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Iodine occurs in multiple oxidation states in aquatic systems in the form of organic and 
inorganic species (iodide and iodate). This fact leads to complex biogeochemical cycling of I and 
its long-lived isotope, 129I, a major by-product of nuclear fission [1-3]. In order to assess the 
distribution of 129I and stable 127I in environmental systems, a sensitive and rapid method was 
developed which enabled us to determine isotopic ratios (129I/127I) and speciate I via GC-MS [3] 
and AMS [5]. Results using this new method demonstrate that the mobility of 129I species 
greatly depends on the type of I species and its concentration [6,7], pH [8-10], and sediment 
redox state [8-10], with equilibration times taking up to 12 weeks [8-10].  At ambient 
concentrations (~10-7 M), I- and IO3

- are significantly retarded by sorption to mineral surfaces 
and covalent binding to natural organic matter (NOM), while at concentrations traditionally 
examined in sorption studies (i.e., 10-4M or higher), I- travels along with the water [7]. Iodate 
removal can also occur through incorporation into CaCO3 crystal lattice, e.g., at the Hanford Site 
[12-14]. Iodide and iodate interactions with NOM lead to covalent binding of I to a limited 
number of aromatic carbon moieties on the particle surface [15-17]. Iodine association with 
NOM is important in sediments, even when organic carbon concentrations are very low (e.g., 
<0.2% at Hanford Site) [12-14]. Removal of iodine from the groundwater through interaction 
with NOM is complicated by the release of mobile organo-I species [15-17]. A small fraction of 
NOM that is bound to iodine can behave as a mobile organo-I source [15-17], a process that we 
were able to numerically simulate using kinetic Michaelis-Menton-type redox-reactions and 
kinetic uptake reactions [3]. Field [1,6,12-14,18-19] and laboratory studies evaluating the cause 
for steady increases in 129I concentrations (up to 1000 pCi L-1, 3 orders of magnitude greater than 
drinking water limits of 1 pCi L-1 129I) emanating from radiological basins at SRS indicate that an 
increase of 0.7 pH units in groundwater over 17 years may explain the observed increased 
groundwater 129I concentrations [20]. Bacteria from a 129I-contaminated aerobic aquifer at the F-
area of SRS can accumulate I- at environmentally relevant concentrations (10-7 M), but account 
for only a minor fraction of total added iodide (0.2-2.0%) [21-23], indicating that bacterial I- 
accumulation likely does not account for the high fraction (up to 25% of total I) of measured 
organo-I in groundwater [6,21-23]. However, enzymatic oxidation of I- likely plays a greater role 
in iodination of NOM [20-23]. The contribution of bacteria to iodide oxidizing activity likely 
operates via superoxide [22], and organic acid [23] production.   
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