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Executive Summary
The project seeks an innovative framework to enable users to access and selectively share

resources in distributed environments, enhancing the scalability of information sharing. We have
investigated secure sharing & assurance approaches for ad-hoc collaboration, focused on Grids,
Clouds, and ad-hoc network environments. The tasks accomplished by this project are as follows:

1. Secure sharing in Grids and Cloud
Traditional access control mechanisms cannot support dynamic natures of security & privacy
requirements derived from Grids and Cloud environments. Also, security and privacy issues
should be fully articulated to design and develop effective and innovative security modules and
policy management for collaborative environments. To address such challenges, we focused on
access control and delegation models for ad-hoc collaboration including composite policies and
schema integration. In addition, we attempted to detect unexpected and unauthorized information
flows, and visualize our results in an effective manner. Also, we investigated how cryptographic
approaches can enhance the integrity measurement in clouds.

2. Policy analysis for assurance
To build trustworthy sharing environments, it is inevitable to ensure that system properties
are complied with security policies and requirements. Especially, in ad-hoc collaboration, it is
critical to check the integrity measurements of each party. However, existing methods on integrity
measurements and policy managements lack effective procedures and mechanisms. Hence, we
also studied how integrity measurements of remote sites can be analyzed by policy analysis
mechanisms and proposed a remote attestation framework. In addition, we focused on policy
anomaly detection and resolution approaches for firewall policies and web-based policies.

3. Attribute-based access control
Furthermore, the collaboration among various facilities in DOE requires proper authentication and
authorization approaches to provide assured sharing of data and resources in a real time manner.
It is necessary to investigate what characteristics should be considered to support attribute pro-
visioning and policy enforcement for collaborative environments. Even though we witness there
exist several solutions, those solutions did not consider potential risks that should be avoided.
Therefore, we attempted to propose attribute-based access control in ad-hoc collaboration. Also,
we investigated a formal way to describe identified characteristics and properties so that we
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Fig. 1. ACaaS vs. security modules in operating system.

can eventually formulate attribute-based access control model and relevant policy management
schemes.

I. RESEARCH TASK: ACAAS FOR CLOUDS

A. Overview
Securely maintaining valuable digital assets in clouds is critical for both cloud service providers

and customers. The diversity of cloud services across a wide range of organizations and domains
requires various security requirements. Accordingly, a comprehensive and adaptive access control
mechanism needs to be in place to support various security policy models for the diverse
security needs. However, current cloud computing platforms such as AWS, Windows Azure,
Google App Engine, and Eucalyptus all fail to meet such identified needs. Towards this, we
propose the concept of access control as a service (ACaaS) with the spirit of pluggable access
control modules in modern operating systems. As shown in Figure 1, we draw an analogy
between computing, storage, network, and other resources provided by IaaS providers and
hardware resources in physical machines such as CPU, disk, and network stack. Cloud provider
offerings can be mapped to operating system services such as process management, memory
management, scheduling, I/O operations, and networking. For instance, process management
conducts basic tasks including starting and suspending processes, CPU allocation, and scheduling
for multiple processes. Similarly, computing services in a cloud handle booting and terminating
virtual machines instances, allocating resources, and scheduling computing tasks and workflows.
For security purposes, authorization modules and policies in traditional operating systems (e.g.,
Linux) can be dynamically loaded (e.g., SELinux modules), and every access to underlying
resources from processes and applications is then be controlled. Similarly, ACaaS can load
different access control modules and support various security policy models for different cloud
customers, such as mandatory access control (MAC) [36], the Chinese Wall security policy
(CW) [9], and role based access control [37]. This plug & play fashion enables parallel evolution
of cloud customer’s own policy specifications and a cloud provider’s security enforcement
mechanisms.

B. AWS Access Control Service and Its Limitations
To motivate the design and development of ACaaS, we analyze the access control mechanism

in Amazon AWS cloud platform - a service called Identity and Access Management (IAM) [2]
which enables an organization to securely control users’ access to the AWS services and
resources subscribed by the organization. IAM defines security policies with a set of pre-
defined components which consists of following components: Users, Groups, Actions, Objects,
Permissions, Constraints, User-Group-Assignment (UGA), Permission-User-Assignment (PUA),
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and Permission-Group-Assignment (PGA). Permissions are defined in the form of Actions on
Objects under certain Constraints.

AWS IAM enables cloud customers to manage users and user permissions to secure their
resources in clouds. However, we identify several limitations of IAM for enterprise cloud
customers as follows.

1) IAM directly assigns permissions to users. With increasing outsourcing computing infras-
tructures to IaaS, the number of users and permissions can be quite dynamic and in a very
large scale. The management cost for the mapping between users and permissions can be
extremely high.

2) IAM supports groups to categorize users and let users explicitly obtain permissions as-
signed to groups they belong to. However, groups are organized in a flat structure, which
cannot reflect the hierarchical structures of organizations. For example, a global sales
department of a multinational company should have all the permissions of its regional
sales departments. Besides, if an IAM policy is removed from a group, the permission
associated with the policy is revoked as well, which is not necessary in many cases.

3) IAM allows to specify static constraints on permissions. However, it lacks a systematic
support for many other important constraints such as separation of duty (SoD), a well-
known principle for preventing the potential fraud. SoD divides the responsibility of a
critical task into different people. When many financial and governmental systems are
shifting into cloud platforms, SoD issues become even more critical. If permissions with
conflict-of-interest issues are assigned to the same user, many valuable assets in clouds
can be jeopardized.

4) Session management is missing in IAM such that all permissions of users are effective
all the times, which conflicts with the principle of least privilege. Users should be able to
manage their sessions for performing tasks. Besides, without session management, dynamic
SoD cannot be enforced.

5) IAM does not distinguish administrators and regular users clearly. The root user with the
AWS account has both administrative and regular permissions, which also conflicts with
the principle of least privilege. Ideally, permissions associated with an AWS account should
be split into multiple units.

AWS recently released a new IAM role feature, which enables an EC2 instance running with a
predefined IAM role to securely access other AWS service APIs [1]. However, this feature is still
too preliminary and coarse-grained to address these limitations. First, it only supports assigning
IAM roles to an EC2 instance level but not to user level. Hence, all applications running in
an EC2 instance assume the same set of permissions. This violates the least privilege principle,
since it is very general that different applications in an EC2 instance run on behalf of different
users to have different permissions. Second, an IAM role does not support session management
such that an EC2 instance can only run with a single IAM role. Without re-launching the EC2
instance, it is impossible to switch between different IAM roles during the runtime. Furthermore,
EC2 role does not support other important RBAC features such as role hierarchy and delegation.
Fundamentally, we claim that the EC2 role is more similar to the traditional concept of “group”
in access control and there is no RBAC model formulated in AWS.

C. Design of ACaaSRBAC for AWS
In this section, we present the design of ACaaSRBAC , a reference architecture of ACaaS that

supports RBAC for Amazon AWS cloud platform. There are several reasons that we choose
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Fig. 2. ACaaSRBAC system architecture for AWS.

to support RBAC for AWS cloud platform. First, RBAC has been widely adopted in enterprise
applications. When those applications are moving to clouds, RBAC should be naturally supported
in cloud environments. According to a recent cloud market overview [41], RBAC is one of the
key criteria to evaluate cloud computing solutions. Second, RBAC is a very generic access control
model, and we believe tackling RBAC in clouds requires to address many challenges that will
be identically addressed for supporting other access control models with ACaaS.

1) Challenges of Supporting RBAC for AWS: In order to provide RBAC as a service for AWS
cloud platform, there are several critical challenges:
Challenge 1: Efficient role hierarchy management. In cloud computing environments, due to dy-
namic business needs and scalable resource provisioning, the number of roles in an organization
could be very large and fluctuated frequently. Accordingly, role hierarchies in the organization
could be complex and need to be updated. It is crucial to have an efficient way to manage role
hierarchies in terms of both maintenance and update/change management.
Challenge 2: Session management. Session management should be supported to track users’
interactions and meet the least privilege principle. Users should be able to activate or deactivate
their roles for performing certain tasks in their sessions. With the nature of highly distributed
service-oriented computing infrastructure, ACaaSRBAC has to seamlessly support session man-
agement without compromising the security property of RBAC.
Challenge 3: SoD support and management of privileged account. SoD constraints should be
specified by administrators and each cloud should be able to enforce those constraints for avoiding
permission abuse and unexpected fraud. The super user of an AWS account has all privileges
upon cloud resources, which should be split into different units or roles in ACaaSRBAC .
Challenge 4: System integration and minimal overhead. To leverage the pluggable capabilities
provided by ACaaS, ACaaSRBAC services should be easily integrated with customers’ appli-
cations. Besides, this integration should introduce acceptable performance and network traffic
overheads between customers’ applications and AWS cloud platform.

2) System Design: Our design of ACaaSRBAC addresses all identified challenges I-C.1 with
a service-oriented RBAC for AWS cloud resources. Figure 2 shows the system architecture of
ACaaSRBAC . In current AWS platform, enterprise applications are able to access cloud resources
on behalf of enterprise users, where the AWS IAM enforces security policies defined by enterprise
administrators. ACaaSRBAC introduces RBAC as a service (RaaS), which is an RBAC module
designed based on NIST RBAC standard [15] and can be hosted by AWS or any third party
service provider. This module supports and enforces RBAC configurations by leveraging Amazon
IAM service for enterprise administrators. It also provides session capability for enterprise users,
e.g., a user or an application can activate and deactivate roles within a single session when
accessing resources in AWS ∗.
∗We note that an RBAC session here is usually different from that in AWS services, e.g., a DynamoDB session, although

they can be co-related in an implementation.
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RaaS provides browser interfaces for enterprise administrators and users to configure RBAC

policies. In our prototype (cf. Section I-D), RBAC policies are implemented as relational database
entries. RaaS also provides web services APIs such that operations can be integrated into
administrative tools or applications from the enterprise side. The results of these configurations
are IAM policies that are pushed back to AWS, so that any further access from enterprise
applications will be controlled by these policies. Since IAM does not support RBAC, RaaS
transforms all role-based policies of a user into AWS permission based policies which can
be understandable and enforceable by IAM. The transformation process is to generate direct
relationships between users and permissions by removing the role notion between them in
the role-based policies. For an enterprise that already has AWS resources in active use, RaaS
provisions the information of users, groups, permissions, objects, and actions from AWS via
IAM APIs.

RaaS contains eight sub-modules: Organization, User, Group, Role, Permission, Session,
Constraint and Policy, each of which is exposed as web services. The Organization sub-module
manages (e.g., list, register, and delete) organizations to support the multi-tenant feature of
ACaaSRBAC . The Group sub-module manages user groups of a single organization for admin-
istrative users, where the user information is provisioned from the organization’s AWS account.
The Permission sub-module manages the permissions of ACaaSRBAC . There are two types of
permissions: user permissions (P) which are inherited from existing AWS permissions, and
administrative permissions (AP), which are effective for RaaS only. The Permission sub-module
maintains both P and AP, and manages their assignment relations with roles. We elaborate the
design of sub-modules in the rest of this section.

User and Permission: This sub-module provides management on regular users (U), admin-
istrative users (AU), and permissions (P), and provides interfaces and APIs to create, delete,
activate, and deactivate U, AU, and P, and manage their group memberships and role member-
ships. In RaaS design, both regular users and permissions are provisioned from AWS directly,
with the credentials of the AWS account, which is usually the user who can create other users
and policies in IAM. Therefore, RaaS does not store any information for U and P.

Administrative users can be further categorized into two types: root administrative users
and regular administrative users. Root administrative users are able to add and delete regular
administrative users, and manage their permissions. Regular administrative users are able to
perform certain administrative actions (ACTA) on administrative resources (RESA) based on
their administrative role memberships. By default, a root administrative user is the AWS user
that owns the IAM account. With the interfaces provided by RaaS, this user can further create
regular administrative users and roles, and their administrative scopes. By controlling the user-
role assignments to regular users and administrative users, RaaS can support flexible policies
such as splitting privileged accounts, and separation of duty constraints.

Role: This sub-module creates and deletes roles (R) and administrative roles (AR), and most
importantly, it manages role hierarchies (RH). RaaS distinguishes R and AR such that mandatory
security policies can be enforced, e.g., by only assigning necessary regular roles to regular users.
For least privilege purposes, RaaS may introduce many primitive regular roles, each of which
is assigned with atomic permissions. This usually introduces large number of regular roles in a
system, where role hierarchy becomes necessary.

Towards efficient role-related operations, we adopt the Nested Set Model [23] for role hierarchy
in our implementation, which assigns left and right values to represent a scope of each role in a
role hierarchy. If the scope of a role is inside the scope of another role, it means the former role



6
Algorithm 1: ComputeActivatePermissions(u, ra) → P

Input: A user u wants to activate a role ra
Output: A permission set P, of which corresponding IAM policies need to be enforced

1 P, Pall ← �;
2 ris ← getImmediateSeniorRole(ra);
3 if hasRole(u, ris) = TRUE AND active(u, ris) = TRUE then
4 return �;
5 else
6 ComputeP(u, ra);
7 foreach p ∈ Permissions(ra) do
8 if p /∈ Pall then
9 add p into P;

10 return P;

11 ComputeP(User u, Role ra)
12 begin
13 R ← getSiblingRoles(ra)

⋃
getImmediateJuniorRoles(ra);

14 if R = � then return;
15 ;
16 else foreach r ∈ R do
17 if active(u, r) = TRUE then
18 foreach p ∈ Permissions(r) do
19 if p /∈ Pall then
20 add p into Pall;

21 else
22 ComputeP(u, r);

23 ;

is junior to the latter role. A big advantage of Nested Set Model for managing role hierarchies
is that only one entry for each role needs to be maintained in the database. This avoids storing
a lot of redundant role relationship information to maintain role hierarchies. It is also easy to
update role hierarchies by updating associated roles’ left and right values. One limitation of our
current design is that, the Nested Set Model only supports to represent limited role hierarchies
in a simple tree structure, i.e., one of two role hierarchies based on NIST RBAC standard [15].
As our future work, we would extend our implementation towards more general role hierarchy
management.

Session: This module provides session management including role activation and deactivation
for regular users. Usually, a user can be assigned with several roles at the same time. In a
session, to meet the least privilege principle, only some of those roles which are needed to
perform a certain task should be activated. After finishing this task, relevant activated roles can
be deactivated. When activating a role, permissions associated with that role should be effective
by enforcing corresponding Amazon IAM policies such that users are able to access cloud
resources with needed permissions.

An intuitive way for deactivating a role and activating another role is to remove all permissions
of the original role for the user in IAM, and then create new permissions and policies, and push
all new policies to IAM. This is the approach we adopt if these two roles have no overlapped
permissions. With the existence of role hierarchy, it may not be necessary to generate and
enforce Amazon IAM policies for all permissions of the new role since some permissions may
have already been effective, e.g., these two roles have common inherited permissions from role
hierarchy.

To improve the efficiency of role activation and minimize the communication overheads
between RaaS module and AWS cloud platform, we implement an efficient role activation
algorithm to compute a minimum permission set when activating a role, as shown in Algorithm 1.
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Algorithm 2: ComputeDeactivatePermissions(u, rd) → P

Input: A user u wants to deactivate a role rd
Output: A permission set P, of which corresponding IAM policies need to be enforced

1 P, Pall ← �;
2 Rsenior ← getSeniorRoles(rd);
3 if Rsenior 6= � then
4 foreach r ∈ Rsenior do
5 if active(u, r) = TRUE then
6 return �;

7 Rsibling ← getActivatedSiblingRoles(rd);
8 if Rsibling = � then
9 return Permissions(rd);

10 else
11 foreach r ∈ Rsibling do
12 if active(u, r) = TRUE then
13 foreach p ∈ Permissions(r) do
14 if p /∈ Pall then
15 add p into Pall;

16 foreach p ∈ Permissions(rd) do
17 if p /∈ Pall then
18 add p into P;

19 return P;

This algorithm works as follows: if a user u owns an immediate senior and activated role to
role ra which needs to be activated, an empty permission set is returned and no policy needs
to be generated and enforced by Amazon IAM. Otherwise, For each sibling role and immediate
junior role to role ra, their senior-most and activated junior roles are identified recursively and a
corresponding permission set Pall is constructed. Then for each permission associated with the
role ra, if it does not belong to Pall, then it will be added to the returned permission set. On the
other hand, when deactivating roles, the deactivation should not affect functionalities of other
activated roles when they have overlapped permissions.

Correspondingly, we implement a role deactivation algorithm, as shown in Algorithm 2. The
algorithm works as follows: if any senior role to a role rd which needs to be deactivated is
activated, an empty permission set is returned and no policy needs to be generated and enforced
by Amazon IAM. Otherwise if role rd does not have any activated sibling roles, a permission set
containing all permissions associated with the role rd is returned. Otherwise, a permission set Pall

containing all permissions associated with activated sibling roles of the role rd is constructed.
Then for each permission associated with the role rd, if it does not belong to Pall, it is added
into the returned permission set.

Constraint: This sub-module provides constraints management services including creating,
deleting, updating static constraints as well as separation of duty constraints. Static constraints
are specified on permissions in existing Amazon IAM constraints format discussed in Section I-B
and enforced by IAM. Only when the static constraints are satisfied, users are able to perform
corresponding permissions. When creating an SoD constraint, a set of potential conflicting roles
and a cardinality value need to be specified. The cardinality value is a threshold of the total role
occurrence in the potential conflicting role set. When it is reached, IAM security policy of the
user will be updated and any corresponding request will be denied. SoD constraints are enforced
by Constraint sub-module itself when administrative users assign users to roles, or users activate
their roles. Those static constraints are then converted into IAM policies and pushed into AWS.

Dynamic separation of duty (DSoD) constraints are usually enforced during runtime, e.g.,
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conflicting roles cannot be activated in a single session. Similar constraints can be defined and
checked by the session module.

Policy: This sub-module provides Amazon IAM policy generation and pushing services to en-
sure RBAC configurations of an enterprise can be reflected in AWS cloud platform. For example,
when a user activates or deactivates roles, corresponding Amazon IAM policies are generated
and pushed to the Amazon IAM policy engine for the enforcement. More specifically, for each
permission in the permission set computed by Algorithm 1 or Algorithm 2, a corresponding IAM
policy is constructed and sent to IAM for the enforcement. Policy transformation and deployment
are also triggered by other administration actions that change the regular permissions of a user.

We note that our policy transformation is both complete and sound. That is, each state of the
RaaS (the ACaaSRBAC relationships stored in its local database) can be translated to a set of
IAM policies, e.g., each regular user has an IAM policy. This is due to the fact that both the users
and permissions are provisioned from AWS directly. For each RaaS state, the net result of its
configuration is a set of permissions that are authorized for a user, after revolving the constraints
such as SoD and DSoD. Similarly, each translation corresponds to a valid IAM policy since the
permissions are defined with valid resource names and actions defined by AWS.

D. Implementation
Based on our design, we have implemented a prototype system to provide RBAC services in

AWS cloud platform through a web browser interface as well as web services. The core services
of the system are implemented in Java based on AWS SDK 1.3.0 and exposed as SOAP-based
web services using GlassFish Metro 2.2. A web-based management interface is developed by
using JavaServer Pages (JSP) and MySQL Community Server 5.1. Both administrative users and
normal users can log into the interface with their usernames and passwords. Administration tools
can interact with the system by calling the SOAP-based web services APIs where the body of
messages are signed with pre-shared secret keys.

All entities of the major components in ACaaSRBAC are stored in tables of a relational
database, which jointly represents the state of the RaaS system. The name spaces of permissions,
which are built on resources in AWS, are provisioned through AWS APIs. An administrative
operation results in calling one or more AWS APIs, e.g., to create a user, a group, a permission,
or add or remove an IAM policy in the root user’s AWS account.

II. RESEARCH TASK: DISCOVERY AND RESOLUTION OF ANOMALIES IN ACCESS CONTROL
POLICIES

A. Overview of XACML
XACML has become the de facto standard for describing access control policies and offers

a large set of built-in functions, data types, combining algorithms, and standard profiles for
defining application-specific features. At the root of all XACML policies is a policy or a policy
set. A policy set is composed of a sequence of policies or other policy sets along with a policy
combining algorithm and a target. A policy represents a single access control policy expressed
through a target, a set of rules and a rule combining algorithm. The target defines a set of
subjects, resources and actions the policy or policy set applies to. For an applicable policy or
policy set, the corresponding target should be evaluated to be true; otherwise, the policy or policy
set is skipped when evaluating an access request. A rule set is a sequence of rules. Each rule
consists of a target, a condition, and an effect. The target of a rule decides whether an access
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Fig. 3. An example XACML policy.

request is applicable to the rule and it has a similar structure as the target of a policy or a policy
set; the condition is a boolean expression to specify restrictions on the attributes in the target
and refine the applicability of the rule; and the effect is either permit or deny. If an access
request satisfies both the target and condition of a rule, the response is sent with the decision
specified by the effect element in the rule. Otherwise, the response yields NotApplicable
which is typically considered as deny.

An XACML policy often has conflicting rules or policies, which are resolved by four differ-
ent combining algorithms: Deny-Overrides, Permit-Overrides, First-Applicable and Only-One-
Applicable [33]. Figure 3 shows an example XACML policy. The root policy set PS1 contains
two policies, P1 and P2, which are combined using First-Applicable combining algorithm. The
policy P1 has three rules, r1, r2 and r3, and its rule combining algorithm is Deny-Overrides.
The policy P2 includes two rules r4 and r5 with Deny-Overrides combining algorithm. In this
example, there are four subjects: Manager, Designer, Developer and Tester; two resources:
Reports and Codes; and two actions: Read and Change. Note that both r2 and r3 define conditions
over the Time attribute.
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B. Anomalies in XACML Policies

An XACML policy may contain both policy components and policy set components. Often, a
rule anomaly occurs in a policy component, which consists of a sequence of rules. On the other
hand, a policy set component consists of a set of policies or other policy sets, thus anomalies
may also arise among policies or policy sets. Thus, we address XACML policy anomalies at
both policy level and policy set level.
• Anomalies at Policy Level: A rule is conflicting with other rules, if this rule overlaps with

others but defines a different effect. For example, the deny rule r1 is in conflict with the
permit rule r2 in Figure 3 because rule r2 allows the access requests from a designer to
change codes in the time interval [8:00, 17:00], which are supposed to be denied by r1;
and a rule is redundant if there is other same or more general rules available that have
the same effect. For instance, if we change the effect of r2 to Deny, r3 becomes redundant
since r2 will also deny a designer to change reports or codes in the time interval [12:00,
13:00].

• Anomalies at Policy Set Level: Anomalies may also occur across policies or policy sets
in an XACML policy. For example, considering two policy components P1 and P2 of the
policy set PS1 in Figure 3, P1 is conflicting with P2, because P1 permits the access requests
that a developer changes reports in the time interval [8:00, 17:00], but which are denied by
P2. On the other hand, P1 denies the requests allowing a designer to change reports or codes
in the time interval [12:00, 13:00], which are permitted by P2. Supposing the effect of r2
is changed to Deny and the condition of r2 is removed, r4 is turned to be redundant with
respect to r2, even though r2 and r4 are placed in different policies P1 and P2, respectively.

A policy anomaly may involve in multiple rules. For example, in Figure 3, access requests that
a designer changes codes in the time interval [12:00, 13:00] are permitted by r2, but denied by
both r1 and r3. Thus, this conflict associates with three rules. For another example, suppose the
effect of r3 is changed to Permit and the subject of r3 is replaced by Manager and Developer.
If we only examine pairwise redundancies, r3 is not a redundant rule. However, if we check
multiple rules simultaneously, we can identify r3 is redundant considering r2 and r5 together. We
observe that precise anomaly diagnosis information is crucial for achieving an effective anomaly
resolution. In this work, we attempted to design a systematic approach and corresponding tool
not only for accurate anomaly detection but also for effective anomaly resolution.

C. Underlying Data Structure
Our policy-based segmentation technique introduced in subsequent sections requires a well-

formed representation of policies for performing a variety of set operations. Binary Decision
Diagram (BDD) [11] is a data structure that has been widely used for formal verification and
simplification of digital circuits. In this work, we leverage BDD as the underlying data structure
to represent XACML policies and facilitate effective policy analysis.

Given an XACML policy, it can be parsed to identify subject, action, resource and condition
attributes. Once these attributes are identified, all XACML rules can be transformed into Boolean
expressions [6]. Each Boolean expression of a rule is composed of atomic Boolean expressions
combined by logical operators ∨ and ∧. Atomic Boolean expressions are treated as equality
constraints or range constraints on attributes (e.g. Subject = “student”) or on conditions (e.g.
8 : 00 ≤ Time ≤ 17 : 00).

Example 1: Consider the example XACML policy in Figure 3 in terms of atomic Boolean
expressions. The Boolean expression for rule r1 is:
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(Subject = “Designer” ∨ Subject = “Tester”) ∧ (Resource = “Codes”) ∧ (Action = “Change”)

The Boolean expression for rule r2 is:
(Subject = “Designer” ∨ Subject = “Developer”) ∧ (Resource = “Reports” ∨ Resource =
“Codes”) ∧ (Action = “Read” ∨Action = “Change”) ∧ (8 : 00 ≤ Time ≤ 17 : 00)

Boolean expressions for XACML rules may consist of atomic Boolean expressions with
overlapping value ranges. In such cases, those atomic Boolean expressions are needed to be
transformed into a sequence of new atomic Boolean expressions with disjoint value ranges.
Agrawal et al. [3] have identified different categories of such atomic Boolean expressions and
addressed corresponding solutions for those issues. We adopt similar approach to construct our
Boolean expressions for XACML rules.

TABLE I

ATOMIC BOOLEAN EXPRESSIONS AND CORRESPONDING BOOLEAN VARIABLES FOR P1 .

Unique Atomic Boolean Expression Boolean Variable
Subject = “Designer” S1

Subject = “Tester” S2

Subject = “Developer” S3

Subject = “Manager” S4

Resource = “Reports” R1

Resource = “Codes” R2

Action = “Read” A1

Action = “Change” A2

8 : 00 ≤ T ime < 12 : 00 C1

12 : 00 ≤ T ime < 13 : 00 C2

13 : 00 ≤ T ime ≤ 17 : 00 C3

We encode each of the atomic Boolean expression as a Boolean variable. For example,
an atomic Boolean expression Subject=“Designer” is encoded into a Boolean variable S1. A
complete list of Boolean encoding for the example XACML policy in Figure 3 is shown in
Table I. We then utilize the Boolean encoding to construct Boolean expressions in terms of
Boolean variables for XACML rules.

Example 2: Consider the example XACML policy in Figure 3 in terms of Boolean variables.
The Boolean expression for rule r1 is:

(S1 ∨ S2) ∧ (R2) ∧ (A2)

The Boolean expression for rule r2 is:
(S1 ∨ S3) ∧ (R1 ∨R2) ∧ (A1 ∨A2) ∧ (C1 ∨ C2 ∨ C3)

BDDs are acyclic directed graphs which represent Boolean expressions compactly. Each
nonterminal node in a BDD represents a Boolean variable, and has two edges with binary
labels, 0 and 1 for nonexistent and existent, respectively. Terminal nodes represent Boolean
value T (True) or F (False). Figures 4(a) and 4(b) give BDD representations of two rules r1 and
r2, respectively.

Once the BDDs are constructed for XACML rules, performing set operations, such as unions
(∪), intersections (∩) and set differences (\), required by our policy-based segmentation algo-
rithms (see Algorithm 1 and Algorithm 2) is efficient as well as straightforward. Figure 4(c)
shows an integrated BDD, which is the difference of r2’ BDD from r1’ BDD (r2 \ r1). Note that
the resulting BDDs from the set operations may have less number of nodes due to the canonical
representation of BDD.



12

Fig. 4. Representing and operating on rules of XACML policy with BDD.

D. Conflict Detection and Resolution
We first introduce a concept of authorization space, which adopts aforementioned BDD-based

policy representation to perform policy anomaly analysis. This concept is defined as follows:
Definition 1: (Authorization Space). Let Rx, Px and PSx be the set of rules, policies and

policy sets, respectively, of an XACML policy x. An authorization space for an XACML policy
component c ∈ Rx∪Px∪PSx represents a collection of all access requests Qc to which a policy
component c is applicable.

1) Conflict Detection Approach: Our conflict detection mechanism examines conflicts at both
policy level and policy set level for XACML policies. In order to precisely identify policy
conflicts and facilitate an effective conflict resolution, we present a policy-based segmentation
technique to partition the entire authorization space of a policy into disjoint authorization space
segments. Then, conflicting authorization space segments (called conflicting segment in the rest
of this report), which contain policy components with different effects, are identified. Each
conflicting segment indicates a policy conflict.

Conflict Detection at Policy Level: A policy component in an XACML policy includes a set
of rules. Each rule defines an authorization space with the effect of either permit or deny.
We call an authorization space with the effect of permit permitted space and an authorization
space with the effect of deny denied space.

Algorithm 3 shows the pseudocode of generating conflicting segments for a policy component
P . An entire authorization space derived from a policy component is first partitioned into a set
of disjoint segments. As shown in lines 17-33 in Algorithm 3, a function called Partition()
accomplishes this procedure. This function works by adding an authorization space s derived
from a rule r to an authorization space set S. A pair of authorization spaces must satisfy one of
the following relations: subset (line 19), superset (line 24), partial match (line 27), or disjoint
(line 32). Therefore, one can utilize set operations to separate the overlapped spaces into disjoint
spaces.

Conflicting segments are identified as shown in lines 6-10 in Algorithm 3. A set of conflicting
segments CS : {cs1, cs2, . . . , csn} from conflicting rules has the following three properties:
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Algorithm 3: Identify Disjoint Conflicting Authorization Spaces of Policy P

Input: A policy P with a set of rules.
Output: A set of disjoint conflicting authorization spaces CS for P .

1 /* Partition the entire authorization space of P into disjoint spaces*/
2 S.New();
3 S ←− Partition P(P );
4 /* Identify the conflicting segments */
5 CS.New();
6 foreach s ∈ S do
7 /* Get all rules associated with a segment s */
8 R

′ ←− GetRule(s);
9 if ∃ri ∈ R

′
, rj ∈ R

′
, ri 6= rj and ri.Effect 6= rj .Effect then

10 CS.Append(s);

11 Partition P(P )
12 R←− GetRule(P );
13 foreach r ∈ R do
14 sr ←− AuthorizationSpace(r);
15 S ←− Partition(S, sr);

16 return S;

17 Partition(S, sr)
18 foreach s ∈ S do
19 /* sr is a subset of s*/
20 if sr ⊂ s then
21 S.Append(s \ sr);
22 s←− sr ;
23 Break;

24 /* sr is a superset of s*/
25 else if sr ⊃ s then
26 sr ←− sr \ s;

27 /* sr partially matches s*/
28 else if sr ∩ s 6= ∅ then
29 S.Append(s \ sr);
30 s←− sr ∩ s;
31 sr ←− sr \ s;

32 S.Append(sr);
33 return S;

1) All conflicting segments are pairwise disjoint:
csi ∩ csj = ∅, 1 ≤ i 6= j ≤ n;

2) Any two different requests q and q
′ within a single conflicting segment (csi) are matched

by exact same set of rules:
GetRule(q) = GetRule(q

′
), †∀q ∈ csi, q

′ ∈ csi, q 6= q
′; and

3) The effects of matched rules in any conflicting segments contain both “Permit” and
“Deny.”

To facilitate the correct interpretation of analysis results, a concise and intuitive representation
method is necessary. For the purposes of brevity and understandability, we first employ a two
dimensional geometric representation for each authorization space segment. Note that a rule in
an XACML policy typically has multiple fields, thus a complete representation of authorization
space should be multi-dimensional. Also, we utilize colored rectangles to denote two kinds of
authorization spaces: permitted space (white color) and denied space (grey color), respectively.
Figure 5(a) gives a representation of the segments of authorization space derived from the policy
P1 in the XACML example policy shown in Figure 3. We can notice that five unique disjoint
segments are generated. In particular, three conflicting segments cs1, cs2 and cs3 are identified,
representing three policy conflicts.
†GetRule() is a function that returns all rules matching a request.
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(a) Disjoint segments of authoriza-
tion space for policy P1

(b) Grid representation of policy conflict
in policy P1

Fig. 5. Authorization space representation for policy P1 in the example XACML policy.

When a set of XACML rules interacts, one overlapping relation may be associated with several
rules. Meanwhile, one rule may overlap with multiple other rules and can be involved in a couple
of overlapping relations (overlapping segments). Different kinds of segments and associated rules
can be viewed like Figure 5(a). However, it is still difficult for a policy designer or administrator
to figure out how many segments one rule is involved in. To address the need of a more precise
conflict representation, we additionally introduce a grid representation that is a matrix-based
visualization of policy conflicts, in which space segments are displayed along the horizontal
axis of the matrix, rules are shown along the vertical axis, and the intersection of a segment and
a rule is a grid that displays a rule’s subspace covered by the segment.

Figure 5(b) shows a grid representation of conflicts in the policy P1 in in our example
policy. We can easily determine which rules are covered by a segment, and which segments are
associated with a rule. For example, as shown in Figure 5(b), we can notice that a conflicting
segment cs2, which points out a conflict, is related to a rule set consisting of three rules r1, r2
and r3 (highlighted with a horizontal red rectangle), and a rule r2 is involved in three conflicting
segments cs1, cs2 and cs3 (highlighted with a vertical red rectangle). Our grid representation
provides a better understanding of policy conflicts to policy designers and administrators with
an overall view of related segments and rules.

Conflict Detection at Policy Set Level: There are two major challenges that need to be taken
into consideration when we design an approach for XACML analysis at policy set level.

1) XACML supports four rule/policy combining algorithms: First-Applicable, Only-One-Applicable,
Deny-Overrides, and Permit-Overrides.

2) An XACML policy is specified recursively and therefore has a hierarchical structure. In
XACML, a policy set contains a sequence of policies or policy sets, which may further
contain other policies or policy sets.

Each authorization space segment also has an effect, which is determined by the XACML
components covered by this segment. For nonconflicting segments, the effect of a segment
equals to the effect of components covered by this segment. Regarding conflicting segments, the
effect of a segment depends on the following four cases of combining algorithm (CA), which
is used by the owner (a policy or a policy set) of the segment.

1) CA=First-Applicable: In this case, the effect of a conflicting segment equals to the effect
of the first component covered by the conflicting segment.

2) CA=Permit-Overrides: The effect of a conflicting segment is always assigned with “Permit,”
since there is at least one component with “Permit” effect within this conflicting segment.

3) CA=Deny-Overrides: The effect of a conflicting segment always equals to “Deny.”
4) CA=Only-One-Applicable: The effect of a conflicting segment equals to the effect of only-
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applicable component.

To support the recursive specifications of XACML policies, we parse and model an XACML
policy as a tree structure, where each terminal node represents an individual rule, each nonter-
minal node whose children are all terminal nodes represents a policy, and each nonterminal node
whose children are all nonterminal nodes represents a policy set. At each nonterminal node, we
store the target and combining algorithm. At each terminal node, the target and effect of the
corresponding rule are stored.

Algorithm 4: Identify Disjoint Conflicting Authorization Spaces of Policy Set PS

Input: A policy set PS with a set of policies or other policy sets.
Output: A set of disjoint conflicting authorization spaces CS for PS.

1 /* Partition the entire authorization space of PS into disjoint spaces*/
2 S.New();
3 S ←− Partition PS(PS);
4 /* Identify the conflicting segments */
5 CS.New();
6 foreach s ∈ S do
7 E ←− GetElement(s);
8 if ∃ei ∈ E, ej ∈ E, ei 6= ej and ei.Effect 6= ej .Effect then
9 CS.Append(s);

10 Partition PS(PS)

11 S
′′
.New();

12 C ←− GetChild(PS);
13 foreach c ∈ C do
14 S

′
.New();

15 /* c is a policy*/
16 if IsPolicy(c) = true then
17 S

′ ←− Partition P(c);

18 /* c is a policy set*/
19 else if IsPolicySet(c) = true then
20 S

′ ←− Partition PS(c)

21 EP .New();
22 ED.New();
23 foreach s

′ ∈ S
′

do
24 if Effect(s

′
) = Permit then

25 EP ←− EP ∪ s
′
;

26 else if Effect(s
′
) = Deny then

27 ED ←− ED ∪ s
′
;

28 S
′′ ←− Partition(S

′′
, EP );

29 S
′′ ←− Partition(S

′′
, ED);

30 return S
′′

;

Algorithm 4 shows the pseudocode of identifying disjoint conflicting authorization spaces
for a policy set PS based on the tree structure. In order to partition authorization spaces of
all nodes contained in a policy set tree, this algorithm recursively calls the partition functions,
Partition P() and Partition PS(), to deal with the policy nodes (lines 16-17) and
the policy set nodes (lines 19-20), respectively. Once all children nodes of a policy set are
partitioned, we can then represent the authorization space of each child node (E) with two
subspaces permitted subspace (EP ) and denied subspace (ED) by aggregating all “Permit”
segments and “Deny” segments, respectively, as follows:{

EP =
⋃

si∈SE
si if Effect(si) = Permit

ED =
⋃

si∈SE
si if Effect(si) = Deny

(1)
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where SE denotes the set of authorization space segments of the child node E.

 

Fig. 6. Aggregation of authorization spaces for policy P1 in the example XACML policy.

For example, since the combining algorithm (CA) of the policy P1 in our example XACML
policy is Deney-Overrides, the effects of three conflicting segments shown in Figure 5 are
“Deny”. Figure 6 shows the result of aggregating authorization spaces of the policy P1, where
two subspaces P P

1 and PD
1 are constructed.

In order to generate segments for the policy set PS, we can then leverage two subspaces (EP

and ED) of each child node (E) to partition existing authorization space set belonging to PS
(lines 28-29). Figure 7(a) represents an example of the segments of authorization space derived
from policy set PS1 in our example policy (Figure 3). We can observe that seven unique disjoint
segments are generated, and two of them cs1 and cs2 are conflicting segments. We additionally
give a grid representation of conflicts in the policy set PS1 shown in Figure 7(b). Then, we
can easily identify that the conflicting segment cs1 is related to two subspaces: P1’s permitted
subspace P P

1 and P2’s denied subspace PD
2 , and the policy P1 is associated with two conflicts,

where P1’s permitted subspace P P
1 is involved in the conflict represented by cs1 and P1’s denied

subspace PD
1 is related to the conflict represented by cs2.

(a) Disjoint segments of authorization space for
policy set PS1

(b) Grid representation of policy
conflicts in policy set PS1

Fig. 7. Authorization space representation for policy set PS1 in the example XACML policy.

2) Fine-Grained Conflict Resolution: Once conflicts within a policy component or policy set
component are identified, a policy designer can choose appropriate conflict resolution strategies
to resolve those identified conflicts. However, current XACML conflict resolution mechanisms
have limitations in resolving conflicts effectively. First, existing conflict resolution mechanisms
in XACML are too restrictive and only allow a policy designer to select one combining algorithm
to resolve all identified conflicts within a policy or policy set component. A policy designer may
want to adopt different combining algorithms to resolve different conflicts. Second, XACML
offers four conflict resolution strategies. However, many conflict resolution strategies exist [19],
[17], [27], but cannot be specified in XACML. Thus, it is necessary to seek a comprehensive
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Fig. 8. Fine-grained conflict resolution framework.

conflict resolution mechanism for more effective conflict resolution. Towards this end, we in-
troduce a flexible and extensible conflict resolution framework to achieve a fine-grained conflict
resolution as shown in Figure 8.

Effect Constraint Generation from Conflict Resolution Strategy: Our conflict resolution
framework introduces an effect constraint that is assigned to each conflicting segment. An
effect constraint for a conflicting segment defines a desired response (either permit or deny)
that an XACML policy should take when any access request matches the conflicting segment.
The effect constraint is derived from the conflict resolution strategy applied to the conflicting
segment, using a similar process of determining the effect of a conflicting segment described
in Section II-D.1. A policy designer chooses an appropriate conflict resolution strategy for each
identified conflict by examining the features of conflicting segment and associated conflicting
components. In our conflict resolution framework, a policy designer is able to adopt different
strategies to resolve conflicts indicated by different conflicting segments. In addition to four
standard XACML conflict resolution strategies, user-defined strategies [27], such as Recency-
Overrides, Specificity-Overrides and High-Majority-Overrides, can be implied in our framework



18
as well. For example, applying a conflict resolution strategy, High-Majority-Overrides, to the
second conflicting segment cs2 of policy P1 depicted in Figure 5, an effect constraint Effect =
“Deny” will be generated for cs2.

Conflict Resolution Based on Effect Constraints: A key feature of adopting effect constraints
in our framework is that other conflict resolution strategies assigned to resolve different conflicts
by a policy designer can be automatically mapped to standard XACML combining algorithms,
without changing the way that current XACML implementations perform. As illustrated in
Figure 8, an XACML combining algorithm can be derived for a target component by examining
all effect constraints of the conflicting segments. If all effect constraints are “Permit,” Permit-
Overrides is selected for the target component to resolve all conflicts. In case that all effect
constraints are “Deny,” Deny-Overrides is assigned to the target component. Then, if the target
component is a policy set and all effect constraints can be satisfied by applying Only-One-
Applicable combining algorithm, Only-One-Applicable is selected as the combining algorithm
of the target component. Otherwise, First-Applicable is selected as the combining algorithm of
the target component. In order to resolve all conflicts within the target component by applying
First-Applicable, the process of reordering conflicting components is compulsory to enable that
the first-applicable component in each conflicting segment has the same effect with corresponding
effect constraint.

Practically, one XACML component may get involved in multiple conflicts. In this case,
removing such a component to satisfy one effect constraint may violate other effect constraints.
Therefore, we cannot resolve a conflict individually by reordering a set of conflicting components
associated with one conflict. On the other hand, it is also inefficient to deal with all conflicts
together by reordering all conflicting components simultaneously. Thus, we next introduce a
correlation mechanism to identify dependent relationships among conflicting segments. The major
benefit of identifying dependent relationships for a conflict resolution is to lessen the searching
space of reordering conflicting components. The pseudocode of an algorithm for identify conflict
correlation groups is given in Algorithm 5.

Algorithm 5: Conflicting Segment Correlation
Input: A set of conflicting segments, C.
Output: A set of groups for correlated segment, G.

1 G.New();
2 g ←− G.NewGroup();
3 foreach c ∈ C do
4 R←− GetRule(c);
5 foreach g ∈ G do
6 foreach c

′ ∈ GetSegment(g) do
7 R

′
.Append(GetRule(c

′
));

8 if R ∩R
′ 6= ∅ then

9 g.Append(c);
10 else
11 G.NewGroup().Append(c);

12 return G;

E. Redundancy Discovery and Removal
Our redundancy discovery and removal mechanism also leverage the policy-based segmen-

tation technique to explore redundancies at both policy level and policy set level. We give
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(a) Authorization space segmentation (b) Property assignment (c) Redundancy removal

Fig. 9. Example of eliminating redundancies at policy level.

a definition of rule redundancy as follows, which serves as a foundation of our redundancy
elimination approach.

Definition 2: (Rule Redundancy). A rule r is redundant in an XACML policy p iff the
authorization space derived from the resulting policy p′ after removing r is equivalent to the
authorization space defined by p.

1) Redundancy Elimination at Policy Level: :
We employ following four steps to identify and eliminate rule redundancies at policy level:

authorization space segmentation, property assignment for rule subspaces, rule correlation break,
and redundant rule removal.

Authorization Space Segmentation: We first perform the policy segmentation function Partition P()
defined in Algorithm 3 to divide the entire authorization space of a policy into disjoint segments.
We classify the policy segments in following categories: non-overlapping segment and overlap-
ping segment, which is further divided into conflicting overlapping segment and non-conflicting
overlapping segment. Each non-overlapping segment associates with one unique rule and each
overlapping segment is related to a set of rules, which may conflict with each other (conflicting
overlapping segment) or have the same effect (non-conflicting overlapping segment). Figure 9(a)
illustrates a grid representation of authorization space segmentation for a policy with eight rules.
In this example, two policy segments s4 and s6 are non-overlapping segments. Other policy
segments are overlapping segments, including three conflicting overlapping segments s1, s3 and
s5, and one non-conflicting overlapping segments s2.

Property Assignment for Rule Subspaces: In this step, every rule subspace covered by
a policy segment is assigned with a property. Four property values, removable (R), strong
irremovable (SI), weak irremovable (WI) and correlated (C), are defined to reflect different
characteristics of rule subspace. Removable property is used to indicate that a rule subspace
is removable. In other words, removing such a rule subspace does not make any impact on
the original authorization space of an associated policy. Strong irremovable property means
that a rule subspace cannot be removed because the effect of corresponding policy segment
can be only decided by this rule. Weak irremovable property is assigned to a rule subspace
when any subspace belonging to the same rule has strong irremovable property. That means
a rule subspace becomes irremovable due to the reason that other portions of this rule cannot
be removed. Correlated property is assigned to multiple rule subspaces covered by a policy
segment, if the effect of this policy segment can be determined by any of these rules. We next
introduce three processes to perform the property assignments to all of rule subspaces within
the segments of a policy, considering different categories of policy segments.
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Process1:Property assignment for the rule subspace covered by a non-overlapping segment.

A non-overlapping segment contains only one rule subspace. Thus, this rule subspace
is assigned with strong irremovable property. Other rule subspaces associated with the
same rule are assigned with weak irremovable property, excepting the rule subspaces
that already have strong irremovable property.

Process2:Property assignment for rule subspaces covered by a conflicting segment. We present
this property assignment process based on the following three cases of rule combining
algorithm (CA).

1) CA=First-Applicable: In this case, the first rule subspace covered by the conflicting
segment is assigned with strong irremovable property. Other rule subspaces in
the same segment are assigned with removable property. Meanwhile, other rule
subspaces associated with the same rule are assigned with weak irremovable
property except the rule subspaces already having strong irremovable property.

2) CA=Permit-Overrides: All subspaces of “deny” rules in this conflicting seg-
ment are assigned with removable property. If there is only one “permit” rule
subspace, this case is handled which is similar to the First-Applicable case. If
any “permit” rule subspace has been assigned with weak irremovable property,
other rule subspaces without irremovable property are assigned with removable
property. Otherwise, all “permit” rule subspaces are assigned with correlated
property.

3) CA=Deny-Overrides: This case is dealt with as the same as Permit-Overrides
case.

Process3: Property assignment for rule subspaces covered by a non-conflicting overlapping
segment. If any rule subspace has been assigned with weak irremovable property, other
rule subspaces without irremovable property are assigned with removable property.
Otherwise, all subspaces within the segment are assigned with correlated property.

Figure 9(b) shows the result of applying our property assignment mechanism to the example
presented in Figure 9(a). We can easily identify that r3 and r8 are removable rules, where all
subspaces are with removable property. However, we need to further examine the correlated
rules r2, r4 or r7, which contain some subspaces with correlated property.

Rule Correlation Break and Redundancy Removal: Rule subspaces covered by an over-
lapping segment are correlated with each other when the effect of overlapping segment can be
determined by any of those correlated rules. Thus, keeping one correlated rule and removing
others may not change the effect of corresponding segment. We call such a correlated relation
vertical rule correlation, which can be identified in property assignment step. In addition,
we observe that some rule may be involved in several correlated relations. For example, in
Figure 9(b), r4 has two subspaces that are involved in the correlated relations with r2 and r7,
respectively. We call this kind of correlated relation horizontal rule correlation. Obviously, we
cannot resolve a correlation individually and those two dimensions of rule correlation should
be take into consideration. Therefore, we can further construct rule correlation groups based on
those two kinds of rule correlations so that dependent relationships among multiple correlated
rules within one group can be examined together. For example, a correlation group g consisting
of three rules r2, r4 and r7 can be identified in Figure 9(b) based on two dimensions of rule
correlation.

We additionally observe that different sequences to break rule correlations in a correlation
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Fig. 10. Example of rule correlation break.

Algorithm 6: Redundancy Elimination of Policy P : RedundancyEliminate P(P)
Input: A policy P with a set of rules.
Output: A redundancy-eliminated policy P

′
.

1 /* Partition the entire authorization space of P into disjoint spaces*/
2 S.New();
3 S ←− Partition P(P );
4 /* Property assignment for all rule subspaces */
5 PropertyAssgin P(S);
6 /* Rule correlation break */
7 G←− CorrelatonGroupConstruct(S);
8 foreach g ∈ G do
9 foreach r ∈ g do

10 r.CD ←−
∑

si∈CS(r)
1

NC(si)−1
;

11 SP ←− GetCorrelatedSubspace(MinCDRule(g))
12 foreach sp ∈ SP do
13 sp.Property ←− R ;
14 if |GetCorrelatedSubspace(sp)| = 1 then
15 SP

′ ←− GetCorrelatedSubspace(sp);
16 SP

′
.P roperty ←− SI ;

17 AssginSI(SP
′
);

18 /*Redundancy removal */
19 P

′ ←− P ;
20 foreach r ∈ P

′
do

21 if AllRemovalProperty(r) = true then
22 P

′ ←− P
′ \ r;

23 return P
′
;

group may lead to different results for redundancy removal. Figure 10(a) shows correlated
relations of rules r2, r4 and r7 in the correlation group g. We can break their correlation
relations via different sequences. Figure 10(b) shows one possible solution. If we first assign
two subspaces of r4 with removable property, r4 becomes a removable rule but r2 and r7 are
turned to an irremovable rules. However, regarding another solution represented in Figure 10(c),
if we first assign the correlated subspace of r2 with removable property, then only r4 becomes an
irremovable rule. Both r2 and r7 are removable. Thus, it is necessary to seek an optimal solution
to obtain maximum redundancy removal. To achieve this goal, we can compute a correlation
degree (CD) for each correlated rule r using the following equation:

CD(r) =
∑

si∈CS(r)

1

NC(si)− 1
(2)

Note that CS(r) is a function to return all correlated segments of a rule r, and NC(si)
is a function to return the number of correlated rules within a segment si. Since each policy
segment contains multiple correlated rules (NC(si) ≥ 2), 1

NC(si)−1 gives the degree of breakable
correlation relations associated with a policy segment si if we set a rule r as removable. To
maximize the number of removable rules for redundancy resolution, our correlation break process
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selects one rule with the minimal CD as the candidate removable rule each time. For instance,
applying this equation to calculate correlation degrees of three rules demonstrated in Figure 10(a),
CD(r2) and CD(r7) equal to 1, and CD(r4) equals to 2. Thus, we can select either r2 or r7
as the candidate removable rule in the first break step. Finally, two rules r2 and r7 become
removable rules after breaking all correlations.

F. Redundancy Elimination at Policy Set Level
Similar to the solution of conflict detection at policy set level, we handle the redundancy

removal for a policy set based on an XACML tree structure representation. If the children nodes
of the policy set is a policy node in the tree, we perform RedundancyEliminate P()
function to eliminate redundancies. Otherwise, RedundancyEliminate PS() function is
excused recursively to eliminate redundancy in a policy set component.

Fig. 11. Example of authorization space segmentation at policy set level for redundancy discovery and removal.

After each component of a policy set PS performs redundancy removal, the authorization space
of PS can be then partitioned into disjoint segments by performing Partition() function.
Note that, in the solution for conflict detection at policy set level, we aggregate authorization
subspaces of each child node before performing space partition, because we only need to identify
conflicts among children nodes to guide the selection of policy combining algorithms for the
policy set. However, for redundancy removal at policy set level, both redundancies among
children nodes and rule (leaf node) redundancies, which may exist across multiple policies or
policy sets, should be discovered. Therefore, we keep the original segments of each child node
and leverage those segments to generate the authorization space segments of PS. Figure 11
demonstrates an example of authorization space segmentation of a policy set PS with three
children components P1, P2 and P3. The authorization space segments of PS are constructed
based on the original segments of each child component. For instance, a segment s

′
2 of PS

covers three policy segments P1.s1, P2.s1 and P3.s2, where Pi.sj denotes that a segment sj
belongs to a policy Pi.

The property assignment step at policy set level is similar to the property assignment step
at policy level, except that the policy combining algorithm Only-One-Applicable needs to be
taken into consideration at policy set level. The Only-One-Applicable case is handled similar to
the First-Applicable case. We first check whether the combining algorithm is applicable or not.
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Algorithm 7: Eliminate Redundancies of a Policy Set PS: RedundancyEliminate PS(PS)

Input: A policy set PS with a set of policies or other policy sets.
Output: A redundancy-eliminated policy set PS

′
.

1 E ←− GetChild(PS);
2 foreach e ∈ E do
3 /* e is a policy*/
4 if IsPolicy(e) = true then
5 e

′ ←− RedundancyEliminate P(e);

6 /* e is a policy set*/
7 else if IsPolicySet(e) = true then
8 e

′ ←− RedundancyEliminate PS(e)

9 E
′ ←− E

′ ∪ e
′
;

10 /* Partition the authorization space of PS into disjoint spaces*/
11 foreach e

′ ∈ E
′

do
12 foreach s ∈ GetSegment(e

′
) do

13 S ←− Partition(S, s);

14 /* Property assignment for all subspaces covered by the segments of PS */
15 PropertyAssgin PS(S);
16 /* Correlation break */
17 CorrelationBreak PS(S);
18 /*Redundancy removal for child components of PS */
19 PS

′ ←− PS;
20 foreach e ∈ PS do
21 if AllRemovalProperty(e) = true then
22 PS

′ ←− PS
′ \ e;

23 /*Redundancy removal for rules of PS */
24 foreach e ∈ PS

′
do

25 S ←− GetSubspace(e);
26 foreach s ∈ S do
27 if s.Property = R then
28 S ←− GetSubspaceWithSI(s);
29 foreach s ∈ S do
30 if OneSISubspace(GetRule(s)) = true then
31 SP ←− GetRuleSubspace(GetRule(s)) \ s;
32 foreach sp ∈ SP do
33 sp.Property ←− R ;

34 SP
′ ←− GetSubspace(s);

35 foreach sp′ ∈ SP ′ do
36 sp′.P roperty ←− R ;

37 foreach r ∈ SP
′

do
38 if AllRemovalProperty(r) = true then
39 SP

′ ←− SP
′ \ r;

40 return PS
′
;

If the combining algorithm is applicable, the only-applicable subspace is assigned with strong
irremovable property. Otherwise, all subspaces within the policy set’s segment are assigned with
removable property.

We utilize a similar correlation break mechanism introduced previously to break the correlation
relations among the segments of child components of PS. Since there may exist multiple
correlated segments of children components with the minimal correlation degree (CD) value, we
additionally compute a removal value (RV ), which indicates the possibility of rule redundancy
removal if we set a correlated segment with removable property, for all candidate segments using
following equation:
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RV (s) =
∑

ri∈RHI (s)

1

NHI(ri)
(3)

Note that RHI(s) is a function to return all rules having a subspace in the segment s with strong
irremovable property, and NHI(ri) is a function to return the number of the rule’s subspace with
strong irremovable property. 1

NHI(ri)
measures the possibility of turning a rule to a removable

rule if we change a strong irremovable rule subspace to be removable. The correlated segment
with the maximum RV value has the highest priority to be chosen for breaking correlations.

After assigning properties to all segments of children components of PS, we next examine
whether any child component is redundant. If a child component is redundant, this child com-
ponent and all rules contained in the child component are removed from PS. Then, we examine
whether there exist any redundant rules. In this process, the properties of all rule subspaces
covered by a removable segment of a child component of PS needs to be changed to removable.
Note that when we change the property of a strong irremovable rule subspace to removable,
other subspaces in the same rule with dependent weak irremovable property need to be changed
to removable correspondingly. Algorithm 7 shows the pseudocode of eliminating redundancies
for a policy set PS.

G. Implementation and Evaluation
We have implemented a policy analysis tool called XAnalyzer in Java. Based on our

policy anomaly analysis mechanism, it consists of four core components: segmentation module,
effect constraint generation module, strategy mapping module, and property assignment module.
The segmentation module takes XACML policies as an input and identifies the authorization
space segments by partitioning the authorization space into disjoint subspaces. XAnalyzer
utilizes APIs provided by Sun XACML implementation [43] to parse the XACML policies
and construct Boolean encoding. JavaBDD [20], which is based on BuDDy package [12], is
employed by XAnalyzer to support BDD representation and authorization space operations.
The effect constraint generation module takes conflicting segments as an input and generates
effect constraints for each conflicting segment. Effect constraints are generated based on strategies
assigned to each conflicting segment. The strategy mapping module takes conflict correlation
groups and effect constraints of conflicting segments as inputs and then maps assigned strategies
to standard XACML combining algorithms for examined XACML policy components. The
property assignment module automatically assigns corresponding property to each subspace
covered by the segments of XACML policy components. The assigned properties are in turn
utilized to identify redundancies.

Considering the complexity of tasks involved in the policy analysis, it is desirable to provide
intuitive user interfaces for policy designers or administrators for effective policy anomaly
detection and resolution. Since the grid representation of policy anomalies offers a succinct
view of the interactions of overlapping rules and enables policy designers or administrators to
better understand policy anomalies, we implemented the grid representation of policy anomalies
in XAnalyzer.
XAnalyzer provides two policy viewers, Conflict Viewerand Redundancy Viewer, to visualize

the outputs of policy conflict analysis and policy redundancy analysis, respectively. In addition,
XAnalyzer offers flexible ways to handle large-scale policies. There are two kinds of visual-
ization interfaces in each viewer: one interface shows an entire snapshot of all anomalies; another
interface shows a partial snapshot only containing anomalies within one correlation group. In
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addition, XAnalyzer shows a hierarchical structure of policies and allow policy designers
or administrators to view policy anomalies at different levels independently. The hierarchical
structure of policies is presented by a tree of policy components on the left side of the interfaces.
A policy designer or administrator can choose a particular policy component such as Policy or
Policy Set node for anomaly analysis. If an administrator chooses a Policy node for the analysis,
anomalies in that particular Policy node are displayed in terms of the rule subspaces involved.
Otherwise, if an administrator chooses a Policy Set node, all anomalies within that particular
node are displayed in terms of allowed and denied subspaces of policy or policy set components.

We evaluated the efficiency and effectiveness of XAnalyzer for policy analysis on both
real-life and synthetic XACML policies. Our experiments were performed on Intel Core 2
Duo CPU 3.00 GHz with 3.25 GB RAM running on Windows XP SP2. In our evaluation,
we utilized five real-life XACML policies, which were collected from different sources. Three
of the policies, CodeA, Continue-a and Continue-b are XACML policies used in [16]; among
them, Continue-a and Continue-b are designed for a real-world Web application supporting a
conference management. GradeSheet is utilized in [8]. The Pluto policy is employed in ARCHON
system, ‡ which is a digital library that federates the collections of physics with multiple degrees
of meta data richness. Since it is hard to get a large volume of real-world policies due to the
reason that they are often considered to be highly confidential, we generated four large synthetic
policies SyntheticPolicy-1, SyntheticPolicy-2, SyntheticPolicy-3 and SyntheticPolicy-4 for further
evaluating the performance and scalability of our tool. These synthetic policies are multi-layered,
where each policy component has a randomly selected combining algorithm and each rule has
randomly chosen attribute sets from a predefined domain. We also use SamplePolicy, which is
the example XACML policy represented in Figure 3, in our experiments. Table II summarizes
the basic information of each policy including the number of rules, the number of policies, and
the number of policy sets.

TABLE II

XACML POLICIES USED FOR EVALUATION.

Policy Rule (#) Policy (#) Policy Set (#)
1 (CodeA) 4 2 5

2 (SamplePolicy) 6 2 1
3 (GradeSheet) 13 1 0

4 (Pluto) 22 1 0
5 (SyntheticPolicy-1) 147 30 11

6 (Continue-a) 312 276 111
7 (Continue-b) 336 305 111

8 (SyntheticPolicy-2) 456 65 40
9 (SyntheticPolicy-3) 572 114 75
10 (SyntheticPolicy-4) 685 188 84

We conducted two separate sets of experiments for the evaluation of conflict detection approach
and the evaluation of redundancy removal approach, respectively. Also, we performed evaluations
at both policy level and policy set level. Table III summarizes our evaluation results.

Evaluation of Conflict Detection: Time required by XAnalyzer for conflict detection highly
depends upon the number of segments generated for each XACML policy. The increase of the
number of segments is proportional to the number of components contained in an XACML
policy. From Table III, we observe that XAnalyzer performs fast enough to handle larger size
‡http://archon.cs.odu.edu/
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CONFLICT DETECTION AND REDUNDANCY REMOVAL ALGORITHMS EVALUATION.

Policy Partitions BDD Conflict Detection Redundant Removal
(#) Nodes (#) Policy Level(#) Policy Set Level(#) Time (s) Policy Level(#) Policy Set Level(#) Time (s)

1 (CodeA) 6 16 1 1 0.082 1 0 0.087
2 (SamplePolicy) 8 34 0 2 0.090 0 2 0.095
3 (GradeSheet) 18 45 0 4 0.098 0 2 0.113

4 (Pluto) 34 78 0 5 0.136 0 3 0.147
5 (SyntheticPolicy-1) 205 112 8 14 0.329 7 4 0.158

6 (Continue-a) 439 135 9 17 0.583 11 7 0.214
7 (Continue-b) 468 146 10 21 0.635 12 7 0.585

8 (SyntheticPolicy-2) 523 209 29 17 0.896 14 8 0.623
9 (SyntheticPolicy-3) 614 227 39 19 0.948 17 10 0.672

10 (SyntheticPolicy-4) 814 265 56 19 1.123 23 12 0.803

XACML policies, even for some complex policies with multiple levels of hierarchies along with
hundreds of rules, such as two real-life XACML policies Continue-a and Continue-b and four
synthetic XACML policies. The time trends observed from Table III are promising, and hence
provide the evidence of efficiency of our conflict detection approach.

(a) Redundancy elimination rate (b) Performance improvement

Fig. 12. Evaluation of redundancy removal approach.

Evaluation of Redundancy Removal: In the second set of experiments, we evaluated our
redundancy analysis approach based on those experimental XACML policies. The evaluation
results shown in Table III also indicate the efficiency of our redundancy analysis algorithm.
Moreover, we conducted the evaluation of effectiveness by comparing our redundancy analysis
approach with traditional redundancy analysis approach [30], [5], which can only identify
redundancy relations between two rules. Figure 12(a) depicts the results of our comparison
experiments. From Figure 12(a), we observed that XAnalyzer could identify that an average
of 6.3% of total rules are redundant. However, traditional redundancy analysis approach could
only detect an average 3.7% of total rules as redundant rules. Therefore, the enhancement for
redundancy elimination was clearly observed by our redundancy analysis approach compared to
traditional redundancy analysis approach in our experiments.

Furthermore, when redundancies in a policy are removed, the performance of policy enforce-
ment is improved generally. For each of XACML policies in our experiments, Figure 12(b)
depicts the total processing time in Sun XACML PDP [43] for responding 10,000 randomly
generated XACML requests. The evaluation results clearly show that the processing times are



27
reduced after eliminating redundancies in XACML policies applying either traditional approach
or our approach, and our approach can obtain better performance improvement than traditional
approach.

H. Related Work
Many research efforts have been devoted to XACML. However, most existing research work

focus on modeling and verification of XACML policies [16], [10], [24], [4], [28]. None of them
dealt with anomaly analysis in XACML policies. We discuss a few of those work here.

In [10], the authors formalized XACML policies using a process algebra known as Com-
municating Sequential Processes (CSP). This work utilizes a model checker to formally verify
properties of policies, and to compare access control policies with each other. Fisler et al. [16]
introduced an approach to represent XACML policies with Multi-Terminal Binary Decision
Diagrams (MTBDDs). They developed a policy analysis tool called Margrave, which can verify
XACML policies against the given properties and perform change-impact analysis. Lin et al. [28]
investigated the problem of similarity analysis for XACML policies, integrating the SAT-solver-
based and MTBDD-based techniques. Ahn et al. [4] presented a formalization of XACML
using answer set programming (ASP), which is a recent form of declarative programming, and
leveraged existing ASP reasoners to conduct policy verification.

Several work presented policy analysis tools with the goal of discovering policy anomalies
in firewall [5], [47], [18]. However, we cannot directly apply those analysis approaches for
XACML due to several reasons. First, the structure of firewall policies is flat but XACML has
a hierarchical structure supporting recursive policy specification. Second, a firewall policy only
supports one conflict resolution strategy (first-match) but XACML has four rule/policy combining
algorithms. Last but not the least, a firewall rule is typically specified with fixed fields, while an
XACML rule can be multi-valued.

Some XACML policy evaluation engines, such as Sun PDP [43] and XEngine [29], have been
developed to handle the process of evaluating whether a request satisfies an XACML policy.
During the process of policy enforcement, conflicts can be checked if a request matches multiple
rules having different effects, and then conflicts are resolved by applying predefined combining
algorithms in the policy. In contrast, our tool XAnalyzer focuses on policy analysis at policy
design time. XAnalyzer can identify all conflicts within a policy and help policy designers
select appropriate combining algorithms for conflict resolution prior to the policy enforcement.
Additionally, XAnalyzer has the capability of discovering and eliminating policy redundancies
that cannot be dealt with by policy evaluation engines.

Some work addressed the general conflict resolution mechanisms for access control [19], [17],
[27], [21], [16]. Especially, Li et al. [27] proposed a policy combining language PCL, which can
be utilized to specify a variety of user-defined combining algorithms for XACML. These conflict
resolution mechanisms can be accommodated in our fine-grained conflict resolution framework.
In addition, Bauer et al. [7] adopted a data-mining technique to eliminate inconsistencies between
access control policies and user’s intentions. In comparison, our approach detects and resolves
anomalies within access control policies caused by overlapping relations.

Other related work includes XACML policy integration [32], [35] and XACML policy opti-
mization [31]. Since anomaly discovery and resolution are challenging issues in policy integration
and redundancy elimination can contribute in policy optimization, all of those related work are
orthogonal to our work.
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III. RESEARCH TASK: FEDERATED ACCESS MANAGEMENT FOR COLLABORATIVE

NETWORK ENVIRONMENTS

In ABAC, a given access control request, e.g. reading a confidential data file, is granted
upon the satisfaction of constraints involving some security-relevant properties, also known as
attributes, that are exhibited by the access control entities involved in the request. Commonly,
such access control entities include actors, i.e., human agents or computer processes running
on behalf of them; targets, i.e., protected resources such as data files or network ports, and any
applicable context, i.e., the running environment where a given software system is executed, such
as an operative system or a cloud setting. In this section, we introduce a simple use case example
in the collaboration domain that involves the specification of access control constraints based on
attributes obtained from different entities, in an effort to properly identify how attributes are used
for defining constraints and how constraints are in turn related to access rights (permissions).
For illustrative purposes, consider a setting when actors may request access to a shared data file.
Such an access right is represented by a permission named readFilePermission, which is only
granted if the requesting actor happens to be the owner of the file, or if the file is labeled for
sharing purposes (by naming the file as “shared.txt”). Such a constraint depicts a collaboration
setting when an access to a shared resource is granted to a collaborative actor only for working
hours. A corresponding use case is depicted in Fig. 13: the constraint C1 restricts access to a
given file only if its name attribute has a value equal to the “shared.txt” and the time attribute
exhibited by the context environment fits within a certain range. Moreover, the access control
constraint C2 restricts access to files only when the name attribute presented by the requesting
actor is the same as the ownername attribute defined for the requested file. This use case depicts
a scenario when attributes are retrieved from all the involved access control entities, and several
constraints are defined in order for the readFilePermission to be granted. Based on this sample
case, some noticeable patterns emerge: first, different attributes exhibited by different access
control entities may be used to define constraints, and not all of the entities involved may need
to provide attributes in order for an access control decision to be made, as noticed in the C1

constraint, where the entity requesting access is required to show no attributes for the constraint
guarding the requested permission. Second, the same set of attributes exhibited by a given access
control entity may be used to define more than one constraint, as shown in C1 and C2, where
attributes from the target are used to define two different constraints. Third, constraints may be
in turn composed of different sub-constraints and may be evaluated simultaneously while making
an access control decision (C1). Finally, many different constraints, which may be constructed
upon different attributes from different access control entities, may be used to guard access
to the same permission. The patterns discussed above provide an insight on how flexible an
scheme based on attributes and constraints should be for modeling access control requirements:
as many different options are available, policy designers may choose the ones that better fit the
needs devised for a given collaboration setting. However, at the cost of flexibility, we must also
consider such diversity may also cause unexpected challenges when analyzing some non-trivial
security properties of a given ABAC setting. As an example, consider the case of performing a
risk analysis [42] on the ABAC setting depicted in Fig. 13: in order to determine under which
situations readFilePermission may be granted. Such an analysis may involve the analysis of each
constraint guarding the readFilePermission, and attributes on each entity, including the range of
possible values such attributes may take and the number of possible combinations that may be
obtained from them. Such a process gets complicated by the fact that no standardized definition
of both attributes and constraints exists in the literature, nor a standardized policy language
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for a reference ABAC model exists. These problems may turn the security analysis process
cumbersome in real-life systems where diverse constraints may be in place for guarding a given
permission.

Fig. 13. A combined use case depicting ABAC in the collaboration domain.

A. Model Definition
1) General Description: In order to support access control patterns depicted in Section III,

we first define the main components of our proposed model:
• actors are users (i.e. human agents) or subjects (i.e. computer processes) acting on behalf

of users;
• targets are the protected resources within a software system;
• requests are initiated by actors when access to a specific target is needed; and
• context is the running (executing) environment, e.g. operative system, supporting platform,

etc., where a given action is issued and/or served.
Besides the core ABAC component attributes, we also introduce the concept of security tokens:

first-class objects that are intended to provide an abstract representation of a set of security
states that may be relevant to the domain-specific properties in collaborative systems. Moreover,
these security tokens are helpful to represent the attributes exhibited by access control entities.
Attributes are related to security tokens through token provisioning functions (TP-Functions),
which map each attribute to a corresponding security token, and are intended to model the
constraints shown in Section III. They also produce security tokens as a result and allow to define
the relationship between permissions and attributes. It must be noticed that the precise definition
of such TP-Functions falls in the scope of the collaborative system domain. Fig. 14 shows a visual
representation of our proposed model, which leverages a similar representation shown in [38].
In the diagram, the sets of either access control entities or elements (e.g. attributes) are modeled
as circles connected by either unidirectional or bidirectional arrows, which can also be single-
headed or double-headed. Unidirectional arrows depict functions, whereas bidirectional ones are
used for relations. For instance, attributes are related to its corresponding access control entity
by means of the attribute assignment (AA) relation. Moreover, double-headed arrows depict
multiplicity of appearances of members of sets (denoted by circles) in the relation depicted by
the arrow, whereas single-headed ones may depict a single appearance. As an example, the AA
relation depicts an access control entity is related to several attributes, whereas an attribute may
be related only to a single access control entity. Attributes are also related to security tokens
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through our proposed TP-Functions, which are depicted as unidirectional arrows in the diagram.
Moreover, TP-Functions also relates security tokens with other security tokens. Following this
approach, a security token that is produced by means of a TP-Function is provisioned. Security
tokens are related to access rights (permissions) by means of the permission assignment (PA)
relation. Permissions are in turn depicted as a combination of a protected source (target) and
an operation that can be performed on it. Following the convention for double-headed arrows
introduced earlier, a security token may be related to one or more permissions, and a given
permission may be related to one or more security tokens. Finally, it must be noticed that our
model is intended to be independent of any supporting technology or methodology other than
the concepts we have enlisted in this section.

2) Definition of Attributes: As described previously, attributes are defined to be security-
relevant properties that are exhibited by access control entities, namely, actors, targets, policies
and any applicable context. Their physical nature and the way those attributes are collected
from the access control entities remains dependent on the collaborative application domain.
From the use case and patterns discussed in Section III, attributes are expected to have at least
the following inner components: an identifier (id for short), which is later used for defining
constraints on them, e.g. the attribute name defined for a given file (target); a value, which is
used when evaluating constraints, e.g. “shared.txt”; and a data type, which restricts the nature
and the range of the value defined for the attribute, e.g. the data type String. In addition, for
brevity, we also introduce the concept of attribute families, which are the sets of attributes where
all members share the same type and id components. With this in mind, we proceed with the
following definition:

Definition 1: An attribute is a 3-tuple of the form <type, id, value>, where
• type is a well-defined data type relevant to the collaborative application domain, e.g. String,

Integer, Date, Boolean, etc.
• id is a unique identifier, which is required to be non-empty for the purpose of an access

control decision. The format of the id component, as well as its associated semantics, is
based on the scope of the collaborative application domain.

• value is a data value of the attribute in the nature and range defined by type.
Illustrative examples of attributes are as follows: <String, file.name, “shared.txt”>, <String,

actor.name, “Carlos”>, <Integer, actor.age, 100>, <Date, system.date, “10-10-3”>, <Boolean,
file.isOpen, true>, etc.

Definition 2: An attribute family is a set of attributes where all elements share the same type
and id components.

The number of possible elements of an attribute family is bounded by the range of values
defined by the type component. In the rest of this report, we use the term fam-a(id) to refer to
a family of attributes identified by a given id component.

3) Definition of Security Tokens: As described previously, we aim to provide a description of
the main features of ABAC by introducing the concept of security tokens. Informally, such tokens
are obtained by processing the attributes from access control entities through the aforementioned
TP-Functions, and are intended to provide an abstract representation of the security states within
a software system (e.g. a collaborative application), on which access rights can be granted safely.
As an example, TP-Functions may provide functionality intended to validate a given attribute,
by inspecting its value component and producing a proper security token as a result. Thus, a
validated attribute may put the system in a secure state, and access rights can be safely granted
as a result. As described in Section III-A.1, permissions can be assigned to security tokens,
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which then serve as a layer of association between attributes and permissions. Such a layer
helps identify the attributes that may be ultimately involved in granting a given permission, as
well as the set of constraints represented by TP-Functions that may be involved in such process.
Moreover, our model also allows for TP-Functions to take security tokens as an input, or may
also take both attributes and security tokens as an input altogether to produce security tokens as
a result, as depicted in Fig. 14. We define security token as follows:

Definition 3: A security token is a tuple of the form <id, value>, where id is a unique
identifier, whose format as well as associated semantics remain in the scope of the collaborative
application domain, and value is the devised value of the token, if any, which may also be in
the scope of the application domain, and may not necessarily match a given value depicted by
the attribute (or set of attributes) the token is originated from.

Note that our definition of security tokens does not include the concept of data type, which
is included in the definition of attributes, in order to allow for an enhanced flexibility in the
definition of the range of values. Examples of security tokens include: <jobPosition, manager>,
<jobPosition, employee>, <isUnderage, true>, <isSuperUser, false>, etc. With attributes, se-
curity tokens are grouped into token families, which have a similar definition to the ones defined
for attributes. A token family groups a set of security tokens that share the same id component
as follows:

Definition 4: A security token family is a set of security tokens where all members share the
same id component.

As with attribute families, we denote a security family identified by id as fam-t(id). Examples
of security token families include: fam-t(jobPosition) = {<jobPosition, manager>, <jobPosition,
employee>} and fam-t(isUnderage) = {<isUnderage, true>, <isUnderAge, false>}.

4) Definition of Token-Provisioning Functions: As introduced in Section III-A.1, our TP-
Functions represent a core component of our model that is intended to provide a conceptual
foundation to the constraints depicted in the use case discussed in Section III. TP-Functions are
expected to provide a strong mapping between a given attribute defined in an attribute family
and a single security token defined in a security token family. On the other hand, not all tokens
in a given security token family are expected to be originated from an attribute through a given
TP-Function. Fig. 15 shows a representation of a pair of TP-Functions mapping attributes from
the attribute family identified by fam-a(a) to security tokens in the token families fam-t(t) (TPF1)
and fam-t(t’) (TPF2). Fig. 15 illustrates two interesting properties of our proposed TP-Functions:
first, TP-Functions are said to be non-injective§, as two or more elements from a TP-Function
input set (domain) may be mapped to the same element in the output set (codomain). As an
example, consider the case of attributes a1 and a2, from the attribute family fam-a(a), shown
in Fig. 15, which are both mapped to the same element t1 in fam-t(t) by TPF1. Second, TP-
Functions are said to be non-surjective¶, as none of elements in the output (codomain) set are
required to have a corresponding element in the input (domain) set. As an example, Fig. 15
shows the security token t3 belonging to the fam-t(t) family has no originating attribute from
fam-a(a) by TPF1.

Definition 5: A token-provisioning function (TP-Function) is a non-bijective as well as non-
surjective, mapping sets of attribute families and security token families to security token families.

The combination of families of attributes and security tokens as an input to TP-Functions can
be achieved by taking the cartesian product of all the families involved. Moreover, as depicted in
Section III-A.1, security tokens are associated with access rights (permissions) by means of the
§A function f : A → B is said to be injective or one-to-one, if ∀ a, a’ ∈ A, f (a) 6= f (a’).
¶A function f : A → B is said to be surjective or onto, if ∀ b ∈ B, ∃ a ∈ A, f (a) = b.
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Fig. 14. Graphical depiction of a model based on security tokens for ABAC.

PA relation. As shown in Fig. 15, TP-Functions can be chained together to produce a graph-like
structure showing how attributes and security tokens are used to produce security tokens. Such
a structure is defined as follows:

Definition 6: A token-provisioning graph (TP-Graph) is a directed, weakly connected, and
possibly cyclic graph, whose vertices (nodes) represent either families of attributes or families
of security tokens, and its edges (arcs) represents token-provisioning functions (TP-Functions).

TP-Graphs are directed, since TP-Functions represent unidirectional edges due to their nature.
Moreover, TP-Graphs are also weakly connected, as there is no requirement for all nodes
(families) to be connected to each other. Finally, TP-Graphs are also possibly cyclic. Leveraging
this definition, security tokens are obtained by traversing a given TP-Graph. Fig. 15 shows an
example of a TP-Graph that has been annotated with a permission, which is in turn associated
with a given security token t1. The process of granting the depicted readFilePermission is
summarized as follows: at runtime, the access control entities involved in the request must
exhibit attributes a1 and a2. An attribute a1 is turn into the security token t1 by means of the
TPF1 function. Token t1, in combination with attribute a1 (from family fam-a(a)) is also turned
into the security token t’1, which is related to the aforementioned readFilePermission by means
of an entry in the PA relation. As explained in Section III-A.1, a permission is granted if a
requesting actor is able to provision a token that is associated with the PA relation. Following
Definition 6, security tokens are provisioned by traversing a TP-Graph. Besides providing a
stronger definition of the way security tokens are generated within our model, TP-Graphs allow
for the development of security analysis techniques based on graph theory. Finally, the process
of applying TP-Functions to attributes/security tokens (by traversing a given TP-Graph) is named
as token provisioning. We also call the set of security tokens that can be potentially provisioned
from a TP-Graph as the token repository.

Fig. 15. An example of TP-Functions, token families and an associated permission.

B. Evaluation



33
1) Case Study: In order to illustrate the access control model proposed in Section III-A, we

performed a case study with a document management system (DMS). Such an application is
intended for end-users to store and share document files, e.g. text files, pictures, etc., while still
enforcing a set of access control rules to protect the confidentiality and integrity of the documents
managed by the system. Users are allowed to upload documents into the system, in such a way
documents are owned by the user who uploaded them in the first place. Users are also allowed
to share documents they own with other users by specifying the following access modes: read
(R), write (W) and execute (X). As an example, a user u1 may share a document d with another
user u2 by granting him/her the read access mode. Therefore, u2 is allowed to inspect d, but not
to change its contents. In addition, three different categories of end-users are defined, namely:
Employee, Departmental Manager and CEO. Users with the Employee category are grouped in
departments led by one or more users holding the Department Manager category, which in turn
oversee users with the CEO category. The access control requirements for each category are as
follows:
• Users with the Employee category share full access privileges (RWX) only with their

corresponding Department Manager and the CEO by default.
• Users with the Department Manager category share full access privileges with the CEO as

well, but not with Employee .
• Users with the CEO category share no access privileges with any other users by default.
Finally, the access control privileges defined for document owners remain intact despite the

job category defined for a given user. This case study shows a couple of interesting features in
terms of access control: first, it clearly depicts an approach involving access control constraints
based on attributes. Second, derived from the aforementioned set of access control requirements
based on organizational jobs, an access control model depicting the well-known role-based
access control (RBAC) [38] immediately comes to mind. However, as depicted in [25], applying
attributes (along with their corresponding access control constraints) to an RBAC setting is not
a straightforward task. With this in mind, our case study presents an interesting alternative by
leveraging an ABAC setting modeled with the approach we have described in previous sections.

Fig. 16 shows a representation of a model configuration depicting our case study. The set
of access control entities includes the set of users of the DMS (actors), as well as all the
documents that are uploaded into the system (targets). The operations include the ones described
earlier and the set of permissions is specified by relating the operations with the set of documents
uploaded to the DMS. Attributes can be grouped into the following families: userID, jobCategory
and deptID, which are related to the set of users, and docID, ownerID and sharingModes,
which are related to documents. Families of security tokens include userID, docID, deptID,
jobCategory, docID, docID, ownerID and ownerDeptID, which are obtained from processing the
corresponding attributes by means of the TP-Functions f 1, f 2, f 3, f 4, f 5 and f 7 respectively. In
addition, the families of security tokens shared-Owner, shared-Dept-Manager, shared-CEO and
shared represent the set of security states in the DMS where permissions can be safely granted,
and are produced by functions f 6, f 8, f 9 and f 10, which derive the access control constraints for
our case study. As an example, the TP-Function identified by f 9 compares the security tokens
userID and ownerID then returns the shared-Owner if their value components match. Otherwise,
an empty security token is returned. If the shared-Owner is provisioned by a requesting actor,
the associated permission pALL, which allows complete access to a document within the DMS,
is granted as a result. A similar convention is applied in the definition of all other TP-Functions
within our case study.
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Fig. 16. A TP-Graph created from the TP-Functions depicted in our case study.

TABLE IV

A COMPARISON WITH EXISTING APPROACHES FOR ABAC.

Paper Attributes Constraints Model Def. Sec. State Independence

[44]
√ √ √

× ×
[46] × × × × ×
[48]

√
×

√ √ √

[14]
√

× × × ×
[34] × ×

√
× ×

[13] ×
√ √

× ×
[26]

√ √
× × ×

[49]
√

× × × ×
[40]

√ √
× × ×

[39] × × ×
√

×
[45] × ×

√
× ×

[22]
√

×
√

×
√

Ours
√ √ √ √ √

2) Comparison with Existing Approaches: This section describes a brief comparison of our
approach with existing approaches in the literature. We first articulate a comparison criteria
based on the characteristics of ABAC: first, as we aim to provide a definition of the main ABAC
component attributes, we check how this important component has been defined and considered
in other existing approaches. Next, we explore the support offered by existing approaches in
specifying access control constraints based on the concept of attributes, which we have described
in Sections III-A.1 and III-A.4. Following with the same idea, we also compare our approach
with existing ones with respect to the definition of the overall access control model. Next, we
explore the support for the notion of security state (Sections III-A.1 and III-A.3) offered by
the literature, in such a way a relationship between attributes and access rights are properly
identified. Finally, as our approach is intended to be independent in terms of the supporting
methodology, as described in Section III-A.1, we determine whether such a feature has been
provided by other approaches. Using this comparison criteria, we examine existing approaches
in the literature: one of the initial attempts in defining ABAC was proposed by Wang et al. [44],
who explored the use of logic programming and computable set theory for modeling the main
features of ABAC, taking into account a web-based context. Our work depicts a similar approach
by proposing the evaluation of attributes through functions, but does not depend on any particular
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supporting methodology for its implementation. Another approach was presented by Yuan et al.
[46], who explored the use of ABAC for the specification of access control policies for web
services. Their approach, while providing no formal definition of ABAC, depicts useful use cases
that have influenced the ones described in Section III. Moreover, Priebe et al. [34] presented
an approach leveraging the concepts of ontologies and the semantic web in order to formalize
the notion of ABAC. Another approach leveraging the concept of the semantic web for ABAC
include the one of Cirio et al. [13], who provide a model definition including attribute-based
constraints. The work of Zhu and Smari [49] [40] has provided a definition of both attributes and
attribute-based access control constraints tailored for supporting collaborative software systems.
In the context of grid computing, the approach presented by Lang et al. [26] also provided an
ABAC model mostly focused on the definition of attributes and the access control constraints. An
approach close to ours was introduced by Covington and Sastry [14], who presented contextual
attribute access control (CABAC) model which was realized in mobile applications. However,
our approach takes a step further by describing the way such attributes are mapped to access
rights (permissions) by means of TP-Functions and TP-Graphs. Recently, a noticeable approach
was proposed by Jin et al. [22], whose approach is intended to formalize a series of ABAC
model families. In addition, the relationship between ABAC and other well-known access control
models was explored. We have been influenced by this work with respect to the definition of
attributes as described in Section III-A.2. However, our approach introduces a notion of security
token and TP-Functions to capture the mapping between attributes and corresponding access
rights. Finally, another interesting approach was presented by Zhang et al.[48], who presented
their attribute-based access control matrix, which extends classical theory in the field of access
control to accommodate attributes as well as the notion of security state. However, it provides
no definition for attribute-based constraints, which is considered in our approach by means of
the proposed TP-Functions and TP-Graphs. Table IV summarizes our findings and comparison
results.

IV. CONCLUDING REMARKS

In this report, we summarized our accomplishments. We first focused on access control and
delegation models for ad-hoc collaboration including composite policies and schema integration.
In addition, we attempted to detect unexpected and unauthorized information flows, and visualize
our results in an effective manner. Also, we investigated how cryptographic approaches can
enhance the integrity measurement in clouds. We also studied how integrity measurements of
remote sites can be analyzed by policy analysis mechanisms and proposed a remote attestation
framework. In addition, we focused on policy anomaly detection and resolution approaches
for firewall policies and web-based policies. In addition, attempted to propose attribute-based
access control in ad-hoc collaboration. Also, we investigated a formal way to describe identified
characteristics and properties so that we can eventually formulate attribute-based access control
model and relevant policy management schemes.
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