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» Collaborators:

John King Gamble — G37.00007, full-scope modeling
Toby Jacobson — W37.00009, open dynamics

Adam Frees — W37.00010, donor-dot tunneling
Everyone else — Xujiao (Suzey) Gao, John Mitchell, Inés
Montano, Rick Muller, and Erik Nielsen
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» Nomenclature:

2DEG — Two-Dimensional Electron Gas

Cl — Configuration Interaction

DG — Discontinuous Galerkin

DQD — Double Quantum Dot

EMT — Effective Mass Theory

FEM — Finite Element Method

PDE — Partial Differential Equation

QCAD — Quantum Computer Aided Design
VO — Valley-Orbit
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Veldhorst, et. al., Nature Nano (2014)  Nguyen, et. al., arXiv:1403.3704

Shulman, et. al., Science (2012)
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Pre & Post P
C p Driver: Dakota

> SNLs self-consistent e MiiGa -

electrostatics / quantum package Poisson Solvers. | Interaction (C1)

. X X Solver (eff-mass & tight binding) Solver

» FEM discretization of PDEs | ]
> See Gao, Nielsen, et. al., J. App. | Agile Components (ALBANY) : Flexible interfaces |

Phys., 2013

I Trilinos: Nonlinear & linear algebra, std solvers, FE mesh ]

> Currently: strictly electrostatics, standard effective mass, and full-Cl
> Goal: add physics to achieve high-fidelity model of qubit/environment

» Problem: more physics — complex solvers — high accuracy in solution
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Red — positive potential, blue — negative potential
Domain size ~ 1.5 microns
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Largest edge length in gates ~ 75 nanometers
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Approaching the 2DEG transition to ~ 20 nanometers
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Approaching the 2DEG transition to ~ 20 nanometers
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Approaching the 2DEG transition to ~ 20 nanometers
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Down to ~ 5 nanometers

adbacze@sandia.gov



Effective Mass as a Multi-scale Problem ()

Laboratories

VAVAP S
ZAVASN
KN

AV Vi
DI SE RN, KX AR TEAN

Down to ~ 5 nanometers
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Down to ~ 5 nanometers
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Down to ~ 5 nanometers
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Down to ~ 5 nanometers
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At the shortest scale is ~ 1 nanometer
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Looking at potential, level of refinement seems excessive. ..
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For a DQD device we need to resolve this 2DEG, working with
donors/interfaces we need to go the Angstrom scale
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> Angstrom-level physics included in
multi-valley effective mass

> Recent work, Gamble/Jacobson, et. al. - | L)
arXiv:1408.3159 & (0

» Tetrahedral central cell L
» Anisotropic Gaussian basis 3
» First principles Bloch functions
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> Angstrom-level physics included in
multi-valley effective mass

> Recent work, Gamble/Jacobson, et. al. -
arXiv:1408.3159

» Tetrahedral central cell
» Anisotropic Gaussian basis
» First principles Bloch functions

tunnel coupling (meV)

»

[100]
01 .1

5 10
separation distance (nm)
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> Surprisingly difficult PDE: multi-scale, oscillatory coefficients

(_%zv‘ﬁ(r)f1~v+vexr( )F(r)—i—ZV, (r)Fi(r) = EF;(r)

k#|
K2(r) =67 (1) 65 () Vet (r)

Simple Model of Si/SiO, Interface Valley-Orbit Term w/Full Bloch Functions
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1D multi-valley EMT at interface inspired by Saraiva, et. al., PRB (2011)
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> Surprisingly difficult PDE: multi-scale, oscillatory coefficients

(‘gv‘ﬁ(r)fﬂw Vea1) ) F(0)+ 3 Vi) = EF)

k#|
K (1) =67 ()5 (F) Vu(r)

Simple Model of Si/SiO, Interface Valley-Orbit Perturbative Integrand
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1D multi-valley EMT at interface inspired by Saraiva, et. al., PRB (2011)
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> Surprisingly difficult PDE: multi-scale, oscillatory coefficients

(‘gv‘ﬁ(r)fﬂw Vea1) ) F(0)+ 3 Vi) = EF)

k#|
K (1) =67 ()5 (F) Vu(r)

» Goals:

» Systematically improvable numerical method
» Efficient embedding into QCAD-like framework
» Amenable to interfacing with atomistics

What can we learn from engineers/applied mathematicians to
solve difficult PDE-based models?
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> Problems with resolution arise from incomplete use of known physics

“Physicist’s” variational basis “Engineer’s” approach (e.g., FEM)

> Perturbation on solved problem > Agnostic of problem instance

» Gaussians, Sturm-Liouville > Local polynomials, samples +
eigenfunctions, etc. stencil, etc.

> Global support — dense » Compact support — sparse

> Difficult to adapt > Natural adapativity

> Few degrees of freedom > Many degrees of freedom

> Boundary conditions? » Boundary conditions!

> Features of both needed for full-scope/multi-scale problems

Discontinuous Galerkin framework allows us to stitch together
optimal solutions

Methods Mail: adbacze@sandia.gov
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. Break domain (V) into sub-domains with a set of interfaces (S)

2. Choose basis ({uj«}) for sub-domain k based upon local physics

3. Weak soln. of Schrédinger egn. — soln. of variational problem

DG Problem Domain: Donor-Interface
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Methods
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1. Break domain (V) into sub-domains with a set of interfaces (S)
2. Choose basis ({u;«}) for sub-domain k based upon local physics
3. Weak soln. of Schrédinger egn. — soln. of variational problem

DG Problem Domain: Donor-Interface
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1. Break domain (V) into sub-domains with a set of interfaces (S)
2. Choose basis ({uj«}) for sub-domain k based upon local physics
3. Weak soln. of Schrédinger egn. — soln. of variational problem

Minimize & [¢;] for +; € span{u;x} — Euler-Lagrange looks like Schrédinger

£l = (Tt Yy — 3 (VU [l — 5 {lall, {0
o+ (]l ) e, Vestthidy = EiUie, by

» FEM: arbitrary element of span{u; «} is continuous
» DG: arbitrary element is discontinuous — & [¢;] finds “continuous” ones
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Solving for envelope states of interest:

Simple Model of a Donor near a Si/SiGe Interface

"Donor State
-0.05 | Interface State 4

-0.1
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-0.2
-0.25
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-0.4 I I I I
-40 -30 -20 -10 0 10

r (nm)

60 unknowns — ground state and VO coupling to ~ 0.01%
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« parameter pushes pathological solutions to high energy

Interface States at Low Penalty

0.2 ‘
=0 ——
=02 ——
0.1 | o=0.225 1

Potential (eV)

r (nm)

For small o we can see spurious discontinuous solutions
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Parameter balances accuracy with conditioning

Interface States at Sufficient Penalty

0=03 ——
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Large o« — small discontinuity, reduces diagonal dominance
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Discontinuity rigorously exists still

Close-Up Interface States at Sufficient Penalty

0.1895
0=03 —

@O =oeee

—  0.18945 | |

0.1894

State Density (nm

0.18935

0.1893
-2e-05 0 2e-05
r (nm)

Controllable/negligible contribution to KE
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Construct CAD model of device

Build a coarse mesh for electrostatics
Forward QCAD solve w/o VO physics
Extract quantum region — high order DG

vV Vv VY

Local solvers adapt enriched basis
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» Summary:

» High fidelity numerical framework needed for complex models
> Multi-valley EMT is numerically challenging
» Discontinuous Galerkin methods are up to the challenge

» Ongoing:

» Implementation of full 3D capability
» Local adaptivity in space (and time)
» Projective model reduction-based dynamics (stay for Toby’s talk!)

Thank you for your attention!

Conclusion Mail: adbacze@sandia.gov
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