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Outline

 Formulate 3D scaling rule
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 von Neumann

 Logic-memory integration
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 Performance

 Device implications
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Energy efficiency can depend on clock rate

 David Frank (IBM) discussed 
adiabatic and reversible 
computing at RCS 2, where 
energy efficiency varies by clock 
rate

 Adiabatic circuits have behavior 
close to

 Energy/op  f (clock rate)

 Power  f 2

 This would be equivalent to slope 
1 on chart at left

 This effect depends on

 Adiabatic circuitry

 Devices – 11 nm adiabatic CMOS 
and nSQUID on David Frank’s 
chart, but many other options

 Let’s work with this

From David Frank’s presentation at RCS 2; viewgraph 23. “Yes, I'm ok with the 
viewgraphs being public, so it's ok for you to use the figure. Dave” (10/31/14)



 Impact of manufacturing cost

 At RCS 2, David Frank put forth 
the idea that a computer costs 
should include both purchase 
cost and energy cost.

 However, let’s adapt this idea to 
a situation where manufacturing 
cost drops with time, as in 
Moore’s Law

 Let’s plot economic quality of a 
chip:
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A plot will reveal what we will call
“optimal adiabatic scaling”

Optimal Adiabatic 
Scaling

Clock rate f Hz

Zetta Gate-ops
per dollar

$purchase + $energy(f 
2)

Opslifetime(f)Qchip = 

$energy = Cf 2 (A, B, and C constants)

Opslifetime = Bf, and

Where $purchase = A 2-tyear/3

 Assume manufacturing costs 
drops to ½ every three years

 Top of ridge rises with time
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Optimal Adiabatic 
Scaling

Clock rate f Hz

Reversible 
computing

Period of rapidly
rising clock rate
(through ~2003)

Dual core
Single core

Quad core

Year

Zetta Gate-ops
per dollar

 Prior to around 2003, purchase 
costs dominated energy

 The economically enlightened 
approach would be to raise clock 
rate, which happened

 Around 2003, technology went 
over the optimal point

 Multi-core was the technical 
remedy to the economic 
problem – had lower clock rate

 Reversible computing would be 
an advance in the right direction, 
but too extreme for now

Backup: historical context and
reversible computing
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How to derive a scaling rule

$100 circuit board

$20 chip;
K devices

$20 chip;
4K devices

 Chip vendor says: “How would 
you like a chip with 4 as many 
devices for the same price?”

 Optimal adiabatic scaling says:
 Cut clock rate to 1/4 (halve)

 Power per device drops to 1/4

 Power per chip stays same

 Throughput doubles: 4 as many 
devices runn at 1/4 the speed, 
for a net throughput increase of 
4

 “Throughput” is in accordance 
with the way throughput is 
measured for semiconductors, 
which does not include effects of 
architecture and algorithms 
(which we discuss later)

 To make a scaling rule, replace 
“4” with 2 (line width scaling)
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Resulting scaling scenario
(standard chart with additional column)

Lgate

W, Lwire

V

C

Ustor = ½ CV2

f

Ntran/core

Ncore/A

Pckt

f Ntran Ncore

P/A

1/ 1/ 1/ 1/ 1/

1/ 1/ 1/ 1 1/

1/ 1 1 1 1

1/ 1/ 1/ 1 1/

1/ 1/ 1/ 1 1/

1*

N†

1/N=1/‡

1

1

 1 1 1 1/N=1/

 1 1 1

 1 1 N=

 1 1 1/N=1/

 1 1§

1  N=

Const
field

Max f Const f Const f,
Ntran

Multi
core

Constant V Optimal 
Adiabatic 
Scaling

Theis and Solomon

* Term redefined to be line 
width scaling; 1 means no line 
width scaling
† Term redefined to be the 
increase in number of layers; 
previously was 1 for no scaling 
‡ Term redefined to be heat 
produced per step. Adiabatic 
technologies do not reduce 
signal energy, but “recycle” 
signal energy so the amount 
turned into heat scales down
§ Term clarified to be power 
per unit area including all 
devices stacked in 3D

Ref: T. Theis, In Quest of the “Next 
Switch”: Prospects for Greatly 
Reduced Power Dissipation in a 
Successor to the Silicon Field-Effect 
Transistor, Proceedings of the IEEE, 
Volume 98, Issue 12, 2010

New

If C and V stop 
scaling, throughput
(f Ntran Ncore) stops 
scaling.

Under optimal adiabatic 
scaling, throughput 
continues to scale even 
with fixed V and C
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Need a new architecture; von Neumann 
architecture won’t do

 Optimal adiabatic scaling proportions
 Device count scales up by N (N = 2)

 Clock rate scales down by 1/N

 Throughput scales up by N  1/N = N

 The von Neumann architecture cannot exploit this throughput
 Processor and memory contribute independently to performance

 Slower computer with more memory – not viable

 We need an architecture whose performance is the product 
of memory size and clock rate
 Processor-in-memory?

 Easily said, but we need a specific architecture that
scales properly and has good generality



 Computer system clock rate grew 
at about the square root the rate 
of storage capacity
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What applications scale like PIMS?

Growth rate of HDD storage 
space compared to clock rate 
using Apple consumer products 
(1984-2001). From Wikipedia, 
which cites the diagram to left 
as © Creative Commons.

 Brain CPU throughput grows at ¾ 
power of storage capacity

 Which is consistent because 
brains get bigger too

Synapses Neurons
Roundworm 7.50E+03 3.02E+02
Fruit fly 1.00E+07 1.00E+05
Honeybee 1.00E+09 9.60E+05
Mouse 1.00E+11 7.10E+07
Rat 4.48E+11 2.00E+08
Human 1.00E+15 8.60E+10

Synapses (storage)

N
e
u
ro

n
s
 (

th
ro

u
g
h
p
u
t)

Source:
Wikipedia



 Chip

 Size expectations for 128 Gb

 10241024 bits/memory bank

 128128 banks/chip
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Design for energy management

ALU ALU

ALU ALU

 Design around fixing competitor’s 
weakest features:

 Von Neumann bus/bottleneck

 CV 2 losses

 Make principal energy pathway 
into a resonant circuit

 Recycle the energy that the 
competitor’s system turns into 
heat

Inductor

 Memory
bank

Source 
of loss

(2nd VG)
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Backup: adiabatic memory (low) maturity level

 TRL 3 or 4 for Charge Injection 
Devices (CID). TRL definitions:

 3. Analytical and experimental 
critical function and/or 
characteristic proof of concept

 4. Component and/or 
breadboard validation in 
laboratory environment

 Above research is for charge 
injection devices. Author does 
not see a theoretical reason why 
it could not work for memristors 
and flash

 Resonators and inductors ought 
to be OK

 Source

 Energy-recycling row drive

 Result 85 energy efficiency 
improvement



13

Nominal physical implementation

 Storage/Memory

 Flash, ReRAM (memristor), STM, 
DRAM

 Base layer

 PIMS logic

 3D

 Whole structure is layered

 SOME ADDITIONAL DETAIL IN 
BACKUP Fast thread CPU

PIMS logic

PIMS replication unit

PIMS 3D storage
layers A1-A100

configuration and 
memory/storage

Stacked PIMS B, C,
D, E, F, G, H, I, J

Heat sink

(100 layers, see below)

PIMS interconnect
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Tile programming
x A y

1 2 3 4 1 0 0 2 = 25 12 6 17
0 0 3 0
0 4 0 5
6 0 0 0

Timestep 1:
x0 1

y0 0

Timestep 2: a00 1
x1 2 x0 1

y0 1 y1 0

Etc. a10 0 a01 0
x2 3 x1 2 x0 1

y0 1 y1 0 y2 0

a20 0 a11 0 a02 0
x3 4 x2 3 x1 2 x0 1

y0 1 y1 0 y2 0 y3 0

a30 6 a21 4 a12 3 a03 2
x3 4 x2 3 x1 2 x0 1
y0 25 y1 12 y2 6 y3 2

a31 0 a22 0 a13 0
x3 4 x2 3 x1 2

y0 25 y1 12 y2 6 y3 2

a32 0 a23 5
x3 4 x2 3

y1 12 y2 6 y3 17

a33 0
x3 4

y2 6 y3 17

y3 17

Vector-matrix multiply on left 
implemented by dataflow-like spreadsheet 
below.

Note: the yj's are 

updated, so they do 
not all have the same 
value

1
st
 cell 

column 
above, as 
it evolves 
with time

2
nd

 cell 
column 
above, as 
it evolves 
with time

3rd cell, 
and so on

Note on above: this diagram is 
only a spreadsheet, but you 
may think of a row of x's and 
y's as a register that shifts right 
and left each time step; the a's 
do not shift (see arrows).
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Time programming
x A y

1 2 3 4 1 2 = 25 12 6 17
3

4 5
6

Step 1. Initializaton/input Zeros

x2 3 x1 2 x0 1
y0 0

Step 2. Execution and additional input
a00 1 a12 3

x3 4 x0 1 x1 2
y0 1 y2 6 y1 0

w z (x2) w z

Step 3. Execution only
a30 6 a03 2
x3 4 x0 1
y0 25 y3 2 y2 0

w z (x2) w z (y2')

Step 4. Execution and output
a21 4 a23 5
x2 3 x2 3
y1 12 y3 17 y3 0

y0 25 w z w z (y2')

Step 5. Output

y1 12 y2 6 y3 17

Arrows indicate data flow; wth no data flow 
faster than nearest neighbor per step. Sometimes 
dance steps for ladies and gents.

GraphViz:
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Exemplary ALU

 Note that this is neither a microprocessor nor a GPU

8-bit 


16-bit
+

16-bit t0

16-bit t1

16-bit register

Array 
read data

 Array write 
data

Left 
shift 
out; 
right 
shift in

Right 
shift 
out; 
left 
shift in

Control unit

 Array
code words

Green 
pointer 
code 
word

Red 
pointer 
code 
word

Synapse value: 8 bits as signed integer, but 
often interpreted at a higher level as a 
fixed point number

2 bits + 2 bits8 bits +12 bits total:

Storage array format:

ALU (one for each 12 storage bits):
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Performance on Deep Learning example

0.1 nj/bit 46.0 fj/bit 0.9 fj/bit
Logic type
TFET 1.0 nj 552.0 fj 10.9 fj

1.3 fj/synapse 0.0 j 1.3 fj 1.3 fj
12 bits needed 1.0 nj 553.3 fj 12.2 fj

20.8 mw 11.1 kw 244.3 w
CMOS HP 1.0 nj 552.0 fj 10.9 fj

21.8 fj/synapse 0.0 j 21.8 fj 21.8 fj
12 bits needed 1.0 nj 573.7 fj 32.7 fj

20.8 mw 11.5 kw 653.2 w
TFET 21 bits 2.2 nj 1150.0 fj 22.7 fj

7.7 fj/synapse 0.0 j 7.7 fj 7.7 fj

25 bits needed 2.2 nj 1157.6 fj 30.4 fj
43.4 mw 23.2 kw 607.9 w

CMOS HP 21 bits 2.2 nj 1150.0 fj 22.7 fj
127.8 fj/synapse 0.0 j 127.8 fj 127.8 fj

25 bits needed 2.2 nj 1277.7 fj 150.5 fj

43.4 mw 25.6 kw 3010.2 w
Line 1: Femto joules to access memory for one synapse
Line 2: Femto joules logic energy to act on one synapse
Line 3: Sum of previous two lines

Line 4: System energy (watts, kilowatts, megawatts)

Adiabatic MemDRAMGTX 750 TiMemory
Note: NVIDIA 
GTX 750 Ti is 
memory 
bandwidth 
limited so the 
logic energy is 
ignored.

CMOS HP 
and TFET per 
Nikonov and 
Young’s study

First two rows 
are 8-bit 
synapse; last 
two rows are 
16-bit 
synapse
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Device implications; conclusions

Device implications

 There is nothing wrong with 
transistor function

 We need to drive down 
manufacturing cost, which 
probably requires a new device 

 could be a more 
manufacturable transistor

 could be something different, 
but the difference is not 
essential

 Logic-memory integration is 
essential

Conclusions

 With logic-memory integration, 
we could possibly have an 
exponential improvement path 
until we end up with a structure 
with the parameters of a brain 
(throughput/storage)

 We don’t claim to know how 
to program a brain
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Three neuromorphic options?

 Crossbar with a boost from level-based analog (memristor)

 Spiking with a boost from time-based analog

 Digital emulation of neurons with a boost from adiabatic 
digital tricks and 3D integration
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Expected comparison result

High Precision Sparse

1E-18
1E-16
1E-14
1E-12
1E-10
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0.0001
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GTX 750 Ti kT limited R Xbar

Landauer's Limit Spiking

PIMS

Deep Learning
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Landauer's Limit Spiking

PIMS

 Brain Scaling
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Landauer's Limit Spiking

PIMS

Low Precision Dense

1E-18
1E-16
1E-14
1E-12
1E-10
1E-08
1E-06

0.0001
0.01

1 10 100 1000 10000
Synapses/Neuron

E
n

er
g
y
/s

y
n

a
p

se
 e

v
a
l

GTX 750 Ti kT limited R Xbar

Landauer's Limit Spiking

PIMS

p = 1.7/N.6 p = 1

B = 16;
65536 
levels

B = 3;
8 levels

 We did a study of
energy efficiency
of neuromorphic
approaches

 Not ready for
publication (too hard)

 Conclusions

 Physical
limits of
computation
apply to both
analog and digital

 Scale, coding,
sparsity, precision
determine winner
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Backup
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Architecture versus design rules

Logic

Memory

Interconnect

Configuration (discussed later)

Memory
Row 
logic ALU

Column
logic

 Answerable to whom?

 Architecture is a human choice

 Design rules are answerable to 
nature

 Example: rotate instruction

 A chip designer cannot just wire 
anything to anything because a 
customer wants him/her to do so

 Nature will not approve of long-
distance communications at 
constant time and energy

 Chip designer has to follow 
design rules; can’t change them 
without approval from nature

 PIMS tiles (building blocks)

 PIMS program
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Programmable

Logic

Memory

Interconnect

Configuration (discussed later)

Memory
Row 
logic ALU

Column
logic

 Let’s make a machine that can 
emulate ANY arrangement of 
PIMS tiles

 Use tile clusters that can be 
configured to create any of the 
three tiles

 Load the desired tile 
configuration as though it were 
software

 Previous system

 Programmable cluster blocks





 Programmed equivalent
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PIMS engine

ALUControl

Adiabatic 
row access

PIMS memory/storage:
Purple is the 
configuration “opcode”
Green is memory 
contents
Red is communications

between ALUsALUALU

ALU ALU

ALU ALU

Inductor

 Memory
bank

Source of 
loss

 PIMS is a hardware device that 
can

 Execute the tile structures

 Emulate the nanotechnology

 Adiabatic memory structure 

 Adaptation of tiles for efficient 
execution with time multiplexing 
to allow bigger machines 
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Backup (embedded spreadsheet)
x A y

1 2 3 4 1 0 0 2 = 25 12 6 17
0 0 3 0
0 4 0 5
6 0 0 0

Timestep 1:
x0 1

y0 0

Timestep 2: a00 1
x1 2 x0 1

y0 1 y1 0

Etc. a10 0 a01 0
x2 3 x1 2 x0 1

y0 1 y1 0 y2 0

a20 0 a11 0 a02 0
x3 4 x2 3 x1 2 x0 1

y0 1 y1 0 y2 0 y3 0

a30 6 a21 4 a12 3 a03 2
x3 4 x2 3 x1 2 x0 1
y0 25 y1 12 y2 6 y3 2

a31 0 a22 0 a13 0
x3 4 x2 3 x1 2

y0 25 y1 12 y2 6 y3 2

a32 0 a23 5
x3 4 x2 3

y1 12 y2 6 y3 17

a33 0
x3 4

y2 6 y3 17

y3 17

Vector-matrix multiply on left 
implemented by dataflow-like spreadsheet 
below.

Note: the yj's are 

updated, so they do 
not all have the same 
value

1
st
 cell 

column 
above, as 
it evolves 
with time

2
nd

 cell 
column 
above, as 
it evolves 
with time

3rd cell, 
and so on

Note on above: this diagram is 
only a spreadsheet, but you 
may think of a row of x's and 
y's as a register that shifts right 
and left each time step; the a's 
do not shift (see arrows).
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Backup (embedded spreadsheet)
x A y

1 2 3 4 1 2 = 25 12 6 17
3

4 5
6

Step 1. Initializaton/input Zeros

x2 3 x1 2 x0 1
y0 0

Step 2. Execution and additional input
a00 1 a12 3

x3 4 x0 1 x1 2
y0 1 y2 6 y1 0

w z (x2) w z

Step 3. Execution only
a30 6 a03 2
x3 4 x0 1
y0 25 y3 2 y2 0

w z (x2) w z (y2')

Step 4. Execution and output
a21 4 a23 5
x2 3 x2 3
y1 12 y3 17 y3 0

y0 25 w z w z (y2')

Step 5. Output

y1 12 y2 6 y3 17

Arrows indicate data flow; wth no data flow 
faster than nearest neighbor per step. Sometimes 
dance steps for ladies and gents.

GraphViz:
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PIMS algorithm scaling

Factor 2-bit composite

N2 tiles

Factor 1024-bit composite

From: 
http://www.ucd.ie/nanote
ch/

From: 
http://theory.rutgers.edu/
Group/Research/Gallerie
s/BiochemicalReaction/in
dex.html

N1024 tiles

http://www.nanower
k.com/spotlight/spoti
d=2617.php

Speculation: Nature would use a 
component hierarchy. Unproven, but 
almost always happens.

Sequence N2, N3, N4…N1024… becomes the physical/computational complexity for 
factoring an N-bit number in the physical universe

However, based on assumptions like room temp operation and a certain repertoire 
of chemical elements

Example
tile
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New concept in computing

 New scaling concept

 Head to a goal, instead of

 measure progress since WW II

 As a computer technology, 
Moore’s Law is based on 
generations of progress from
and implicit
starting point
that was
something like
von Neumann’s
EDVAC computer

 Goal wavers

 PIMS concept is to measure 
distance from ultimate 
nanotechnology

 Let C be the factor by which a 
current implementation is 
WORSE than the ultimate 
nanotechnology goal

Example axis:
Clock rate

Example axis:
Device count

EDVAC, or 
whatever

Moore’s Law: Each 
successive generation 
further from one axis or the 
other

Goal

 C = 104

 C = 103

 C = 102PIMS scaling:
Each 
successive 
generation 
closer to goal

C is a numerical factor 
by which a specific 
generation falls short 
of the goal
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Backup: Programming a dense vector-matrix 
multiply

 
x0


x1

 
y0

Dance floor

Balcony

Memory
array

Go right for rows

Memory array

Step 1

Step 2

Step n

 Init: Ladies have vector element; 
gents have zero accumulation

 Program: Ladies multiply memory 
output by their vector element, 
pass to gent; gent adds to 
accumulating sum; ladies step 
right; gents step left

 Dance hall model

Note: This program only uses half the memory locations; better algorithm 
would use a hexagonal layout, but is too complex for PowerPointWx = y; gent w00 x0 then w10 x0; lady y0 = w00 x0 + w01 x1


