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Turbocharging,Quantum,Tomography

Robin&Blume,Kohout&(PI,&Dept.&1425),,Erik,Nielsen,(Dept.,1121),,John,Gamble,(Dept.,1425),,Kenneth,Rudinger,(Dept.,1425),

What's,the,Mission?
Quantum,informaKon,processing,(QIP)
promises,huge,improvements,in,
algorithms,,communicaKons,,etc.

,,
QIP,requires,development,of,highP
fidelity,qubits,,capable,of,precise
quantum*logic*gates,(operaKons).

Goal%of%this%R&D:""methods"for"valida&ng"and"
debugging"as.built"qubits.""Mission"demands"
unprecedented"precision,"efficiency,"and"reliability.

Project,Details
▪ Early,Career,LDRD,(DS&A,/,IIT).
▪ 2,years,(FY13P14).,,$235K/year.,,0.7,FTEs
▪ Supports,development,of,quantum,informaKon,
science,,=>,maintain,U.S.,IT,leadership.

Concept
ExisKng,"quantum,tomography",protocols,have,several,problems:
,,,,,(1),,CriKcally,dependent,on,prePcalibrated,reference,frames.
,,,,,(2),,Require,huge,#,of,samples,to,get,the,accuracy,we,need.
,,,,,(3),,No,internal,selfPconsistency,checks,(e.g.,to,detect,drih,in,Kme).

Our,soluKon:,,Gate1Set*Tomography,(GST).
,,,*,Model,the,qubit[s],as,a,black,box.,,
,,,,,,(ensures,robustness,to,calibraKon)
,,,*,EsKmate,enKre,gate,set,from,gate
,,,,,,sequence*experiments,(q.,circuits).

Accomplishments
Invented,,developed,,and,implemented,GST.,,Solved,a,wide,variety,of,
conceptual,and,implementaKon,challenges.,,Deployed,GST,to,characterize,
asPbuilt,qubits,in,three,different,labs/technologies,(ion,,Si,dot,,XMon).

Figures:"error"rates
for"SNL"ion"qubit.
1:""GST"diagnosed
non.Markov"error.
2:""Re.analysis"of
gates"aCer"debug.

We,developed,hierarchical(badness(of(fit,to
diagnose,outPofPmodel,errors,&,debug,qubits.

GST,can,characterize,quantum,logic,gates,with
unprecedented,accuracy,PP,10.⁴"already,in
experiments,,10.⁶,or,beper,in,simulaKons.

,,,,,,,,,,,,,What/is/the/secret/ingredient?

We,figured,out,how,to,use,long(circuits,,with,
gates,repeated,many,Kmes,,to,amplify,errors.
(Deducing,gates,from,nonlinear,data,is,tricky!)
This,technique,yields,hyperaccurate,esKmates
of,the,unitary,part,of,the,gates.

Impact
Qubit"characterizaHon"&"validaHon"is"criHcal"for"QIP"hardware"development.

GST"is"far"more"robust"than"old"techniques,"1.3"orders"of"magnitude"more"
accurate,"and"requires"less"experimental"Hme!

This"R&D"has"already"contributed"to"SNL"internal"projects"(trapped.ion"and"
Si"qubit"development).""We"have"external"sponsorship,"and"a"waiHng"list"of"
external"collaborators"lined"up"to"use"GST"to"characterize"their"qubits.

ConKnuing,R&D
▪ Follow.on"funding"secured"(4"years,"$208K/y)"through"
ARO""QCVV""program.

▪ Focus"on"model5selec&on.
▪ Currently"pursuing"external
"""funding"to"finish"GST"development.
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Supplementary Figure 4 | Calibrated vs uncalibrated state tomography: a,
Data taken to calibrate the tomography shows ripples in the length of the Bloch
vector if we assume that the tomography projects the quantum state on to
Cartesian axes (inset). b-c, The paths around the Bloch sphere for the different
evolutions that are used for tomography calibration. If the tomography is
assumed to project on to the Cartesian axes there are points that lay outside
the Bloch sphere, and the pure |Si states are not at the north pole, which is
indicative of flawed state tomography. d, The ripples in the length of the bloch
vector are diminished (compared to panel a) if the axes deduced from state
tomography (inset) are used. e-f, The paths around the Bloch sphere for the
different evolutions that are used for state tomography. When the correct axes
are used, all the points lie inside the Bloch sphere and the pure |Si are at the
north pole.

many different evolutions around the Bloch sphere by evolving
from many different starting points at many values of ≤ (Suppl.
Fig. 4b,c,e,f). We determine the axes on to which we project
our state by finding the axes that minimize the amplitude of
the ripples in the length of the Bloch vectors (Suppl. Fig. 4d).
Based on our measurement procedure, we define the S-T 0 axis
to lie along the z-axis. We allow the y-axis to lie anywhere
on the Bloch sphere because a rotation around the x-axis can
suffer from over/under rotation as well as adiabaticity issues
with switching J on and off instantly. We constrain the x-axis
to lie in the x-z-plane because the only expected error is due
to adiabaticity turning J on and off. The typical tomographic
axes are shown in Suppl. Fig. 4d, and the signs of the errors are
consistent with their origins. The variation from calibration to
calibration is ª1% on the axis lengths and angles.
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Supplementary Figure 5 | Single-qubit rotations: a, The Pauli set for ø=100ns
as measured is complicated by single qubit rotations. b, Numerically rotating
each qubit around the S-T0-axis simplifies presentation and analysis. c, The
expected state for ø=100ns. d, The single qubit rotation angles for both qubits
as a function of ø are smooth and monotonic functions. e-f The entire Pauli set
as a function of ø for the raw and rotated data equation(1). The the y-axes of
adjacent elements in the Pauli set are offset by 1.

Determining Single Qubit Rotations
During the entangling sequence the two qubits rotate very

rapidly around the S-T0 axis compared to the speed of the
CPHASE gate (J1/2º ª J2/2º ª 300M H z, J12/2º ª 1M H z). These
single qubit rotations are not perfectly canceled out by the º-
pulses in the dynamically decoupled sequence due to pulse
distortions, consistent with pulse rise time effects at short times
and capacitive coupling to RC-filtered DC gates at long times.
Moreover, the angles by which the qubits are rotated change
as a function of the evolution time ø. In order to undo these
rotations, we perform a least-square fit of the data to the ex-
pected form of the Pauli set (see equation(1) below), restricting
the rotation to be around the S-T0 axis because J1, J2 ¿ ¢Bz .
These angles are shown in Fig. 3b, and exhibit a smooth,
monotonic behavior. The angles increase quickly for small ø,
which is consistent with pulse rise time effects, and display
linear behavior for long ø, which is consistent with long time RC
filtering. For comparison, we plot the entire Pauli set for both
the rotated and unrotated data in Suppl. Fig. 5 c-d.
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Fault Tolerance

• A computation is fault tolerant if
its output is unchanged by
errors along the way.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Fault Tolerance

• A computation is fault tolerant if [the relevant part of] 
its output is unchanged by
errors along the way.

• Fault tolerance almost always involves encoding the 
computation into a logical subsystem.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Fault Tolerance

• A computation is fault tolerant if [the relevant part of] 
its output is unchanged by [a certain number/kind of]
errors along the way.

• Fault tolerance almost always involves encoding the 
computation into a logical subsystem.

• FT computations have a threshold for error density.
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FT in the circuit model
1.  The standard error model

• Quantum noise = “what happens in the real world”
                     = pretty subtle and complicated!

• Many models.  Varying complexity / realism.

• But most of FT theory starts with 
weak, local, stochastic, i.i.d., depolarizing errors.



FT in the circuit model
1.  The standard error model

• Quantum noise = “what happens in the real world”
                     = pretty subtle and complicated!

• Many models.  Varying complexity / realism.

• But most of FT theory starts with 
weak, local, stochastic, i.i.d., depolarizing errors.

1 w/Pr=1-p
X w/Pr=p/3
Y w/Pr=p/3
Z w/Pr=p/3



FT in the circuit model
2.  Error correcting codes

• Ideal quantum circuits are reversible.  So errors will 
propagate to the output and screw it up.

• So we encode in a quantum error-correcting code.

• Each 1 qubit ==> n qubits.

• Periodically measure n-1
parity checks (“stabilizers”)
to detect low-weight errors.

• Once detected, the error can be reversed -- without 
disturbing (or learning about!) the encoded qubit.



FT in the circuit model
3.  Fault tolerant logic operations

• Encoding + active error correction ≠ fault tolerance!

• Error correction only corrects storage errors.
(1) Encoded computation requires logical operations.
(2) We do EC using gates.  What if they have faults?

• Fault tolerant logic possible, but really sophisticated!
SOME PRINCIPLES:
 1. Do EC/logical operations fast (constant depth circuits)
 2. Minimize error propagation (avoid FANOUT-type stuff)
 3. Always double-check measurements (time redundancy)
 4. Never decode along the way (makes you vulnerable).

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



FT in the circuit model
4.  Thresholds & overheads

• Fault tolerance is possible...
(at least against the standard 
error model + a bit more)
...but it is hard and expensive.

• Each scheme has a threshold error rate (10-2 - 10-4):
➝ Error rate above threshold?  Computation fails!
➝ Error rate below threshold?  Computation works!
    ↳ Encoding requires lots of extra qubits (overhead).
       ↳ Overhead gets very bad near the threshold.   

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Figure 4.7: An example of Monte Carlo simulation for the surface code. A patch of the
surface code is simulated for a variety of depolarizing noise strengths p and code distances
d. The threshold corresponds to the intersection point. Reproduced, with permission,
from [Fow13c].
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Is AQC intrinsically FT?

• Adiabatic QC is both:
(1)  an algorithm
(2)  an architecture (good for that algorithm)

• Viewed as an architecture, AQC
looks like it ought to be resilient 
to many forms of error / noise.

• This doesn’t mean that
it’s naturally FT, though!

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Is AQC intrinsically FT?
1.  “History state” AQC is fragile

• If you want to run an arbitrary quantum algorithm 
(Shor, Grover, etc) as an AQC, then you would use the 
“History State” construction (Kitaev, Aharonov et al).

• This proves equivalence -- with poly(N) overhead -- of 
the noise-free models (circuits <==> AQC).

• Unfortunately, it requires serializing the circuit...
...which completely destroys any fault tolerance it might 
have (FT requires gates in parallel).

• History state AQC is horribly fragile to errors.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Is AQC intrinsically FT?
2.  The enigma of ground state QC

• “Ground State Quantum Computing” is a proposal for 
mapping [FT] circuits to [FT] adiabatic computations
(Ari Mizel, arXiv:1403.7694).

• So, is this a fault tolerant adiabatic architecture???

• Compelling 
counter-argument 
given by Hastings [1].

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

[1] https://scirate.com/arxiv/1403.7694

https://scirate.com/arxiv/1403.7694
https://scirate.com/arxiv/1403.7694


Is AQC intrinsically FT?
3.  Challenges for AQO (annealing)

• Adiabatic quantum optimization seems the most 
likely to be robust.

• Immune to dephasing and path variations.  Gap 
provides some protection against heating.

• Cooling can only help.

• However... as the computation scales up, gap 
typically gets small, and heating / bitflip errors 
will become fatal.  Not intrinsically FT.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Fault Sources in AQC

• No computation can be tolerant to every conceivable 
kind of fault.

• FT constructions are designed against specific error 
models.

• We need to know what we are defending AQC against!

• This is not a simple question -- and it’s probably not 
the same answer as for the circuit model.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Fault Sources in AQC
1.  Landau-Zener transitions

• The simplest “error” in AQC is a transition out of the ground 
state because you changed H too fast.

• Not really an error if you
just ran the AQC too fast!

• Can be “error” if due to
accidental jitter in H(t).
This appears as heating.

• Note:  can (& will) jump
to higher excited states.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Fault Sources in AQC
2.  Wrong problem Hamiltonian

• Small errors in the coefficients of the problem
Hamiltonian => you successfully solve the wrong 
problem!

• This is a real potential problem with current 
hardware -- precision for each term is low.

• Can be solved by
ferromagnetic 
repetition coding 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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1. randomly distributed with zero mean, i.e., h✏i = 0

2. uncorrelated, i.e., independent of one another and
of the values of Jij and hi

3. small, i.e., significantly smaller than the maximum

intended couplings: ✏
RMS

⌘
⌦
✏2
↵
1/2 ⌧ E

max

.

A feature of this error Hamiltonian is that it com-
mutes with the final-time QUBO problem Hamiltonian,
though not necessarily with any of the intermediate-time
Hamiltonians. These errors therefore only a↵ect the en-
ergies of the final eigenstates, which are simply compu-
tational basis states as the final Hamiltonian is a sum of
Z-like Pauli operators. Nonetheless, the errors may suf-
ficiently perturb these energies that the ground state of
H 0 = H

Q

+�H is no longer equal to the ground state of
the unperturbed problem Hamiltonian, H

Q

.

B. Example of a faulty QUBO instance

Figure 1 illustrates a simple QUBO problem instance
which is particularly susceptible to imprecisions in the
coupling terms. The Hamiltonian for this problem is
HQ = �

P
ij JijZiZj , with Jij = ±1 as indicated in

Fig. 1 (middle). This instance consists of two ferromag-
netic Ising chains linked antiferromagnetically at one end,
with Jij = 0 for all other cross links on the ladder. This
Hamiltonian remains unchanged upon flipping all qubits,
so the the ground space of this problem is doubly degen-
erate. We label the states graphically, with blue and
tan dots representing qubit states |0i and |1i, respec-
tively. In this notation, the ground space of the prob-
lem Hamiltonian is spanned by the states | i and
| i, with the top and bottom rows representing
the corresponding rows in Fig. 1. Coupling errors on all
links in the hardware graph are drawn uniformly from
the range [�0.3, 0.3] and we are neglecting on-site errors

(so ✏
(h)
i = 0). The new ground states were determined

by exploiting a formal equivalence with Weighted MAX-
2-SAT (discussed in Appendix A) and solved using the
freely available SAT solver, AKMAXSAT [18]. Figure 1
(bottom) shows an example with these erred couplings
which, though weak, are su�cient to change the ground
states to | i and | i.

As the ladder grows longer, the problem becomes in-
creasingly susceptible to weak errors. This may be un-
derstood by considering the energy cost associated with
violating a single problem link, as occurs in the example
shown in Fig. 1 (bottom). In this case, this energy cost
was o↵set by energy savings due to satisfying several of
the erroneous (dashed) crosslink couplings. If the total
number of qubits in the system is 2N , then the total
energy associated with the crosslinks is approximatelyp
N✏

RMS

. If this is larger than the energy associated
with a single problem link,

p
N✏

RMS

� E
max

, then it is
likely that the erroneous couplings will cause a change in

FIG. 2. Encoding a generic QUBO problem with a repeti-
tion code. The QUBO connectivity graph (extreme left) is
replicated K times and linked at equivalent vertices with fer-
romagnetic interactions (shown here with linear connectivity
for ease of presentation, but higher connectivity is preferable).
This is equivalent to taking a Cartesian product of the origi-
nal QUBO graph with an Ising ferromagnet (middle). In the
code space of the repetition code, all the spins in each code
block will align and may be treated as a single dynamical
variable under a renormalized Hamiltonian (right).

the ground state. This
p
N increase in failure probabil-

ity appears in our Monte Carlo (MC) experiments, as we
discuss in detail below.

In what follows we will assume that the adiabatic al-
gorithm proceeds as desired, so that the final state is the
ground state of the perturbed Hamiltonian, H 0. We shall
therefore be interested in encoding constructions which
suppress the e↵ects of �H.

III. PROTECTING QUBO WITH REPETITION
ENCODING

A. General protection scheme

To protect the system, we encode each logical qubit in
the problem Hamiltonian as K ferromagnetically coupled
physical qubits with coupling constant JF > 0. This idea
was recently used to demonstrate a fidelity improvement
in experimental quantum annealing [12], but the e↵ect
of the error Hamiltonian �H was not considered. The
encoding introduces a new label, k, indexing the phys-
ical qubit within each logical qubit, so that Zi 7! Zi,k.
The connectivity graph of the encoded system is endowed
with a Cartesian product structure, so that if G = (E ,V)
is the graph of the original system and F = (EF ,VF ) is
the Ising ferromagnet used to encode the logical qubits,
then the new graph is G⇤F . In terms of the adjacency
matrices, Adj(G⇤F ) = Adj(G)⌦ IF + IG ⌦Adj(F ) (see
[19], p. 52). Here IG (IF ) is the identity matrix of di-
mension equal to the dimension of G (F ). See Fig. 2.

Including error terms, the Hamiltonian after encoding



Fault Sources in AQC
3.  Slow Hamiltonian error (path variation)

• What if the
Hamiltonian is wrong during
the evolution -- but varies slowly?

• This is called path variation, and includes
all low-frequency Hamiltonian errors.

• In general, AQC is near-immune to path variation
and can be made even more so using standard
techniques.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Fault Sources in AQC
4.  Realistic coupling to a bath

• The ultimate error model -- covers everything:

• Typically reduced to describing spectral density of 
the bath (i.e., bath fluctuates at various freqs).

• This talk:  simplify further to a sum of:
(1)  A Herr(t) term that is slow (low frequency).
(2)  Some amount of white noise (high frequency).
      ↳ Produces stochastic errors (no time correlation)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

H(t) = HAQC(t) +HS$B +Hbath



Fault Sources in AQC
5.  Stochastic errors

• Hamiltonians generate amplitudes for “errors”
(i.e., for being in the wrong quantum state).

• But if Herr(t) and Herr(t’) are uncorrelated for t≠t’,
amplitudes can be replaced with probabilities.

• This leads to stochastic errors -- e.g., dephasing or 
depolarization -- just as in the circuit model.

• Dephasing is ok for AQC
but energy jumps are not.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Tools to protect AQCs

• Protecting an AQC against noise (in control or from 
environment) requires suppressing or correcting transitions out 
of the |0〉 state.

• Simplest:  increase H.  Unfortunately, not scalable.

• All other techniques involve:
(1)  encoding in an 
      error-correcting code,
(2)  suppressing/correcting 
      jumps out of code space
(3)  decoding (reading out logical bits) at the end.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Tools to protect AQCs
1.  QECC + dynamical decoupling

• Dynamical decoupling:  suppress unwanted 
Hamiltonian rotations by periodic π flips.

• Given a code whose stabilizers are {Sk}, we
can suppress transitions out of the code
space by periodically applying the Sk as
DD operations.  Requires fast control.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

eiθX eiθX eiθX eiθX eiθX = ei6θXeiθX
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Tools to protect AQCs
2.  QECC + penalty Hamiltonians

• We choose a QECC and encode in it:
  ↳ Prepare each logical qubit in the logical |+〉 state.
  ↳ Evolve by Hlogical = sum of logical X and Z operators.

• But how do we keep the system in the code 
subspace (i.e., suppress errors)?

• Add the code stabilizers {Sk} to H as a penalty 
Hamiltonian.  Code states have 0 energy; error 
states have E = # of errors.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Tools to protect AQCs
3.  How/why DD and penalties work

• DD and penalty Hamiltonians (“energy gap protection”) 
suppress transitions out of the code space.  Instead of 
correcting errors, they prevent them from happening.

• These two tools turn out to
be (more or less) the same!

• The phase on “error” states
rotates in time as eiωt or (-1)t.
Destructive interference stops
Herr from driving transitions.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Tools to protect AQCs
4.  Limitations of error suppression

• Suppression isn’t perfect:

• (1)  Hamiltonians that
oscillate in resonance
with the protection gap
can drive transitions.

• (2)  Once an single error happens, there’s no protection 
against more errors (“domino” or “zipper” effect).

• The codes that would block this vulnerability would be 
self-correcting quantum memories.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Tools to protect AQCs
5.  Cooling

• Can just cool the AQC?

• Probably not.  If these Hamiltonians
could be cooled efficiently, why would
we do AQC at all?  Just use a fridge!

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Tools to protect AQCs
6.  QECC + Cooling

• What if we implement a QECC -- using penalty 
Hamiltonians -- and then put it in a fridge.  Can we 
rely on cooling to correct errors?

• It depends on the code.

• Only if we invent a 
quantum self-correcting memory.

• Correcting errors in known codes requires clever 
nonlocal decoding. Natural cooling is dumb & local.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Tools to protect AQCs
6.  QECC + Active correction

• What if we encoded our AQC in a QECC...
...and then ran an active error correction protocol?

• Yes, this would protect.

• However, it requires all 
the same resources as the
circuit model of QC!

• Actually computing adiabatically while actively 
correcting errors is surprisingly hard (impossible?)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Efficacy (theory)
1.  Dynamical Decoupling

• Should work to suppress noise whose frequency is 
lower than the DD pulse rate.

• Requires some fast gates and precise control.

• Gets very unwieldy for useful codes:
you have to pulse all the stabilizers.

• In practice, will probably be used 
together with penalty Hamiltonians 
(to apply high-weight stabilizers)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Efficacy (theory)
2.  Penalty Hamiltonians

• Like DD, should work to
suppress low-frequency errors.

• Limited by strength of the
penalty Hamiltonian (not ∞!)

• In practice, hard to find codes
with low-weight stabilizers
that can be implemented using
real-world Hamiltonians.  Will probably
require hybridization with DD technique.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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FIG. 2. (Color online) Schematic for a linear layout of the
[[6k, 2k, 2]] code indicating the physical qubits involved in each
of the stabilizer generators (pale lines) and single-qubit log-
ical operators (dark lines). Each logical qubit is composed
of a row of three physical qubits. All code operators are
weight-two with the exception of two weight-4k stabilizer gen-
erators. Qubits which are initially entangled are enclosed in
black ovals.

However, this code uses the first (last) physical qubit
in all 2k of the logical X (Z) operators and so does not
satisfy property (2). As this code grows, the coupling de-
mands on the first and last qubits quickly become phys-
ically untenable. Finally, notice that this code yields a
planar Hamiltonian only when the unencoded Hamilto-
nian has linear, nearest neighbor couplings.

III. THE [[6k, 2k, 2]] QUANTUM CSS CODE

In this section, we introduce a family of [[6k, 2k, 2]] quan-
tum CSS codes that do preserve the properties listed
above. Our code replaces each logical qubit, labeled by
index i, with three physical qubits, labeled by the or-
dered pairs, {(i, x), (i, 0), (i, z)}, as illustrated in Fig. 2.
The stabilizer group is generated by 4k operators:

S =
D
{X

(i,x)X(i+1,x)}2k�1

i=1

,

2kO
i=1

X
(i,0)X(i,z),

{Z
(i,z)Z(i+1,z)}2k�1

i=1

,
2kO
i=1

Z
(i,x)Z(i,0)

E
, (3)

where X
(i,z) is a Pauli X operator acting on physical

qubit (i, z). Note that it is the requirement that the two
many-body stabilizer generators commute that forces the
total number of logical qubits in the code to be even. The
single-body logical operators of the code are given by:

Xi = X
(i,x)X(i,0)

Zi = Z
(i,0)Z(i,z). (4)

FIG. 3. (Color online) A 2D grid of logical qubits remains
planar upon encoding in the [[6k, 2k, 2]] code. We have em-
phasized a single logical qubit and its interactions. Again,
all interactions between logical qubits take place through the
(i, 0) qubits.

Two-body logical operators may be constructed by mul-
tiplying the associated single-body logical operators,
though this at first would seem to result in a four-body
physical operator, i.e., XiXj = X

(i,x)X(i,0)X(j,x)X(j,0).
However, we may exploit the fact that logical operators
are equivalent up to multiplication by elements of the sta-
bilizer group. That is, any logical operator L acts identi-
cally to sL on states in the codespace, for some s in the
stabilizer group. In the case of the [[6k, 2k, 2]] code, all
two of the form X

(i,x)X(j,x) are in the stabilizer group.
This observation allows us to write the two-body logical
operators as

XiXj = X
(i,0)X(j,0)

ZiZj = Z
(i,0)Z(j,0), (5)

where we have used a similar line of reasoning in the con-
struction of the Z-type operators. Notice that all single
body interactions are limited to the three qubits compris-
ing the logical qubit, while all couplings involve only the
(i, 0) qubits. This code therefore preserves the connec-
tivity of the problem Hamiltonian (so a planar Hamilto-
nian remains planar upon encoding), and only increases
the degree of the connection graph by two, as shown in
Fig. 3.

We may establish the distance of this code by noting
that all single-physical-qubit Pauli errors anticommute
with at least one of the stabilizer generators, and are
therefore detectable by the code. However, there are a
number of single qubit errors (such as X

(i,0) and X
(j,0))

which produce an identical error syndrome, implying that
the code is not capable of error correction. This fur-
ther implies the existence of two-qubit errors (such as
the two-body logical operator, X

(i,0)X(j,0)) which do not
anticommute with any of the stabilizer generators and
are therefore undetectable. The code distance is there-
fore fixed at d = 2.



Efficacy (theory)
2b.  Encoding the problem Hamiltonian

• Encoding + penalty Hamiltonians can also be used to 
solve the “wrong problem Hamiltonian” issue.

• Approach:  Encode the problem Hamiltonian in a  
repetition code.

• Basically, this
replaces each qubit
with a big ferromagnet.  The desired Hamiltonian scales 
up as O(N), whereas errors scale as O(N1/2).

• Does not play well with the dynamics of AQC.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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1. randomly distributed with zero mean, i.e., h✏i = 0

2. uncorrelated, i.e., independent of one another and
of the values of Jij and hi

3. small, i.e., significantly smaller than the maximum

intended couplings: ✏
RMS

⌘
⌦
✏2
↵
1/2 ⌧ E

max

.

A feature of this error Hamiltonian is that it com-
mutes with the final-time QUBO problem Hamiltonian,
though not necessarily with any of the intermediate-time
Hamiltonians. These errors therefore only a↵ect the en-
ergies of the final eigenstates, which are simply compu-
tational basis states as the final Hamiltonian is a sum of
Z-like Pauli operators. Nonetheless, the errors may suf-
ficiently perturb these energies that the ground state of
H 0 = H

Q

+�H is no longer equal to the ground state of
the unperturbed problem Hamiltonian, H

Q

.

B. Example of a faulty QUBO instance

Figure 1 illustrates a simple QUBO problem instance
which is particularly susceptible to imprecisions in the
coupling terms. The Hamiltonian for this problem is
HQ = �

P
ij JijZiZj , with Jij = ±1 as indicated in

Fig. 1 (middle). This instance consists of two ferromag-
netic Ising chains linked antiferromagnetically at one end,
with Jij = 0 for all other cross links on the ladder. This
Hamiltonian remains unchanged upon flipping all qubits,
so the the ground space of this problem is doubly degen-
erate. We label the states graphically, with blue and
tan dots representing qubit states |0i and |1i, respec-
tively. In this notation, the ground space of the prob-
lem Hamiltonian is spanned by the states | i and
| i, with the top and bottom rows representing
the corresponding rows in Fig. 1. Coupling errors on all
links in the hardware graph are drawn uniformly from
the range [�0.3, 0.3] and we are neglecting on-site errors

(so ✏
(h)
i = 0). The new ground states were determined

by exploiting a formal equivalence with Weighted MAX-
2-SAT (discussed in Appendix A) and solved using the
freely available SAT solver, AKMAXSAT [18]. Figure 1
(bottom) shows an example with these erred couplings
which, though weak, are su�cient to change the ground
states to | i and | i.

As the ladder grows longer, the problem becomes in-
creasingly susceptible to weak errors. This may be un-
derstood by considering the energy cost associated with
violating a single problem link, as occurs in the example
shown in Fig. 1 (bottom). In this case, this energy cost
was o↵set by energy savings due to satisfying several of
the erroneous (dashed) crosslink couplings. If the total
number of qubits in the system is 2N , then the total
energy associated with the crosslinks is approximatelyp
N✏

RMS

. If this is larger than the energy associated
with a single problem link,

p
N✏

RMS

� E
max

, then it is
likely that the erroneous couplings will cause a change in

FIG. 2. Encoding a generic QUBO problem with a repeti-
tion code. The QUBO connectivity graph (extreme left) is
replicated K times and linked at equivalent vertices with fer-
romagnetic interactions (shown here with linear connectivity
for ease of presentation, but higher connectivity is preferable).
This is equivalent to taking a Cartesian product of the origi-
nal QUBO graph with an Ising ferromagnet (middle). In the
code space of the repetition code, all the spins in each code
block will align and may be treated as a single dynamical
variable under a renormalized Hamiltonian (right).

the ground state. This
p
N increase in failure probabil-

ity appears in our Monte Carlo (MC) experiments, as we
discuss in detail below.

In what follows we will assume that the adiabatic al-
gorithm proceeds as desired, so that the final state is the
ground state of the perturbed Hamiltonian, H 0. We shall
therefore be interested in encoding constructions which
suppress the e↵ects of �H.

III. PROTECTING QUBO WITH REPETITION
ENCODING

A. General protection scheme

To protect the system, we encode each logical qubit in
the problem Hamiltonian as K ferromagnetically coupled
physical qubits with coupling constant JF > 0. This idea
was recently used to demonstrate a fidelity improvement
in experimental quantum annealing [12], but the e↵ect
of the error Hamiltonian �H was not considered. The
encoding introduces a new label, k, indexing the phys-
ical qubit within each logical qubit, so that Zi 7! Zi,k.
The connectivity graph of the encoded system is endowed
with a Cartesian product structure, so that if G = (E ,V)
is the graph of the original system and F = (EF ,VF ) is
the Ising ferromagnet used to encode the logical qubits,
then the new graph is G⇤F . In terms of the adjacency
matrices, Adj(G⇤F ) = Adj(G)⌦ IF + IG ⌦Adj(F ) (see
[19], p. 52). Here IG (IF ) is the identity matrix of di-
mension equal to the dimension of G (F ). See Fig. 2.

Including error terms, the Hamiltonian after encoding



Efficacy (theory)
3.  Cooling

• Unlikely to solve our problems in the N→∞ limit.

• Clearly will help somewhat in practice (you want 
your device to be cold!)

• Very difficult to separate two effects in practice:
(1)  Cooling adds classical annealing (helps, but not quantum!)
(2)  Cooling helps to correct errors, protecting quantum
      advantages.

• It would help if we understood quantum speedups...

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Efficacy (theory)
4.  Active Correction

• Would definitely protect code space -- in principle.

• It’s the highest priority for standard (circuit) QC.

• Requires resources incompatible w/AQC philosophy.

• More “AQC-compatible” if we manage to invent
self-correcting quantum memories.

• Major open question (stay tuned):
Can we actually compute adiabatically in a QECC?

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Efficacy (experiment)
Penalty Hamiltonians on D-Wave Two

• To date, there is one experimental test (2013-14).

• Pudenz et al used Quantum Annealing Correction for 
random Ising problems on D-Wave Two:
(1)  Encoded problems in 3-qubit repetition code.
(2)  Applied stabilizers (ZZI, IZZ, ZIZ) as penalty H.
(3)  Decoded final state to obtain result of computation.

• Caveat:  X terms could not be encoded (X → XXX)
     ↳ Penalty suppresses X... its strength β must be tuned.

• Small system, small code -- hard to extrapolate to large N!

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Efficacy (experiment)
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Summary:

1. QAC increases
the success
probability of 
the adiabatic 
computation.

2.  Maximum 
advantage at 
high problem 
energy α.



Efficacy (experiment)
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FIG. 3. E↵ect of varying the penalty strength �. Panel (a) shows the numerically calculated gap to the lowest relevant
excited state for two antiferromagnetically coupled logical qubits for ↵ = 0.3 and di↵erent values of �. Inset: undecoded
(decoded) ground state probability P

GS

(P
S

). Panel (b) (top) shows three configurations of two antiferromagnetically coupled
logical qubits. Physical qubits denoted by heavy arrows point in the wrong direction. In the left configuration both logical
qubits have a bit-flip error, in the middle configuration only one logical qubit has a single bit-flip error, and in the right
configuration one logical qubit is completely flipped. The corresponding degeneracies and gaps (�

I

) from the final ground state
are indicated, and the gaps plotted (bottom).

� > 0.6 the undecodable state becomes the first relevant
excited state. Consequently we again expect there to be
an optimal value of � for the QAC strategy that di↵ers
from �

opt

for EP. These expectations are borne out in
our experiments: Fig. 4 (bottom row) shows that �

opt

is significantly lower than in the EP case, which di↵ers
only via the absence of the decoding step. The decrease
in �

opt

with increasing ↵ and chain length can be under-
stood in terms of domain wall errors (see below), which
tend to flip entire logical qubits, thus resulting in a grow-
ing number of undecodable errors. For additional insight
into the roles of the penalty qubits, ↵ and � see Appen-
dices F and G.

VII. ERROR MECHANISMS

Solving for the ground state of an antiferromagnetic
Ising chain is an “easy” problem, so why do we observe
decreasing success probabilities? As alluded to earlier,
domain walls are the dominant form of errors for antifer-
romagnetic chains, and we show next how they account
for the shrinking success probability. We analyze the
errors on the problem vs the penalty qubits and their
distribution along the chain. Figure 5(a) is a histogram
of the observed decoded states at a given Hamming dis-
tance d from the ground state of the N̄ = 86 chains. The
large peak near d = 0 shows that most states are either
correctly decoded or have just a few flipped bits. The
quasi-periodic structure seen emerging at d � 20 can be

understood in terms of domain walls. The period is four,
the number of physical qubits per logical qubit, so this
periodicity reflects the flipping of an integer multiple of
logical qubits, as in Fig. 3(b). Once an entire logical
qubit has flipped and violates the antiferromagnetic cou-
pling to, say, its left (thus creating a kink), it becomes
energetically preferable for the nearest neighbor logical
qubit to its right to flip as well, setting o↵ a cascade of
logical qubit flips all the way to the end of the chain. The
inset is the logical Hamming distance histogram, which
looks like a condensed version of the physical Hamming
distance histogram because it is dominated by these do-
main wall dynamics.

Rather than considering the entire final state, Fig. 5(b)
integrates the data in Fig. 5(a) and displays the observed
occurrence rates of the various classes of errors per logical
qubit in N̄ = 86 chains. The histograms for one, two, and
three problem qubits flipping in each location are shown
separately. Flipped penalty qubits are shown in the inset
and are essentially perfectly correlated with d = 3 errors,
meaning that a penalty qubit flip will nearly always occur
in conjunction with all problem qubits flipping as well.
Thus the penalty qubits function to lock the problem
qubits into agreement, as they should (further analysis
of the role of the penalty qubit in error suppression is
presented in Appendix F). The overwhelming majority
of errors are one or more domain walls between logical
qubits. The domains occur with higher probability the
closer they are to the ends of the chain, since kink cre-
ation costs half the energy at the chain boundaries. The
same low barrier to flipping a qubit at the chain ends also

QAC increases the gap of the encoded problem.
Optimizing the gap requires tuning penalty strength β.



Efficacy (experiment)
What’s going on?

• Unambiguous:  QAC strategy improved results.

• Unambiguous:  any N→∞ extrapolation of current 
experimental results on D-Wave Two is controversial.

• Ambiguous:  Is the improvement due to 
(1)  suppression of errors (allowing more quantum)?
(2)  enlarging the correct energy basin (classical)?

• Ambiguous:  Will improvements persist as size and code 
distance increase?  (penalty H may suppress X terms in HAQC)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Toward scalable FTAQC?

• To be useful for solving computational problems, 
AQC devices need to scale up and get big.

• As size (N) increases, errors become more 
important => fault tolerance is critical.

• We are now prepared to ask whether fault tolerant 
AQC is possible as N→∞.  Can we prove a 
threshold theorem, as for the circuit model?

• Summary:  it doesn’t look good.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



We need active correction

• AQC may have low error rates, but is not immune.

• Error suppression techniques only suppress low-
frequency errors.

• Real environments usually include all frequencies => 
stochastic errors will happen at some rate.

• Cooling isn’t enough without self-correcting memories.

• Conclusion:  absent a creative breakthrough, FT will 
require some form of active (or self-) correction.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Trouble with error spaces

• Fault tolerant error correction doesn’t keep the state in 
the code space!

• Instead, it’s like cooling:
there are always a few
errors (excitations).

• Problem:  The encoded logical HAQC acts differently on 
error spaces than on the code space!
(Some terms change sign -- H = X+Z ⟹ H = X-Z)

• Only known fix requires incredibly complicated Hlogical.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Rapunzel in the tower   

• Once we have protected logical qubits...
...we need to compute with them.

• Computing = dynamics.

• We need to drive logical operations
that change the logical state in time.

• However... since the whole point of error correction is 
to prevent [unwanted] logical operations... this is hard.

• Have we locked our QI up so well that we can’t get it?

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Logical dynamics in AQC

• FTQC always requires
logical dynamics:
- circuit model:  discrete gates
- AQC model: slow changes

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Logical dynamics in AQC

• FTQC always requires
logical dynamics:
- circuit model:  discrete gates
- AQC model: slow changes

• We can simulate AQC on a digital
quantum computer, using logical gates.
This works -- but it’s not the point.  We want to know 
if adiabatic computing can be fault tolerant, not 
whether the adiabatic algorithm can be simulated 
using discrete gates (it can).

| L(t = 0)i

| L(t = 1)i



Simulating HAQC

• Key question:  Can we perform
logical operations (within a code)
that faithfully simulate the evolution
of the ground state of the AQC Hamiltonian 
(including its smoothness)?

• Requires continuous and 
non-commuting 
logical operations.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Transversal gates

• What logical operations are “easy” within a QECC?

• Need to apply physical qubit operations to:
(1) get out of the code space, then
(2) get back in before EC happens.

• Must be done fast.
↳ Transversal gates are great.
↳ Constant-depth circuits ok.

• But there are some really strong no-go theorems about 
what logical operations can be performed “fast enough”.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Code
Space

H

H

H

H

H

H



No-go arguments

• You can’t generate a continuous family of
logical operations using a continuous
family of physical Hamiltonians.

• If H is physically implementable,
and generates a logical
operation U, then H+δH
(where δH is implementable)
just looks like U plus an error.

• This strongly implies that we can’t implement
logical (FT) AQC using standard AQC resources.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
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No-go arguments

• Can we implement logical AQC (i.e., smooth slow dynamics 
on the logical qubits) using any resources?

• A series of increasingly strong results 
(Eastin/Knill, Bravyi/Koenig, Pastawski/Yoshida, Belvedere et al) 
put severe limitations on what logical operations can be
implemented feasibly (constant depth) in various codes. 

• Summary: as N→∞, only discrete sets of noncommuting 
logical unitaries can be applied in constant depth.

• Absent a breakthrough, this seems to rule out FTAQC. 
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Prospects
• AQC is intrinsically robust to some errors, but there are other 

errors that will demand fault tolerant QEC.

• We have several tools to protect logical AQC from noise.

• EC experiments on D-Wave Two have shown some advantages!

• The prospects for N→∞ fault tolerant AQC look bad.

• However:  Even if the AQC architecture cannot be made fault 
tolerant... the adiabatic algorithm[s] could certainly be 
simulated on a digital quantum computer.

• This might well be the best way to solve some problems!
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