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A NONLOCAL STRAIN MEASURE FOR DIC
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ABSTRACT. It is well known that that the derivative-based classical approach to strain is
problematic when the displacement field is irregular, noisy, or discontinuous. Difficulties
arise wherever the displacements are not differentiable. We present an alternative, nonlocal
approach to calculating strain from DIC data that is well-defined and robust, even for the
pathological cases that undermine the classical strain measure. This integral formulation
for strain has no spatial derivatives and when the displacement field is smooth, the nonlocal
strain and the classical strain are identical. We submit that this approach to computing
strains from displacements will greatly improve the fidelity and efficacy of DIC for new

application spaces previously untenable in the classical framework.

1. INTRODUCTION

At the frontier of digital image correlation (DIC) technology lies a formidable challenge:
dealing with discontinuous displacement fields (cracks) and steep strain gradients in the
context of image noise. This pursuit is particularly difficult for a number of reasons, the
primary of which include the fact that the mathematical framework used in conventional
methods is not appropriate for this space of fields and that a delicate balance exists between
filtering noise from the solution and smoothing out the underlying structure. Certainly,
sophisticated alterations to conventional methods are possible to capture discontinuities,
but we propose instead an alternative perspective that naturally incorporates this class of
problems. This alternative approach is based on nonlocal vector calculus (NLVC).

For relevant background information regarding NLVC, the reader is referred to [1, 2, 3, 4]
and the references therein. The main benefit of NLVC is that it provides a mathematically
consistent measure of the rate of change for fields that may not be differentiable. Rather
than using spatial derivatives, NLVC uses integral operators to express these rates of change.
A basic example is the nonlocal gradient operator:

0 Vui) = [ uGnly - x)dy

where k(y — x) is the kernel. The conditions on the kernel are simply that its integral over
the domain is zero. Formally speaking, the kernel should be a distribution or delta function,
but for implementation considerations we will engender an approximation of this operator

over a finite support by using alternative kernel functions. The nonlocal gradient operator
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FIGURE 1. (a) Kernel function ¢.(z) and (b) its derivative that can be used
to construct a multidimensional kernel a(y —x). In this case, 7 is a parameter

that can be used to skew the hat function.

then becomes
2 V) = [ uixaly - x)dy

where a(y —x) is the kernel with finite support. An example of such a kernel is the derivative
of a hat function as shown in Figure 1. In the discrete setting one may recognize that for
regular grids, the above nonlocal operator takes the form of a convolution. This is the
point of similarity with other methods for computing strain [5, 6]. In convolution form, the
nonlocal gradient becomes

(3) Vu(x) = ¢(x) * a(y — x)

In the convolution form above, the kernel remains the same as in the integral operator of
equation (2). The coefficients c(x) can be chosen depending on the desired properties of the
resulting operator. If c(x) is chosen such that c¢(x) = u(x) the resulting operator will be
interpolating, but will be subject to oscillations when the gradients are large. Alternatively,
the coefficients can be solved for in the frequency domain such that the convolved gradient
field is interpolating at the data points. This requires extra computational expense, but
enables greater flexibility in the choice of a(y — x).

Regardless of the kernel choice or how the coefficients are computed, what has been out-
lined above is a general framework for computing gradients that does not require spatial
derivatives. Also, we point out that the analyst can still choose the form of the strain mea-
sure (for example, Green-Lagrange or Almansi, etc.). We have merely defined a way to
compute the necessary terms in each of these by evaluating the rates of the change of the
displacement field.



2. COMPARISONS AMONG EXISTING METHODS

To make the presentation more clear, we will focus this work on casting the nonlocal
approach in the context of existing methods so that the differences can be pointed out.
Along the pathway from displacement data to strain, there are a number of techniques

available. For the most part, the conventional methods involve curve fitting.

2.1. Savitzky-Golay filtering. One common approach involves the use of a virtual strain
gauge to compute strain. While at first glance it may seem that there are a number of
similarities between Savitzky-Golay (SG) inspired strain measures (like the virtual strain
gauge) and the nonlocal approach, the two are in reality very different. SG filters are based
on the idea that the underlying displacement field can be fit with a polynomial representation.
The derivatives of the displacement field are then computed using the coefficients of the fitted
polynomial. The similarity between the SG filter approach and the nonlocal approach comes
from the convolution used to compute the strains (that includes the least-squares fit of the
data on a regular grid). Although the form of the operator is similar to the nonlocal form,
the basic assumption that the data be a continuous polynomial in form is not necessary in
the nonlocal approach. The SG filter approach is limited to displacement fields that can be
approximated by the polynomial basis of the filter. For example, a linear polynomial leads
to a strain measure that cannot capture points of inflection because the polynomial itself
has no points of inflection. In contrast, in the nonlocal approach, a linear polynomial kernel
function will still capture points of inflection.

In a broader context, the SG filter is one instance of a curve fitting approach. Some of
the high level differences between curve-fitting approaches and the NLVC approach to going

from displacement values to strains are shown in Figure 2.

2.2. Digital signal processing. Other methods of constructing a strain measure are also
possible via adapting ideas from digital signal processing (DSP). For example, b-spline inter-
polation has become very popular because of its high signal to noise ratio and compactness of
the support needed to perform interpolation with high order of accuracy [7, 8, 9, 10]. While
these methods are used extensively for interpolating image intensity values and computing
image gradients, they are less used for computing strains in a similar fashion. Rather than
apply the spline-based kernels to the intensity values, one could use as data the displace-
ment values and compute the rates of change necessary for a strain measure. Following this
line of reasoning, many of the known relationships between interpolation kernels and the
resulting regularity of the reconstructed signal or the order of accuracy can be repurposed to
aid in the construction of alternative differentiating filters. The key difference between the
DSP approach and the general nonlocal approach is that for DSP, the filters are primarily
driven by reducing blurring or aliasing rather than the smoothness considerations of the
derivative field. Additionally, DSP theory is predicated on continuity assumptions of the
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F1GURE 2. Comparison of NLVC with conventional methods.

analogue signal. In a practical sense, this implies that interpolation-based operators may
not produce high quality results when used to compute strains because the focus of their
development was not on the primary objectives for a strain measure. Further, although
DSP ideas and the generalized nonlocal approach to computing strains have a number of
similar features, the space of fields appropriate for the nonlocal approach is broader in that
it includes discontinuous functions, where as the DSP space does not.



3. CONCLUSIONS

We have outlined in this paper, the basic idea behind a new class of strain measures for DIC
motivated by NLVC and shown how this framework is different than existing methods. The
primary difference between the nonlocal strain measure and SG filters is that curve fitting
is not inherent in the nonlocal approach. Also, the nonlocal approach is more general than
the straightforward application of DSP ideas to computing derivatives of the displacement
field because the nonlocal approach does not assume that the underlying signal is continuous
or differentiable. Clearly, a number of implementation details have been omitted from this
work as this will be the focus of a forthcoming work on how to construct a nonlocal kernel
such that good signal to noise properties are obtained. The purpose of this work was to

contextualize the nonlocal approach among other existing methods.
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