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Abstract. It is well known that that the derivative-based classical approach to strain is

problematic when the displacement field is irregular, noisy, or discontinuous. Difficulties

arise wherever the displacements are not differentiable. We present an alternative, nonlocal

approach to calculating strain from DIC data that is well-defined and robust, even for the

pathological cases that undermine the classical strain measure. This integral formulation

for strain has no spatial derivatives and when the displacement field is smooth, the nonlocal

strain and the classical strain are identical. We submit that this approach to computing

strains from displacements will greatly improve the fidelity and efficacy of DIC for new

application spaces previously untenable in the classical framework.

1. Introduction

At the frontier of digital image correlation (DIC) technology lies a formidable challenge:

dealing with discontinuous displacement fields (cracks) and steep strain gradients in the

context of image noise. This pursuit is particularly difficult for a number of reasons, the

primary of which include the fact that the mathematical framework used in conventional

methods is not appropriate for this space of fields and that a delicate balance exists between

filtering noise from the solution and smoothing out the underlying structure. Certainly,

sophisticated alterations to conventional methods are possible to capture discontinuities,

but we propose instead an alternative perspective that naturally incorporates this class of

problems. This alternative approach is based on nonlocal vector calculus (NLVC).

For relevant background information regarding NLVC, the reader is referred to [1, 2, 3, 4]

and the references therein. The main benefit of NLVC is that it provides a mathematically

consistent measure of the rate of change for fields that may not be differentiable. Rather

than using spatial derivatives, NLVC uses integral operators to express these rates of change.

A basic example is the nonlocal gradient operator:

∇̃u(x) =

∫ ∞

−∞
u(x)κ(y − x)dy(1)

where κ(y − x) is the kernel. The conditions on the kernel are simply that its integral over

the domain is zero. Formally speaking, the kernel should be a distribution or delta function,

but for implementation considerations we will engender an approximation of this operator

over a finite support by using alternative kernel functions. The nonlocal gradient operator
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Figure 1. (a) Kernel function φε(x) and (b) its derivative that can be used

to construct a multidimensional kernel α(y−x). In this case, γ is a parameter

that can be used to skew the hat function.

then becomes

∇̃u(x) =

∫ ε

−ε
u(x)α(y − x)dy(2)

where α(y−x) is the kernel with finite support. An example of such a kernel is the derivative

of a hat function as shown in Figure 1. In the discrete setting one may recognize that for

regular grids, the above nonlocal operator takes the form of a convolution. This is the

point of similarity with other methods for computing strain [5, 6]. In convolution form, the

nonlocal gradient becomes

∇̃u(x) = c(x) ?α(y − x)(3)

In the convolution form above, the kernel remains the same as in the integral operator of

equation (2). The coefficients c(x) can be chosen depending on the desired properties of the

resulting operator. If c(x) is chosen such that c(x) = u(x) the resulting operator will be

interpolating, but will be subject to oscillations when the gradients are large. Alternatively,

the coefficients can be solved for in the frequency domain such that the convolved gradient

field is interpolating at the data points. This requires extra computational expense, but

enables greater flexibility in the choice of α(y − x).

Regardless of the kernel choice or how the coefficients are computed, what has been out-

lined above is a general framework for computing gradients that does not require spatial

derivatives. Also, we point out that the analyst can still choose the form of the strain mea-

sure (for example, Green-Lagrange or Almansi, etc.). We have merely defined a way to

compute the necessary terms in each of these by evaluating the rates of the change of the

displacement field.



2. Comparisons among existing methods

To make the presentation more clear, we will focus this work on casting the nonlocal

approach in the context of existing methods so that the differences can be pointed out.

Along the pathway from displacement data to strain, there are a number of techniques

available. For the most part, the conventional methods involve curve fitting.

2.1. Savitzky-Golay filtering. One common approach involves the use of a virtual strain

gauge to compute strain. While at first glance it may seem that there are a number of

similarities between Savitzky-Golay (SG) inspired strain measures (like the virtual strain

gauge) and the nonlocal approach, the two are in reality very different. SG filters are based

on the idea that the underlying displacement field can be fit with a polynomial representation.

The derivatives of the displacement field are then computed using the coefficients of the fitted

polynomial. The similarity between the SG filter approach and the nonlocal approach comes

from the convolution used to compute the strains (that includes the least-squares fit of the

data on a regular grid). Although the form of the operator is similar to the nonlocal form,

the basic assumption that the data be a continuous polynomial in form is not necessary in

the nonlocal approach. The SG filter approach is limited to displacement fields that can be

approximated by the polynomial basis of the filter. For example, a linear polynomial leads

to a strain measure that cannot capture points of inflection because the polynomial itself

has no points of inflection. In contrast, in the nonlocal approach, a linear polynomial kernel

function will still capture points of inflection.

In a broader context, the SG filter is one instance of a curve fitting approach. Some of

the high level differences between curve-fitting approaches and the NLVC approach to going

from displacement values to strains are shown in Figure 2.

2.2. Digital signal processing. Other methods of constructing a strain measure are also

possible via adapting ideas from digital signal processing (DSP). For example, b-spline inter-

polation has become very popular because of its high signal to noise ratio and compactness of

the support needed to perform interpolation with high order of accuracy [7, 8, 9, 10]. While

these methods are used extensively for interpolating image intensity values and computing

image gradients, they are less used for computing strains in a similar fashion. Rather than

apply the spline-based kernels to the intensity values, one could use as data the displace-

ment values and compute the rates of change necessary for a strain measure. Following this

line of reasoning, many of the known relationships between interpolation kernels and the

resulting regularity of the reconstructed signal or the order of accuracy can be repurposed to

aid in the construction of alternative differentiating filters. The key difference between the

DSP approach and the general nonlocal approach is that for DSP, the filters are primarily

driven by reducing blurring or aliasing rather than the smoothness considerations of the

derivative field. Additionally, DSP theory is predicated on continuity assumptions of the
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Figure 2. Comparison of NLVC with conventional methods.

analogue signal. In a practical sense, this implies that interpolation-based operators may

not produce high quality results when used to compute strains because the focus of their

development was not on the primary objectives for a strain measure. Further, although

DSP ideas and the generalized nonlocal approach to computing strains have a number of

similar features, the space of fields appropriate for the nonlocal approach is broader in that

it includes discontinuous functions, where as the DSP space does not.



3. Conclusions

We have outlined in this paper, the basic idea behind a new class of strain measures for DIC

motivated by NLVC and shown how this framework is different than existing methods. The

primary difference between the nonlocal strain measure and SG filters is that curve fitting

is not inherent in the nonlocal approach. Also, the nonlocal approach is more general than

the straightforward application of DSP ideas to computing derivatives of the displacement

field because the nonlocal approach does not assume that the underlying signal is continuous

or differentiable. Clearly, a number of implementation details have been omitted from this

work as this will be the focus of a forthcoming work on how to construct a nonlocal kernel

such that good signal to noise properties are obtained. The purpose of this work was to

contextualize the nonlocal approach among other existing methods.
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