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ABSTRACT

The Remote Sensing Laboratory (RSL) is developing a tactical, networked radiation detection system that will be agile,
reconfigurable, and capable of rapid threat assessment with a high degree of fidelity and certainty. Our design is driven
by the needs of users such as law enforcement personnel who must make decisions by evaluating threat signatures in
urban settings. The most efficient tool available to identify the nature of the threat object is real-time gamma
spectroscopic analysis, as it is fast and has a very low probability of producing false positive alarm conditions. Urban
radiological searches are inherently challenged by the rapid and large spatial variation of background gamma radiation,
the presence of benign radioactive materials in terms of the normally occurring radioactive materials (NORM), and
shielded and/or masked threat sources. Multiple spectral anomaly detection algorithms have been developed by national
laboratories and commercial vendors. For example, the Gamma Detector Response and Analysis Software (GADRAS) a
one-dimensional deterministic radiation transport software capable of calculating gamma ray spectra using physics-
based detector response functions, was developed at Sandia National Laboratories. The nuisance-rejection spectral
comparison ratio anomaly detection algorithm (or N-SCRAD), developed at Pacific Northwest National Laboratory, uses
spectral comparison ratios to detect deviation from benign medical and NORM radiation source and can work in spite of
strong presence of NORM and or medical sources. RSL has developed its own wavelet-based gamma energy spectral
anomaly detection algorithm called WAVRAD. Test results and relative merits of these different algorithms will be
discussed and demonstrated.
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1. BACKGROUND

This background describes methods used during search, localization, and identification operations when looking for
illicit materials in urban areas. Radiological search is an inter-agency (often tactical) operation initiated and directed by
law enforcement (LE) entities. With LE guidance and intelligence gathered by them, team(s) of searchers, properly
equipped with the appropriate measurement and analysis tools, typically

e Find the point or extended sources of radiation in question.

e  Localize the source(s) with certainty.

e Characterize the target source(s) in terms of radiation types (gamma, neutron, beta, etc.), energy (using high-
purity germanium [HPGe] and tools for gamma spectroscopy), physical state of excitation (fission or not
through use of a fission meter), and neutron directional distribution (by using shielded neutron assay probe,
SNAP).

e Adjudicate the anomalous condition by inquiring further into the target source and make a determination of the
threat conditions.

o Depending on the threat condition, the situation can get resolved in situ or may need further analysis through
the Triage system.
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The operations detailed above are components of passive search. In active search an external stimulus, such as a pulsed
neutron generator or a large neutron source, is used to “activate” the target sample in order to detect and analyze the
prompt or beta-delayed neutrons and/or activation gamma rays. Associated particle identification (API) units use active
interrogation techniques to image a fissioning source(s). Radiography, a variant form of active interrogation, uses
tunable x-ray energy sources to make images of target objects (obscure by design or not) according to their atomic
number (Z). Multiple energy beam bremsstrahlung photons are used to generate computer tomography of the target
object for better contrasts in terms of the Z-value(s) of the target.

For operational simplicity search operations can be subdivided into two categories, namely static and mobile. In static
search the detector(s) are stationary (portal monitors of various sizes and shapes stationed to radiologically monitor a
flowing traffic in real-time), and they can be networked to provide comprehensive real-time radiological snap shots of a
given area under surveillance remotely or in situ as required for the LE to make quick decisions. Static search systems
are less prone to changing background radiation conditions. In mobile search systems the detectors are moveable; their
effectiveness depends on the efficiency of the embedded software to reduce false (positive and negative) alarms and the
ability to negotiate the spatial and temporal variation of the background radiation. Almost all mobile systems, except
aerial systems, can be run in static mode. Mobile search can be further subdivided into functional teams performing

Foot searches,

Mobile ground searches,

Mobile aircraft searches and

Mobile search on water.

1.1 Gamma ray scintillators as detectors

Inorganic scintillators, namely sodium iodide with thallium activator (Nal:TI) and cesium iodide with thallium activators
(Csl:TI), are the industry’s workhorses. Recently, higher-resolution cerium-doped lanthanum bromide has made a big
impact in the gamma ray scintillation detection area. The dopants are used to facilitate light production from the
electrons, with a light conversion efficiency of ~13%. Optically coupled photomultiplier tube photocathodes create
electrons that get multiplied by successive dynodes; finally, an anode pulse is collected, shaped, amplified, and
discriminated against a discriminator voltage. These devices are found in many sizes, depending on the system (listed in
order of sensitivity from best to worst): 2.5” x 1.5” x 8" for backpack, 2" x 4” x 16", 4 each, for the RSL mobile system,
1.5" x 2" for identiFINDER, and %" x 1" cylinder Csl:Tl for Pager S. It must be kept in mind that the background counts
increases when size goes up; an increase of size by a factor of 4 will give rise to an increase of sensitivity by a factor of
2. Calculating net counts over square root of background counts (S/VB) is a good measure of a system’s sensitivity..

A sensor’s “selectivity” is related to its resolution. The resolution determines the sensor’s ability to distinguish between
two gamma rays having very close energies. Calculating full width half-maximum (FWHM) at a given energy from a
differential pulse height spectrum is a measure of the sensor’s resolution. Sensors with higher resolution (lower FWHM)
have better “selectivity.” Sensitivity and selectivity are not the same; sensitivity relates to gross counts, while selectivity
relates to resolution. Compared to a 3” x 3" Nal:Tl crystal with 8% resolution at 1332 keV line from a ®Co source, a
30% HPGe sensor with a resolution of FWHM of 2.2 keV is 1/3" better in sensitivity but a factor of 48 better in
selectivity.

Spectral sensitivity to the gamma ray energy spectrum depends on the signal-to-noise ratio, S/N. S/N is determined by
~ efficiency (g)/N[background (B) * resolution (R)]. The relationship is that better resolution causes better S/N. Cherepy®
has deduced that for the energy resolution range applicable to scintillators (from 4 to 15% at 200 keV), a false alarm rate
(FAR) for identification of spectral anomalies can be expressed as FAR ~ R**/(S,,/Bror)"*, where R is the resolution of
the device, S, is the photopeak efficiency (product of stopping power and the photofraction), and Bror is the natural
background including self-activity.

2. GADRAS

Dean Mitchell of Sandia National Laboratories developed an applications package, “Gamma Detector Response and
Analysis Software,” or GADRAS.2 GADRAS is a PC-based software package to simulate detector response and analyze
unknown gamma energy spectra. It is a general-purpose application for the modeling and analysis of radiation detector



responses of gamma spectroscopic instruments like scintillators, semiconductors, and neutron detectors working as
proportional counters. It employs radiation source and detector response models to predict the response of user-defined
detectors to chosen radioactive sources. It implements methods to identify radiation sources from their measured
signatures, primarily the measured gamma spectrum and neutron count rate. Radiation source emissions are calculated
using analytical and numerical radiation transport models. Detector responses are calculated using point models of the
detector material, dimensions, collimation, and scattering environment. Analytical methods are implemented using linear
and nonlinear regression techniques. The GADRAS Detector Response Function (GADRAS-DRF) computes the
response of gamma ray and neutron detectors to incoming radiation. The capabilities include characterization of detector
response parameters, plotting and viewing measured and computed spectra, analyzing spectra to identify isotopes, and
estimating source energy distributions from measured spectra.

GADRAS-DRF can compute and provide detector responses quickly and accurately without having to go through full-
blown Monte Carlo simulation of the scenario and surroundings, giving users the ability to obtain usable results in
minutes or less.

Development of GADRAS started in 1985 for use in the Remote Atmospheric Monitoring Project (RAMP), which used
low-resolution detectors to analyze airborne radionuclides. As of April 2010, the GADRAS application included six
radiation analysis algorithms, gamma ray and neutron detector response functions, and support for radiation transport
calculations. To identify radioactive sources creating a gamma ray spectrum, GADRAS matches an entire gamma ray
spectrum against one or more known spectra. Figure 1 illustrates this approach. Many other algorithms focus on peaks in
gamma ray spectra because they are the most obvious features. However, GADRAS analyzes the full spectrum for
several reasons:

1. Peaks may overlap, making source identification ambiguous.

2. Most counts in a gamma ray spectrum are often outside the peaks, in which case using only peak data would
ignore most of the data. For example, less than 3% of the counts in a spectrum for **®U occur in the 1.001 MeV
peak, the most prominent feature of its spectrum.

3. Counts outside the peaks help characterize the composition and thickness of intervening material. Because
gamma rays interact with these materials, characterizing the materials improves the accuracy with which the
gamma ray spectrum, as read by a detector, can be linked back to the gamma ray source. Arriving at a solution
consistent with all the data increases confidence in the result.

The absence of counts in a region of a spectrum can be a clue to the identity of radioactive materials.
Using the entire spectrum helps analyze data from scintillators having low energy resolution because low
resolution often precludes identification of peaks in the spectrum and helps analyze spectra of weak sources.

a ks

A live-time (~4 seconds) spectrum was taken from a mix of medical isotopes at a distance of 2.5 meters. The analysis,
performed with GADRAS, is shown in Figure 1. GADRAS identified all medical radioisotopes in the mix and predicted
quantitatively the relative strengths of the radioisotopes. A critical study of GADRAS applications to analyze special
nuclear materials is available® in which the performance of GADRAS is compared with other gamma spectral analysis
tools.

Note that Figure 1 shows how GADRAS can identify various materials (in this case a set of medical radioisotopes)
despite background radiation. The top scale shows gamma ray energy in thousands of electron volts (keV); the left scale
shows number of gamma ray counts at each keV level. Black bars at the upper edge of the blue area are the raw data that
a gamma ray detector provides. Data are presented as bars rather than points to indicate one standard deviation
uncertainties. The raw data cannot differentiate between gamma rays produced by different materials, as a 200 keV
gamma ray from one substance is identical to a 200 keVV gamma ray from another substance, and background radiation
may hide gamma ray peaks from a material of interest. A count of gamma rays from a cargo container might produce a
data set like this.

The main application of GADRAS s to support Triage/Reachback analysis. A radiation detection operator in the field,
such as a Customs and Border Protection (CBP) officer, who finds a vehicle or cargo container that presents a suspicious
radiation signature that cannot be easily resolved, can send the detection data (such as a gamma ray spectrum) to the
Laboratories and Scientific Services section of CBP for a more detailed analysis. That analysis uses GADRAS.



Similarly, if that service is unable to resolve the matter, it can send the data to a secondary Reachback at the nuclear

weapons laboratories, which also use GADRAS.
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Figure 1. GADRAS solution for 4-second spectra with a mix of four medical radioisotopes of different strengths:
%7Ga (75 +2) uCi; **Tc,, (184 +2) uCi; U (7.4 £0.4) uCi, and *TI (70 +2) uCi with a reduced 3> value of 1.25 per degree of
freedom.

An example of using GADRAS to identify a complex source spectrum is described below. The scenario, a time-series
data taken by a gross count measuring instrument shows the following profile:

The first 10 seconds of data were with a backpack next to a static vehicle.

The backpack is then carried into a location; the entrance of the building was crossed at around 60 seconds of

the travel.

The operator then walked past two suspects at a distance of 2’, walking at a slow pace.
The operator next sat down as close as he could to the two subjects, approximately 3’ away.
The operator was at the table for 60 seconds. Then, the two subjects left through a second entrance about 30’

away from the operator.

After the two subjects left, the operator left the same way he came in and returned to the vehicle.

The count rate vs. time correlation can be tabulated as shown in Table 1. The time profile and associated summed
spectral data are shown in the screen shot in Figure 2. The suspect target spectra for approximately one minute (while the
operator was sitting close to the subject source) is shown in Figure 3. Finally, a stable background spectra was extracted
during a period of about 83 seconds and is shown in Figure 4.

Table 1. Count rate vs time correlation for source spectrum

28
61
77
138
167
197
217

58

75

136
166
196
216
246

355.3
756.7
761.5
916.3
729
385.8
728
361

139.2
27.2
31
117
18.7
116
16

Background at vehicle

Movement causes fluctuation

Stable local background

Stable Source term

Motion involved

Stable background

Movement causes fluctuation

Stable background outside the structure
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Figure 2. The green histogram is time series data of the gross counts only. The gamma energy spectra collected over the entire

duration is shown in blue on the top. The gamma-ray energy covered is from 0 to 3000 keV.
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Figure 3. One minute’s worth of spectral data collected 3’ away from the source.
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Figure 4. A background spectrum collected for about 83 seconds.

The GADRAS detector geometry dimensions were modified from a 3” x 3” cylinder to a 1.75” x 2.75" x 8" backpack
sensor. Figure 5 shows the GADRAS setup used for this analysis, and the resultant GADRAS multiple linear-regression

analysis is shown in Figure 6.
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Figure 5. The GADRAS detector size and shape was modified from the standard 3" x 3" cylindrical form to the size and shape of
sensor consistent with infield backpack use. This caused an efficiency loss of about 9% as shown, in the figure.



T & come

C:\Sanjoy\CY 2015\Technical Work\March NRAT TAD\Time Slicg\4-frrehablssSaeurce
chi-square = 1.07
10° : . . : :
@ 1 1
c E
©
-
(&5
- 1
o 10
=
>
S
10° 5
10'1 L 1 - bt
500 1000 1500 2000
Energy (keV)

FHEREREEA SRS VULTIPLE LINEAR REGRESSION ANALYSIS *#+###50 5oxon

detectorname  : 3x3\Nal On Ground

distance (cm) :91

foreground spectrum: C:\Sanjoy\CY 2015\ Technical Work\IMarch NRAT TAD\Time Slice 4
Probable Source Counts.pcf,1

background spectrum: C:\Sanjoy\CY 2015\ Technical Work\March NRAT TAD\Time slice 1
Background.pcf,1

collect date/time :

reduced chi-square: 1.072 weightrange (keV): 72-2799
relative background: 1.000 background unc (%): 0.000
mult-regres. coeff.: 0.662 template error (%): 5.000
Gainshift (%) : 0.000

Source Activity( Ci} Weight(gm) AN AD
URANIUMINSOIL 7.9 +/- 0.1 MNA 91.0 1.2
MOX 43 +/- 0.2 MNA 91.0 1.2

URANIUMINSOIL,7.98 Ci{91.0,1.2}+MOX,4.36 Ci{91.0,1.2}

Figure 6. Multi-regression analysis results show a fit to the database of isotopes and finds a match with a combination of uranium

in soil and possible mixture of metal oxide fuel with a % of 1.07 per degree of freedom. The experimentally measured count rate
is 918.8 and the modeled count rate is 918.2. The details of GADRAS analysis is shown below

To summarize, the spectra taken at the target location are consistent with that from a few-gram quantity of mixed oxide
fuel (MOX) and uranium in soil (not enriched). The materials are not weapons-grade elements and no apparent threat of
WMD exists. One word of caution, however; the MOX fuel is radiologically HOT that’s why the Curie content of the
materials is very high (MOX is basically plutonium oxide and depleted uranium oxide), so the actual mass is well within
the range of 0.5 to 5 g. For all practical purposes, MOX is as hazardous as spent fuel and should be handled as such.
Personnel in pursuit of these materials have to be careful not to expose themselves to MOX for prolonged time periods.

3. PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is a multivariate statistical tool that uses an orthogonal transformation to convert a
set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal
components. The number of principal components is less than the number of original variables. The transformation is
defined in such a way that the first principal component has the largest possible variance and accounts for as much of the



variability in data as possible. Each succeeding component in turn has the highest variance possible under the constraint
that it is orthogonal to the preceding components. The resulting vectors are an uncorrelated orthogonal basis set. The
principal components are orthogonal because they are eigenvectors of the covariance matrix, which is symmetric. PCA
is sensitive to the relative scaling of the original variables.

The goals of PCA, dimensionality reduction and independence, are achieved by transforming a multivariate data set in
such a manner that only a small fraction of new, uncorrelated, dimensions (principal components), are needed to retain
nearly all of the variation present in the original data set. For any particular energy resolution, the number of principal
components (dimensions) required to explain a particular desired fraction of the variation in the original data (e.g.,
99.9%) provides a measure of the information content available in the original spectral population. As a qualitative
example of PCA application we use three pairs of individual radioisotopes, **'Cs, **U, and **°Pu, to obtain six separate
spectra of gamma ray energy as collected by a sodium iodide—based detector, a typical radioisotope identification device
(RIID) called identiFINDER.* The scaling of the counts was done by first converting counts, C, to square root of counts,
\C, and then dividing the VC values by the maximum value of \C so the entire spectra is normalized to unity at the
maximum. Figure 7 shows the six spectra, two for each of the above-mentioned isotopes.

[—Cs-137 Shielded)
-=-Cs-137 Bare
—U-235 Shielded
-=-J-235 Bare
—Pu Shielded
|-=+Pu Bare

Scaled Sqrt{Count)

100 200 300 500 500 700 800

Energgcilke\f)
Figure 7. Two scaled spectra from each of **¥Cs, >®U, and #**Pu, in the gamma energy range from 0 to 800 keV.

Following the PCA analysis method prescribed in Ref. 5, we found a way to display the “within isotope” variability as
well as “between isotope” variability. Figure 8 describes the same six spectra in reduced, two-dimensional space by three
pairs of points (clusters). The values of the two coordinates in Figure 8 are chosen so that the distances between each of
the 15 (°C,) possible spectral pairs are very closely approximated (using multidimensional scaling) by the distances as
computed using ordinary Euclidian distance applied to the 2-component values. Each isotope has a unique thumb print
that can be regarded as a cluster of points in the 2-component space.

4. WAVRAD

In radiation detection, real-time alarm systems are needed that appropriately alarm near sources and do not provide a
large number of spurious alarms elsewhere. When too many false alarms are present, it may be easy to become
complacent in the field, ignoring alarms that require attention. WAVRAD (wavelet-assisted variance reduction anomaly
detection) is an algorithm that mathematically compares features of a spectra to a collection of the previous spectra over
a given time period. This algorithm has been shown to reduce the number of spurious alarms and does not depend on a
source library of data. In addition, this algorithm points to areas in the spectra that give cause for the alarm, providing
the field expert with additional information over just an alarm. Finally, this algorithm is insensitive to slow changes over
background radiation levels in the field.
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Figure 8. There is a recognizable clustering of same isotope data points whether the spectrum was from a bare or shielded source
for each of the three isotopes. The complex energy spectrum has been reduced to a two-dimensional plot, still bearing the identity
of the isotopes.

WAVRAD provides a general algorithmic approach for real-time anomaly detection, impervious to common detector
limitations (e.g., poor resolution, imperfect or non-linear calibration, gain shift due to environmental reasons). The
algorithm uses an approach based on the continuous wavelet transform for variance reduction, formation of an
expectation from recent measurements, followed by evaluation of the deviation between the current measurement and
the expectation using methods from linear algebra.

Radiological search depends on the successful execution of two principal steps: (1) recognition of radiological anomalies
in the dynamic background, and (2) identification of the source of the radiological anomaly for determination of the
threat potential and characteristics.

The recognition of a radiation anomaly must be performed in real time using only “sparse" data, such as a spectrum
acquired over a one-second interval. This may include scenarios in which the detector is in motion, whether it is
transported by aircraft, automobile or carried by a human or automaton. Dynamic search methods based solely on gross
count rates perform quite poorly in terms of spurious alarm rates and/or sensitivity. Other methods that utilize spectral
information, such as template matching, applications of PCA concepts, or utilization of ratios of specific spectral
window sums, are generally more sensitive and exhibit fewer false alarms. However, such methods tend to rely on one
or more of the following: (a) a relatively small selection of target radioactive isotopes and shielding configurations;
(b) optimizations based on a training dataset; (c) fixed detector calibration and resolution; or (d) complex computations
performed in conjunction with data acquisition. For most realistic scenarios, at least one of these attributes is
unsatisfactory. Real-world search operations are best aided by focusing on the recognition of the presence of a spectral
anomaly, which informs and drives further data collection in the appropriate temporal/spatial location, permitting an
actionable identification of the actual source of the anomaly.

In light of the challenges presented by the radiological search mission, an effective algorithm must have the following
attributes:
*  Provides alarms in real time.
»  Provides a clearly interpretable cause for alarm.
» Depends only on data collected during current operational cycle, i.e., does not require training on a limited
dataset.
» Does not depend on any source library.
» Is insensitive to detector calibration or resolution imperfections, and “slow” gain shifts caused by issues like
thermal drift.
e s impervious to “slow” changes in background radiation level and composition.



The approach is broken into several distinct steps:
e The determination of an expected spectral shape for comparison with the given measurement will be chosen.
» Anenergy-dependent collection of scale parameters will be chosen.
» A variance-reducing transform based on the scale parameters will be defined.
* Acollection of semi-norms and thresholds will be selected for the output of the transform.
»  The transform output coupled with the expected spectral shape will lead to the formation of a deviation vector.
» The collection of semi-norms and thresholds will be used to evaluate the deviation vector for the presence of a
spectral anomaly.
5. CONCLUSION

Commercially available hand-held or vehicle-mounted and portal gamma ray detection and radioisotope identification
systems suffer from limited scintillator energy resolution, spatial and temporal variation of background, and the presence
of a ubiquitous, widely varying terrestrial mix of naturally occurring radioactive materials. Legitimate use and transport
of radioactive materials for medicinal purpose or other nuclear power plant-related operations, or planned waste
management work also complicate matters. Commonly used RIIDS do not perform well in real-time data evaluation
mode. It is imperative that one or many of the smart algorithms discussed in this paper be embedded in the data
acquisition system of the devices to have higher success rates (true positive alarm) and fewer false (positive or negative)
alarm rates. The Department of Homeland Security, Customs and Borders Patrol, and other government agencies are
actively looking for solutions to develop better identification tools. With modern-day fast computers having higher
computing power, real-time data acquisition with multiple front-end identification algorithms running are feasible and
being implemented in commercial applications.
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