anderegg³, Steven Jansen⁴ and Melanie Zeppel⁵**

143 ¹Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Hans-Knoll Str. 10,
144 07745 Jena, Germany; ²Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos,

145 NM 87545, USA; ³Princeton Environmental Institute, Princeton University, Princeton NJ 08544, USA;

146 ⁴Institute for Systematic Botany and Ecology, Ulm University, D-89081 Ulm, Germany; ⁵Department of
147 Biological Sciences, Macquarie University, NSW, Australia.

148 (*Author for correspondence: email hhart@bgc-jena.mpg.de; tel: +49 3641 576294)

149

150

151 References

152 **Adams HD, Germino MJ, Breshears DD, Barron-Gafford GA, Guardiola-Claramonte M, Zou CB, Huxman**
153 **TE. 2013.** Nonstructural leaf carbohydrate dynamics of *Pinus edulis* during drought-induced tree
154 mortality reveal role for carbon metabolism in mortality mechanism. *New Phytologist* **197**(4):
155 1142-1151.

156 **Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA,**
157 **Huxman TE. 2009.** Temperature sensitivity of drought-induced tree mortality portends
158 increased regional die-off under global-change-type drought. *Proceedings of the National*
159 *Academy of Sciences* **106**(17): 7063-7066.

160 **Adams HD, Luce CH, Breshears DD, Allen CD, Weiler M, Hale VC, Smith AMS, Huxman TE. 2012.**
161 Ecohydrological consequences of drought- and infestation- triggered tree die-off: insights and
162 hypotheses. *Ecohydrology* **5**(2): 145-159.

163 **Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A,**
164 **Breshears DD, Hogg EH, et al. 2010.** A global overview of drought and heat-induced tree
165 mortality reveals emerging climate change risks for forests. *Forest Ecology and Management*
166 **259**(4): 660-684.

167 **Anderegg WRL, Anderegg LDL. 2013.** Hydraulic and carbohydrate changes in experimental drought-
168 induced mortality of saplings in two conifer species. *Tree Physiology* **33**(3): 252-260.

169 **Anderegg WRL, Berry JA, Field CB. 2012a.** Linking definitions, mechanisms, and modeling of drought-
170 induced tree death. *Trends in Plant Science* **17**(12): 693-700.

171 **Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Field CB. 2012b.** The roles of hydraulic
172 and carbon stress in a widespread climate-induced forest die-off. *Proceedings of the National*
173 *Academy of Sciences* **109**(1): 233-237.

174 **Anderegg WRL, Kane JM, Anderegg LDL. 2013a.** Consequences of widespread tree mortality triggered
175 by drought and temperature stress. *Nature Clim. Change* **3**(1): 30-36.

176 **Anderegg WRL, Plavcová L, Anderegg LDL, Hacke UG, Berry JA, Field CB. 2013b.** Drought's legacy:
177 multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends
178 increased future risk. *Global Change Biology* **19**(4): 1188-1196.

179 **Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB, Allen CD, McDowell NG, Pockman WT. 2009.**
180 Tree die-off in response to global change-type drought: mortality insights from a decade of plant
181 water potential measurements. *Frontiers in Ecology and the Environment* **7**(4): 185-189.

182 **Brodersen CR, McElrone AJ. 2013.** Maintenance of xylem network transport capacity: a review of
183 embolism repair in vascular plants. *Front Plant Sci* **4**.

184 **Bucci SJ, Scholz FG, Campanello PI, Montti L, Jimenez-Castillo M, Rockwell FA, Manna LL, Guerra P,**
185 **Bernal PL, Troncoso O, et al. 2012.** Hydraulic differences along the water transport system of
186 South American *Nothofagus* species: do leaves protect the stem functionality? *Tree Physiology*.

187 **Dickman LT, McDowell NG, Sevanto S, Pangle RE, Pockman WT. 2014.** Carbohydrate dynamics and
188 mortality in a piñon-juniper woodland under three future precipitation scenarios. *Plant, Cell &*
189 *Environment*: n/a-n/a.

190 **Duan H, Amthor JS, Duursma RA, O'Grady AP, Choat B, Tissue DT. 2013.** Carbon dynamics of eucalypt
191 seedlings exposed to progressive drought in elevated [CO₂] and elevated temperature. *Tree*
192 *Physiology* **33**(8): 779-792.

193 **FAO 2005.** Global forest resources assessment 2005—progress towards sustainable forest management.
194 FAO Forestry Paper 147. Rome.

195 **Fisher RA, Williams M, Da Costa AL, Malhi Y, Da Costa RF, Almeida S, Meir P. 2007.** The response of an
196 Eastern Amazonian rain forest to drought stress: results and modelling analyses from a
197 throughfall exclusion experiment. *Global Change Biology* **13**(11): 2361-2378.

198 **Galiano L, Martínez-Vilalta J, Lloret F. 2011.** Carbon reserves and canopy defoliation determine the
199 recovery of Scots pine 4 yr after a drought episode. *New Phytologist* **190**(3): 750-759.

200 **Galvez DA, Landhäuser SM, Tyree MT. 2013.** Low root reserve accumulation during drought may lead
201 to winter mortality in poplar seedlings. *New Phytologist*: n/a-n/a.

202 **Gaylord ML, Kolb TE, Pockman WT, Plaut JA, Yepez EA, Macalady AK, Pangle RE, McDowell NG. 2013.**
203 Drought predisposes piñon-juniper woodlands to insect attacks and mortality. *New Phytologist*
204 **198**(2): 567-578.

205 **Hartmann H, Ziegler W, Kolle O, Trumbore S. 2013a.** Thirst beats hunger – declining hydration during
206 drought prevents carbon starvation in Norway spruce saplings. *New Phytologist* **200**(2): 340-349.

207 **Hartmann H, Ziegler W, Trumbore S. 2013b.** Lethal drought leads to reduction in nonstructural
208 carbohydrates in Norway spruce tree roots but not in the canopy. *Functional Ecology* **27**(2): 413-
209 427.

210 **Huang C-Y, Anderegg WRL. 2012.** Large drought-induced aboveground live biomass losses in southern
211 Rocky Mountain aspen forests. *Global Change Biology* **18**(3): 1016-1027.

212 **McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams**
213 **DG, et al. 2008.** Mechanisms of plant survival and mortality during drought: why do some plants
214 survive while others succumb to drought? *New Phytologist* **178**(4): 719-739.

215 **McDowell NG. 2011.** Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation
216 Mortality. *Plant Physiology* **155**(3): 1051-1059.

217 **Metcalfe DB, Meir P, Aragão LEOC, Lobo-do-Vale R, Galbraith D, Fisher RA, Chaves MM, Maroco JP, da**
218 **Costa ACL, de Almeida SS, et al. 2010.** Shifts in plant respiration and carbon use efficiency at a
219 large-scale drought experiment in the eastern Amazon. *New Phytologist* **187**(3): 608-621.

220 **Mitchell PJ, O'Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA. 2013.** Drought response
221 strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion
222 during tree mortality. *New Phytologist* **197**(3): 862-872.

223 **O'Brien MJ, Burslem DFRP, Caduff A, Tay J, Hector A. 2014a.** Contrasting nonstructural carbohydrate
224 dynamics of tropical tree seedlings under water deficit and variability. *New Phytologist*: n/a-n/a.

225 **O'Brien MJ, Leuzinger S, Philipson CD, Tay J, Hector A. 2014b.** Drought survival of tropical tree seedlings
226 enhanced by non-structural carbohydrate levels. *Nature Clim. Change* **advance online**
227 publication.

228 **Peng C, Ma Z, Lei X, Zhu Q, Chen H, Wang W, Liu S, Li W, Fang X, Zhou X. 2011.** A drought-induced
229 pervasive increase in tree mortality across Canada's boreal forests. *Nature Clim. Change* **1**(9):
230 467-471.

231 **Piper F. 2011.** Drought induces opposite changes in the concentration of non-structural carbohydrates
232 of two evergreen *Nothofagus* species of differential drought resistance. *Annals of Forest Science*
233 **68**(2): 415-424.

234 **Plaut JA, Yepez EA, Hill J, Pangle R, Sperry JS, Pockman WT, McDowell NG. 2012.** Hydraulic limits
235 preceding mortality in a piñon-juniper woodland under experimental drought. *Plant, Cell &*
236 *Environment* **35**(9): 1601-1617.

237 **Quirk J, McDowell NG, Leake JR, Hudson PJ, Beerling DJ. 2013.** Increased susceptibility to drought-
238 induced mortality in *Sequoia sempervirens* (Cupressaceae) trees under Cenozoic atmospheric
239 carbon dioxide starvation. *American Journal of Botany* **100**(3): 582-591.

240 **Schenk HJ, Espino S, Goedhart CM, Nordenstahl M, Cabrera HIM, Jones CS. 2008.** Hydraulic integration
241 and shrub growth form linked across continental aridity gradients. *Proceedings of the National*
242 *Academy of Sciences* **105**(32): 11248-11253.

243 **Settele J, Scholes R, Betts R, Bunn SE, Leadley P, Nepstad D, Overpeck JT, Taboada MA 2014.**
244 Terrestrial and inland water systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea
245 MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN,

246 MacCracken S, Mastrandrea PR, White LL eds. *Climate Change 2014: Impacts, Adaptation, and*
247 *Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth*
248 *Assessment Report of the Intergovernmental Panel of Climate Change.* Cambridge, United
249 Kingdom and New York, NY, USA: Cambridge University Press, 271-359.

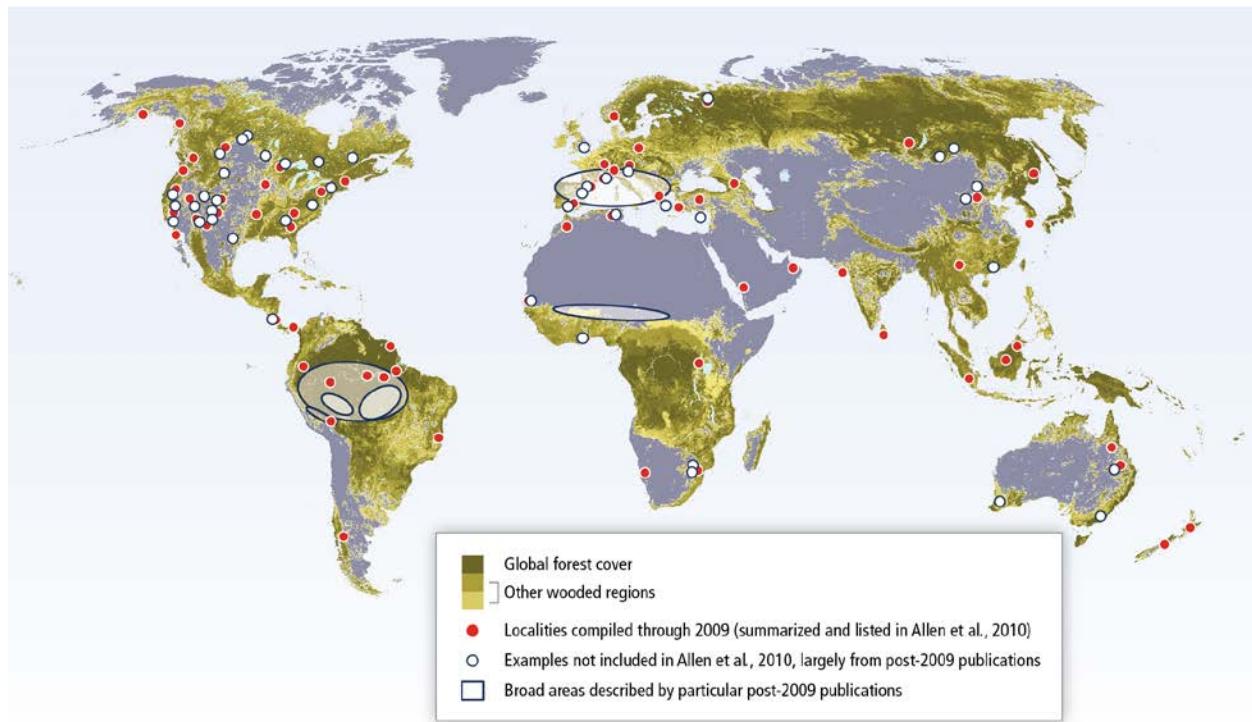
250 **Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT. 2013.** How do trees die? A test of the
251 hydraulic failure and carbon starvation hypotheses. *Plant, Cell & Environment:* n/a-n/a.

252 **Thomsen JE, Bohrer G, Matheny AM, Ivanov VY, He L, Renninger HJ, Schäfer KVR. 2013.** Contrasting
253 hydraulic strategies during dry soil conditions in *Quercus rubra* and *Acer rubrum* in a sandy site
254 in Michigan. *Forests* **4**(4): 1106-1120.

255 **Urli M, Porté AJ, Cochard H, Guengant Y, Burlett R, Delzon S. 2013.** Xylem embolism threshold for
256 catastrophic hydraulic failure in angiosperm trees. *Tree Physiology.*

257 **West AG, Dawson TE, February EC, Midgley GF, Bond WJ, Aston TL. 2012.** Diverse functional responses
258 to drought in a Mediterranean-type shrubland in South Africa. *New Phytologist* **195**(2): 396-407.

259 **Zeppel MJB, Harrison S, Adams HD, Li G, Kelley DL, West A, Dawson TE, R. F, Medlyn B, Palmer AR, et**
260 **al. 2014.** Drought and resprouting plants. *New Phytologist* **In Press.**


261

262

263 **Table 1.** A summary of recent experimental and observational research on the physiology of drought-
 264 induced tree mortality. This list is not comprehensive and comprises mainly studies focused on carbon
 265 starvation or hydraulic failure causes mortality.

Study	Type of Study	Species	Location
(Adams <i>et al.</i> , 2009; Adams <i>et al.</i> , 2013)	Experiment	<i>Pinus edulis</i>	Arizona, USA
(Anderegg <i>et al.</i> , 2012b; Anderegg <i>et al.</i> , 2013b)	Observational	<i>Populus tremuloides</i>	Colorado, USA
(Anderegg & Anderegg, 2013)	Experiment	<i>Juniperus osteosperma, Pinus edulis</i>	Colorado, USA
(Breshears <i>et al.</i> , 2009)	Observational	<i>Pinus edulis</i>	New Mexico, USA
(Duan <i>et al.</i> , 2013)	Experiment	<i>Eucalyptus radiata</i>	New South Wales, Australia
(Fisher <i>et al.</i> , 2007)	Experiment	multiple tropical tree species	Brazil
(Galiano <i>et al.</i> , 2011)	Observational	<i>Pinus sylvestris</i>	Spain
(Galvez <i>et al.</i> , 2013)	Experiment	<i>Populus balsamea, Populus tremuloides</i>	Alberta, Canada
(Gaylord <i>et al.</i> , 2013)	Experiment	<i>Pinus edulis</i>	New Mexico, USA
(Hartmann <i>et al.</i> , 2013a; Hartmann <i>et al.</i> , 2013b)	Experiment	<i>Picea abies</i>	Germany
(Metcalfe <i>et al.</i> , 2010)	Experiment	multiple tropical tree species	Brazil
(Mitchell <i>et al.</i> , 2013)	Experiment	<i>Eucalyptus globulus, Eucalyptus smithii, Pinus radiata</i>	Tasmania, Australia
(O'Brien <i>et al.</i> , 2014a; O'Brien <i>et al.</i> , 2014b)	Experiment	multiple tropical tree species	Malaysia
(Piper, 2011)	Experiment	<i>Nothofagus dombeyi, Nothofagus nitida</i>	Chile
(Plaut <i>et al.</i> , 2012; Dickman <i>et al.</i> , 2014)	Experiment	<i>Pinus edulis</i>	New Mexico, USA
(Quirk <i>et al.</i> , 2013)	Experiment	<i>Sequoia sempervirens</i>	UK
(Sevanto <i>et al.</i> , 2013)	Experiment	<i>Pinus edulis</i>	New Mexico, USA

267 Fig. 1

- Global forest cover
- Other wooded regions
- Localities compiled through 2009 (summarized and listed in Allen et al., 2010)
- Examples not included in Allen et al., 2010, largely from post-2009 publications
- Broad areas described by particular post-2009 publications