
Scaling Beyond Moore's Law with
Processor-In-Memory-and-Storage (PIMS)

Erik P. DeBenedictis

ITRS ERD/IEEE Rebooting Computing Meeting

February 26, 2015

1

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

PENDING RELEASEApproved for
Unclassified Unlimited Release
SAND2014-19930 PE and
SAND2014-20016 PE

SAND2015-1333PE

2

Outline

 Formulate 3D scaling rule

 Architecture options

 von Neumann

 Logic-memory integration

 Programming

 Performance

 Device implications

3

Energy efficiency can depend on clock rate

 David Frank (IBM) discussed
adiabatic and reversible
computing at RCS 2, where
energy efficiency varies by clock
rate

 Adiabatic circuits have behavior
close to

 Energy/op  f (clock rate)

 Power  f 2

 This would be equivalent to slope
1 on chart at left

 This effect depends on

 Adiabatic circuitry

 Devices – 11 nm adiabatic CMOS
and nSQUID on David Frank’s
chart, but many other options

 Let’s work with this

From David Frank’s presentation at RCS 2; viewgraph 23. “Yes, I'm ok with the
viewgraphs being public, so it's ok for you to use the figure. Dave” (10/31/14)

 Impact of manufacturing cost

 At RCS 2, David Frank put forth
the idea that a computer costs
should include both purchase
cost and energy cost.

 However, let’s adapt this idea to
a situation where manufacturing
cost drops with time, as in
Moore’s Law

 Let’s plot economic quality of a
chip:

1
,0

0
0

1
7

,1
9

1

2
9

5
,5

2
1

5
,0

8
0

,2
1

8

8
7

,3
3

2
,6

1
6

1
,5

0
1

,3
1

0
,7

2
9

2014

2030
2046

100

1,000

10,000

100,000

4

A plot will reveal what we will call
“optimal adiabatic scaling”

Optimal Adiabatic
Scaling

Clock rate f Hz

Zetta Gate-ops
per dollar

$purchase + $energy(f
2)

Opslifetime(f)Qchip =

$energy = Cf 2 (A, B, and C constants)

Opslifetime = Bf, and

Where $purchase = A 2-tyear/3

 Assume manufacturing costs
drops to ½ every three years

 Top of ridge rises with time

1
,0

0
0

1
7

,1
9

1

2
9

5
,5

2
1

5
,0

8
0

,2
1

8

8
7

,3
3

2
,6

1
6

1
,5

0
1

,3
1

0
,7

2
9

2014

2030
2046

100

1,000

10,000

100,000
Optimal Adiabatic
Scaling

Clock rate f Hz

Reversible
computing

Period of rapidly
rising clock rate
(through ~2003)

Dual core
Single core

Quad core

Year

Zetta Gate-ops
per dollar

 Prior to around 2003, purchase
costs dominated energy

 The economically enlightened
approach would be to raise clock
rate, which happened

 Around 2003, technology went
over the optimal point

 Multi-core was the technical
remedy to the economic
problem – had lower clock rate

 Reversible computing would be
an advance in the right direction,
but too extreme for now

Backup: historical context and
reversible computing

5

6

How to derive a scaling rule

$100 circuit board

$20 chip;
K devices

$20 chip;
4K devices

 Chip vendor says: “How would
you like a chip with 4 as many
devices for the same price?”

 Optimal adiabatic scaling says:
 Cut clock rate to 1/4 (halve)

 Power per device drops to 1/4

 Power per chip stays same

 Throughput doubles: 4 as many
devices runn at 1/4 the speed,
for a net throughput increase of
4

 “Throughput” is in accordance
with the way throughput is
measured for semiconductors,
which does not include effects of
architecture and algorithms
(which we discuss later)

 To make a scaling rule, replace
“4” with 2 (line width scaling)

7

Resulting scaling scenario
(standard chart with additional column)

Lgate

W, Lwire

V

C

Ustor = ½ CV2

f

Ntran/core

Ncore/A

Pckt

f Ntran Ncore

P/A

1/ 1/ 1/ 1/ 1/

1/ 1/ 1/ 1 1/

1/ 1 1 1 1

1/ 1/ 1/ 1 1/

1/ 1/ 1/ 1 1/

1*

N†

1/N=1/‡

1

1

 1 1 1 1/N=1/

 1 1 1

 1 1 N=

 1 1 1/N=1/

 1 1§

1  N=

Const
field

Max f Const f Const f,
Ntran

Multi
core

Constant V Optimal
Adiabatic
Scaling

Theis and Solomon

* Term redefined to be line
width scaling; 1 means no line
width scaling
† Term redefined to be the
increase in number of layers;
previously was 1 for no scaling
‡ Term redefined to be heat
produced per step. Adiabatic
technologies do not reduce
signal energy, but “recycle”
signal energy so the amount
turned into heat scales down
§ Term clarified to be power
per unit area including all
devices stacked in 3D

Ref: T. Theis, In Quest of the “Next
Switch”: Prospects for Greatly
Reduced Power Dissipation in a
Successor to the Silicon Field-Effect
Transistor, Proceedings of the IEEE,
Volume 98, Issue 12, 2010

New

If C and V stop
scaling, throughput
(f Ntran Ncore) stops
scaling.

Under optimal adiabatic
scaling, throughput
continues to scale even
with fixed V and C

8

Outline

 Formulate 3D scaling rule

 Architecture options

 von Neumann

 Logic-memory integration

 Programming

 Performance

 Device implications

9

Need a new architecture; von Neumann
architecture won’t do

 Optimal adiabatic scaling proportions
 Device count scales up by N (N = 2)

 Clock rate scales down by 1/N

 Throughput scales up by N  1/N = N

 The von Neumann architecture cannot exploit this throughput
 Processor and memory contribute independently to performance

 Slower computer with more memory – not viable

 We need an architecture whose performance is the product
of memory size and clock rate
 Processor-in-memory?

 Easily said, but we need a specific architecture that
scales properly and has good generality

 Computer system clock rate grew
at about the square root the rate
of storage capacity

10

What applications scale like PIMS?

Growth rate of HDD storage
space compared to clock rate
using Apple consumer products
(1984-2001). From Wikipedia,
which cites the diagram to left
as © Creative Commons.

 Brain CPU throughput grows at ¾
power of storage capacity

 Which is consistent because
brains get bigger too

Synapses Neurons
Roundworm 7.50E+03 3.02E+02
Fruit fly 1.00E+07 1.00E+05
Honeybee 1.00E+09 9.60E+05
Mouse 1.00E+11 7.10E+07
Rat 4.48E+11 2.00E+08
Human 1.00E+15 8.60E+10

Synapses (storage)

N
e
u
ro

n
s
 (

th
ro

u
g
h
p
u
t)

Source:
Wikipedia

 Chip

 Size expectations for 128 Gb

 10241024 bits/memory bank

 128128 banks/chip

11

Design for energy management

ALU ALU

ALU ALU

 Design around fixing competitor’s
weakest features:

 Von Neumann bus/bottleneck

 CV 2 losses

 Make principal energy pathway
into a resonant circuit

 Recycle the energy that the
competitor’s system turns into
heat

Inductor

 Memory
bank

Source
of loss

(2nd VG)

12

Backup: adiabatic memory (low) maturity level

 TRL 3 or 4 for Charge Injection
Devices (CID). TRL definitions:

 3. Analytical and experimental
critical function and/or
characteristic proof of concept

 4. Component and/or
breadboard validation in
laboratory environment

 Above research is for charge
injection devices. Author does
not see a theoretical reason why
it could not work for memristors
and flash

 Resonators and inductors ought
to be OK

 Source

 Energy-recycling row drive

 Result 85 energy efficiency
improvement

13

Nominal physical implementation

 Storage/Memory

 Flash, ReRAM (memristor), STM,
DRAM

 Base layer

 PIMS logic

 3D

 Whole structure is layered

 SOME ADDITIONAL DETAIL IN
BACKUP Fast thread CPU

PIMS logic

PIMS replication unit

PIMS 3D storage
layers A1-A100

configuration and
memory/storage

Stacked PIMS B, C,
D, E, F, G, H, I, J

Heat sink

(100 layers, see below)

PIMS interconnect

14

Outline

 Formulate 3D scaling rule

 Architecture options

 von Neumann

 Logic-memory integration

 Programming

 Performance

 Device implications

15

Tile programming
x A y

1 2 3 4 1 0 0 2 = 25 12 6 17
0 0 3 0
0 4 0 5
6 0 0 0

Timestep 1:
x0 1

y0 0

Timestep 2: a00 1
x1 2 x0 1

y0 1 y1 0

Etc. a10 0 a01 0
x2 3 x1 2 x0 1

y0 1 y1 0 y2 0

a20 0 a11 0 a02 0
x3 4 x2 3 x1 2 x0 1

y0 1 y1 0 y2 0 y3 0

a30 6 a21 4 a12 3 a03 2
x3 4 x2 3 x1 2 x0 1
y0 25 y1 12 y2 6 y3 2

a31 0 a22 0 a13 0
x3 4 x2 3 x1 2

y0 25 y1 12 y2 6 y3 2

a32 0 a23 5
x3 4 x2 3

y1 12 y2 6 y3 17

a33 0
x3 4

y2 6 y3 17

y3 17

Vector-matrix multiply on left
implemented by dataflow-like spreadsheet
below.

Note: the yj's are

updated, so they do
not all have the same
value

1
st
 cell

column
above, as
it evolves
with time

2
nd

 cell
column
above, as
it evolves
with time

3rd cell,
and so on

Note on above: this diagram is
only a spreadsheet, but you
may think of a row of x's and
y's as a register that shifts right
and left each time step; the a's
do not shift (see arrows).

16

Time programming
x A y

1 2 3 4 1 2 = 25 12 6 17
3

4 5
6

Step 1. Initializaton/input Zeros

x2 3 x1 2 x0 1
y0 0

Step 2. Execution and additional input
a00 1 a12 3

x3 4 x0 1 x1 2
y0 1 y2 6 y1 0

w z (x2) w z

Step 3. Execution only
a30 6 a03 2
x3 4 x0 1
y0 25 y3 2 y2 0

w z (x2) w z (y2')

Step 4. Execution and output
a21 4 a23 5
x2 3 x2 3
y1 12 y3 17 y3 0

y0 25 w z w z (y2')

Step 5. Output

y1 12 y2 6 y3 17

Arrows indicate data flow; wth no data flow
faster than nearest neighbor per step. Sometimes
dance steps for ladies and gents.

GraphViz:

17

Outline

 Formulate 3D scaling rule

 Architecture options

 von Neumann

 Logic-memory integration

 Programming

 Performance

 Device implications

18

Exemplary ALU

 Note that this is neither a microprocessor nor a GPU

8-bit


16-bit
+

16-bit t0

16-bit t1

16-bit register

Array 
read data

 Array write
data

Left
shift
out;
right
shift in

Right
shift
out;
left
shift in

Control unit

 Array
code words

Green
pointer
code
word

Red
pointer
code
word

Synapse value: 8 bits as signed integer, but
often interpreted at a higher level as a
fixed point number

2 bits + 2 bits8 bits +12 bits total:

Storage array format:

ALU (one for each 12 storage bits):

19

Performance on Deep Learning example

0.1 nj/bit 46.0 fj/bit 0.9 fj/bit
Logic type
TFET 1.0 nj 552.0 fj 10.9 fj

1.3 fj/synapse 0.0 j 1.3 fj 1.3 fj
12 bits needed 1.0 nj 553.3 fj 12.2 fj

20.8 mw 11.1 kw 244.3 w
CMOS HP 1.0 nj 552.0 fj 10.9 fj

21.8 fj/synapse 0.0 j 21.8 fj 21.8 fj
12 bits needed 1.0 nj 573.7 fj 32.7 fj

20.8 mw 11.5 kw 653.2 w
TFET 21 bits 2.2 nj 1150.0 fj 22.7 fj

7.7 fj/synapse 0.0 j 7.7 fj 7.7 fj

25 bits needed 2.2 nj 1157.6 fj 30.4 fj
43.4 mw 23.2 kw 607.9 w

CMOS HP 21 bits 2.2 nj 1150.0 fj 22.7 fj
127.8 fj/synapse 0.0 j 127.8 fj 127.8 fj

25 bits needed 2.2 nj 1277.7 fj 150.5 fj

43.4 mw 25.6 kw 3010.2 w
Line 1: Femto joules to access memory for one synapse
Line 2: Femto joules logic energy to act on one synapse
Line 3: Sum of previous two lines

Line 4: System energy (watts, kilowatts, megawatts)

Adiabatic MemDRAMGTX 750 TiMemory
Note: NVIDIA
GTX 750 Ti is
memory
bandwidth
limited so the
logic energy is
ignored.

CMOS HP
and TFET per
Nikonov and
Young’s study

First two rows
are 8-bit
synapse; last
two rows are
16-bit
synapse

20

Outline

 Formulate 3D scaling rule

 Architecture options

 von Neumann

 Logic-memory integration

 Programming

 Performance

 Device implications

21

Device implications; conclusions

Device implications

 There is nothing wrong with
transistor function

 We need to drive down
manufacturing cost, which
probably requires a new device

 could be a more
manufacturable transistor

 could be something different,
but the difference is not
essential

 Logic-memory integration is
essential

Conclusions

 With logic-memory integration,
we could possibly have an
exponential improvement path
until we end up with a structure
with the parameters of a brain
(throughput/storage)

 We don’t claim to know how
to program a brain

22

Three neuromorphic options?

 Crossbar with a boost from level-based analog (memristor)

 Spiking with a boost from time-based analog

 Digital emulation of neurons with a boost from adiabatic
digital tricks and 3D integration

23

Expected comparison result

High Precision Sparse

1E-18
1E-16
1E-14
1E-12
1E-10
1E-08
1E-06

0.0001
0.01

1 10 100 1000 10000
Synapses/Neuron

E
n

er
g
y
/s

y
n

a
p

se
 e

v
a
l

GTX 750 Ti kT limited R Xbar

Landauer's Limit Spiking

PIMS

Deep Learning

1E-18
1E-16
1E-14
1E-12
1E-10
1E-08
1E-06

0.0001
0.01

1 10 100 1000 10000
Synapses/Neuron

E
n

er
g
y
/s

y
n

a
p

se
 e

v
a
l

GTX 750 Ti kT limited R Xbar

Landauer's Limit Spiking

PIMS

 Brain Scaling

1E-18
1E-16
1E-14
1E-12
1E-10
1E-08
1E-06

0.0001
0.01

1 10 100 1000 10000
Synapses/Neuron

E
n

er
g
y
/s

y
n

a
p

se
 e

v
a
l

GTX 750 Ti kT limited R Xbar

Landauer's Limit Spiking

PIMS

Low Precision Dense

1E-18
1E-16
1E-14
1E-12
1E-10
1E-08
1E-06

0.0001
0.01

1 10 100 1000 10000
Synapses/Neuron

E
n

er
g
y
/s

y
n

a
p

se
 e

v
a
l

GTX 750 Ti kT limited R Xbar

Landauer's Limit Spiking

PIMS

p = 1.7/N.6 p = 1

B = 16;
65536
levels

B = 3;
8 levels

 We did a study of
energy efficiency
of neuromorphic
approaches

 Not ready for
publication (too hard)

 Conclusions

 Physical
limits of
computation
apply to both
analog and digital

 Scale, coding,
sparsity, precision
determine winner

24

Backup

25

Architecture versus design rules

Logic

Memory

Interconnect

Configuration (discussed later)

Memory
Row
logic ALU

Column
logic

 Answerable to whom?

 Architecture is a human choice

 Design rules are answerable to
nature

 Example: rotate instruction

 A chip designer cannot just wire
anything to anything because a
customer wants him/her to do so

 Nature will not approve of long-
distance communications at
constant time and energy

 Chip designer has to follow
design rules; can’t change them
without approval from nature

 PIMS tiles (building blocks)

 PIMS program

26

Programmable

Logic

Memory

Interconnect

Configuration (discussed later)

Memory
Row
logic ALU

Column
logic

 Let’s make a machine that can
emulate ANY arrangement of
PIMS tiles

 Use tile clusters that can be
configured to create any of the
three tiles

 Load the desired tile
configuration as though it were
software

 Previous system

 Programmable cluster blocks





 Programmed equivalent

27

PIMS engine

ALUControl

Adiabatic
row access

PIMS memory/storage:
Purple is the
configuration “opcode”
Green is memory
contents
Red is communications

between ALUsALUALU

ALU ALU

ALU ALU

Inductor

 Memory
bank

Source of
loss

 PIMS is a hardware device that
can

 Execute the tile structures

 Emulate the nanotechnology

 Adiabatic memory structure 

 Adaptation of tiles for efficient
execution with time multiplexing
to allow bigger machines 

28

Backup (embedded spreadsheet)
x A y

1 2 3 4 1 0 0 2 = 25 12 6 17
0 0 3 0
0 4 0 5
6 0 0 0

Timestep 1:
x0 1

y0 0

Timestep 2: a00 1
x1 2 x0 1

y0 1 y1 0

Etc. a10 0 a01 0
x2 3 x1 2 x0 1

y0 1 y1 0 y2 0

a20 0 a11 0 a02 0
x3 4 x2 3 x1 2 x0 1

y0 1 y1 0 y2 0 y3 0

a30 6 a21 4 a12 3 a03 2
x3 4 x2 3 x1 2 x0 1
y0 25 y1 12 y2 6 y3 2

a31 0 a22 0 a13 0
x3 4 x2 3 x1 2

y0 25 y1 12 y2 6 y3 2

a32 0 a23 5
x3 4 x2 3

y1 12 y2 6 y3 17

a33 0
x3 4

y2 6 y3 17

y3 17

Vector-matrix multiply on left
implemented by dataflow-like spreadsheet
below.

Note: the yj's are

updated, so they do
not all have the same
value

1
st
 cell

column
above, as
it evolves
with time

2
nd

 cell
column
above, as
it evolves
with time

3rd cell,
and so on

Note on above: this diagram is
only a spreadsheet, but you
may think of a row of x's and
y's as a register that shifts right
and left each time step; the a's
do not shift (see arrows).

29

Backup (embedded spreadsheet)
x A y

1 2 3 4 1 2 = 25 12 6 17
3

4 5
6

Step 1. Initializaton/input Zeros

x2 3 x1 2 x0 1
y0 0

Step 2. Execution and additional input
a00 1 a12 3

x3 4 x0 1 x1 2
y0 1 y2 6 y1 0

w z (x2) w z

Step 3. Execution only
a30 6 a03 2
x3 4 x0 1
y0 25 y3 2 y2 0

w z (x2) w z (y2')

Step 4. Execution and output
a21 4 a23 5
x2 3 x2 3
y1 12 y3 17 y3 0

y0 25 w z w z (y2')

Step 5. Output

y1 12 y2 6 y3 17

Arrows indicate data flow; wth no data flow
faster than nearest neighbor per step. Sometimes
dance steps for ladies and gents.

GraphViz:

30

PIMS algorithm scaling

Factor 2-bit composite

N2 tiles

Factor 1024-bit composite

From:
http://www.ucd.ie/nanote
ch/

From:
http://theory.rutgers.edu/
Group/Research/Gallerie
s/BiochemicalReaction/in
dex.html

N1024 tiles

http://www.nanower
k.com/spotlight/spoti
d=2617.php

Speculation: Nature would use a
component hierarchy. Unproven, but
almost always happens.

Sequence N2, N3, N4…N1024… becomes the physical/computational complexity for
factoring an N-bit number in the physical universe

However, based on assumptions like room temp operation and a certain repertoire
of chemical elements

Example
tile

31

New concept in computing

 New scaling concept

 Head to a goal, instead of

 measure progress since WW II

 As a computer technology,
Moore’s Law is based on
generations of progress from
and implicit
starting point
that was
something like
von Neumann’s
EDVAC computer

 Goal wavers

 PIMS concept is to measure
distance from ultimate
nanotechnology

 Let C be the factor by which a
current implementation is
WORSE than the ultimate
nanotechnology goal

Example axis:
Clock rate

Example axis:
Device count

EDVAC, or
whatever

Moore’s Law: Each
successive generation
further from one axis or the
other

Goal

 C = 104

 C = 103

 C = 102PIMS scaling:
Each
successive
generation
closer to goal

C is a numerical factor
by which a specific
generation falls short
of the goal

w00

w10 w01

32

Backup: Programming a dense vector-matrix
multiply

 
x0


x1

 
y0

Dance floor

Balcony

Memory
array

Go right for rows

Memory array

Step 1

Step 2

Step n

 Init: Ladies have vector element;
gents have zero accumulation

 Program: Ladies multiply memory
output by their vector element,
pass to gent; gent adds to
accumulating sum; ladies step
right; gents step left

 Dance hall model

Note: This program only uses half the memory locations; better algorithm
would use a hexagonal layout, but is too complex for PowerPointWx = y; gent w00 x0 then w10 x0; lady y0 = w00 x0 + w01 x1

