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Wow! These devices are getting pretty complicated...
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modeling semiconductor QIP systems
Effective mass theory

Hubbard-model approaches
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Use a Gaussian grid non-perturbative approach () i

1. Lay down a (3D) grid of Gaussians
2. Construct (local) overlaps with potential
3. Build generalized eigenvalue problem

potential +
valley orbit coupling

We'll use anisotropic gaussians on an
example problem: valley splitting in a
guantum dot
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n.—

Ramping the voltage leads to both
iIncreased confinement and increased F
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device-level simulation
Full scope modeling gaussian grid with full valley physics

e Multiple electrons

e More realistic structures (including disorder)
e Dynamical modeling (optimal control?)

e Spin physics
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