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Collaborators and Nomenclature

I Collaborators:
I John King Gamble→ G37.00007, full-scope modeling
I Toby Jacobson→W37.00009, open dynamics
I Adam Frees→W37.00010, donor-dot tunneling
I Everyone else→ Xujiao (Suzey) Gao, John Mitchell, Inès

Montaño, Rick Muller, and Erik Nielsen
I Nomenclature:

I 2DEG→ Two-Dimensional Electron Gas
I CI→ Configuration Interaction
I DG→ Discontinuous Galerkin
I DQD→ Double Quantum Dot
I EMT→ Effective Mass Theory
I FEM→ Finite Element Method
I PDE→ Partial Differential Equation
I QCAD→ Quantum Computer Aided Design
I VO→ Valley-Orbit
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Motivation

Veldhorst, et. al., Nature Nano (2014) Nguyen, et. al., arXiv:1403.3704

Shulman, et. al., Science (2012)
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QCAD: Present Scope

I SNL’s self-consistent
electrostatics / quantum package

I FEM discretization of PDEs
I See Gao, Nielsen, et. al., J. App.

Phys., 2013

I Currently: strictly electrostatics, standard effective mass, and full-CI
I Goal: add physics to achieve high-fidelity model of qubit/environment
I Problem: more physics→ complex solvers→ high accuracy in solution
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Effective Mass as a Multi-scale Problem

Red→ positive potential, blue→ negative potential
Domain size ∼ 1.5 microns
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Effective Mass as a Multi-scale Problem

At the shortest scale is ∼ 1 nanometer
.
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Effective Mass as a Multi-scale Problem

Looking at potential, level of refinement seems excessive. . .
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Effective Mass as a Multi-scale Problem

For a DQD device we need to resolve this 2DEG, working with
donors/interfaces we need to go the Angstrom scale
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Multi-valley Effective Mass: Overview

I Angstrom-level physics included in
multi-valley effective mass

I Recent work, Gamble/Jacobson, et. al. -
arXiv:1408.3159

I Tetrahedral central cell
I Anisotropic Gaussian basis
I First principles Bloch functions
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Multi-valley Effective Mass: Challenges

I Surprisingly difficult PDE: multi-scale, oscillatory coefficients
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Multi-valley Effective Mass: Challenges

I Surprisingly difficult PDE: multi-scale, oscillatory coefficients
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I Goals:
I Systematically improvable numerical method
I Efficient embedding into QCAD-like framework
I Amenable to interfacing with atomistics

What can we learn from engineers/applied mathematicians to
solve difficult PDE-based models?

1D multi-valley EMT at interface inspired by Saraiva, et. al., PRB (2011)
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Crash Course in Basis Sets

I Problems with resolution arise from incomplete use of known physics

“Physicist’s” variational basis
I Perturbation on solved problem
I Gaussians, Sturm-Liouville

eigenfunctions, etc.
I Global support→ dense
I Difficult to adapt
I Few degrees of freedom
I Boundary conditions?

“Engineer’s” approach (e.g., FEM)
I Agnostic of problem instance
I Local polynomials, samples +

stencil, etc.
I Compact support→ sparse
I Natural adapativity
I Many degrees of freedom
I Boundary conditions!

I Features of both needed for full-scope/multi-scale problems

Discontinuous Galerkin framework allows us to stitch together
optimal solutions
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DG: Step-by-Step

1. Break domain (V) into sub-domains with a set of interfaces (S)

2. Choose basis ({uj,k}) for sub-domain k based upon local physics

3. Weak soln. of Schrödinger eqn. → soln. of variational problem
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DG: Step-by-Step

1. Break domain (V) into sub-domains with a set of interfaces (S)

2. Choose basis ({uj,k}) for sub-domain k based upon local physics

3. Weak soln. of Schrödinger eqn. → soln. of variational problem

Minimize E [ψi ] for ψi ∈ span{uj,k} → Euler-Lagrange looks like Schrödinger

E [ψi ] =
1
2
〈∇uj,k ,∇ψi〉V −

1
2
〈{{∇uj,k}}, [[ψi ]]〉S −

1
2
〈[[uj,k ]], {{∇ψi}}〉S

+
α

h
〈[[uj,k ]], [[ψi ]]〉S〈uj,k ,Vextψi〉V = Ei〈uj,k , ψi〉V

I FEM: arbitrary element of span{uj,k} is continuous
I DG: arbitrary element is discontinuous→ E [ψi ] finds “continuous” ones
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DG: Simple Example

Solving for envelope states of interest:
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60 unknowns→ ground state and VO coupling to ∼ 0.01%
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DG: Simple Example

α parameter pushes pathological solutions to high energy
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DG: Simple Example

Parameter balances accuracy with conditioning
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DG: Simple Example

Discontinuity rigorously exists still
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DG: Advantages and Plan

I Construct CAD model of device
I Build a coarse mesh for electrostatics
I Forward QCAD solve w/o VO physics
I Extract quantum region→ high order DG
I Local solvers adapt enriched basis
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Summary and Ongoing Work

I Summary:
I High fidelity numerical framework needed for complex models
I Multi-valley EMT is numerically challenging
I Discontinuous Galerkin methods are up to the challenge

I Ongoing:
I Implementation of full 3D capability
I Local adaptivity in space (and time)
I Projective model reduction-based dynamics (stay for Toby’s talk!)

Thank you for your attention!
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