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illustration from http://people.sc.fsu.edu/~jburkardt/latex/asa_
2011_graphs_homework/



Integer programming solves the Labs difficult
discrete optimization problems.

Water, Road sensor placement, subway, build-
ing sensor management, Network interdic-
tion, Scheduling quantum EC, Protein struc-
ture, Peptide docking, Meshing, Space-filling
curves, Energy systems, Pantex planning, Ve-
hicle routing, Conference schedule.

Integer Program: Minimize a linear cost func-
tion subject to linear inequality and integral-
ity constraints.

Mminimize c-x
subject to
A-x>b
x e 7",



Integer Programming is NP-hard.

Linear Program: Minimize a linear cost func-
tion subject to linear inequality constraints
only.

Linear Programming is Polynomially solvable.



Recent focus on creating formulations of iden-
tified (tractible) problem structures.

Hardness arguments of modeling difficult struc-
tures.

Predict solution efficiency of a formulation.
Lockheed Martin Tech Refresh (Watson), im-

proved formulation changed solution times
from days to minutes.



Find minimum cost 2-edge connected span-
ning subgraph.

Protect shipments against single failure.

Doubled edges are allowed and provided at a
discount.



6(5) = {e={ijtec £ :[SNne[=1]},
E(S) = {e={i,jteFE :|Snel =2} VSCYV,
r(F) = YocrTe VF C E.

A Classic 2-edge connected spanning sub-
graph problem.(2ECSS)

ze € {0,1,2} vars: Buy edge at price ce.

min c-x
subj to
x(6(S)) >2 VS CV,
O0<ze<2 VeekFE,
Te € 1 Ve € E.

Drop integrality constraints to get LP relax-
ation.



The Classic Traveling Salesman Problem
(TSP)

A Hamilton cycle is a simple cycle through all
the nodes in a graph.

TSP: Find a minimum cost Hamilton cycle.



The Graphical Traveling Salesman Prob-
lem

TSP: Find a minimum cost Hamilton cycle.

Eulerian graph: Connected graph with every
node having even degree.

GTSP: Find a minimum cost Eulerian sub-
graph.

An Eulerian subgraph can be shortcut to a
Hamilton cycle.



The Classic Traveling Salesman Problem
(TSP)

TSP: Find a minimum cost Hamilton cycle.

ze € {0,1} vars: Buy edge at price ce.

min c-x
subj to
x(6(S)) >2 VS CV,
x(0(v)) =2 YveV,
O0<ze<1 VeelkFE,
Te € Z Ve € E.
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Double-tree and Christofides heuristics
Select a minimum cost spanning tree T = (V, ET).

The edge incidence vector:
xl =1iffee EL else x! =

Double each e € ET: 24! is the multi-edge
incidence vector (has 2s) of our 2-edge con-
nected graph.

Take the set 799 of odd degree nodes of T.

A T°%_join is a graph M = (V, EM) such that
the degree of v € V is odd iff v € T°%4,

Select a minimum cost T°%-join M.

yI 4+xM is the multi-edge incidence vector of a
connected, Eulerian, hence 2-edge connected
graph.
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Double-tree heuristic for TSP
OPT is cost of minimum cost Hamilton cycle.

Minimum cost spanning tree T = (V,EL) is
at most minimum cost Hamilton cycle with-
out its most expensive edge, a spanning tree!
cost(T) < OPT.

Eulerian Graph: connected, even degree at
each node. Can be shortcut to Hamilton cy-
cle of no greater cost (triangle inequality costs
assumption).

Double each e € ET: 24! is the multi-edge
incidence vector (has 2s) of an Eulerian graph.

Shortcut to a Hamilton cycle. Cost of this
heuristic Hamilton cycle is at most 20PT!
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Christofides heuristic for TSP

Minimum cost spanning tree T = (V, EL) has
cost(T) < OPT.

Take the set T°% of odd degree nodes of T.

A T°_join is a graph M = (V, EM) such that
the degree of v € V is odd iff v € T°%,

Select a minimum cost T°%-join M. Edges
from a minimum cost Hamilton cycle form 2
such T°%_joins. Hence cost(M) < 1/20PT.
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Christofides heuristic for TSP

a

I+ xM is the multi-edge incidence vector of
a connected, Eulerian graph of cost at most
3/20PT.

T his Eulerian graph can be shortcut to a Hamil-
ton cycle of cost at most 3/20PT.
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Convex combination arguments

Let VW be a set of vectors W, having a certain
structure of interest (cycles,trees,matchings)

S AW with Ay > 0 and 30, )\ = 1 is a convex
combination of these vectors.

Convex combination arguments are used to
bound the quality of an approximation.
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Partition Inequalities for spanning trees

z(P) =3k, 2(5(S))).
Partition Inequality: z(P) > k — 1.
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Double-tree approximation
Let £* be optimal for LP relaxation.
x*(6(S)) >2 VSCV

z*(P) = 33k, z*(6(S)))
> 12k = k.

Hence partition inequality z(P) > k — 1 is sat-
isfied by z*.
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Double-tree approximation
Let £* be optimal for LP relaxation.

2*(0(S)) > 2 VS CV implies that x* satisfies
the partition inequalities for spanning trees.

Since z* satisfies the partition inequalities, z*
dominates a convex combination of incidence
vectors of spanning trees:

¥ > 3 At (i = 1).

Each tree can be doubled to get a 2-edge con-
nected graph:

2z* > ¥, M(2x ).

By averaging argument, one 2-edge connected
2v1t costs at most that of 2z*.
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T-join Inequalities

Black nodes are the T nodes.

Select set of edges subject to
T nodes and only T' nhodes have odd degree.

T-join inequalities: x(6(S)) > 1.
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Christofides approximation

r* dominates a convex combination of tree
vectors:

x* Z Z’L )"iXT’Z'

Let 7; be set of odd degree nodes for tree .
%w*(cS(S)) >1 VS CV implies that %af;* satis-
fies the T;-join inequalities for each .

Since x* satisfies the Tj-join inequalities, 32*

dominates a convex combination of T;-join vec-
tors:

. y
sa* > Y w0V, () mij = 1).
For each i, 7, x1* + xM+4J is 2-edge connected.
Sa* > 50, 505 A (XD 4 X M),

By averaging argument, one 2-edge connected
X1+ xM costs at most that of Sa*.
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Notation for rest of talk

Let x € R3. Say z :=(1,2,3).

let y € R3. Say y := (4,5,6).
Then 2 ®y € R3 x R3.

x@y: (17273747576)'
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Our new 2-edge connected problem(cap-2-
ECSS)

xze € {0,1,2} vars: Buy each edge at price ce,

ye € {0,1} Buy doubled edge at a discount,

r@yceREXRE, cpd e RY x RE(C{? < 2¢e).

min (cdd) - (xDy)
subj to

z(6(S)) +2y(6(S)) 22 VSCV
0<z2e<2,0<y<1 Ve € E
Te, Ye € 1.

Drop integrality constraints to get LP relax-
ation.

Integrality gap of 2: y; = % for edges of a

Hamilton (n edge) cycle. But optimal integer
solution is y2P* = 1 for all but one edge of cycle.

22



A better LP relaxation

Idea: z.+y. dominates a spanning tree vector,
denoted by z.. That is, x4+ vy has enough mass
(n — 1 edges) to contain a spanning tree, and
the tree (z) has acyclic structure.

Add ze +ye > ze 2(E(V)) = n—1,
VS CV z(E(S)) < |5]-1.

Now y¥ = & on a Hamilton cycle no longer
feasible.

Worst gap seen is now 3.
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A better LP relaxation

x=1
c=1
® o
y=1/2 y=1/2
c’= cl=
[ o
x=1
c=1

Worst gap seen is now % when horizontal edges
of a square have z; = 1 and a cost of 1 and
vertical edges of that square have y; = % and
a cost of 2.
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The 5/3 approximation (conclusion of talk)

From approximation one, 2z* @ y* dominates a
convex combination of 2-edge connected graphs
Gl

1

From approximation two, %x*@Qy* dominates a
convex combination of 2-edge connected graphs
G=.

1

We can combine these as follows:

gm*@y* > NG
ST @ 2y* > S NG2)

O] N[ =
N\ N\

_|_

Wl
8
*
D
Wl
<
*
A%

> MGy

The % approximation and integrality gap fol-
lows since one of the G;s cost at most that of
2(z* @ y*) by our averaging argument.
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Let x*dy™* be an optimal extreme point solution
to our LP.

To keep things simple, assume z; =0ory; =0
for each e € E.

x} + y> > 22 and the spanning tree constaints
on z* imply that «* 4+ y* dominates a convex
combination of incidence vectors 1 of span-
ning trees z* 4+ y* > 3. A\ix 17

For each spanning tree, break up its set of
edges into a set of x-edges and a set of y-
edges. Then its incidence vector x1+ is broken
up into incidence vectors 1'% and y1¥:t.

So, XT,Z' — XT,:E,Z' + XT,y,z'. Thus,
¥ + y* > Zz )\Z_(XT,m,i + XT,y,z').

Finally, * @ y* > 3 Mi(x1 %t @ x1v).
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Double-tree approximation
Let =* ¢ y* be optimal for LP relaxation.

x} + y2 > zF and the constaints on z* imply
that =* & y* dominates a convex combination
of incidence vectors of spanning trees in x ® y
variable space:

z* @ y* > Y (LT @ x YY),

The z-part of each tree can be doubled to get
a 2-edge connected graph:
2z* @ y* > Y (2x DO @ x ).

By averaging argument, one 2-edge connected
2Dt @ 1595t costs at most that of 2z2* @ y*.
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Christofides approximation

x*@dy* dominates a convex combination of tree
vectors: z* @ y* > 3 A (x 1%t @ x 1Y),

Let 7; be set of odd degree nodes for tree .
%x*((s(s)) +y*(6(S)) >1 VS CV implies that
%x* —+ y* satisfies T;-join inequalities for each :.

Since %m* + y* satisfies the T;-join inequalities,
%x* @ y* dominates a convex combination of

T;-join vectors:
1 o . o .
S @ y* > 55 i M @ x M),
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Christofides approximation

IS 2-edge connected.

2T D2y > 33 35 Ay (XD A M) @ (x v+
M,y,ij
X )-

By averaging argument, one 2-edge connected
(x L%ty Mo 13) @y (LYt MY ) costs at most
that of 3:13* D 2y*.
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The 5/3 approximation

From the Double-tree approximation, 2z™ @
y* dominates a convex combination of 2-edge
connected graphs G}.

From the Christofides approximation, %x* D
2y* dominates a convex combination of 2-edge
connected graphs G?.

We can combine these as follows:

( 2z*@y* > NG
( 3z*@2y* > Y, NGP)

O] NOW)| =

_|_

> MGy

Wl
8
*
D
Wl
<
*
Vv

The % approximation and integrality gap fol-
lows since one of the G;s cost at most that of
2(z* @ y*) by our averaging argument.
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A 5/3 approximation algorithm
Let c,ilj = min(QCij,cgj).

Find minimum cost spanning tree T with ¢!

costs.

Insert a doubled-z-edge or a y-edge for each
edge in spanning tree, whichever is cheaper.

This results in a 2-edge connected graph Tl

cost(Tl) <(cad) (2z* ®y*)
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A 5/3 approximation algorithm

2 . /
Let ¢f; i= mzn(cij,cz-j).

Find minimum cost spanning tree T with ¢2

costs.

Insert an x-edge or a y-edge for each edge in
spanning tree, whichever is cheaper.

This results in a connected graph T2.

cost(T?) < (c®d ) - (z* @ y*)
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Let 1,4 be the set of odd degree nodes for
tree T2.

Find minimum cost T, 4-join M with ¢? costs.

Insert an x-edge or a y-edge for each edge in
T,44-JOIN, Whichever is cheaper.

This results in M2,
cost(M?) < (c® ) - (%33‘* S y*)

By Christofides approximation T2 + M?2 is a
2-edge connected graph.

cost(T? + M?) < (c® ) - Ba* @ 2y*)
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A 5/3 approximation algorithm

min(cost(T1), cost(T? + M?)) < 1/3cost(T1) +
2 /3cost(T? + M?)

< 1/3(c@d)- (2 @y*) +2/3(cd ) - (32* ®2y*)
=5/3(co ) (z*Dy").

The best of T1 and T2 4+ M?2 is thus a 5/3-
approximation.
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