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Abstract

We study up to 8-derivative terms in the Coulomb branch effective action of (1, 1)
little string theory, by collecting results of 4-gluon scattering amplitudes from both
perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double
scaled little string theory (DSLST). In previous work we have matched the 6-derivative
term from the 6D gauge theory to DSLST, indicating that this term is protected on
the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected.
In this paper we compute the 8-derivative term by interpolating from the two limits,
near the origin and near the infinity on the Coulomb branch, numerically from SU (k)
SYM and DSLST respectively, for £k = 2,3,4,5. We discuss the implication of this
result on the UV completion of 6D SYM as well as the strong coupling completion of
DSLST. We also comment on analogous interpolating functions in the Coulomb phase
of circle-compactified (2,0) little string theory.
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1 Introduction

The (1,1) A little string theory (LST) [1, 2, B, 14 5l 6] may be thought of as a UV
completion of the 6-dimensional maximally supersymmetric SU (k) Yang-Mills theory. The
double scaled little string theory (DSLST) [7, [§] is a particularly useful deformation of LST
that admits a perturbative expansion, and describes the Coulomb phase of the 6D gauge
theory far from the origin on the Coulomb branch. The perturbative description of the gauge
theory, on the other hand, may be regarded as an expansion near the origin of the Coulomb
branch, and describes the strong coupling limit of DSLST. The goal of this paper is to exploit
this correspondence, by connecting the two limits of the Coulomb phase of (1,1) LST.

We will inspect the derivative expansion of the Coulomb branch effective action, focusing
on terms of the structure f,,(r)D**F* n = 0,1,2, etc. Here r stands for the distance from



the origin of the Coulomb branch, as measured by the scalar expectation values, and F' the
field strength of the U(1)¥~1 vector multiplets in the Cartan of the SU (k) gauge group. The
most convenient way to organize the supersymmetric completion of these higher derivative
terms in the effective action is through the massless superamplitudes they generate [9].
For our purpose, it suffices to focus on the 4-point superamplitudes, which take the form|]
5%(Q)F (s,t,u), where Q is the total supermomentum and s, ¢, u the Mandelstam variables
[T0, 1T, 12]. F(s,t,u) will depend on the color assignment of the Cartan gluons, and depend
on r through the W-boson masses.

The 4-point superamplitude can be computed in the large r regime by the perturbative
double scaled LST [13], [14]. In previous work we have formulated the tree amplitude in the
DSLST in terms of an explicit double integration over the cross ratio of four points on the
Riemann sphere and over a continuous family of conformal blocks, which is then evaluated
numerically. In this paper we will present some higher order terms in the o’-expansion of
the DSLST tree amplitude, giving the leading 1/72 term of the f,(r)D* F* coupling on the
Coulomb branch, at large r.

In the small r regime, on the other hand, we will perform a perturbative computation in
6D SU(k) SYM. The 4-point amplitude is reduced to §%(Q) times a set of scalar box type
integrals, which can be evaluated straightforwardly up to 3-loops. We will present some
numerical results for k£ = 2, 3,4, 5. Starting at 4-loop order, the 4-point amplitude of Cartan
gluons suffers from logarithmic UV divergences. This divergence structure is a bit intricate,
as the non-abelian 4-point amplitude already diverges at 3-loop and a 3-loop counter-term of
the form D?*trF is needed [I5], [16]. While this counter-term vanishes when restricted to the
Cartan, it gives a nontrivial contribution to the 4-loop amplitude, which has been studied
in [I6]. In the end, after taking into account suitable 4-loop counter-terms, of the form
D*rF* and D*tr?F*, one obtains a 4-loop contribution to fy(r) that involves logarithmic
dependence on 7, of the form (Inr)? and Inr. While the finite shifts of the 3-loop and 4-
loop counter-terms are not a priori determined in SYM perturbation theory (but should be
ultimately fixed in the LST), the coefficients of the leading logarithms are unambiguously
determined. The results of [16] on the 4-loop divergence of double trace terms then allows for
determining certain leading log coefficients, which when combined with 1,2, 3-loop results
produce the first few terms in the small r expansion of f,,(r).

The agreement of the r—2F* term between a 1-loop computation of 6D SYM and low
energy limit of DSLST found in [I3], was expected as a consequence of the supersymmetry
constraints on the F* coupling in the Coulomb branch effective action [2, 17, 18]. The

'For comparison, the color-ordered tree-level superamplitude is given by A*"¢¢ = — 51;514 5%(Q). However,

note that when the external gluon states are restricted to the Cartan subalgebra, the tree amplitude vanishes
identically.




agreement of r~2D?F* term between a 2-loop computation of 6D SYM, the next order
o/-expansion of the DSLST amplitude was found in our previous work [I4], numerically
for £ = 2,3,4,5. One anticipates that this agreement should follow from supersymmetry
constraints on D?F* coupling, namely the function fi(r) should be fixed to be the form
Cy/r?, and the coefficient C; can then be computed from either small r (SYM) or large r
(DSLST). Indeed, the agreement we found in the SU(3) case can be understood in terms of
the (sixteen-supercharge) non-renormalization theorem of [I8F] Although the result of [I8]
is not directly applicable to k > 3, we expect a similar non-renormalization theorem to hold
for general k.

The focus of this paper is the fo(r)D*F* term. This is the lowest order in the derivative
expansion of the Coulomb branch effective action where we anticipate a nontrivial interpo-
lating function f5(r) from small r (SYM) to large » (DSLST). Indeed, f>(r) receives all loop
perturbative contributions. Collecting numerical results on both sides, we will be able to
estimate the interpolating function on the entire Coulomb branch. We will find that, while
the small and large r limits are obviously different expansions, when naively extrapolated to
the intermediate regime they are not far from one another.

In the next section, we describe the general structure of the Coulomb branch effective
action and its relation to superamplitudes. Then we will describe the perturbative compu-
tation of up to 8-derivative terms in the Coulomb branch effective action, from up to 4-loop
results in the gauge theory. In section 4, we collect the results from DSLST tree amplitude,
expanded to the appropriate orders in o/. We then inspect numerically fo(r)D*F* on the
entire Coulomb branch, from small to large r. Implications of this result on the UV com-
pletion of perturbative 6D SYM, as well as the strong coupling completion of perturbative
DSLST, will be discussed.

Finally, in section 6, we will discuss the compactification of the (2,0) LST to five dimen-
sions, and constrain the resulting 5D gauge theory by considerations of the effective action
in the Coulomb phase of the compactified (2,0) LST.

2 The Coulomb Branch Effective Action

The Coulomb branch moduli space of the A;,_; LST is (R*)*~!/S, parameterized by the
value of 4(k — 1) massless scalars in 6 dimensions [3]. We denote these massless scalar by ¢;,

2For SU(2) gauge theory, the D2F* term in the Lagrangian is proven to be two-loop exact by [19, 20].
But this is essentially equivalent to the statement that there is no nontrivial independent D?F* coupling in
the Coulomb effective action of the SU(2) theory, as the corresponding four-Cartan gluon superamplitude
vanishes trivially.



i =1,2,3,4, which take values in the U(1)*~! Cartan of the SU (k) gauge group, in the 6D
SYM description (which is a priori valid near the origin of the Coulomb branch). We will
focus on a Zjg-invariant 1-dimensional subspace of the Coulomb moduli space, corresponding
to . ,

7 = ¢1 +igy = rdiag(1, emilk L ,eQm(k’l)/k),

¢3 = ¢4 = 0.
The large r regime along this 1-dimensional subspace is then described by the perturbative
double scaled little string theory [7, [§], with the worldsheet CFT given by

s (SL@/UD) x (SUR)/U() 0
Ly
The string coupling at the tip of the cigar (target space of SL(2)/U(1) coset CFT) is identified

with 1/r.

(2.1)

The massless degrees of freedom in the Coulomb phase, consisting of k—1 Abelian vector
multiplets of the 6D (1, 1) supersymmetry, are governed by a quantum effective action, that
is the U(1)¥! supersymmetric gauge theory action together with an infinite series of higher
derivative couplings. We will focus on couplings of the schematic form f(¢)D*"F* + ---.
Such higher derivative deformations of the Abelian (1,1) gauge theory are constrained by
supersymmetry, though the constraints become weaker with increasing number of derivatives.
An illuminating way to organize the higher derivative couplings is through the corresponding
supervertex, namely, a set of (super)amplitudes that obey supersymmetry Ward identities
with no poles [9]. If we fix the scalar vev (say of the form (2.1])), and consider terms of the
form D?"F* + ... then a supersymmetric completion of such a coupling corresponds to a
4-point supervertex of the form

3% (Q)F (s, t,u), (2.3)
where @ is the total supermomentum, defined by [10} 11}, 12]

4
Q:qu Qi:(Qf7Z]ViB)7
i=1 (2.4)

6" = A", Tip = \ipilli-
Here i labels the external lines of the amplitude, A, B =1,--- ,4 are SO(1,5) Lorentz spinor
indices, a and b on the other hand are SU(2) x SU(2) little group indices. A\* and XiBi) are 6
dimensional spinor helicity variables, with the null momentum of the i-th particle related by
pf‘B = )\f“)\fbeab, DiAB = XiAaXiBbeai’ = %EABCDplCD. Nia and ﬁf are a set of 4 Grassmannian
variables that generate the 2* = 16 states in the supermultiplet of the i-th particle.

Corresponding to D?*"F* coupling, F(s,t,u) would be a function of Mandelstam variables
s,t,u of total degree n. For instance, if we fix the color structure (choice of Cartan gener-
ators), there is a unique supersymmetric completion of the F* term, corresponding to the
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constant term in F(s,¢,u). In the SU(2) gauge theory, the massless fields on the Coulomb
branch are in a single U(1) gauge multiplet, and thus F'(s, ¢, u) must be symmetric in s, t, u.
From this we immediately learn that there is no independent D? F** vertex, since s+t-+u = 0.
This result is also an immediate consequence of the non-renormalization theorem of Paban,
Sethi, and Stern [19] which is later extended to the SU(3) case by [I8]. In the more general
SU (k) theory with k& > 3, to the best of our knowledge, there isn’t a non-renormalization
theorem that determines the D?F* completely in terms of the F'* coupling on the Coulomb
branch. In fact, since different Cartan generators can be assigned to the 4 external lines
of the superamplitude, one can construct nontrivial superamplitudes with F'(s,t,u) a linear
function of s,t,u. These are the terms computed in [I4], from both the SYM at 2-loop and
from DSLST. It is likely that by consideration of higher point superamplitudes, and con-
sistency with unitarity, one can derive the supersymmetry constraint on the r-dependence
of the fi1(r)D?*F* coupling as in the work of Sethi, but we not will pursue this topic in the
current paper.

The consideration of superamplitudes allows for an easy classification of D?"F* couplings
for all n. In below we will mostly think in terms of the superamplitudes rather than the
terms in the effective Lagrangian. Now to be precise we will introduce a color label a; € Zy,
for each external line, corresponding to a Cartan gluon in the U(1)*~! that transforms under
the Zj, cyclic permutation of & NS5-branes by the phase 2™/ The 4-point superamplitude

is of course subject to the constraint Z?Zl a; = 0 (mod k), and takes the form

58<Q>Fa1a2a3a4 (87 t? U, 7"), (25)

where our convention, s = s1o = —(p; + p2)?, t = s14, u = ;3 = —s — t. We also have the
following identification between the 6D gauge coupling gy s and the little string scale,
1 872

= 2.6
2red g3, (2:6)

as seen by matching the tension of the instanton string with the fundamental string of
DSLST, and also verified in [I4]. In this paper we work in units of o/, and so g%, =
3273, Our convention for the Coulomb branch radius parameter r is such that the 7W-boson
corresponding to the D1-brane stretched between the i-th and j-th NS5 brane has mass

sin

(2.7)

m;; = 2r

k

In the next two sections, we will study the expansion of the function Fj 4,a54,(S,t, u;7) in
detail, from perturbative SYM and from DSLST.



3 Perturbative 6D SYM in the Coulomb Phase

Near the origin of the Coulomb branch, the W-bosons are light compared to the scale set
by gy, and we can compute the 4-point amplitude of Cartan gluons in SYM perturbation
theory. A priori, one may expect such a computation to run into two difficulties: the loop
expansion of the massless scattering amplitude suffers from UV divergence at 4-loop order
[16] (while the mixed Cartan gluon and W-boson amplitude diverges at 3-loop [15]), and there
may be higher dimensional operators that deform the SYM Lagrangian [21]. The consistency
of DSLST [13] combined with non-renormalization theorems of Sethi et al. implies that the
SYM Lagrangian at the origin of the Coulomb branch is not deformed by trf™ terms. The
result of [14] further indicates that the 1/4 BPS operator of the form D?*r?F* is absent at
the origin of the Coulomb branch as well. On the other hand, the 3-loop divergence in the
non-Abelian sector means that the non-BPS dimension 10 operator D?*trF* is needed as a
counter-term [I5]. Likewise, at 4-loop order we will need counter-terms of the form D*trF*
and D*r?F* [16]. It appears that one can proceed with the SYM perturbation theory, and
add the appropriate counter-terms whenever a new divergence is encountered at a certain
loop order. Of course, the perturbative SYM does not give a prescription for determining
the finite part of these counter-terms. Such ambiguities however do not affect the leading
logarithmic dependence on r, and so these leading logs can be computed unambiguously in
the framework of SYM perturbation theory at small ». On the other hand, the finite shifts of
the counter-terms that cannot be determined by SYM perturbation theory are in principle
determined in the full little string theory, and one could hope for extracting such information
from the opposite regime, namely the large r limit.

Let us begin with the F'* term in the Coulomb effective action, or more precisely, its
supersymmetric completion, along the 1-dimensional subspace as specified in (2.1). The
corresponding superamplitude takes the form

(@) ez (31)
As was shown in [13], the coefficient Cy is given by
Co.arasasas = comin{a;, k —a;},  0<a; <k, (3.2)
where ¢g is a constant that is independent of the color assignment.

Next consider the D?F™* term, which can be written as

fl,a1a2a3a4 (T)SFal e Fa4 (33)

The result of [14] indicates that the corresponding superamplitude takes the form

1
68(Q)ﬁ Cl,a1a2a3a4312 + (1 <~ 3) + (2 <~ 3)]7 (34)
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and is two-loop exact. By symmetry of permutation on external lines, C 4, 45454, 1S invariant
under the permutations (12), (34), as well as (13)(24). Note that there is no 1-loop contri-
bution to fi(r)D?F*, of order r—*, simply because a 1-loop contribution would come with a

(' a,--a, factor that is completely symmetric under permutation of a4, - - - , a4, and thus must
be proportional to s + t 4+ u, which is zero. Therefore f;(r) takes the simple formﬂ
C
fi(r) = 721 (3.5)

In [14], the C) coefficients were computed for k = 2,3,4,5 and color assignment a; = as =
—a3 = —ay =+ 1 with k —2 > /¢ > 0. The results are listed here in Table [I| with higher
numerical precision.

kL] G
0,1]—1.171954

40,2 -1.831931

50,3 ] —2.396790
1,2 | —1.380352

Table 1: The coefficients in the small r expansion of fi(r), which is the coefficient of sF'.

Now let us consider the D*F* term, which receives contributions from all loop orders.
We can write the D*F* couplings as

fS,a1a2a3a4 (T)(S2 + tg + UQ)FCM e Fa4 + fA7a1a2a3a4 (T’)SQF,“ U Fa4 (36)

where S and A stand for symmetric and asymmetric in the Mandelstam variables. fg(r) and
fa(r) each admits a small 7 expansion[]

Cs  C5  C§

fs(r) = 6 + gy + 2 + Bglnr + Bg(lnT)Q + O(TQ(IHT))7
Lo (3.7)
Ja(r) = r—f + r_§ + Balnr + O(r*(Inr)).

The coefficients C'g m C? A0 c? /4 (which depend on the color factors) are computed from 1,
2, 3-loop amplitudes. The coefficients Bg/4 and By /4 COMe from the 4-loop amplitudes, after
canceling the log divergences by 3-loop and 4-loop counter-terms. Note that the appearance

3When there is no potential confusion, we will often omit the color indices aiasasaq if a1 = ag = —az =
—ayq = £+ 1. For example, C1 = C} 41,041, —(041), —(£+1)-

4 The color-ordered one-loop superamplitude is permutation invariant, hence the full amplitude is com-
pletely symmetric in s, ¢, and u, and so Cy = 0. The log? divergence is also completely symmetric, as can

be seen from (A.50), and hence B, =0.



of the double log terms is due to nested divergences at 4-loop order. In the UV completed
theory, namely the full LST, the divergence of SYM at 4-loop order and higher is reflected
as a branch cut in the analytic structure of the function f5(r). The detailed computation
and numerical results for the 1, 2, and 3-loop contributions are given in Appendix [A] for
k = 2,3,4,5 and color assignment a; = ay = —a3 = —ay = ¢+ 1 with k —2 > ¢ > 0. For
3-loop, we need to sum up the scalar integrals represented by the nine diagrams in Figure [4
Each of diagrams (e) (f) (g) (i) is in fact UV divergent by itself at linear order in s, t, u,
and would potentially contribute to D?F*. However, these divergences cancel after we sum
up these diagrams and the permutations of the external legs, and the remaining parts are
quadratic or higher in s, ¢, u and give finite contributions to D?*"F* for n > 2.

The 4-loop divergence can be computed at the origin of the Coulomb branch, as in [16].
After moving away from the origin on the Coulomb branch, in the expansion in external
momenta, the logarithmic divergences appear in the form In(A/r), and in the case of nested
divergences, (In(A/r))%. After canceling the logarithmic divergences with counter-terms, we
are left with logarithmic dependence on r, and the coefficient of the leading log (or double
log) is independent of finite shifts of the counter-term.

The logarithmic divergence at the origin of the Coulomb branch involves three possible
terms, of the form (s + t2 + w?)trF?, (s + 2 + u?)(trF?)?, and s2(trF?)? + (2 more).
The terms proportional to (s?+t*+u?) also contain double pole divergences (in dimensional
regularization). To cancel the divergences we need a 3-loop counter-term D?*tr ™ (it vanishes
when restricted to the Cartan, but is now needed to cancel subdivergences in the 4-loop
amplitude) and 4-loop counter-terms of the form D*rF* as well as D*(tr£2)2. In the end,
one obtain unambiguously the coefficient of

Inr [s°(trF?)* + (2 more)] (3.8)
and the coefficient of
(In7)*(s* + 2 + ) (tr F?)2 (3.9)

In principle, one can also determine unambiguously the (Inr)? coefficient of the single trace
term proportional to (s?+t2+u?)tr £, but this double pole coefficient has not been evaluated
explicitly in [16].

The C’é/A, Cg/A, C’g’/A and Bg/4 coefficients for k = 2,3,4,5 and color assignment a; =
as = —az = —ag = {+ 1 with k — 2 > ¢ > 0 are listed in Tables [2] and [3



k| ¢ | ¢t | 2 e

1/5760 1/96 3.772838
310, 1]1/3240 1/36 7.086485
410,2 1/2304 3/64 11.619831
1 | 1/1440 | 0.03590010 | 8.521180
510,31/1800 1/15 17.38894
1,2 ] 1/720 | 0.06645686 | 12.88988

Table 2: The coefficients in the small r expansion of fg(r), which is the coefficient of (s* +
t2 +u?)F*.

kel G | G | Ba
3 10,1 —0.02459345 | —4.505248 | 330.6754
410,22 | —0.04743323 | —8.729678 | 541.8733
5 10,3 | —0.06993323 | —13.955903 | 839.61925
1,2 | —0.04593824 | —8.901921 | 419.8096

Table 3: The coefficients in the small r expansion of f(r), which is the coefficient of s*F*.

4 The o Expansion of Little String Amplitude

The vertex operators of the massless Cartan gluons in double scaled little string theory are
in the (R,R) sector, of the form [13] 14],

su

3%3)
o (4.1)

~

1
+ —f—f zp XHyAY oB (:F F3)
Vai),f e 2 " )\ )\BbSAS Vg i£+2 :tég V

[\.’)\(\ ’I__I_\
s H’

0 \

with ¢ = 0,1,--- ,k — 2 labeling the color index of the U(1)*~! gluons according to their

27rz(€+1 /k

elgenvalues e with respect to the Z; cyclic permutation of the NS5 branes. A4 and

A i, are the 6D spinor helicity variables as before, and S4, SB are the left and right spin

fields of the R'® part of the worldsheet CFT. There is also an identification Vab = VJZ P

[22, 13, [14]. It was shown in [14] that the sphere 4-point superamplitude takes the form

2
Apspgr(1671, 2641 361 401y _ 58(Q)N-M/ d22|z|(€+kl> ~5=3|1 — 2 R
su,(%,3) su (24 su,(—%,—1) N su,(—%,—1)
X <V£ £z ) Ve 20V, S 2 (Ve T 2 (OO)> (4.2)
20272 27272 272072 272072 SU(2),/U(1)
o dP
X / g 061,042,622 +iP)C(063,CY4,%—iP>|F(A1,A2,A3,A4;AP;Z>|2.
0



Here Ny, is a normalization constant, C'(ay, az, a3) is the structure constant of Liouville
primaries, and F'(Aq, Ag, Az, Ay; Ap; 2) is the Liouville 4-point conformal block. See [14] for
the precise identification of the parameters «;, A; etc.

The evaluation of the conformal block integral and the integration over the cross ratio z
are performed numerically, order by order in the o’ expansionﬂ For k = 2,3,4,5, the two
leading terms in the expansion were given in [14]. We carry out this computation to o’
order, with the order o/ terms corresponding to D?**F* coupling in the Coulomb branch
effective action. In the following we normalize the amplitudes by their o’® order terms.

e k=2 /(=0:
14 2.10359958(s? + 12 + u?) + 17.42982502stu + - - - . (4.3)
e k=3 /7(=0:
1 — 1.1719545 + 5.20891(s* + 2 + u?) — 4.883245 + 63.814stu — 20.86245> + - - - .
(4.4)
e k=4 /7=0,2:
1 — 1.83193119s + 9.466198(s% + t* + u?) — 9.334781s> (45)
4+ 153.967791stu — 51.2098425% 4 - - - '
ek=4 (=1:
1+ 6.1080323(s* + t* + u?) + 96.795814stu + - - - . (4.6)
e k=5 /7=03:
1 —2.39679s + 14.9055(s® + t* + u?) — 14.82955% + 302.54stu — 100.7985> + - - - .
(4.7)
e k=5 /7(=12:
1 — 1.38035s + 10.3118(s* + t* + u?) — 9.4101s” + 202.1665tu — 65.509s° + - - - .
(4.8)

The omitted terms are of quartic and higher degrees in s, t,u, corresponding to D8F* and
higher derivative couplings in the effective action.

Note that the DSLST four-point amplitude is invariant under flipping the Z; charges of
the vertex operators. In addition when ¢+ 1 = k/2 (i.e. the vertex operators are identical),
the amplitude is invariant under permutation of the Mandelstam variables.

% Since we set o/ = 1, the o/ expansion is an expansion in the Mandelstam variables.
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4.1 An interpolating function from weak to strong coupling

On one hand, perturbative 6D SYM gives a small r expansion of the coefficient fo(r) of
each higher derivative term in the Coulomb branch effective action. On the other hand,
perturbative string scattering in DSLST gives an expansion valid at large r. The exact fo(r)
is a function that interpolates the two ends.

Let us first consider the D?F* term. A non-renormalization theorem by [I8] shows that
fi(r) is two-loop exact in SU(3) maximal SYM, which means that should hold for
arbitrary r. Indeed, the result of [I4] was that the coefficients of s in the tree-level DSLST
superamplitudes exactly match with the €} obtained from the SYM two-loop superampli-
tudes (see Table[l)), for k = 4,5 as well as k = 3. It is not inconceivable that f1(r) is two-loop
exact in 6D SYM for all k, which also implies that all higher genus superamplitudes for the
scattering of four Cartan gluons should vanish at ’* order.

Next let us consider D*F*. With the color index assignment a; = ay = —a3 = —ay = (+1
(labeling the Zj charge), the two independent structures are proportional to s? 4 % +u? and
s%. We will compare the large and small 7 expansions. On the 6D SYM side, the r*(In(r/A))®
terms after resummation will correct the power of 7 when one interpolates the function fo(r)
to large 7. Here the coefficient of (In(r/A))? in the small r expansion can be determined
by the 4-loop UV divergence at the origin of the Coulomb branch. However, as already
mentioned, this computation involves the divergence in the single trace D*trF™* term, which
has not yet been computed in 6D SYM. The scale A has absorbed the contribution from the
counter term, and is expected to be of order gy, in the full LST. Since the actual numerics
depends on the precise value of the mass scale A, we will not include the In(r/A) terms in
the interpolation function.

In each case, the coefficients of 1/r? are close but not equal between the large and small
r expansions. There is no reason for them to be equal, since the large r expansion should
be corrected by higher genus contributions of order 1/729*Y and the small  expansion
includes one-loop 1/7% and two-loop 1/r* terms, and should further be corrected by higher-
loop contributions of the form r¢(log(r/A))®.

For concreteness, we explicitly make the comparison for £ = 5, noting that the other
cases are qualitatively the same.

e k=5 (¢ =0: Large r expansion:

folr) = 7O L o1 /%), "
Fa(r) = _14.;32295 i 0(1/7”4). .
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Figure 1: Log-log plot of the coefficient fgs(r) of (s? + ¢* + u?*)F* and fa(r) of s*F*. The
dashed line is given by the DSLST tree level superamplitude (valid for large r). The lower
green line comes from 6D SYM one loop, the middle orange line comes from one and two
loops combined, and the upper blue line combines the contributions up to three loops (valid
for small r). We interpolate the two ends by a naive extension beyond their regimes of
validity.

Small 7 expansion:

1 1 17.38894 9
fs(r) = 180076 + 1574 + 2 + O(In(r/A), (In(r/A))7), (4.10)
. 2 13. 2 ’
fa(r) = Y 063233 513 95529038 +839.61925In(r/A) + O(r?).
e k=05 (¢ =1:Large r expansion:
10.3118
fs(r) = —5—+0(1/r"),
9.4101 (4.11)
fA(T):— '72 +O(1/T4)
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Small 7 expansion:

1 0.06645686 n 12.88988

fs(r) = 79076 4 2T Oin(r/A), (n(r/A))%) (4.12)
falr) = _0-04ii3824 - 8'922921 +419.8096 In(r/A) + O(r).

In Figure , the large r expression is plotted in dashed lines, and the small r (up to 1, 2, and
3 loops) are plotted in solid lines. We interpolate the two ends by a naive extension beyond
their regimes of validity.

5 Discussion

To summarize our results so far, while the 7=2F* and r—2D?F* terms in the Coulomb branch
effective action are computed exactly by perturbative SYM at one-loop and two-loop orders
respectively, and match precisely with the corresponding o/-expansion of the tree level am-
plitude in DSLST, the fo(r)D*F* terms involve a set of nontrivial interpolation functions
fo(r), that receive a priori all-loop contribution in SYM perturbation theory. We have de-
termined fy(r) in its small r expansion up to 3-loop orders in 6D SYM. Interestingly, the
3-loop contribution that scales like 72
obtained from o' order terms in the tree amplitude of DSLST, which captures the large r
limit of fo(r).

, is numerically close (but not equal) to the result

Starting at 4-loop order in the perturbative SYM description, one encounters UV diver-
gences and while the leading log coefficients can be determined unambiguously in perturba-
tion theory, the subleading logs and constant shifts depend on finite parts of 3 and 4-loop
counter terms (D*rF*, DYrF*, and D*r?F* at the origin of the Coulomb branch), and are
a priori undetermined in 6D SYM perturbation theory.

In principle, the (1,1) LST provides an unambiguous UV completion of the perturba-
tive amplitudes of 6D SYM. If one could somehow compute the exact 4-gluon amplitude in
DSLST, non-perturbatively in g,, then one should recover all the perturbative SYM loop
amplitudes, and fix the finite parts of all counter terms. While we do not have the tech-
nology for such exact computations on the string theory side, the interpolation results on
the Coulomb moduli space so far suggests that, despite the non-renormalizability of the 6D
SYM, the naive perturbative expansion is a valid prescription provided that appropriate
counter terms are included at each loop orderﬁ

6For instance, one could have said that since the 6D SYM theory is expected to be strongly coupled at
the scale g;}w, a UV cutoff should be imposed at the scale A ~ g;]lvp and there would seem to be no reason
to perform the loop integral over momenta above this scale. However, the exact agreement of one-loop and
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The UV divergences that arise at 4-loop order and higher in the massless amplitudes of
6D SYM in the Coulomb phase, indicate not a trouble with SYM perturbation theory, but
rather a feature of the amplitudes and the corresponding couplings in the Coulomb branch
effective action. Namely, the function f5(r), as an analytic function of r on the Coulomb
branch, has a branch cut starting from the origin. Where does this branch cut end, in the
analytic continuation of Coulomb moduli space? A natural expectation is that perhaps the
branch cut goes all the way to r = oo, where the Coulomb phase is described by weakly
coupled DSLST. In fact, we generally expect non-analyticity in fy(r) at r = oo, due to the
non-convergence of the string perturbation series, and the need for stringy non-perturbative
contributions (e.g. D-instanton amplitudes). In fact, due to the identification g; ~ 1/r,

we could speculate that non-perturbative string amplitudes of the form exp(—1/gs) ~ e™",
contributes to the finite counter terms at the origin of the Coulomb moduli space!

Going beyond massless amplitudes, the scattering of gluons with W-bosons in 6D SYM
may be compared to D-brane scattering amplitudes in DSLSTE] We hope to report on these
results in the near future.

6 Comments on (2,0) LST and 5D SYM

In this section we discuss the compactification of the (2,0) DSLST to five dimensions, and
constrain the higher derivative terms in the effective action of the resulting 5D gauge theory
on the Coulomb branch. In particular, we will show that the trF* coupling at the origin of
the Coulomb branch of the circle-compactified (2,0) superconformal field theory is absent.

At the perturbative level, or equivalently in the 1/r expansion on the Coulomb branch,
the structure of (2,0) DSLST is very similar to (1,1) DSLST, differing only through GSO
projection. As far as the massless 4-point amplitude is concerned, at string tree level the only
difference between the (2,0) and (1, 1) case is the interpretation of the supermomentum delta
function 6%(Q) in terms of the polarizations of the massless supermultiplets involved. The
scalar function of s,¢,u that multiplies 6%(Q) is identical. An analogous statement holds for
the genus one 4-point amplitude as well. In the NSR formalism, this can be seen by noting
that the contribution from the (P,P) spin structure Vanishesﬁ and therefore the ITA and
IIB GSO projections yield the same amplitudes, up to reassignment of polarization tensor

two-loop contributions to the F* and D?F* terms with DSLST indicates that the naive loop integrals, which
happen to be free of UV divergences in these cases, give the correct answer.

7At the level of 3-point amplitude of gluon emission by a W-boson, the agreement with the disc 1-point
amplitude in DSLST was known in [23].

8 Tt suffices to look at the scattering of the scalars which correspond to (NS,NS) vertex operators. At one
loop in the (P,P) sector (here we are following the convention of [24] although historically this had been also
referred as the (odd,odd) sector [25]), we need to have three (0, 0)-picture and one (—1, —1)-picture vertex

14



structure. It is not inconceivable that the massless 4-point amplitudes in (2,0) and (1,1)
DSLST involve the same scalar function of s,t,u to all order in perturbation theory, though
we do not have an argument for this. On the other hand, it appears that the D-instanton
amplitudes of massless string scattering will be quite different in the two theories, as the
BPS D-instanton that is pointlike in the R® and localized at the tip of the cigar exists only
in the (2,0) DSLST and not in the (1, 1) theory. Such contributions could alter the effective
action near the origin of the Coulomb branch significantly, and give rise to entirely different
low energy dynamics of the (2,0) and (1,1) LST at the origin of the Coulomb branch.

Nonetheless, in view of the idea that the (2,0) SCFT, when compactified on a circle, is
described in the low energy limit as 5D maximally supersymmetric Yang-Mills theory [27]
together with an infinite series of higher dimensional operators/counter-terms [28], 29] 30, 31],
one could ask whether there is a similar interpolation on the Coulomb branch of the (2,0)
LST compactified on a circle. In this case, the W-boson comes from D-branes located at the
tip of the cigar in the T-dual picture [23]. The parameters in the circle-compactified DSLST
are the string length /,, the W-boson mass my, which is related to the string couplingﬂ Js
by

y (6.1)
myy ~ .
w gsfg )
and the compactification radius R, which is related to the 5D gauge coupling g5 by
2
_ 9 (6.2)

82’

From the 5D perspective, the natural mass scale is set by g5 or R, and the two dimensionless
parameters are p ~ my R (parameterizing distance from the origin on the Coulomb branch)
and R/l¢s. The 5D gauge theory obtained from compactification of (2,0) SCFT, in its
Coulomb phase, is obtained in the limit R/¢; — oo, while holding R and p ﬁxedm This in
particular requires sending g, — oo at the same time.

If we write the amplitude of massless particles in the compactified (2,0) DSLST in the
form

A,0)psisr(gs, B2, ER), (6.3)

operators plus one PCO. Hence in the path integral we have a total of 4 insertions of ¢/* and ¢* which leads
to a vanishing contribution to the total amplitude due to the presence of six zero modes for ¢* (and 1/;“).

One can also reach the slightly stronger statement that the four point amplitudes in (1,1) and (2,0)
DSLST agree up to 2-loops following a version of Berkovits’ argument in Section 3.2 in [26].

9In this paper, we use g, to denote the string coupling at the tip of the cigar in the IIB picture , not
to be confused with the asymptotic string coupling ¢g2° before taking the decoupling limit of NS5-branes in
asymptotically flat spacetime in the ITA picture. They are related by g5 ~ €592°/r [7,[32], 33, [34] .

ONote that it is a different limit than taking R/fs — oo while keeping g, and £, fixed, which is the limit
of decompactified (2,0) DSLST.
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and the corresponding amplitude in the UV completion of 5D SYM in the form

Aspar(gemw, G5 E), (6.4)
then we expect
lim A(z 0) DSLST | Js; %7 ggE = Asp GT(g?,mW7 g? )- (6.5)
gs—>00 ’ gsmuyy

The LHS cannot be captured by DSLST perturbation theory in a straightforward man-
ner. For instance, we can write the D?"F* terms in the Coulomb branch quantum effective
Lagrangian in the schematic form

> falp) DM E, (6.6)

where p ~ my R is the distance parameter on the Coulomb branch, and the subscript n
indicates the “number of derivatives”. If we assume that the UV completion of the 5D SYM
perturbation theory is such that higher dimensional operators are added only when needed
as counter—termsﬂ then the SYM loop expansion of f,(p) has the structure

fo(p)_%v
2, o -
fp — =+ ’
1(p) ot 3
f(l) (2) (3) .
folp) = 2+ 2+ 2 ot (P np

ot 8

Here the coefficient fflL) comes from the L-loop 4-point amplitude. Note that the 1-loop
contribution fl(l) /p° is absent; this is because the 1-loop amplitude involves only a single color
structure that is invariant under permuting the 4 external lines, and the D?F* amplitude
would be proportional to s + ¢ + u which vanishes. Note that while the 5D SYM 4-point
amplitude is known to have UV divergence at 6-loop order [35], such a divergence vanishes
when the external gluons are restricted to the Cartan subalgebra. This is because the
counter-term responsible for this divergence is the unique dimension 10 non-BPS operator of
the form D*rF* + --- [21) [36], which in fact vanishes upon Abelianization (i.e. restricting
to the Cartan subalgebra). The 4-point amplitude of Cartan gluons in 5D SYM is expected
to diverge first at 8-loop order, with the counter-term being a non-BPS operator of the form
D*r F* + ... In the UV completion that is expected to arise from the compactification

1 As we will see shortly, while this is expected for the compactified (2,0) SCFT, this is not true for the
compactified (2,0) LST. We thank C. Cérdova and T. Dumistrescu for a key discussion on this point.
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of (2,0) theory, the Dr F* counter-term should cancel the log divergence, leaving a Inp
dependence in the Coulomb effective action, hence the f2(8) In p term in 1}

Let us focus on the fo(p)F* coupling for the moment. The argument of [19] and [20]
indicates that, at least in the SU(2) case where the Coulomb branch moduli space is just a
single R®, fy(p) is a harmonic function on the R®[P Assuming SO(5) R-symmetry, such a
harmonic function must be of the form

folp) = ¢+ =% (6.8)

The constant ¢, if non-vanishing, would correspond to a trf™ coupling in the non-Abelian
SYM at the origin of the Coulomb branch moduli space. In writing we have assumed
that such coupling is absent in the low energy limit of the compactified (2,0) theory. We
will now justify this assumption.

The Coulomb phase of the circle-compactified A; (2,0) LST has a moduli space of vacua
R* x S1. The S' coming from the compact scalar in the 6D (2,0) tensor multiplet, and has
size ~ (R/{s)? in units of R.H In the Coulomb phase of the compactified (2,0) LST, the
D*"F* couplings come with the coefficients f, (g, R/{s), such that
o fal0, R/Ls) = falp). (6.9)
Here p parameterize a point on the R* x S' moduli space, and the function f, (7, R/(;) is
invariant under SO(4) R-symmetry in 6 dimensions, while the SO(5) is only restored in
the R/{, — oo limit. Note that, importantly, the limit is taken with p = R?/(g.(?) held
fixed, and so taking R/¢; — oo requires sending g; — oo at the same time. From the
5D perspective, g5 of DSLST is related to the vev of a massless scalar field, whereas R//
is a rigid parameter (there is no massless graviton propagating in the R of the DSLST
and hence there is no massless 5D scalar associated with the compactification radius); in

particular, the dependence on g, is constrained by supersymmetry, whereas the dependence
on R/l is not.

At finite R/{s, fo(p, R/{s) is an SO(4)-invariant harmonic function on the R* x S*. We
can write p = (5, y), where P parameterizes the R* and y is the coordinate on the S!'. The

12This is consistent with the v*/p? effective potential between separate D4 branes moving at a relative
velocity [37].

13T see the size of the S*, we can go back to the NS5-brane picture in type IIA string theory, separated
in the transverse R*, with the world volume of the NS5-branes compactified on a circle of radius R. A W-
boson coming from D2-brane stretched between a pair of the NS5-branes and wrapping the circle has mass
my ~ Rr/(g2°03) ~ R/(gsl?) as before. On the other hand, if we are to separate the NS5-branes along the
M-theory circle, the M2-brane stretched between the Mb5-branes and wrapping the compactification circle of
radius R has mass ~ R//2.
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harmonic function fo(p, R/¢) is restricted to be of the form

(7 RI) = (e + 5 I /) -
ner {|<I>|2—|— <y+n]§—§> }

While ¢ may no longer be a constant, it must be a function of the rigid parameter R/¢; only.

(6.10)

In the limit of large |®|, fo can be expanded as

221V (R/,) 1
R2 | D2

fo(P, R/Es) = c(R/Ls) + (6.11)
Matching this with the tree level (2,0) DSLST, we conclude that ¢(R/{s) = 0. From this
argument we also expect that the corrections to the tree level contribution to F* coupling
in the compactified DSLST are entirely non-perturbative in g;.

Now, near the origin of Coulomb branch, (®,y) = (0,0), fo can be written as

3

fo(B. R/L) = [V (R/L) —+Z

R2 2] 72
B ¢ (y+n )]
n#0

_ D (R/0,) {[% +2(3) (%)6 1 3¢(5) (4y? — [OF) (%)m L } |

The first term proportional to p~2 is generated from 5D SYM by integrating out W -bosons
at 1-loop. The second term is non-vanishing at the origin of the Coulomb branch and can be
understood in terms of 6D SYM compactified on a circle (as in the T-dual (1,1) LST), with
massive Kaluza-Klein modes integrated out at 1-loop. This term vanishes in the R/{; — oo
limit, and thus the trF'* coupling is absent in the compactified (2,0) superconformal theory
(at the origin of its Coulomb branch). The third term comes from the 1-loop diagram with

(6.12)

6D W-bosons in the loop that also carry nonzero KK momenta, expanded to the second
order in the WW-boson mass parameter, and gives rise to an SO(5) breaking dimension 10
BPS operator at the origin of the Coulomb branch of the 5D gauge theory.

It should be possible to extend this discussion to higher rank cases as well. A more
detailed investigation of the two-parameter interpolation function in the Coulomb phase of
compactified (2,0) DSLST, and its interplay with the perturbative structure of 5D SYM,
are left to future work.
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A 6D SYM Loop Amplitudes Contributing to D*F*

The term fy(r)D*F* receives contribution from all loop orders of the scattering amplitude
of four Carton gluons. At each loop order, we need expand the superamplitude to quadratic
order in the Mandelstam variables. Each loop order is proportional to the color-ordered
four-point tree-level scattering amplitude

1

ATee(1,2,3,4) = — 53(Q). (A1)

512514

A.1 One-loop
The one-loop amplitude of four Cartan gluons can be written ag']

AVT0oP(1,9.3,4) = —515514A7(1,2,3,4) | A4 (s10,514) + (24 3) + (3 4)|  (A.3)

14 The perturbative expansion of the amplitude of massless Cartan gluons takes the form

A= ghag A1 4 g5 AP g gL AR (A2)

19



where

1—loo
Alzas (s12, 514) ZH o) L 7% (s12, 814, M) (A.4)
4,5 a=1
1—loop . . . 15
Here I, (s12, 8514, m;5) is the scalar box integral (Figure
1-1
L7 (512, 814, ™45)

_/ d6€ 1 (A 5)
@m)E (2 mE) (4 pa)? + mE)((C+pu+p2)? +m) (€= pa)? +mi)

m;; is the mass of the W-boson with gauge indices (ij), and v/ is the polarization vector for
the external Cartan gluons.

Figure 2: The 1-loop scalar integral Ii_lwp(sm, S14, Mij ).

We hope to expand I, *? to s2/r% order. It is straightforward to show that

1

]1—loop ii Tr100M0-3. 6
4 (812, 514, m35) 2 ~ 1612807 m

(3812 + 3512513 + 2573), (A.6)

where we have made the following replacements in the integrand:
1

1
6£2pi P = _ﬁ€23ij>

(€-pi)(€-pj) (L)l pm) —

C-pil-pj—
(A.7)
@(52)2(5@51% + SikSjm + SimSjk)-

Summing up with Aj5” and A}5/5”, we obtain the order s2/rS term for the full one-loop

amplitude

1—loop tree E |4| 7 j 8%2 + 5%3 + 8%4
A (1,2,3,4) 2 = —312514./4 (1,2,3,4) (Ua — Ua) X 1603073 5 (AS)
6 i#£j a=1 Ty

15 In contrast to the more common convention in the scattering amplitude literature (for example ([16])
where the mostly minus signature is used and s = (p; + p2)?, here we work in the mostly plus signature
and define s = —(p; + p2)?. Hence when comparing the two, the Mandelstam variables are the same, but
we differ in the definition of the scalar box integrals by factors of i from Wick rotating dfy and minus signs
from the propagator 1/ p2.
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A.2 Two-loop

The full two-loop amplitude is given by

APTI0oP(1,2,3,4) = —s519512A7(1, 2,3, 4)

X 1o (ATt + AT+ ARy + AN + (eycic in 2,3,4)]
Let us start with the planar contribution,

AZ—laop,P
1234

= Z [Z_ZOOPVP(mijamﬂmamnr)(éjndrf(smi - 5j€5mn57’i)2 H (U; - UZL) H (U;n - Uﬁ),

i,7,0,m,n,r a=1,2 a=3,4
(A.10)
where I27P" is the planar scalar two-loop integral (Figure (a)),
]2—loop,P(m“ Mg T ) _/ dﬁﬁl d6€2 1
' T ) @eR e (@ + mE) (G + pa)? + mE) (G pr+ p2)? + )
1
X :
(63 + m) (L2 + ps)* + mig) (L2 — pr — p2)® + m) (01 + £2)* + m3,)
(A.11)

The order s2/r* terms in A27°r(1,2,3,4) correspond to the s/r4 terms in 12" which

can be computed straightforwardly,

I?—loop,P (m . ) . / d6£1 d6€2 1
o T @) @2n) (G + P (e + mE (6 + G)? + )
1 1 02 0 A0y - Uy
e\ T B @rmiE @) 3@+ mi) G+ )
1 ij 2 li 1 ij 2 li 1 iJ 2 li
Oy - Uy }
—S14
3(03 +mi;) (3 + mi)
(A.12)
Moving on to the non-planar diagram,
Af;?)lZOp,NP = Z ]f_loop7NP(mij7 M, mnr)<5jn6r€5mi - 5j€5mn5ri)2
Bt - L (a13)
x (v] = o) (g —ug) [T (v = o),
a=3,4
where I2 7PN ig the non-planar scalar two-loop integral (Figure (b)),
IQ*loop,NP(m” Mo T ) B / d6€1 dﬁfg 1
! DT ] @m)E 2m)8 (B 4+ mE) (6 + pr)? + m2) (B + m2) (G + pa)? +m3)
1
X :
(b2 = p1 — p2)? +m) (€ + L2 — pa)? +m2) (4 + £2)* +m3))
(A.14)
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(a) (b)

Figure 3: In (a), the planar 2-loop scalar integral. In (b), the non-planar 2-loop scalar
integral.

As in the planar case, we are interested in the s/r* term in I f ~leop NP “Phig can be computed
straightforwardly,

2—loop,N P
I (

e 1, 705 _/ d®ty b, 1
DT T ) (218 (2m)8 (6 + m3 )26+ m2)3 (6 + €)? + m2,)?

o« |s _ 02 n 1 L Uy - Uy L 4ty Ly
. (63 +mg)*  G+my o 36+ mgj)(“g% +mg) 364+ m?j)((fl +02)? + mjzz)
20y - Uy + 203 Uy - Uy 0y -y + 03
Y7 2 2 2 oM 2 2\ (/2 5y T 2 2 2 2
3003 +mi;) (6 + £2)* + mje) 304 + mij)(€2 +mg) 3003 +mi) (b + e)* + mjf)

(A.15)

A.3 Three-loop

The full three-loop amplitude is given by
A¥loor (12,3, 4) = —s198144(1, 2,3, 4)

1 a b I I e L (
<72 [Aﬁz?u Al + 5 A+ A+ 2A055 + 2415 + A, + SAGL + 2410,
Sy

(A.16)
where we have summed over contributions from individual diagrams in Figure |4/ and permu-
tations of external legs. The coefficients in front of A%?M combined with the overall 1/4 are
the symmetry factors. The numerators for the scalar integrals in Figure 4| are given in Table

i

16Tn contrast to the convention in [38] where the external momenta are all outgoing, our external momenta

are all ingoing. Furthermore, as mentioned before, the momentum square p? differs by a sign due to different

conventions on the signature, while the Mandelstam variables are the same.
Moreover since we consider W-bosons propagating through the loops, the loop momenta ¢; (not all in-

dependent) in the expressions of Table [4] are taken to be higher dimensional with their extra components
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1 4 1 4 1
(a) (b) (c)
2 3 2 3
2 3 ;
El gl
1 4 1 4 1 4
(@) (e) (f)
2 3 2 3 ) \
‘€3 ‘69
51 f5 52 42
é(j [5
lr lg lg L
A l l1o ¢ !
? )
1 4 1 4 . ! s .

(9) (h) ()

Figure 4: The nine 3-loop scalar integrals I® (s, s14).

In below we will listed the contribution from each of the nine graphs, with external lines
restricted to Cartan gluons, and with the appropriate W-boson mass assignments in the
internal propagators. The scalar loop integral will then be expanded in powers of external
momenta, or in terms of the Mandelstam variables s, ¢, u. At order s, while some of the loop
integrals are subject to UV divergence, these divergences cancel in the full 3-loop amplitude
of Cartan gluons. For the purpose of extracting D*F* effective coupling in the Coulomb
effective action, we will expand the scalar integrals to s? order. Below we will also list these

constrained by the mass of the propagating particle. These will be made explicit in the expressions for the
full scalar integrals below.
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Integral 1) Numerator Factor
(a)-(d) st
(e)-(g) —s12(01 — pa)?
(h) —519(01 + l9)?* — s14(l3 + £4)* + $120% + $140% — S12514
(i) —s12(0s — Ug)? + s14(03 — U5)? + (512 — 514)03

Table 4: The numerator factors in the scalar box integrals in Figure [ In this table, we
omit the W-boson mass square m? term associated to each (£+ p)? factor in the numerator.
We later restore these factors in the explicit expressions for A;934 below.

expanded expressions, which can then be evaluated numerically using FIESTA program.

Diagram (a) gives, including color factors,

Ag?% =2 Z Lo (i, Mg, M, Mg, Mg ) (Ui - Uj) H (vfl — o)

i,7,0,m a=1,2 a=3,4
m y4
+ 2 g ngamzﬂamﬂmym]bmzm H U _UJ H(Ua _Ua) A7
ijm (l:12 a= 3,4 ( : )
4
+4 E I, (mij, 0, my;, my;, my; H vt — o))
1,7 a=1

where the scalar integral is

Ia(mijamifamimamjfamfm)
_ 2 /dﬁfl d®0y d®s 1
2 (2m)8 (2m)8 (2m)5 (63 + m3) (6 + p1)? +m) (0 + py+ p2)? + m))
1

X
B+ 2 ) (Gt paP + m2) (Gt pat 022+ m2 )B4 ) ({4 pr + ol + i)
1

=)+ m2) (b + L) +m2,)

(A.18)

Before proceeding, let’s introduce some shorthand notation,

d6€1 d6€2 d6€3
= Al
ML = m (2m)e (2m)e (4.19)

and
Niviininy = iy lig o = by o+ 4+ m? (A.20)
T’iliz-.-gamin,jl]Q-~-]b-~~.7 (6“ + &2 e — fia B gm) . (gjl + €j2 e — Ejb cee 4 &n) .
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Expanding in external momenta and extracting the order s? terms, we have

[ (m17m27m37m47m5 s2 / A21
Note that by power counting the loop integral scales like mﬁ? ~ 772,
Diagram (b) gives
-'41234 =—2 Z Ip(miz, mie, muje, Mg, M) H (U; - UZ)(”?, - Ug)( —vf")
i,5,6,m a=1,2
-2 Z [b(m’i]’ami@amj@a m’imam@H) H (/U;iz - ’Ug)(’l}zln - 'Ufi)('l}é - Ugn) A 929
ivj’é»m a:1,2 ( : )
4
+4 Z Iy(myj, 0, my;, my;, mj) H(v; —vl),
i a=1
where
Ib(mij7 Mg, Mje, Mgy, m’bm)
/ doty d%0y dSes 1
=52
2 (@2m)8 (2m)8 (2m)8 (6 + m3) (6 + p1)? +m) (6 + py+ p2)? +mi) (G — 63)2 +m3)
1
X
(63 + m, ) (€2 + pa)? + mi, ) (C + b3 — p3)? + mp,,) (2 + 63)? + mi,,)
1
X .
(65 +m%)((ls + p1 + p2)® + m3y) (A.23)
23
Expanding in external momenta, we have
dL
Iy(ma, ma, mz, my, ms)| 2 = 5%2/ A3 A AT A2 A (A.24)
r? 1152131322155 234 3|2

Diagram (c) gives

1234 =2 Z nga Mims Mt Mgy Mejm, mzé) H (Uz — Ui) H (Uﬁ — U;n)

i,5,0,m a=1,2 a=3,4

4
+2 E ml]7m1]am1]7m’bj70 O)+I (mZJaO ngao ngamw H Uy —U(]l),
i,J
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where

Lo (Mg, Mo, Moy Mo, Mejim, Mig)

9 / dst, d%y dbeg 1
=5
2] (2m)8 (2m)5 (2m)8 (6 + mZ) (0 + p1)? + mZ) (6 + pr + p2)? + mi)
1
X
(65 +mg,, ) (€2 + pa)? +mi, ) (62 + ps + pa)? + mi,, ) (G5 +m5) (6 + pr+p2 — b — 03)? +mi,)
j
1
X .
(6 = £3)% +mZ) (b2 + £3)* +m3,,)
(A.26)
Expanding in external momenta,
]c(mlvaam37m47m57m6) 52 = 8%2/ 3 3 iL . <A27)
Diagram (d) gives
d i j j m m 7
Al =23 LM, Mo, M, Mg, i) (0] = 07) (0 — v5") (v — 0§ (0] = vf)
i,5,4,m
+20 ) La(Mign, M, M, M0, M) (07 = 01) (v — 1) (05" — v5) (v — v}) A58
ivjverm ( ° )
4
+4 Z La(mij, mij, miz, mig, 0) H(U; )
i, a=1
where
La(mg, Mejim s Mgy Mg, M)
9 / dst, d%y dbeg 1
=5
2 (2m)8 (2m)8 (2m)5 (63 + mZ) (6 + p1)? + m2)((€s — 01)? +m2, ) (03 — 01 + p2)® + m?,)
1
X
(63 +mi) (62 + pa)? +m3) ((la + €3 — p3)* +mi,, ) (b2 + £3)* +m7,,)
1
X )
(63 + m3,) (s + p1+ p2)* + mi,) (4.26)
Expanding in external momenta
Id(m17m27m37m4am5) 2 = S%Q/AQ A2 Adii A2 AQ . <A30)
r? 117131272142 2313723)5
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Diagram (e) gives

1234 =2 Z (Mg, Mg, Min, Mejimy Mo, M) H (v, — v3)(v5 — vg) vy — v}

i,5,0,m a=1,2
s (A.31)
-2 Z Ie(mij; mij) mij7 07 07 O) H(Uziz - Ug)a
1,J a=1

where

Lo (Mg, Mg, Mo, Mg, Mo, M)
(2m)8 (2m)6 (2m)S (63 + mF) (4 + p1)? +mF) (4 + pr + p2)? +m3)
1 (A.32)
B m2) (G pa) + m2) (B + m?ml>((€s +pa)? +m3,)
% ((ls = €1+ pa)? +m3 ) (6 — Lo+ pr + p2)* +m3) (b2 — b3 + p3)> +m7,,)

Expanding in external momenta, and after some simplification of the loop integrals, we
have

3812 3512

-[ (mly ma,ms, mqy, ms, mﬁ)

. 812/ dL
% Aj A A A13|4A1§\5A2§|6

11 33 A Aggps

(514 + 2512)T11 25197113 Tia(—s12 — 814) 71.3(514 — S12) 71’31(314 — $12)
A%u A1|1A1§|5 Aq1Qg ASTIPARTE A1|1A1§|4
i 7'1,23( S12 — 814) " T2,3512 n T9 37512 T,12512 T3 13512 7393512
ASTIPAVET: Azlap  AopAgy  Agpligs  AzzAigs Azl
T13,12512 . T31,23512 T13,23512 X 27'15,15512
Apulims  Asiploge Dizplagps A?§|5
(A.33)

Diagram (f) gives

Ay = =2 3" Ii(mig, mge, M, Mg, M, mag) | (0h — ) (0 — v§) (0] — o)

2,5,4,m a=1,2
4 (A.34)
-2 E [f(mij,mij,mij,(),mi], H ’U —’U]
ivj a=1
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where

Te (Mg, Mo, My Mgy Mg, Miig)

. / Sty doty dSey (6 — pa)* + mj
) @m)E 2m)6 2m)° (B + m2) (6 + p)? +m2) (G + pr+ p2)? + m2) (B +m2,)
1
X
(62 + pa)? +m3, ) (6y — L3+ p1+ pa)? +m3,) (0 — €3 — pa)? +m3,) ((La + l3 + pa)? +m7,,)
1
X )
(6 + €2)2 +m2, ) (65 +m3,)
(A.35)
Expanding in external momenta, we have
I (mq, ma, mg, my, ms, m =2 / IL
f 1, 1762, 1703, 11045 1105, 6 % A%‘lA3|3A13|2A23|5A3|6A12‘4
< | — 3512 B 3512 T1,1(814 + 2512)  T12(S14 — 512) 1213512 71,13(3312 — S14)
Aigp Agsp A%H ApnAgs AgAgz) Az
T1,23(814 — S12) 1323512 371313512
Aq1 Qo Ayz5Q0355 A%p
(A.36)
Diagram (g) gives
4
A, = QZI (mij, mij, mij, 0,my5, 0 H vl —v))
a=1 (AS?)
—2 Z o (Mg Moy Moty M, Mg, M) H (v} — vI)(v§ — o3 (vh — o),
i,5,4,m a=1,2
where
]g(mla Mo, M3, My, M5, mG)
. / dt, dSty dSt (61— pa)* +mi
) @r)s 2m)t (2m)8 (B +md) (G +p)* + ml)((fl +p1+p2)? +mi) (65 + m3)
1
X
(€2 +pa)? +m3)((6r — L3+ p1 + p2)* +m3)((ba + L3+ p3 + pa)? + m3) (Lo + €3 + ps)? +m3)
1
X )
(61 + €2)% +m3) (€5 + mg)
(A.38)
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Expanding in external momenta, we have

I,(my, mg, m3, mg, ms, mg)| —812/ iL
g\ T, TS, T4, TS, 16 ) g A%|1Ag|3A1§|5A%3|2A3\6A12I4
< | — 3512 B 3512 B 3512 T11(814 + 2512)  T12(S14 — 512) 27y 13512 1213512
TANTHRVANE A A Aq1Agz AnAigs Ay
71,23(—3512+314) 7223512 37'13,23512 372323512 27'15,13512
A1|1A23\2 A2\3A23|2 A1§\5A23I2 A33|2 A§§|5

(A.39)
Diagram (h) gives

4
h i i
Ay =2 Iu(mig, mig, mag, mig, 0,0) [J (wh = vd)
i’j a=1
+2 % T, g, My M, M0, M) (01— 07) (05 — v3) (5 = 05) (0] — v)),
i,5,0,m
(A.40)

where

In (Mg, Mg, Mo, Mejm, Mejo, M)
/ d%0y d%ly d®ly —s19((61 4 la)* — (01 + by — pa — p3)?) — s14((€s — p1 — p2)? — £3) — S12514
(2m)8 (2m)8 (2m)® (3 4+ m3) (1 — p2)? +mZ) (63 +m7, ) (b2 — p3)? +m7,,)
1
X
(0 = £3)2 +mZ) (6 — €3 +p1)? +mP) (L2 4 £3)% +m3, ) (Lo + €3 + pa)? +m3,,)

y .
((0x + b — py — p3)? +m2, ) (3 +m?)

(A.41)
Expanding in external momenta, we have
I ( ) S125923 / dL
A\, M2, N3, My, M5, Mg 2 = 2 2 2 2
r2 3 A1|2A2|3A1§‘1A23|4A12‘6A3|5
(A.42)
% |34 73121 Ts12,2 731213 | 731223 2T12,12
Ay Doz Ay Aoy Aigp
Diagram (i) gives
Ay = =2 > L, e, Mg, M, M, M) (v — v7) (0] — 05) (v — v§) (v} — "),
/L'Yj?K?m
(A.43)
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where

Li(muij, muje, Mg, M, My, M)
_/‘&a A%y A%y —s1a((0r — pa)® +m3) + s1a((6 + 02)* +mi) + 5(s12 — 514) (65 +m3))
(2m)8 (2m)6 (27)° (03 +mz) (6 + p1)? +m3;) (3 +m3,) (L2 + p2)? +m3,)
1
X
((€y + Lo+ p1 4 p2)? +mZ) (€ + o — pa)? +m3) (65 +m3,) ((€s + pa)? +m7,)
1
A B m2 ) (G bt )2+ md,)

(A.44)

Expanding in external momenta, we have

1 dL
[i(mla Mo, M3, 1My, M, mG)‘ié = 5 AQ A2 A2 A2 A13|5A123|6

1172127123734

< | Ti1514  Ti2(S12 + S14) T12,1512
12 - -
A Aol Aqg3

1 3 T1,2512 T1,12(S12 — S14)
[ —spA Asais + = (12 — $14)A - : :
( sl sz + 32 m>m>( R Bupbaz | ApAmg

i 71,3514 7'2,12(2512 + 814) 7'2,3(512 + 814) 37’12,12312 T12,3512 )

ANTIPAC ACIPYANPIE AgpAgy Af2|3 a Aqg3As34

(A.45)

Note that the above expressions for the scalar loop integrals expanded in external mo-
menta to order s? do not always exhibit symmetries of the graphs in a manifest way. In the
numerical evaluation of the loop integrals, verification of these symmetries is a basic and
useful consistency check.

Results for 6D SYM in the Coulomb Phase To make contact with the consideration
of 6D SYM in Section [3| we set the mass of the W-boson with gauge indices (ij) to be

(i —J)

m;; = 2r|sin | (A.46)
and the polarization vector for the external Cartan gluons to be
vl =l ne 5 (A.47)
where w = e2™/*_ For the four Cartan gluon scattering of interest,
n=ns=L0+1 ng=ng=k—(L+1) (A.48)
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with values ¢ =0,1,--- , k — 2.

The partial amplitudes and full amplitudes for each case are listed in the tables below.
The quantity listed is the three-loop contribution to D*F* normalized by the one-loop F*
amplitude

Al~loor(1.2,3 4)

52
B

o o Lkl A .49
- _ Alre€(1.2.3.4 3%2 + 5%3 + 8%4 k ! sin? L(]i+1) sin” L(klf > ( )
= —S512514 ( 14y 9y ) r6 184320 sinG%

L=1

In the notation of Section [3] this quantity is C3(s* + 2 + u?) + C3s>.

e k=2 (=0
| diagram | g3, A%eP /AP | symmetry factor

(a) 6.603600(s? + ¢ + u?) 4

(b) 3.2071994(s* + t* + u?) 4

(c) 2.6718092(s% + t2 + u?) 8

(d) 2.4143983(s* + t* + u?) 16

(e) 0 2

() 0.55684116(s* + t* + u?) 2

(g) 0.54568714(s* + t* + u?) 1

(h) 0.089231678(s* + 12 + u?) 8

(i) 0 2

| total | 3.772838(s* + 2 +u?) | |
e k=3 /(=0:
’ diagram ‘ g3y g A3TIeoP [ A1 loop ‘ symmetry factor ‘
(a) 14.39876(s* + t* + u?) — 10.376120s? 4
(b) 5.976425(s* + 12 + u?) — 4.2235065> 4
(c) 5.1697610(s? + t + u?) — 3.74692775* 8
(d) 3.8144749(s? + t* + u?) — 1.2321663s? 16
(e) —0.56439858(s% + t2 + u?) + 0.42112441s? 2
(f) 0.68831287(s* + t* + u*) 4 0.373940945> 2
(g) 1.0393916(s* + 2 + u?) — 0.73705051 s 1
(h) 0.17584295(s* + t* 4+ u*) — 0.12991690s> 8
(i) —0.030527986(s* 4 ¢* + u?) + 0.091583958s> 2
| total | 7.086485(s® + 2 + u?) — 4.5052485°
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ek=4 (=0:

’ diagram ‘

4 3—1 1—-1
gYMA oop/A oop

symmetry factor

()
b

—
~—

—~ T~ TN/~
= DO o0
~— — N —

~— —

g
h
(i)

—~

25.02079(s* + 2 + u?) — 20.545614>
9.696932(s* + 2 + u?) — 8.1646885>
8.584892(s? + t? + u?) — 7.224038s>
5.8421205(s? + t2 + u?) — 2.2545368s>
—1.336350(s* + ¢* + u?) + 0.918643s>
0.9180370(s? + ¢ + u?) + 0.824604s>
1.7063675(s* + t? 4+ u?) — 1.44031255>
0.28983076(s? + 2 + u?) — 0.24273063s?
—0.06256573(s* + t? + u?) 4 0.1816815s>

’ total ‘

11.619831(s2 + 2 + u2) — 8.7296785>

|

ek=4 (=1:

’ diagram ‘ g5y A3 loor | A1~ loop ‘ symmetry factor ‘

(a) 17.16058(s* 4 t* + u?)
b 6.703913(s% + 12 + u?)
6.131683(s? + ¢* + u?)
4.8779369(s? + t2 + u?)
—0.762594(s% + t2 + u?)
1.252848(s* 4 t* + u?)
1.2121707(s* + t* 4 u?)
0.21142504(s? + 2 + u?)

(i) 0

—
~—

@)

~—~
[oN
~—_ —

—~ /N
= D

—~ o~

| total | 8.521180(s® + 2 +u?) |

ek=5 /(=0:

’ diagram ‘

4 3-1 1-1
Gy A [ AT

‘ symmetry factor ‘

38.51941(s* 4+ t* + u?) — 33.12847s?
14.416872(s* + t? 4+ u?) — 13.0260205>
12.923744(s% + 12 4+ u?) — 11.5645275s>
8.4375334(s* + t? + u?) — 3.5261340s?
—2.318423(s? + t* + u?) + 1.5268735>
1.2298478(s* + 12 + u?) + 1.375730s>

2.552601(s* + 2 + u?) — 2.3012725>

0.43320460(s? + 2 + u?) — 0.38238309s2
—0.1008116(s? + t* + u?) + 0.292874s*

’ total ‘

17.38894(s% + t* + u?) — 13.955903 52
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ek=5 /(=1:

’ diagram ‘ Gy g A3 toop | A1 leop symmetry factor
a 27.87823(s* + 12 + u?) — 20.431635> 4
(a)
(b) 10.203492(s* + t* 4+ u*) — 7.860821s> 4
c 9.645323(s% + 12 + u?) — 7.9223935> 8
()
(d) 6.151710(s* + ¢* + u?) — 1.9295194? 16
(e) —1.538466(s* + ¢* + u?) 4+ 0.7303561 5> 2
(f) 1.308312(s* + t* 4+ u?) + 0.6451345> 2
(g) 1.879007(s* + t* + u?) — 1.451108s? 1
(h) 0.32813257(s? + t? + u?) — 0.26805768 52 8
(i) —0.0512934(s? + t* + u?) + 0.15791275> 2

| total | 12.83988(s* + 2 + u?) — 8.901921s"

A.4 Four-loop

The result of [16] for the 4-loop 4-point amplitude of maximal SU(k) SYM in D = 6 — 2¢
dimensions is

—4ye
~A4—ZOOP(17 2, 3, 4) = (St.AtTee(l, 2, 3, 4))Wk{ (TI‘12T1"34 + TI‘14T1"23 + TI‘13T1"24)
k? + 36 1 35
(s 2ty [0 L e (358 g o, + 206,
2¢2 € 18 3

3
— = (K*C3 + 25(5) (TrlzTr34s2 + Try4Trost® + TrlgTr24u2) } + (single trace).
€

(A.50)
When restricted to the Cartan gluons, of charge n, € Zy (a = 1,2,3,4) with respect to the
Zy, action, the single trace term is always proportional to (s* + ¢* + u?)ds,, (6 here stands
for Kronecker delta modulo k). The coefficient will involve 1/¢? and 1/e divergences. These
have not been computed explicitly.

On the other hand, for the double trace terms, we have

k. mg+n,=0 modk
Trab:{ ) Mot o (A.51)

0, otherwise.

For the amplitude of gluons with Zj charge (n,n,—n,—n) (n = ¢ + 1 in our notation),
we always have Trig3 = Tryy = Trog3 = Tryy = k. Trip = Trgy = 0 for n # k/2, and
Triy = Trgy = k for n = k/2. In the case k = 4, by comparing ¢ = 0 with ¢ = 1, we can
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separate a contribution from double trace terms only,

4—loop 4—loop __ 674’% 2 2 2
‘Ak:4l:1 - ‘Ak:4,Z:0 - (StAtTee) (471')12_46 64 (8 Tt tu )
16 + 36 1 35 3
_2—6263 + - (16 <E — %) +4¢s 4+ 9C4 + 20C5)] — 2(16@, + 25(5)82}
(A.52)

After subtracting off the 4-loop counter-terms, we expect

(StAtree)

4—loop 4—loop
‘Ak:4,€:1 - Ak:4,£:0 - (471')12

64{(52 +t* 4+ u?) [-(8 4 18(;)(8In7)* + Alnr + B]

+ 5% - 3(16¢3 + 25¢5) (8 Inr + C)}

(A.53)
Here A is a constant that depends on finite shifts of the 3-loop D*trF* counter-term, and
B, C are constants that depend on finite shifts of the 4-loop D*trF* and D*r?F* counter-
terms. They cannot be determined from SYM perturbation theory alone.

In the n = k/2 cases, all terms are proportional to s + t* + u?, and we cannot separate
the double trace terms from the single trace terms at all. In the £k = 3 and k£ = 5 cases, as
well as the kK = 4,/ = 0 case, since Tris = Tr3y, = 0, we can determine

StAtree)

A" = (<47r>12 k3{<52+t2+u2)<unkmwn)—82-3<k2<3+25<5><81nr+0> :

(A.54)

B Evaluation of the Little String Amplitudes

In this appendix, we discuss some machinery that went into the numerical evaluation of the
double scaled little string theory amplitude (4.2]). The conformal block can be written in the
form [39], 40]

P2 2 A—A L _A-A
F(A; Aplz) = (16g)" 277 7217582(1 — z) 7 ~51758

B.1
% 93(q)3Q2*4(A1+A2+A3+A4)H(Ai; AP\Q), ( )
where Ap = %2 + P2, 7 is the cross ratio
_ 212234 (B 2)
214232 ’
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q is the nome of z, defined by

. 1 dt
- K(2) K<Z>_2/o VIT—1)(1— 2t) (B:3)

and 03 is the Jacobi theta function defined by

o0
Os(p) = > p". (B.4)
n=—o0
H satisfies Zamolodchikov’s recurrence formula [39, 40], which allows one to obtain H as
a series expansion in q. Alternatively, we can compute F' as a series expansion in z by
computing inner products between Virasoro descendants of the external primary states. The
resulting expression is manifestly a rational function in ¢, A;, and Ap. For this reason the
latter brute-force method is more advantageous for obtaining simple analytic expressions,
although its computational complexity (with respect to the order of the series in ¢) is much
higher than the complexity of the recurrence method.

The conformal block written in the form converges much faster than a naive series
expansion in z, due to the fact that |g(z)| is much smaller than z (note for example that
16/q(2)| < |z| and |g(z)| < 1 for all z € C). Given an order-N series in z, we can rewrite it in
the form of by performing a variable transformation and then truncate H to order ¢'.
If we want to integrate z over regions far from the origin, it is crucial that we approximate
the conformal block by a truncation of instead of a series in z.

The Liouville structure constant C'(aq, ag, arg) is expressed as ratios of the special function
T, which has an integral representation [41], 42]

log T (z) = /Ooo dt [(9 - x)2 ot S — 0 (B.5)

I
t 2 sinh 5 sinh %

that is is convergent for 0 < Rex < @). For x lying outside this region, T can be analytically
continued via the shift formulae

Yy(z +b) = v(bx)b* 2" Yy(z), Yyp(z +1/b) = ”y(x/b)b%z’lTb(x), (B.6)
where T
v(z) = T —2) (B.7)

When evaluating T numerically, the oscillatory behavior of the second term at large ¢ must
be taken care of by stripping out an exponential integral function

gt e(F-o) gt (=t 1 eT — e~ @t)e(F-0)t
/ oo — Pilato) +/ —( R Z . (B.8)
. 4t sinh 3 sinh o o At sinh % sinh o

0
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To obtain the Liouville four-point function, we then integrate over the Liouville momentum
P of the intermediate state. This integral is performed by a simple Riemann sum.

Finally we are in place to evaluate the integral with respect to the cross ratio z. We
break the integral over the complex plane into six regions. These regions are mapped to
each other under the S? action generated by 2 — 1 — z and z — 1/z. A fundamental region
near the origin

1
Ii |2/<1, Rez< 3 (B.9)

is chosen and the integrals over the other regions are mapped to Region [ using crossing
symmetry of the four-point functions. In Region I, |z| is bounded by 1, and |g| by 0.066,
thus with the conformal block expressed in the form of , even if H is truncated to ¢°
order, we still have at least 107 precision for F'!
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