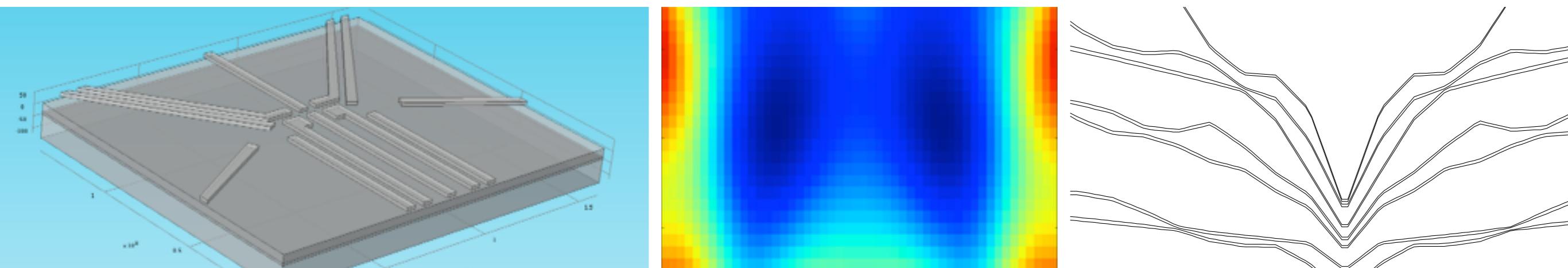


Exceptional service in the national interest



Full-scope modeling of semiconductor devices for quantum information processing

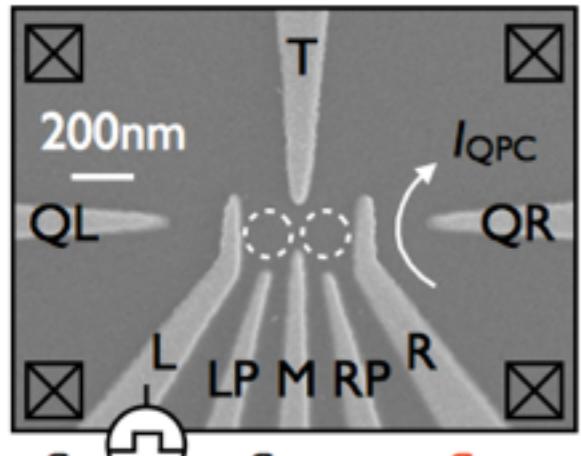
John King Gamble

Andrew D. Baczewski, Adam Frees, N. Tobias Jacobson,
Inès Montaño, Richard P. Muller, Erik Nielsen

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

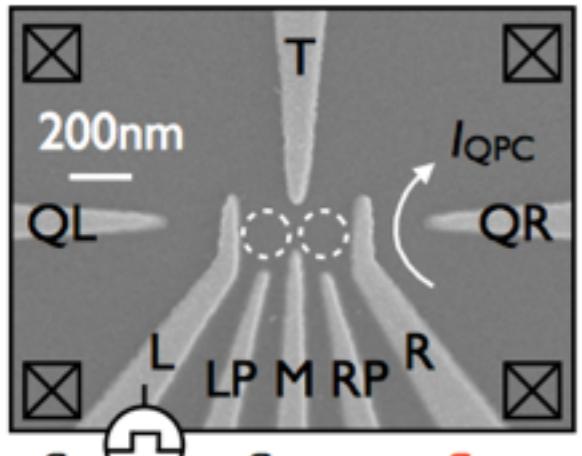
Motivation: quantum computing in semiconductors

Motivation: quantum computing in semiconductors

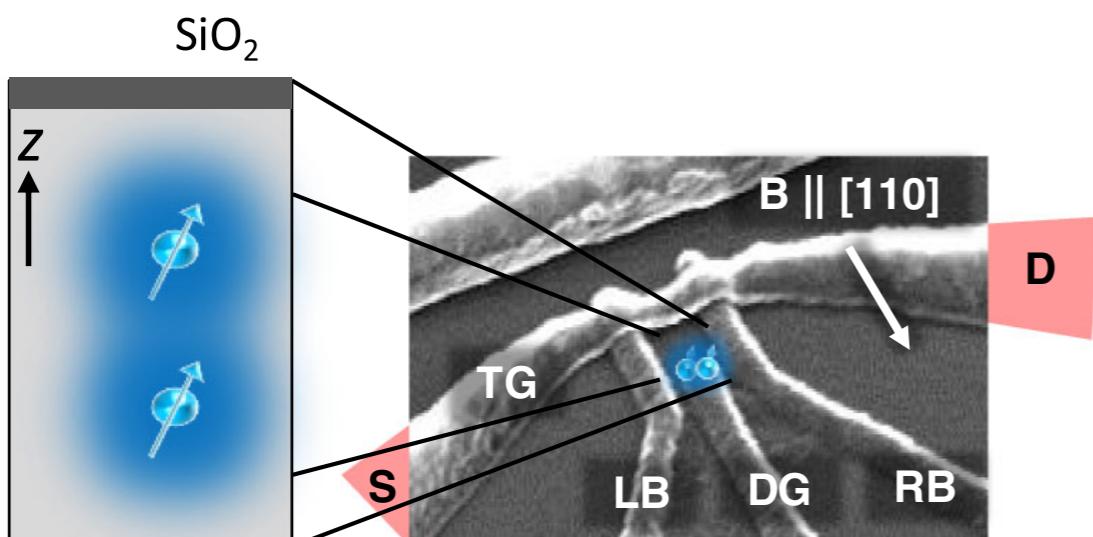


[Kim, et al. Nature 511, 70 (2014)]

Motivation: quantum computing in semiconductors

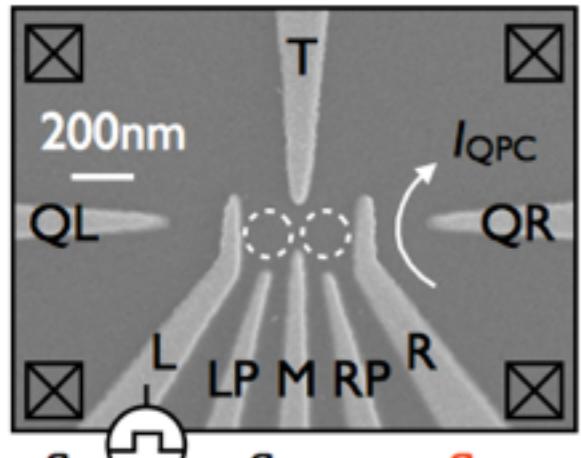


[Kim, et al. Nature 511, 70 (2014)]

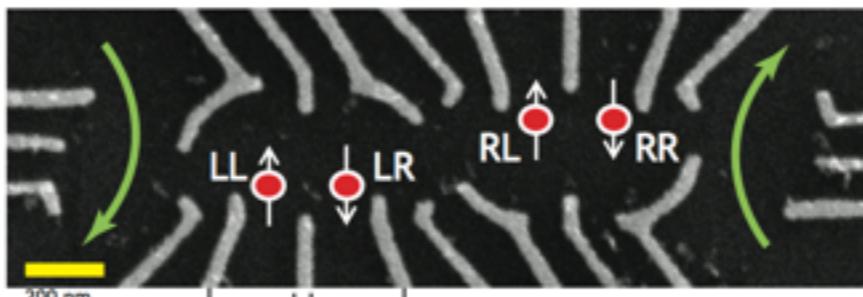


[Dehollain, et al. PRL 112, 236801 (2014)]

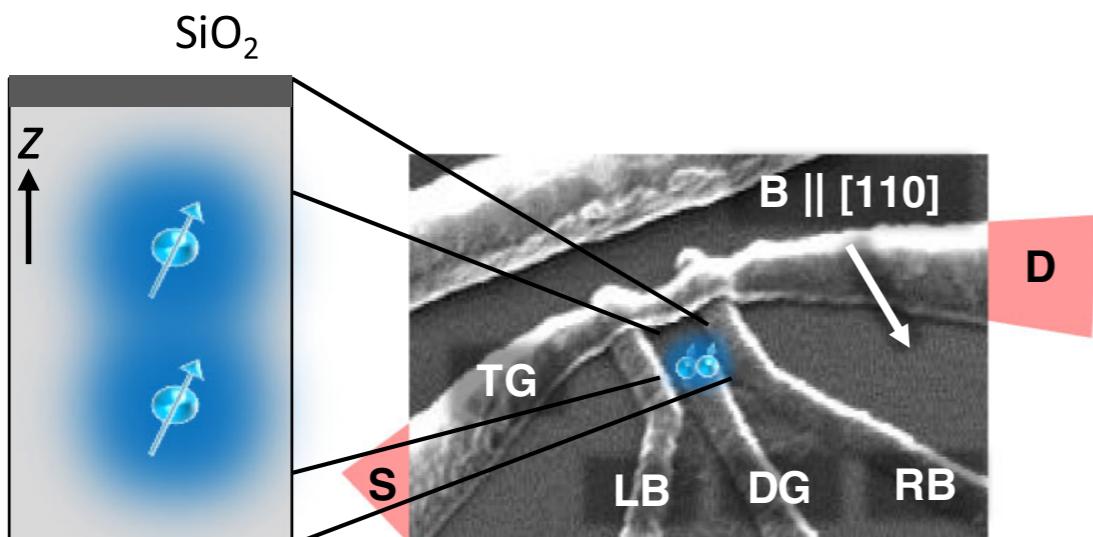
Motivation: quantum computing in semiconductors



[Kim, et al. Nature 511, 70 (2014)]

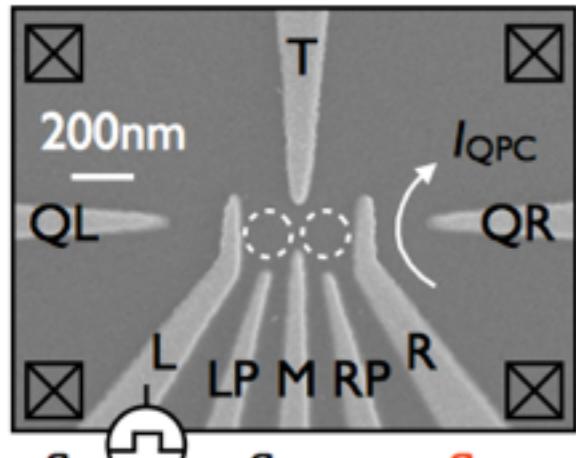


[Shulman, et al. Science 336, 202 (2012)]

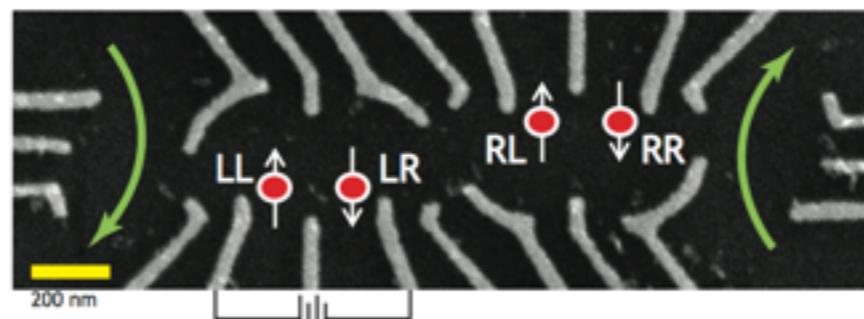


[Dehollain, et al. PRL 112, 236801 (2014)]

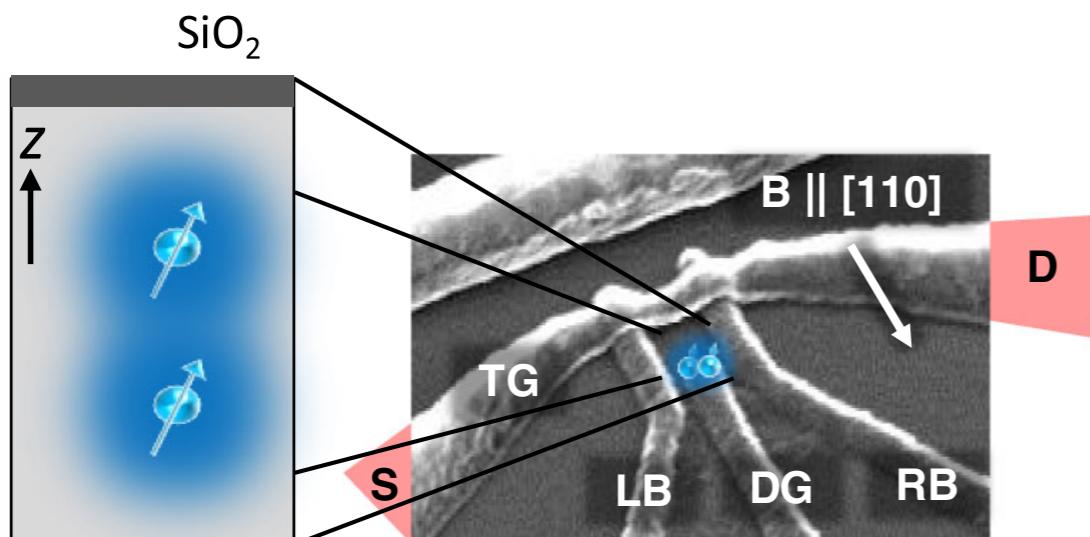
Motivation: quantum computing in semiconductors



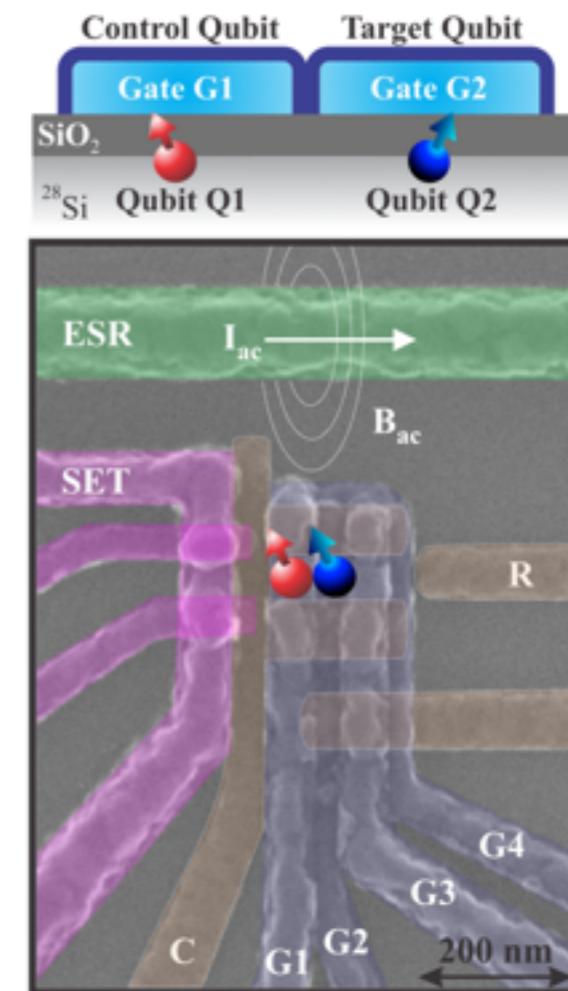
[Kim, et al. Nature 511, 70 (2014)]



[Shulman, et al. Science 336, 202 (2012)]

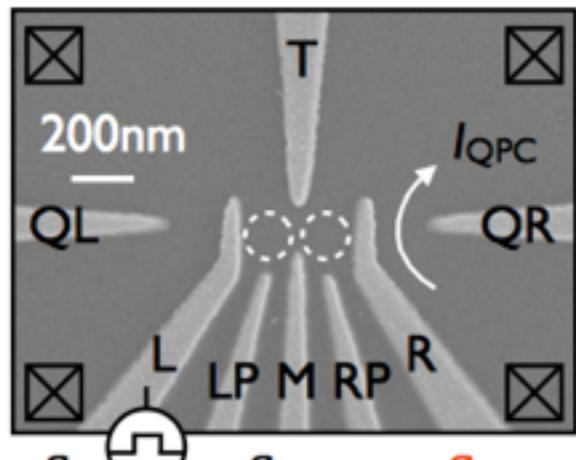


[Dehollain, et al. PRL 112, 236801 (2014)]

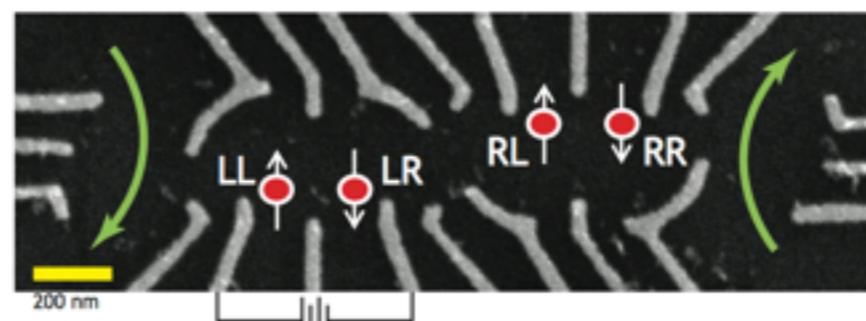


[Veldhorst, et al. arXiv:1411:5760 (2014)]

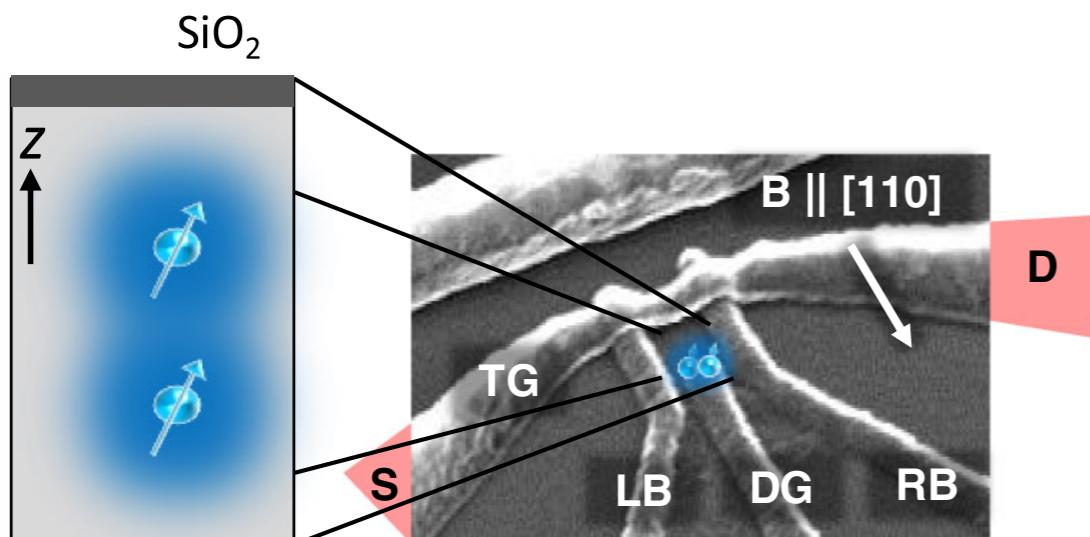
Motivation: quantum computing in semiconductors



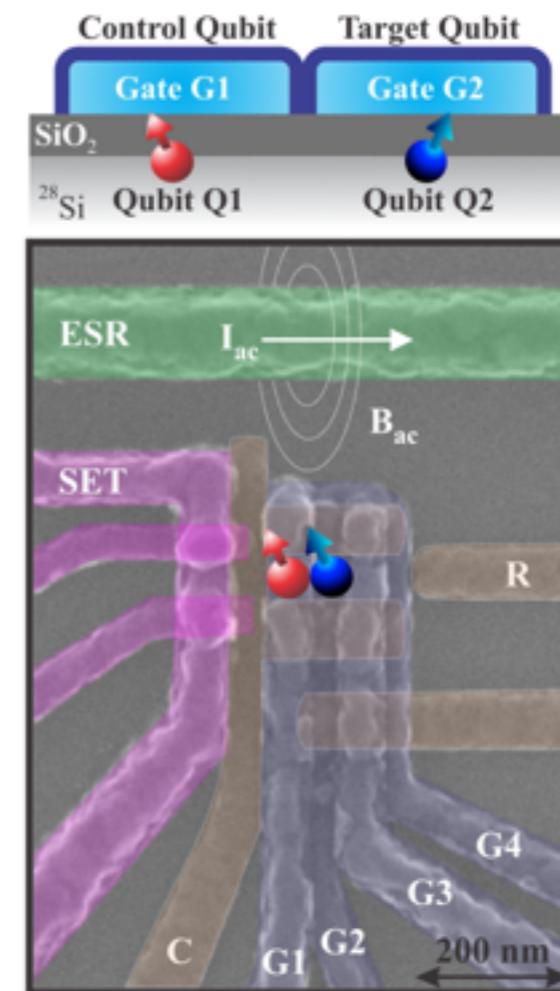
[Kim, et al. Nature 511, 70 (2014)]



[Shulman, et al. Science 336, 202 (2012)]



[Dehollain, et al. PRL 112, 236801 (2014)]



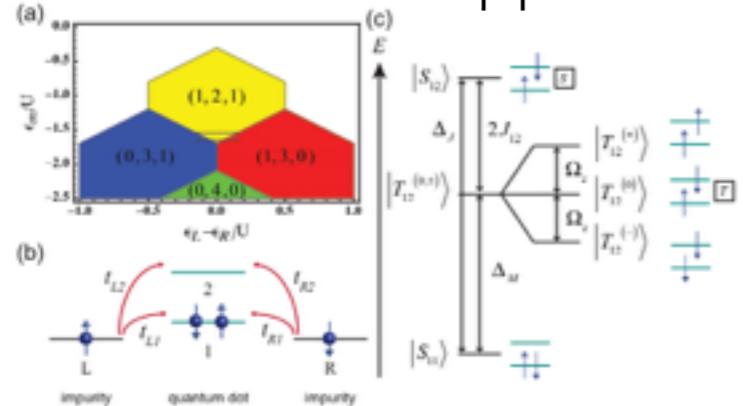
[Veldhorst, et al. arXiv:1411:5760 (2014)]

Wow! These devices are getting pretty complicated...

Currently, many different techniques see use in
modeling semiconductor QIP systems

Currently, many different techniques see use in modeling semiconductor QIP systems

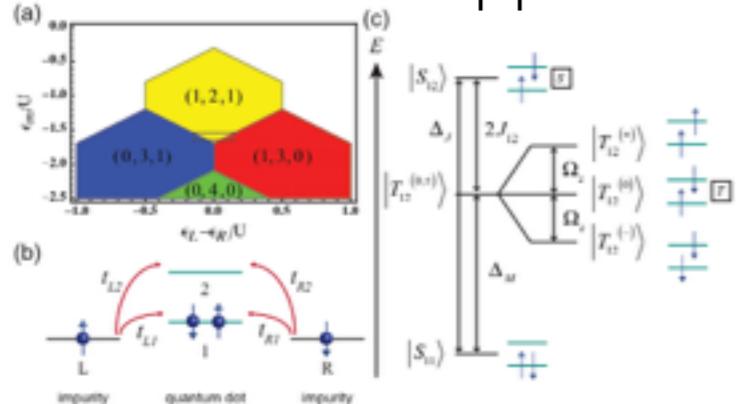
Hubbard-model approaches



[Srinivasa, et al.
arXiv:1312.1711 (2014)]

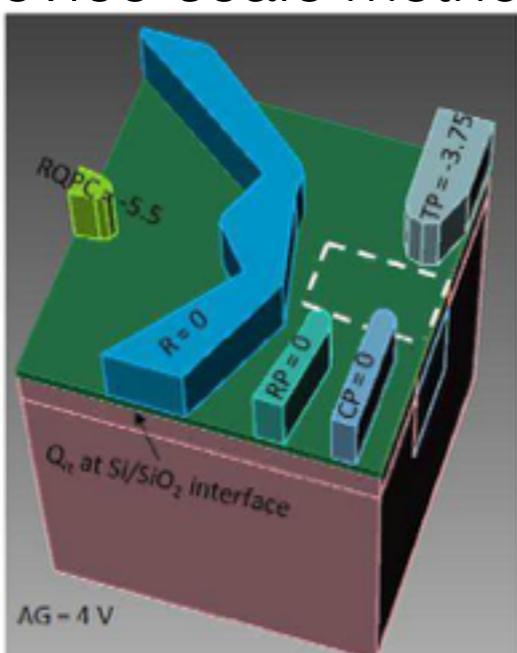
Currently, many different techniques see use in modeling semiconductor QIP systems

Hubbard-model approaches



[Srinivasa, et al.
arXiv:1312.1711 (2014)]

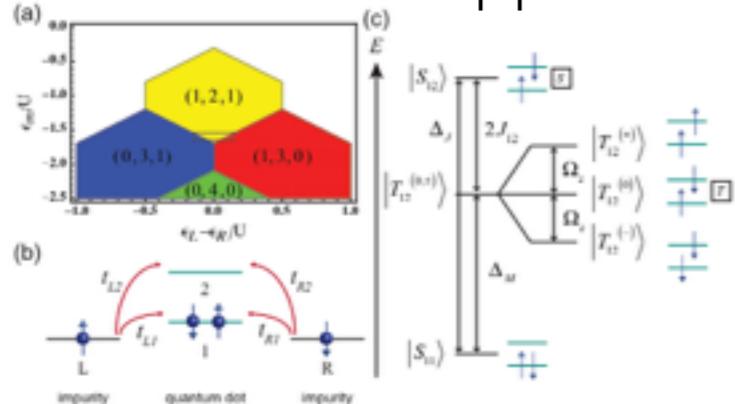
Device-scale methods



[Gao, et al. J. Appl. Phys. 114,
164302 (2013)]

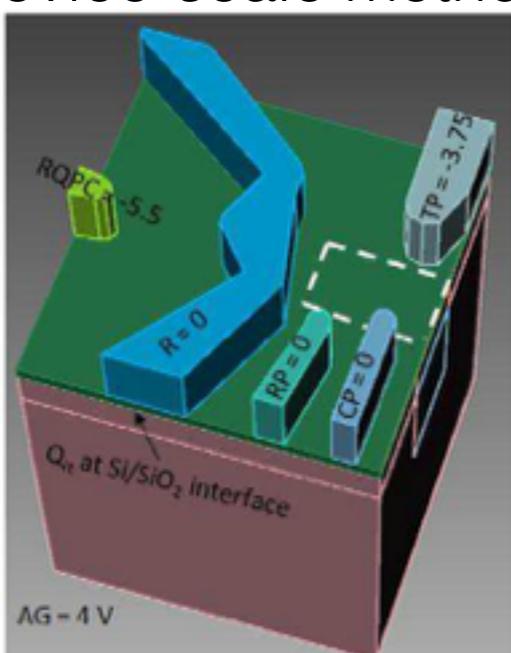
Currently, many different techniques see use in modeling semiconductor QIP systems

Hubbard-model approaches



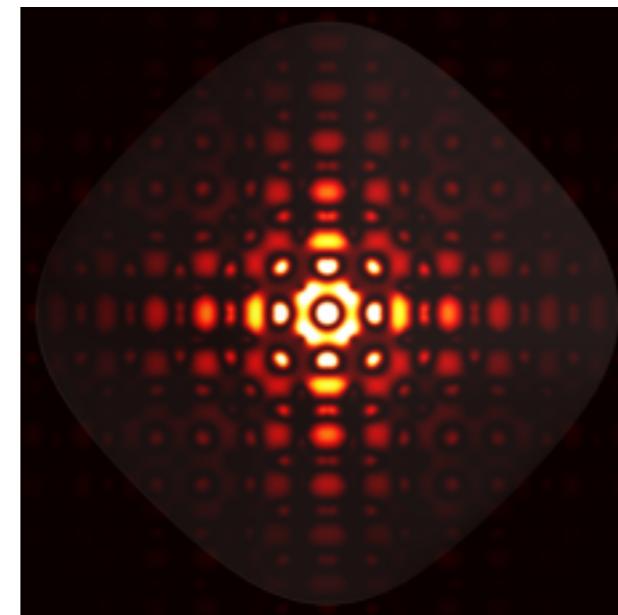
[Srinivasa, et al.
arXiv:1312.1711 (2014)]

Device-scale methods



[Gao, et al. J. Appl. Phys. 114,
164302 (2013)]

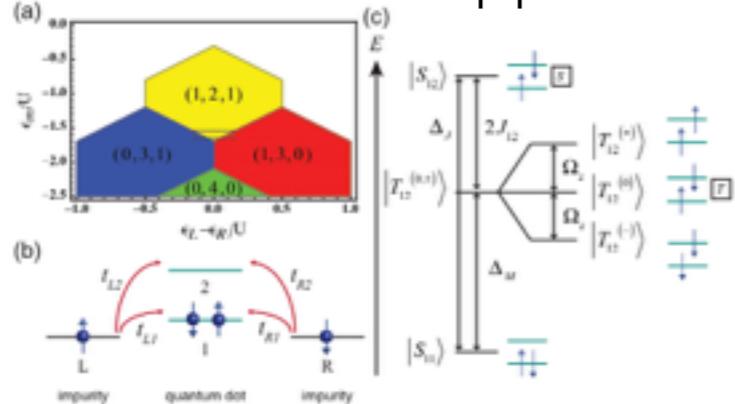
Effective mass theory



[Gamble, et al.
arXiv:1408.3159 (2014)]

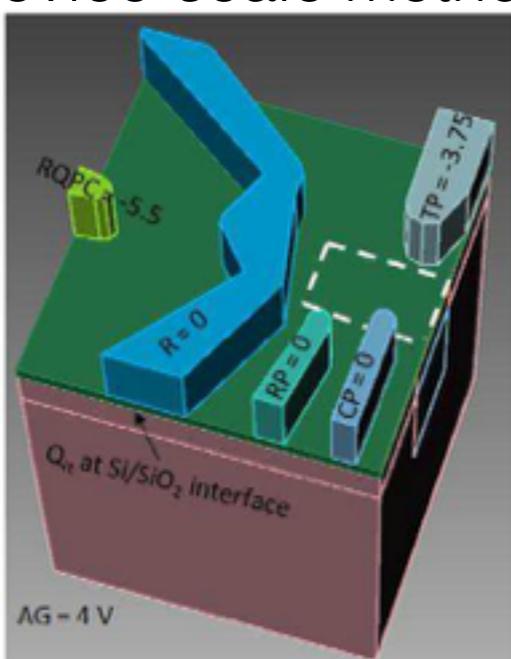
Currently, many different techniques see use in modeling semiconductor QIP systems

Hubbard-model approaches



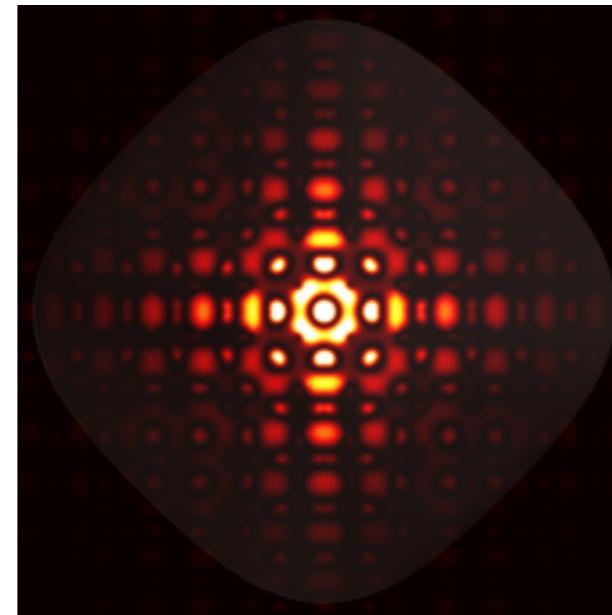
[Srinivasa, et al.
arXiv:1312.1711 (2014)]

Device-scale methods



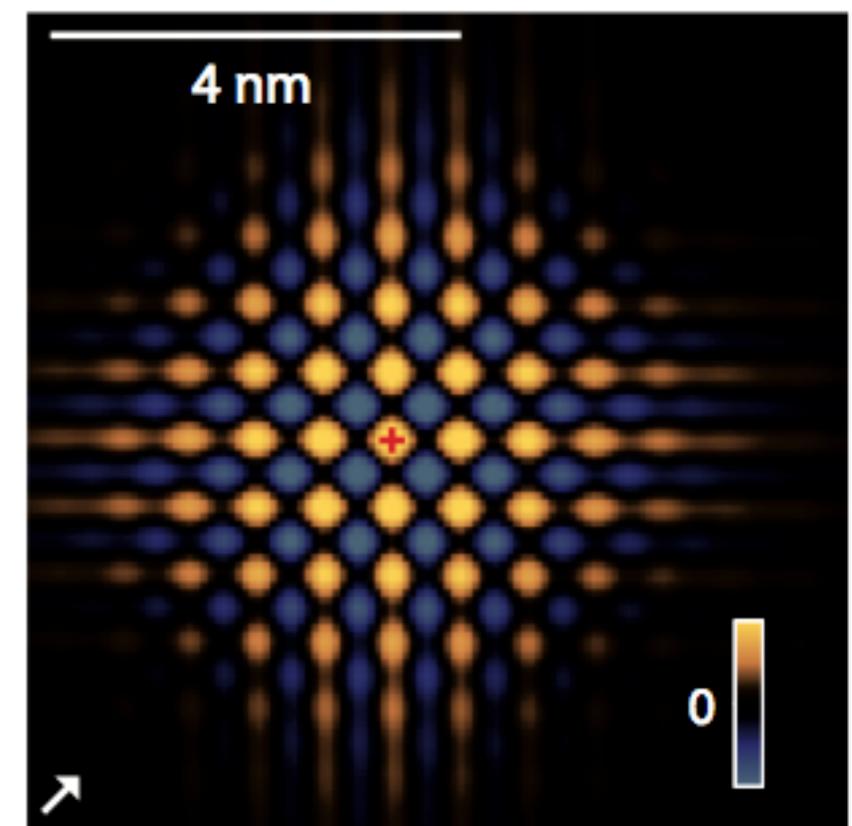
[Gao, et al. J. Appl. Phys. 114,
164302 (2013)]

Effective mass theory



[Gamble, et al.
arXiv:1408.3159 (2014)]

Atomistic tight-binding

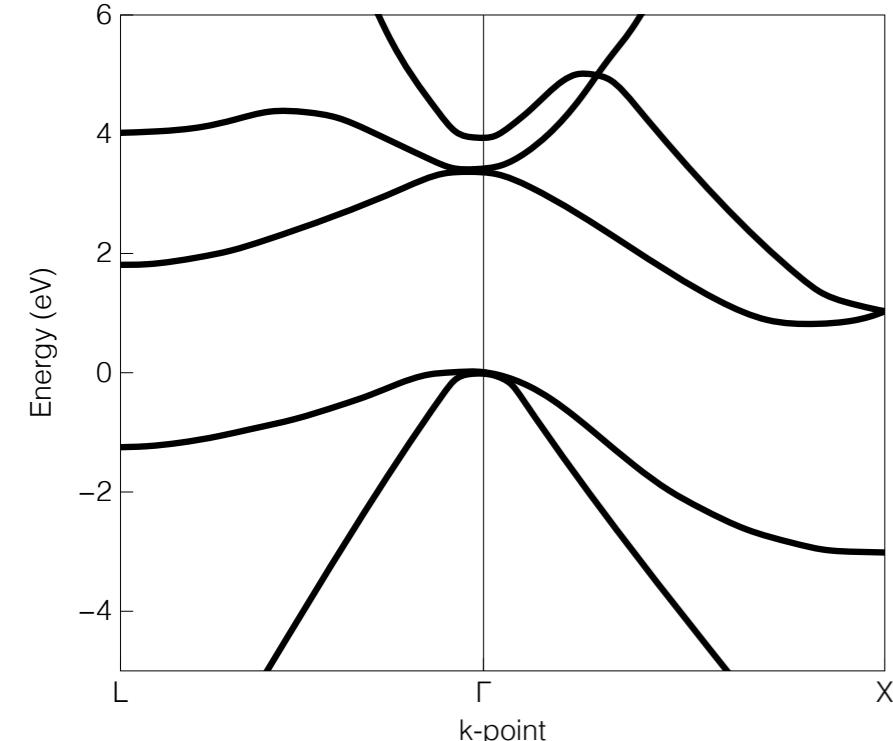


[Salfi, et al. Nat. Mat. 13,
605-610 (2014)]

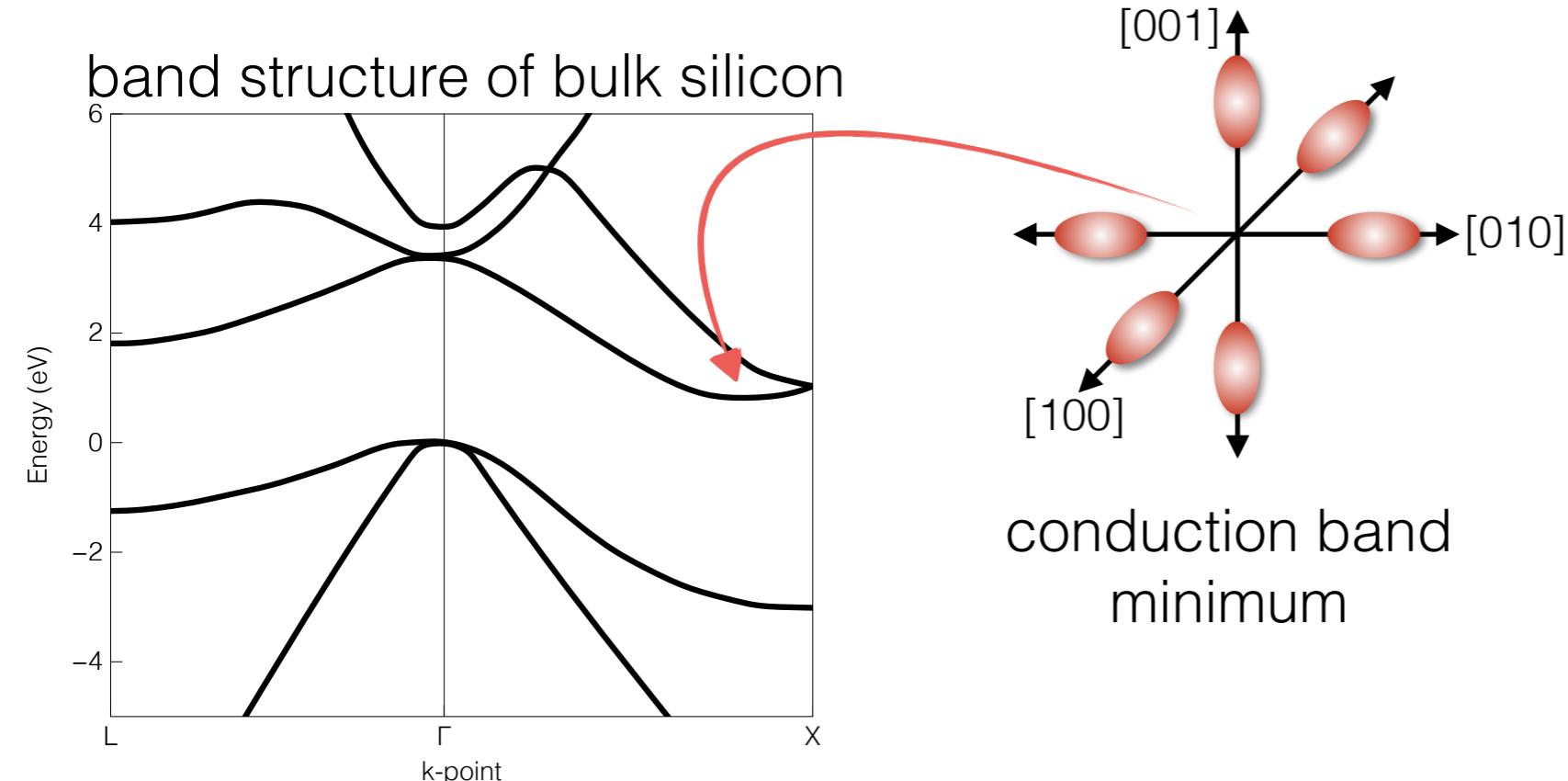
Our approach: 'full-scope' effective mass framework that handles device-level + small-feature physics

Our approach: ‘full-scope’ effective mass framework that handles device-level + small-feature physics

band structure of bulk silicon

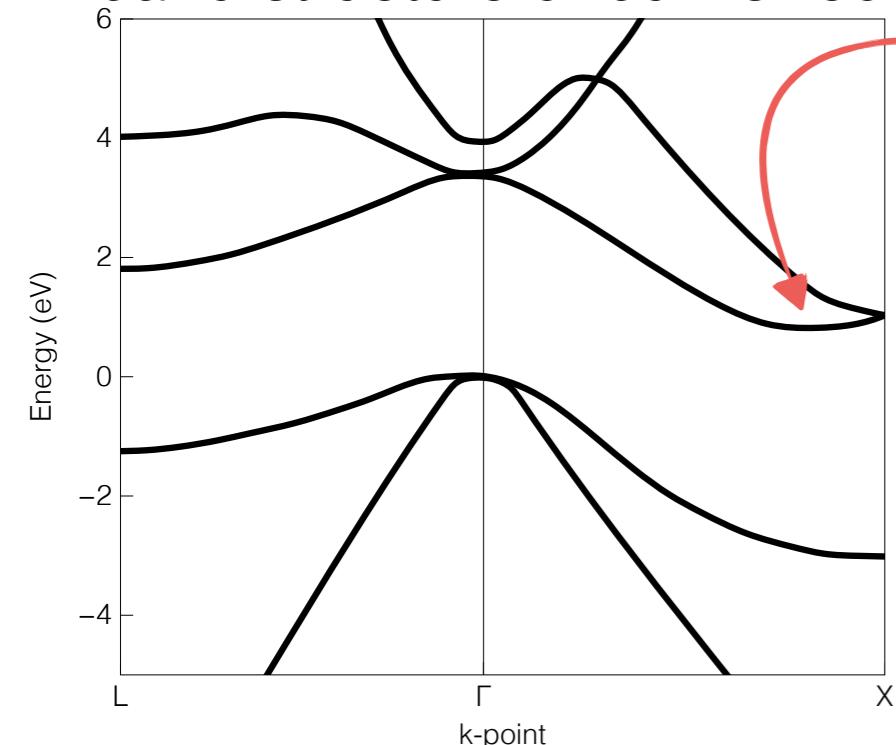
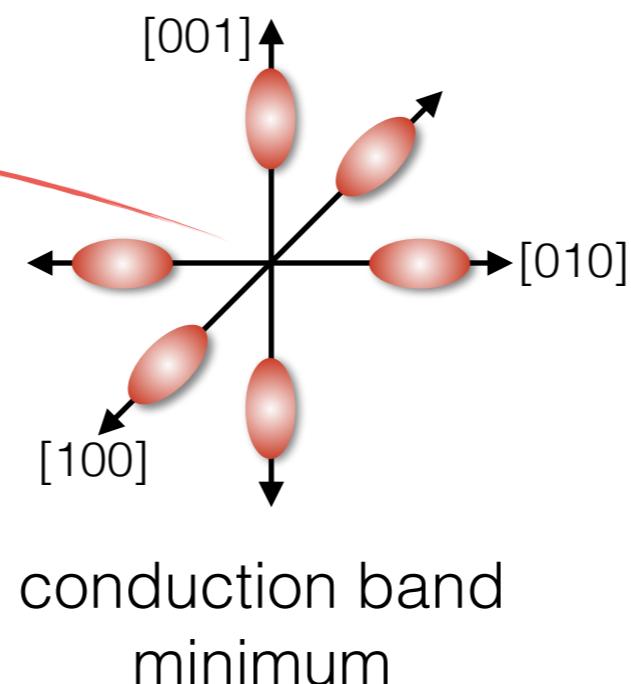


Our approach: 'full-scope' effective mass framework that handles device-level + small-feature physics



Our approach: 'full-scope' effective mass framework that handles device-level + small-feature physics

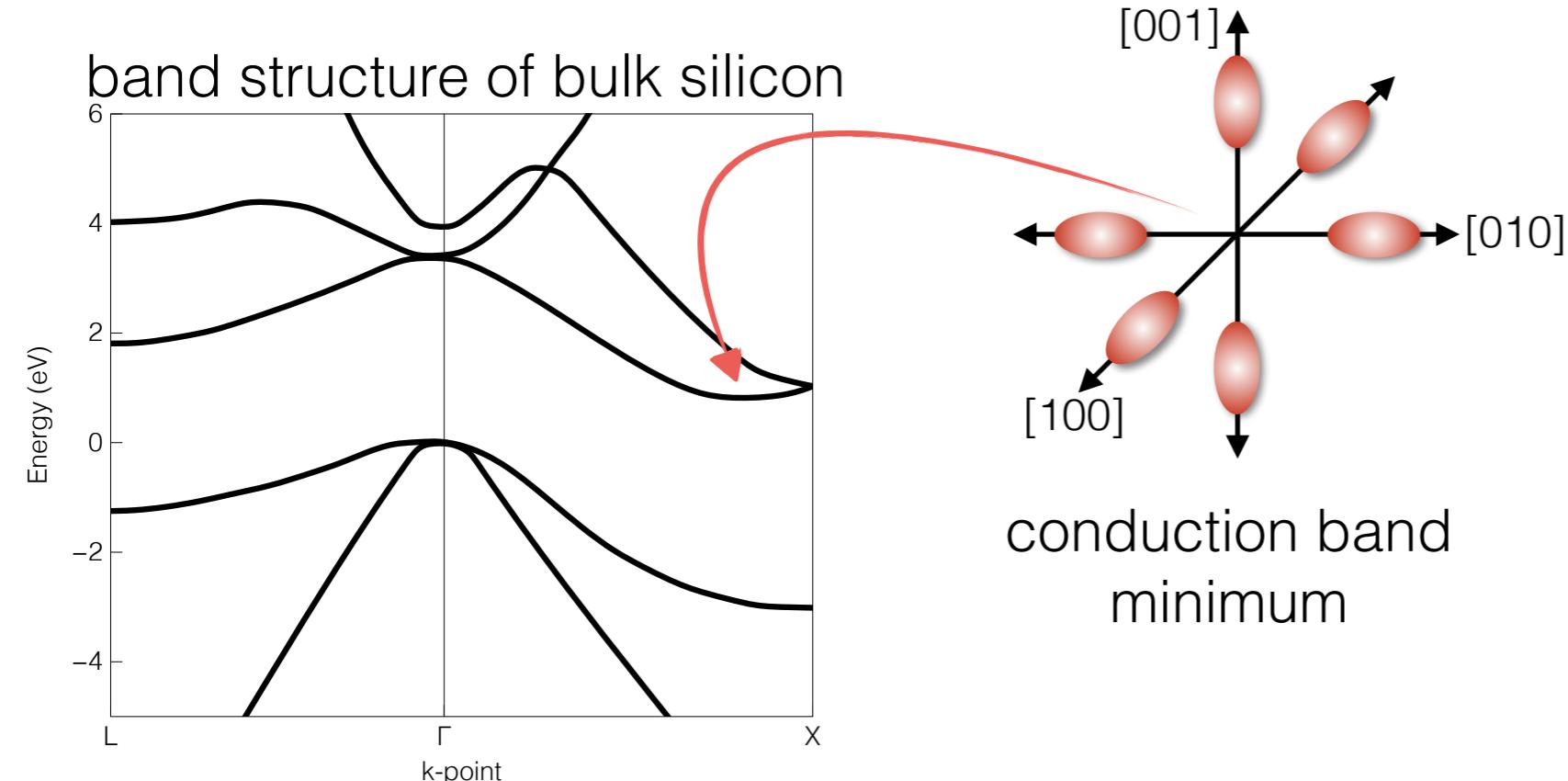
band structure of bulk silicon



$$\psi(\mathbf{r}) = \sum_j F_j(r) e^{i\mathbf{k}_0^j \cdot \mathbf{r}} u_{\mathbf{k}_0^j}(\mathbf{r})$$

$$u_{\mathbf{k}_0^j}(\mathbf{r}) = \sum_{\mathbf{G}} A_{j,\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}}$$

Our approach: ‘full-scope’ effective mass framework that handles device-level + small-feature physics



$$\psi(\mathbf{r}) = \sum_j F_j(\mathbf{r}) e^{i\mathbf{k}_0^j \cdot \mathbf{r}} u_{\mathbf{k}_0^j}(\mathbf{r})$$

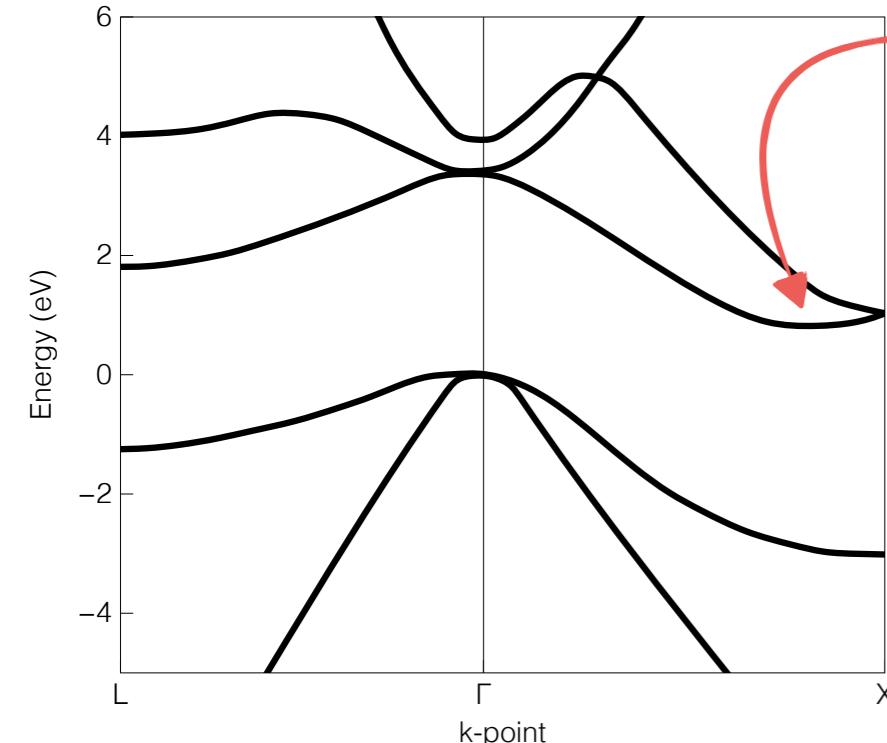
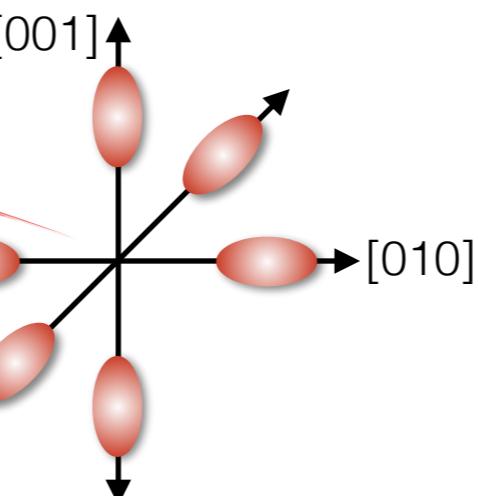
$$u_{\mathbf{k}_0^j}(\mathbf{r}) = \sum_{\mathbf{G}} A_{j,\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}}$$

$$E\mathbf{F}_I(\mathbf{r}) = \left(\hat{T}_I + U(\mathbf{r}) \right) \mathbf{F}_I(\mathbf{r}) + \sum_j V_{lj}^{VO}(\mathbf{r}) F_j(\mathbf{r})$$

$$V_{lj}^{VO}(\mathbf{r}) = \sum_{\mathbf{G}, \mathbf{G}'} (1 - \delta_{\mathbf{G}, \mathbf{G}'} \delta_{j,l}) A_{l, \mathbf{G}'}^* A_{j, \mathbf{G}} e^{i\mathbf{r} \cdot (\mathbf{G} - \mathbf{G}' + \mathbf{k}_0^j - \mathbf{k}_0^l)} U(\mathbf{r})$$

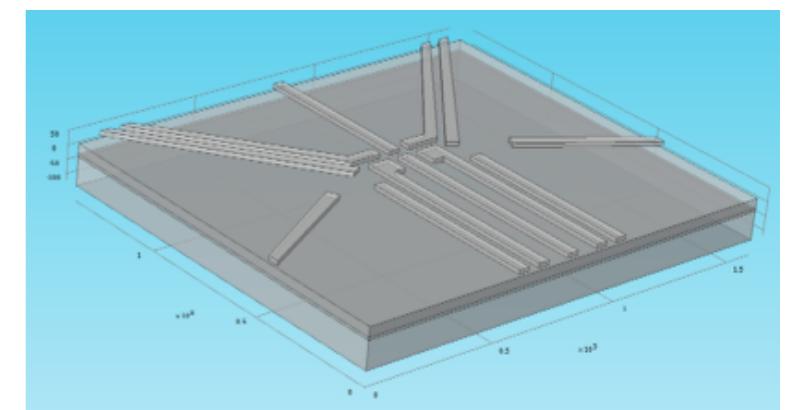
Our approach: 'full-scope' effective mass framework that handles device-level + small-feature physics

band structure of bulk silicon



conduction band
minimum

Finite element model



$$\psi(\mathbf{r}) = \sum_j F_j(\mathbf{r}) e^{i\mathbf{k}_0^j \cdot \mathbf{r}} u_{\mathbf{k}_0^j}(\mathbf{r})$$

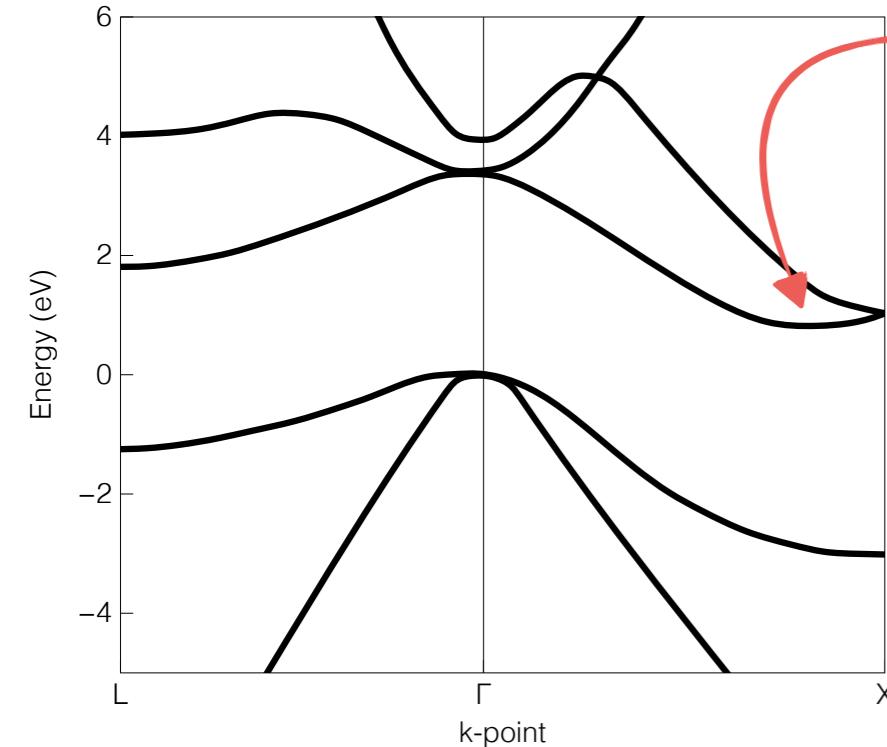
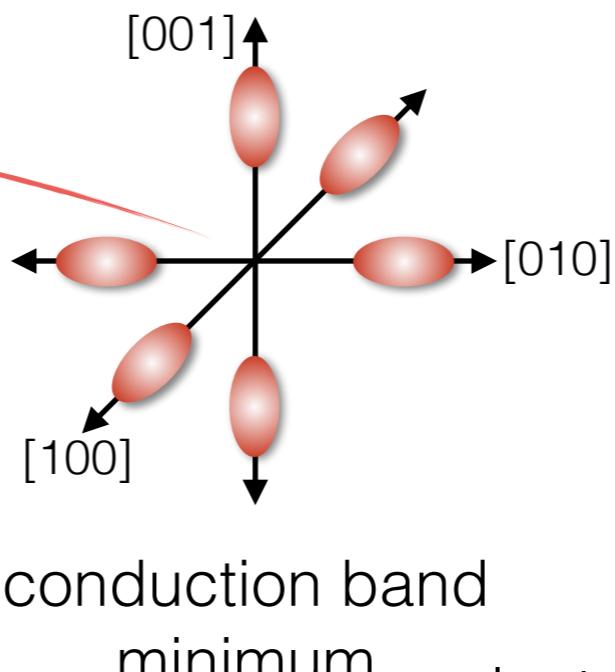
$$u_{\mathbf{k}_0^j}(\mathbf{r}) = \sum_{\mathbf{G}} A_{j,\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}}$$

$$E\mathbf{F}_I(\mathbf{r}) = \left(\hat{\mathbf{T}}_I + \mathbf{U}(\mathbf{r}) \right) \mathbf{F}_I(\mathbf{r}) + \sum_j V_{lj}^{VO}(\mathbf{r}) \mathbf{F}_j(\mathbf{r})$$

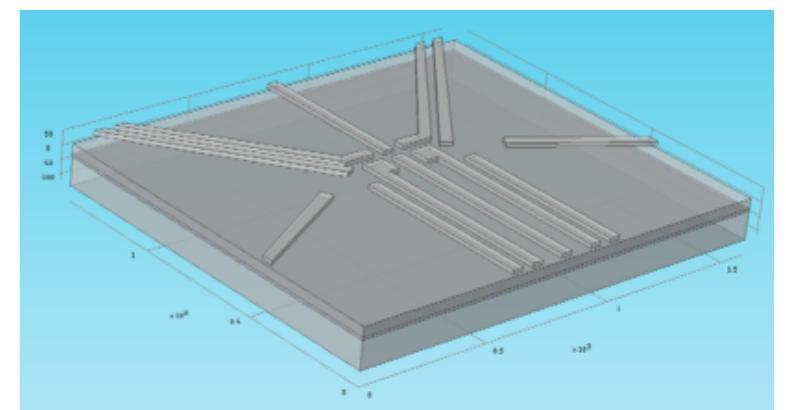
$$V_{lj}^{VO}(\mathbf{r}) = \sum_{\mathbf{G}, \mathbf{G}'} (1 - \delta_{\mathbf{G}, \mathbf{G}'} \delta_{j,l}) A_{l, \mathbf{G}'}^* A_{j, \mathbf{G}} e^{i\mathbf{r} \cdot (\mathbf{G} - \mathbf{G}' + \mathbf{k}_0^j - \mathbf{k}_0^l)} \mathbf{U}(\mathbf{r})$$

Our approach: 'full-scope' effective mass framework that handles device-level + small-feature physics

band structure of bulk silicon



Finite element model

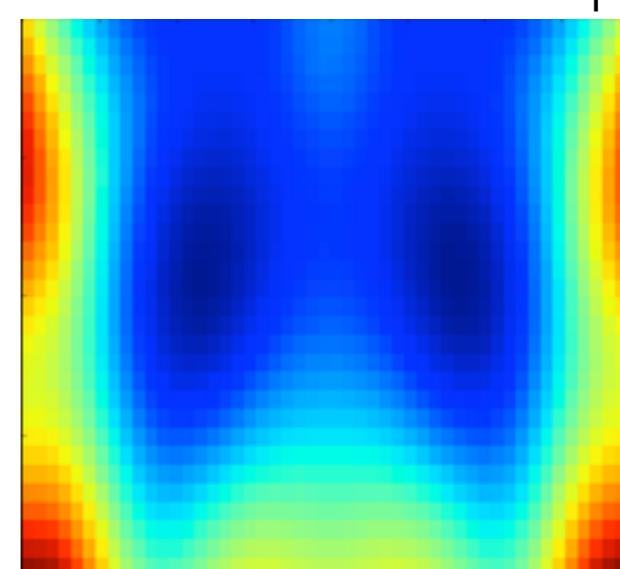


$$\psi(\mathbf{r}) = \sum_j F_j(r) e^{i\mathbf{k}_0^j \cdot \mathbf{r}} u_{\mathbf{k}_0^j}(\mathbf{r})$$

$$u_{\mathbf{k}_0^j}(\mathbf{r}) = \sum_{\mathbf{G}} A_{j,\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}}$$

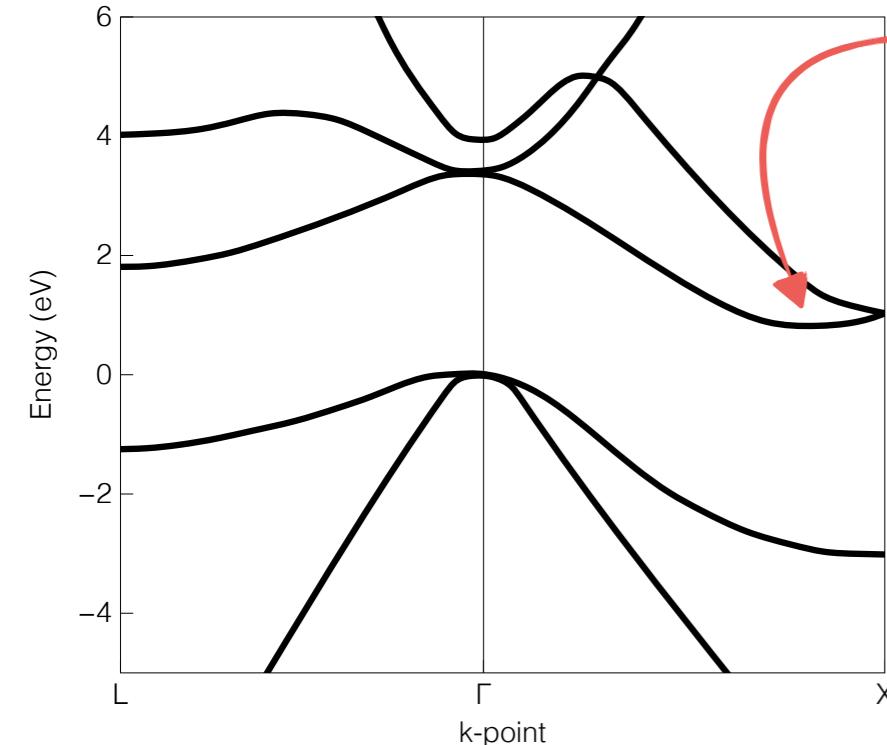
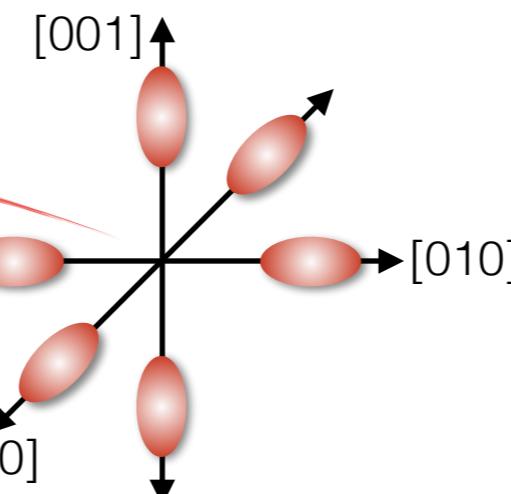
$$EF_I(\mathbf{r}) = \left(\hat{T}_I + U(\mathbf{r}) \right) F_I(\mathbf{r}) + \sum V_{lj}^{VO}(\mathbf{r}) F_j(\mathbf{r})$$

$$V_{lj}^{VO}(\mathbf{r}) = \sum_{\mathbf{G}, \mathbf{G}'} (1 - \delta_{\mathbf{G}, \mathbf{G}'} \delta_{j, l}) A_{l, \mathbf{G}'}^* A_{j, \mathbf{G}} e^{i\mathbf{r} \cdot (\mathbf{G} - \mathbf{G}' + \mathbf{k}_0^j - \mathbf{k}_0^l)} U(\mathbf{r})$$

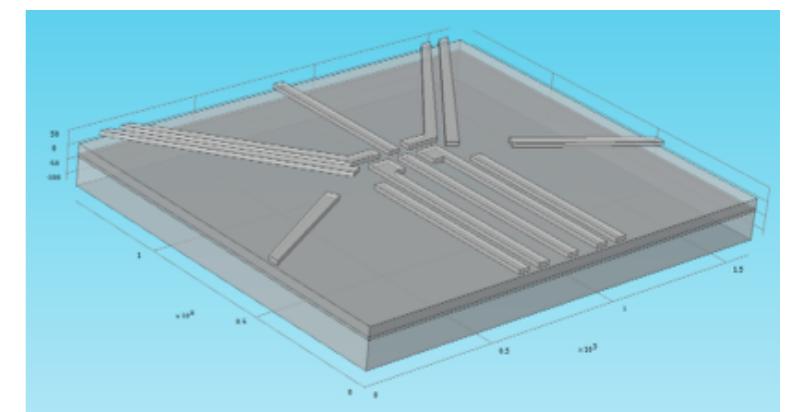


Our approach: 'full-scope' effective mass framework that handles device-level + small-feature physics

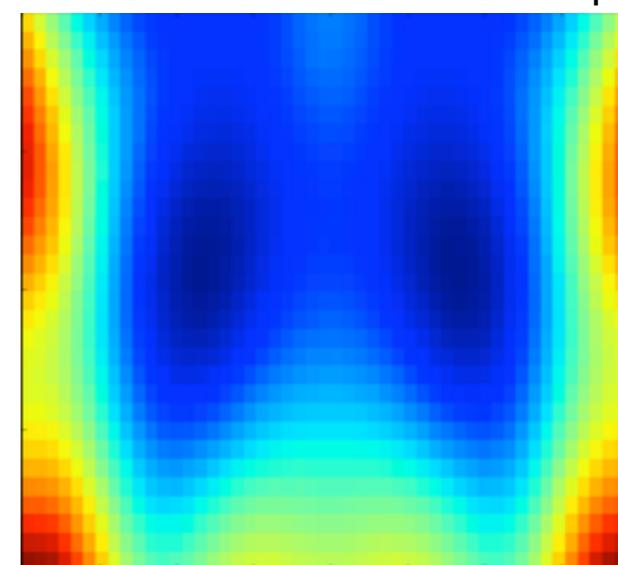
band structure of bulk silicon



Finite element model



electrostatic landscape



$$\psi(\mathbf{r}) = \sum_j F_j(r) e^{i\mathbf{k}_0^j \cdot \mathbf{r}} u_{\mathbf{k}_0^j}(\mathbf{r})$$

$$u_{\mathbf{k}_0^j}(\mathbf{r}) = \sum_{\mathbf{G}} A_{j,\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}}$$

$$EF_I(\mathbf{r}) = \left(\hat{T}_I + U(\mathbf{r}) \right) F_I(\mathbf{r}) + \sum_j V_{jI}^{VO}(\mathbf{r}) F_j(\mathbf{r})$$

$$V_{jI}^{VO}(\mathbf{r}) = \sum_{\mathbf{G}, \mathbf{G}'} (1 - \delta_{\mathbf{G}, \mathbf{G}'} \delta_{j,I}) A_{I,\mathbf{G}'}^* A_{j,\mathbf{G}} e^{i\mathbf{r} \cdot (\mathbf{G} - \mathbf{G}' + \mathbf{k}_0^j - \mathbf{k}_0^I)} U(\mathbf{r})$$

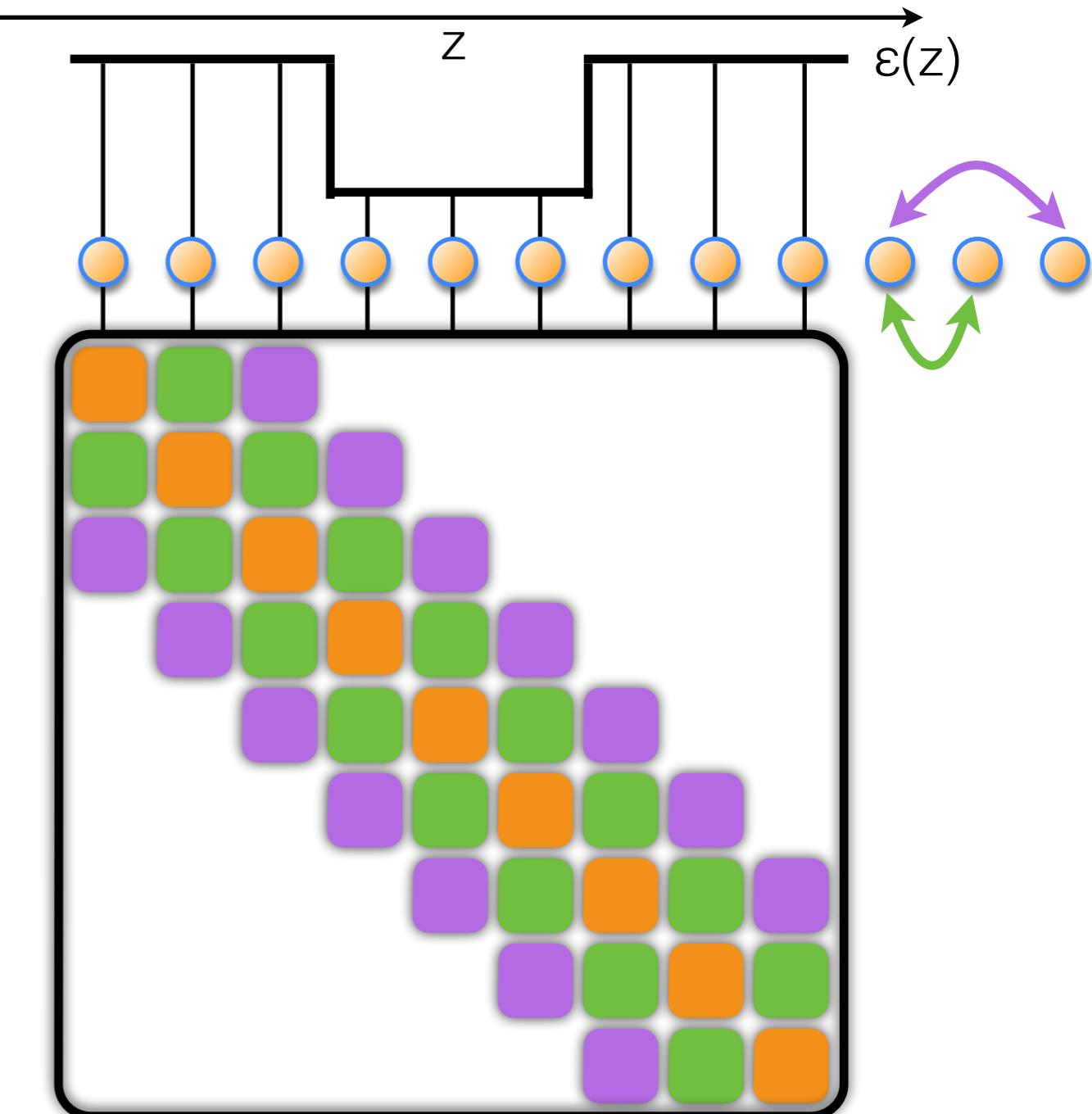
Use a Gaussian grid non-perturbative approach

Use a Gaussian grid non-perturbative approach

1. Lay down a (3D) grid of Gaussians
2. Construct (local) overlaps with potential
3. Build generalized eigenvalue problem

Use a Gaussian grid non-perturbative approach

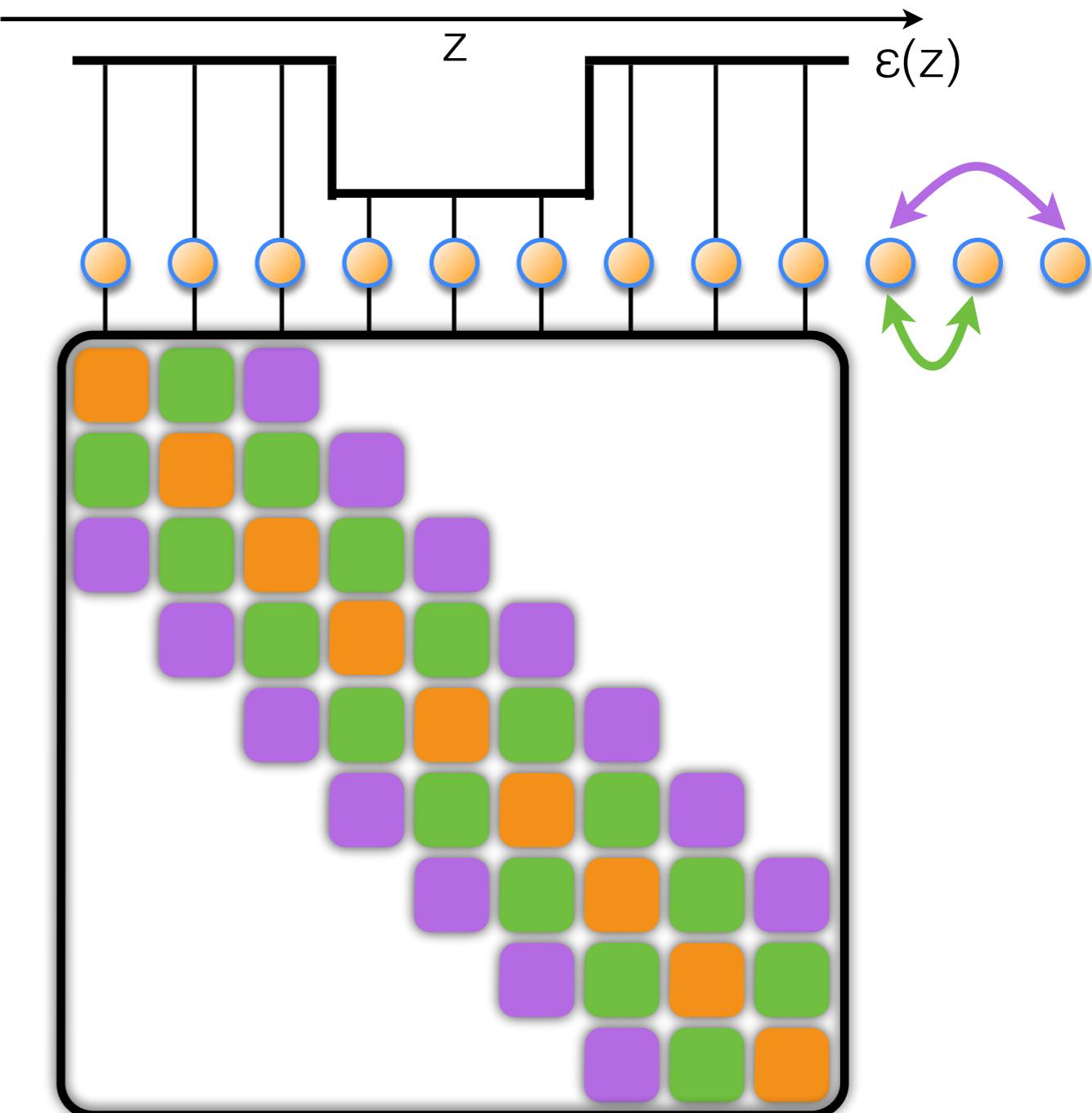
1. Lay down a (3D) grid of Gaussians
2. Construct (local) overlaps with potential
3. Build generalized eigenvalue problem



Use a Gaussian grid non-perturbative approach

1. Lay down a (3D) grid of Gaussians
2. Construct (local) overlaps with potential
3. Build generalized eigenvalue problem

$$H\psi = ES\psi$$



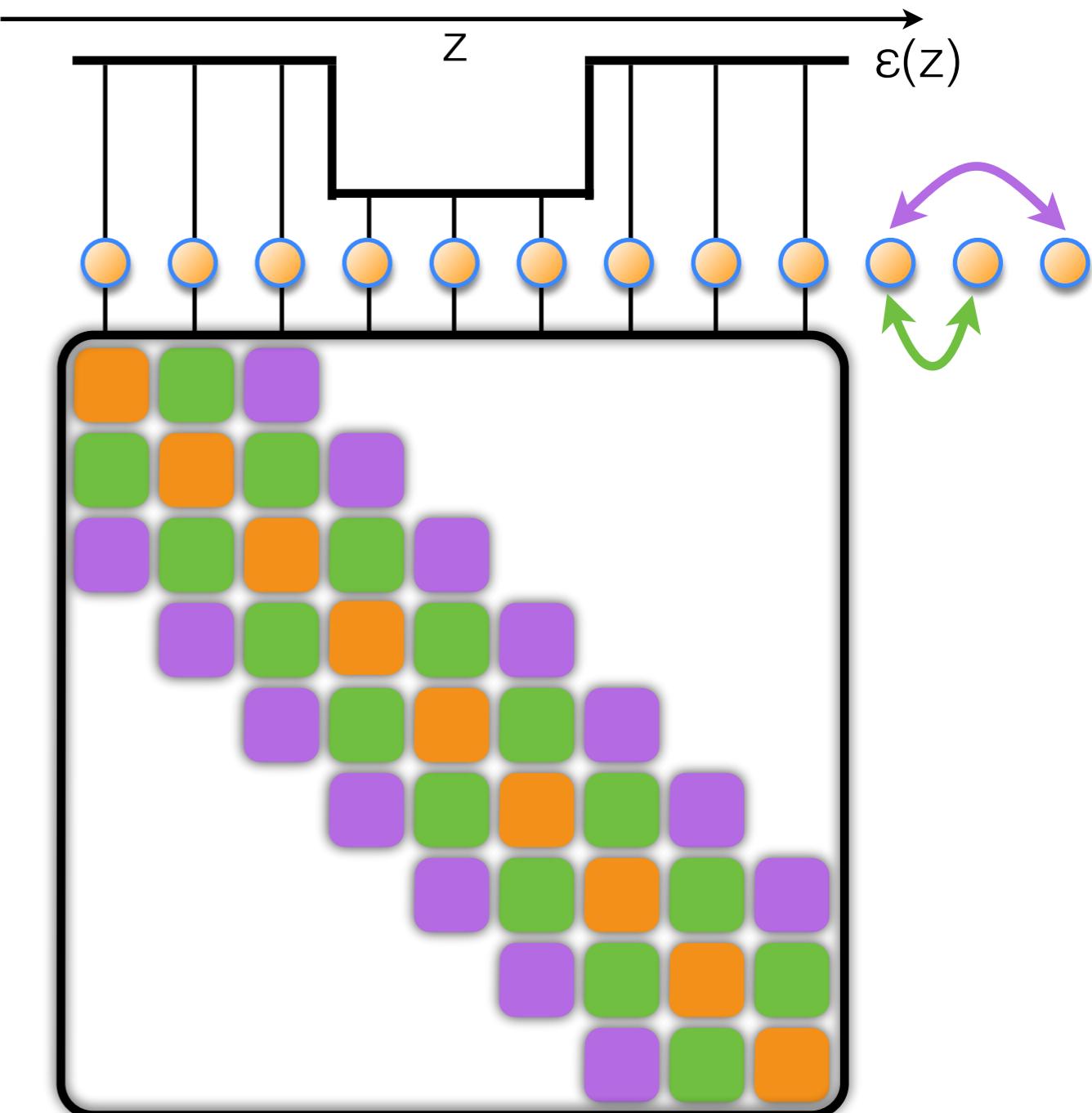
Use a Gaussian grid non-perturbative approach

1. Lay down a (3D) grid of Gaussians
2. Construct (local) overlaps with potential
3. Build generalized eigenvalue problem

$$H\psi = ES\psi$$

potential +
valley orbit coupling

overlap matrix



Use a Gaussian grid non-perturbative approach

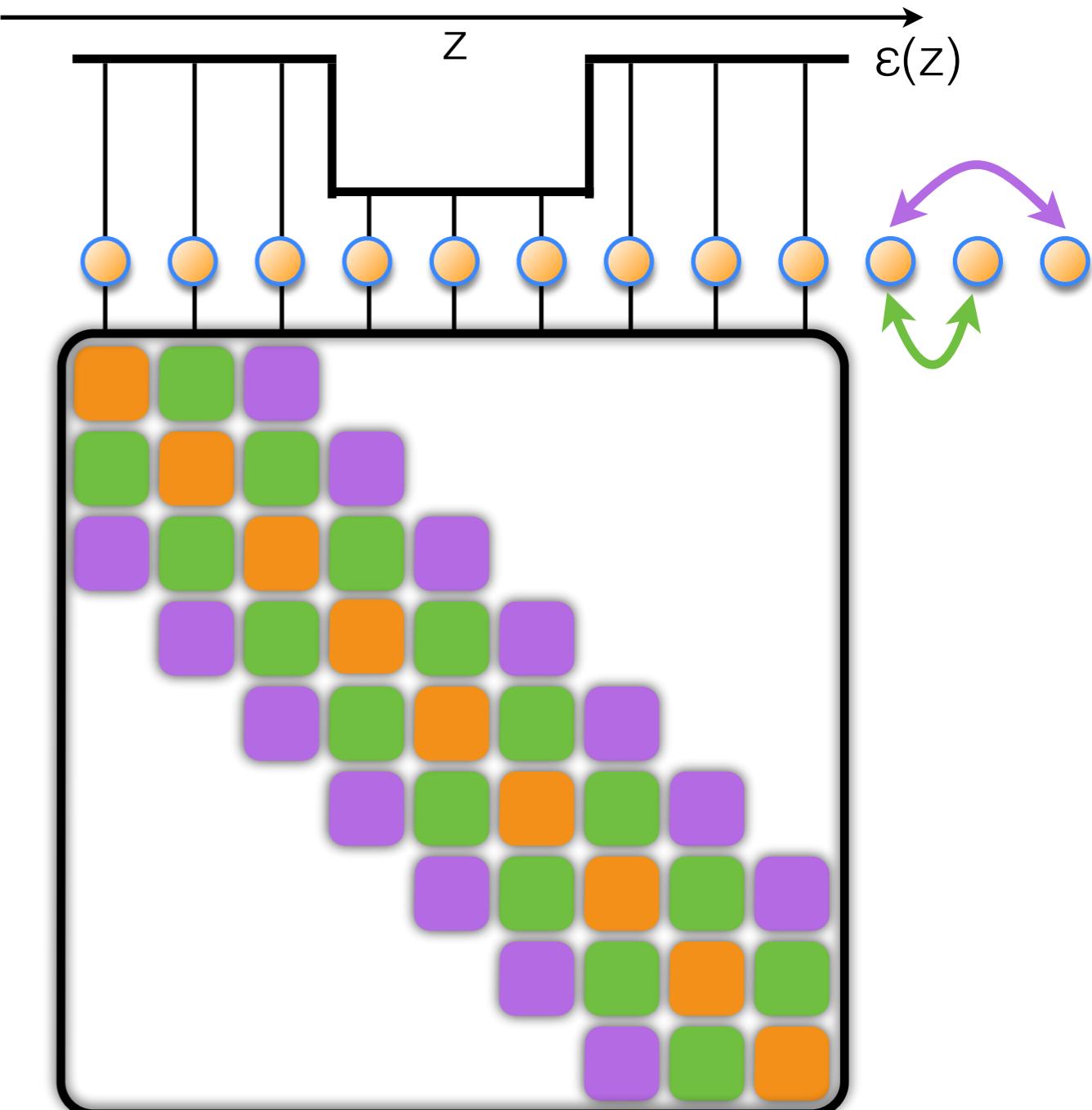
1. Lay down a (3D) grid of Gaussians
2. Construct (local) overlaps with potential
3. Build generalized eigenvalue problem

$$H\psi = ES\psi$$

potential +
valley orbit coupling

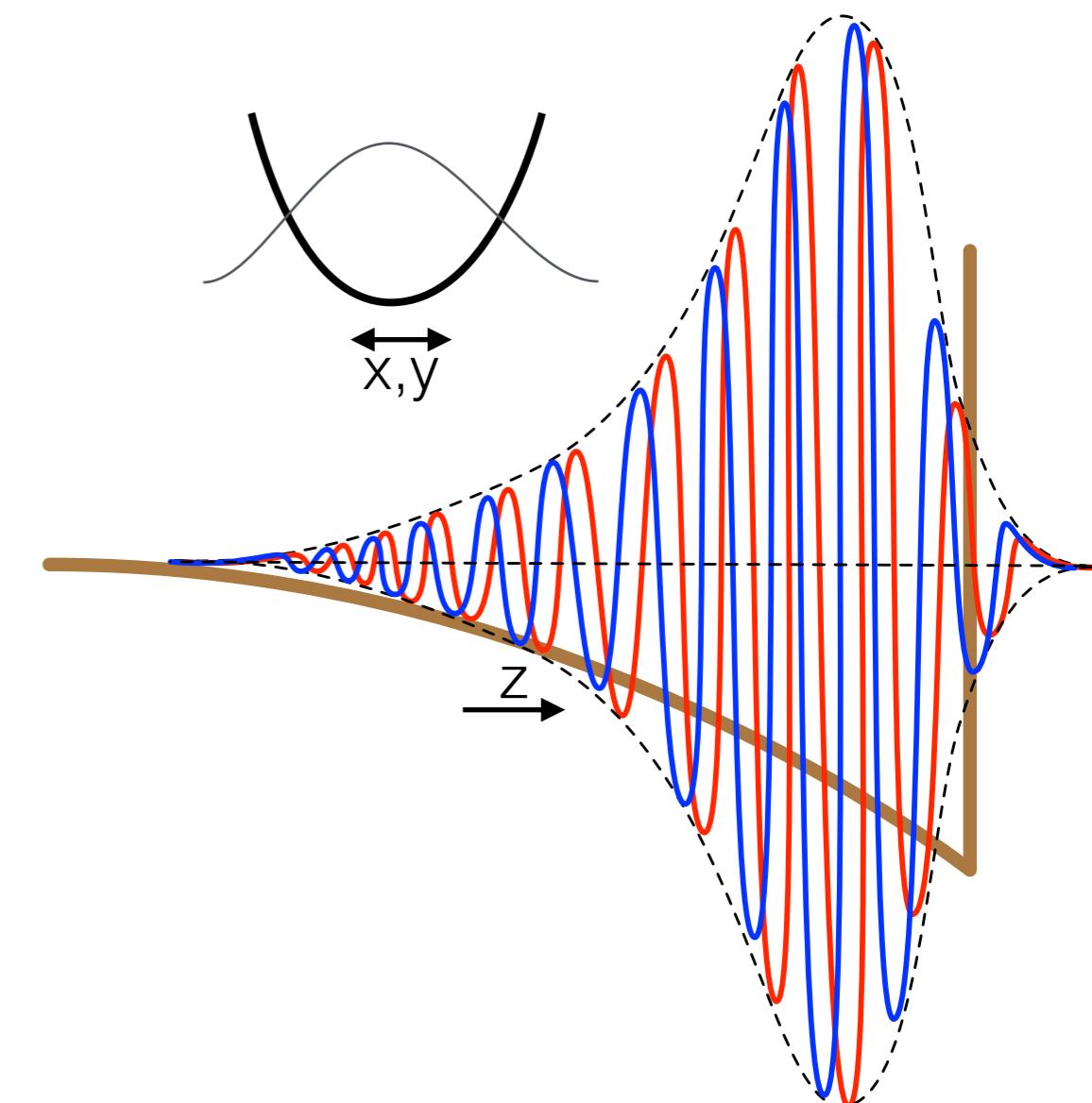
overlap matrix

We'll use *anisotropic* gaussians on an example problem: valley splitting in a quantum dot

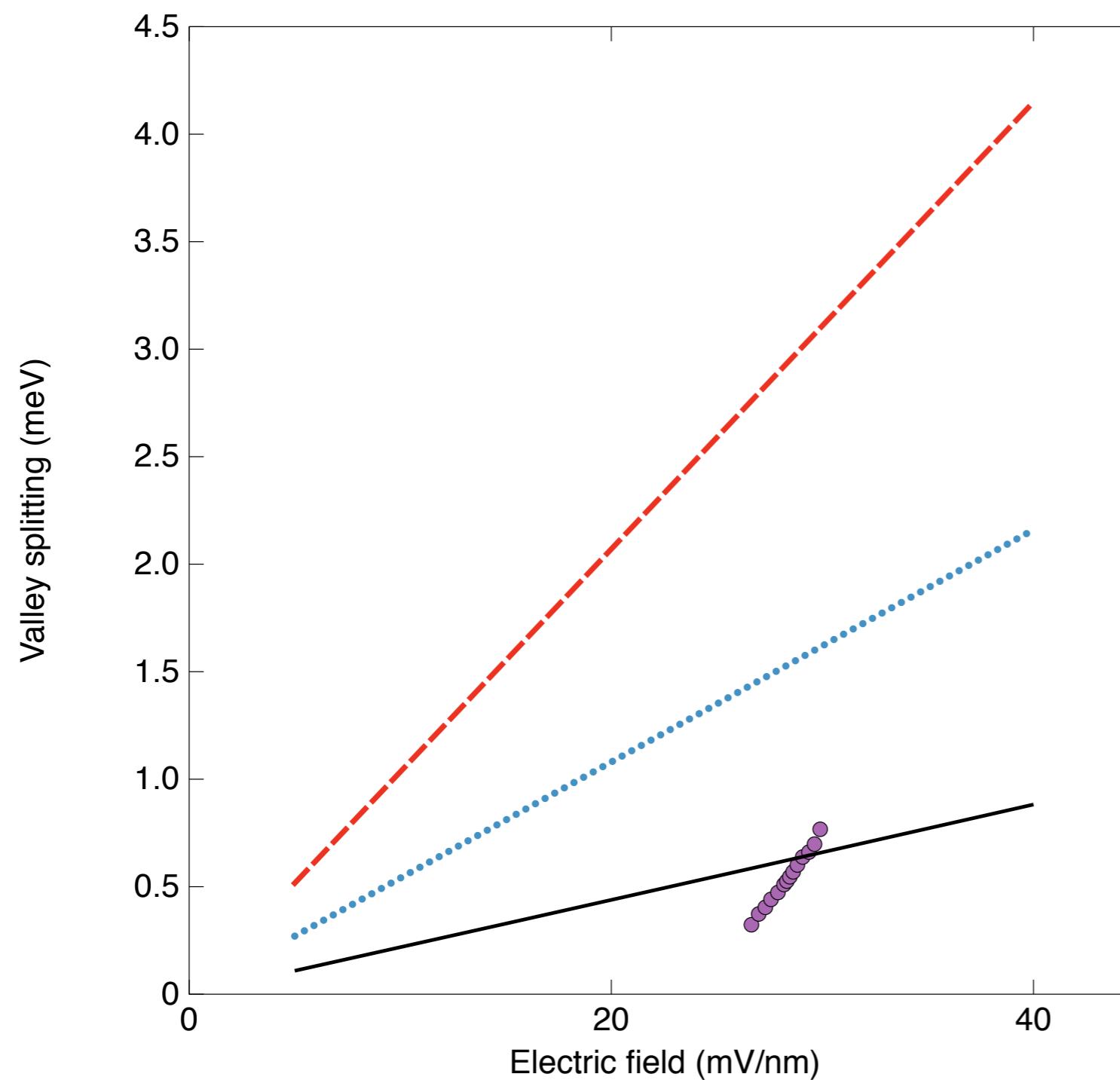
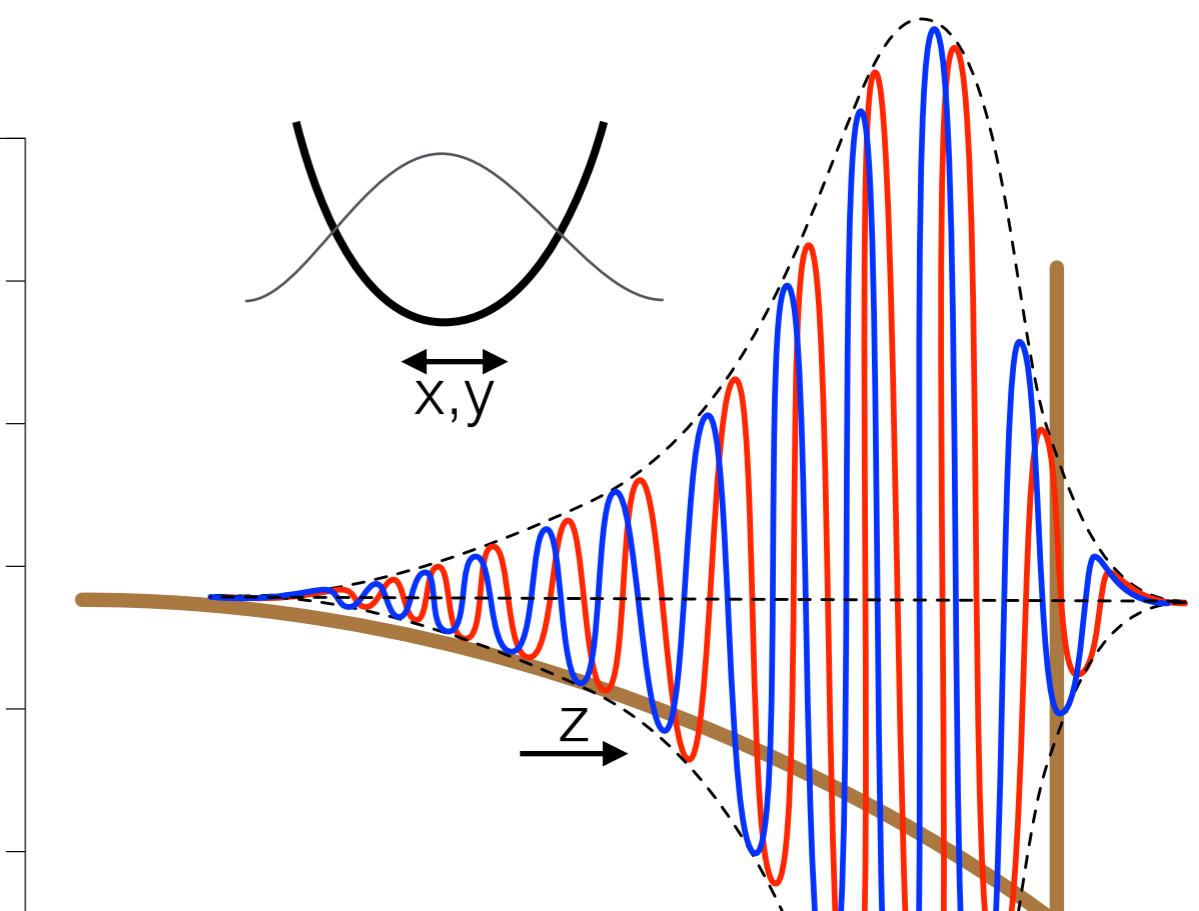


Valley splitting in silicon - 'traditional' approach

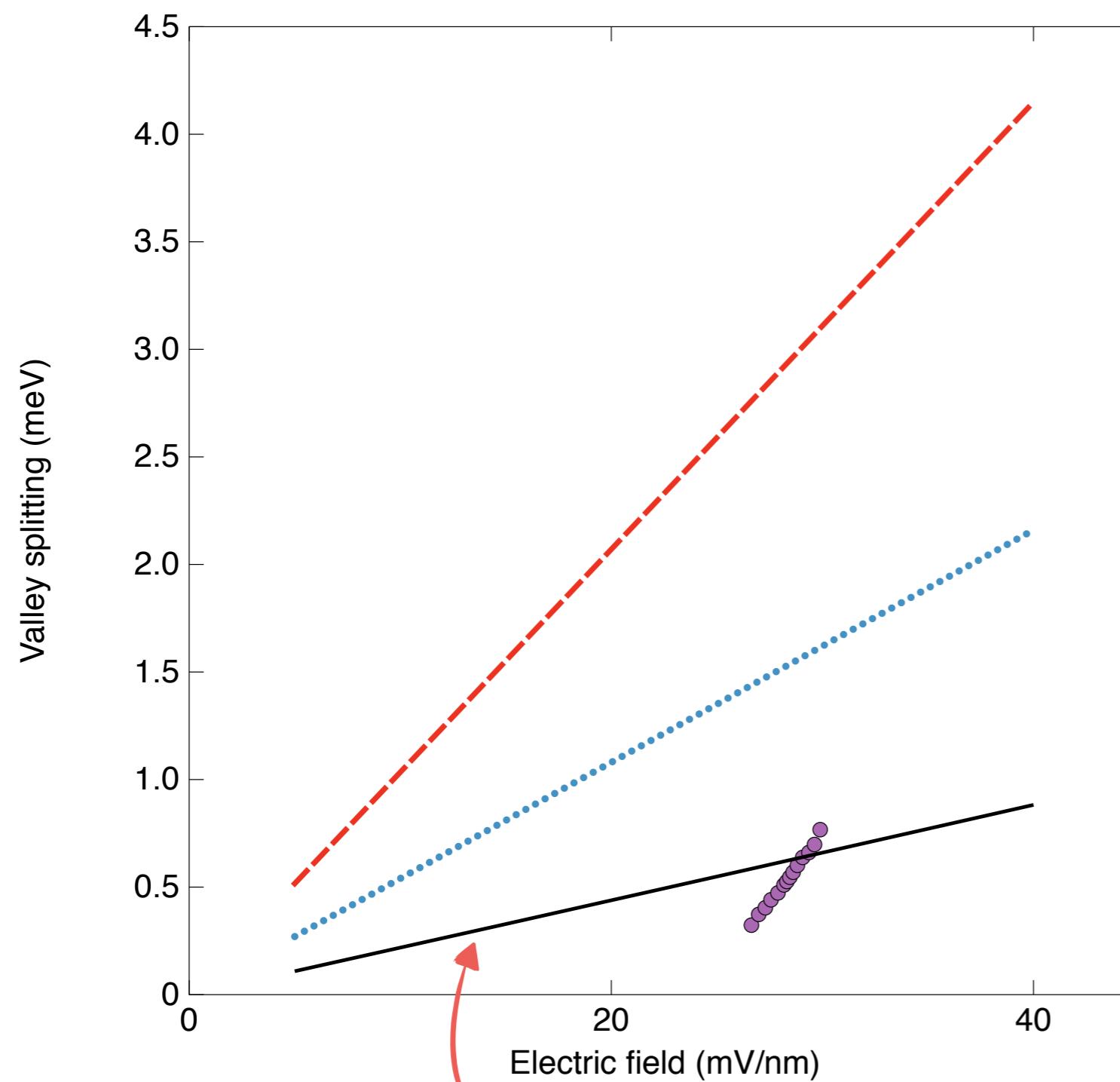
Valley splitting in silicon - 'traditional' approach



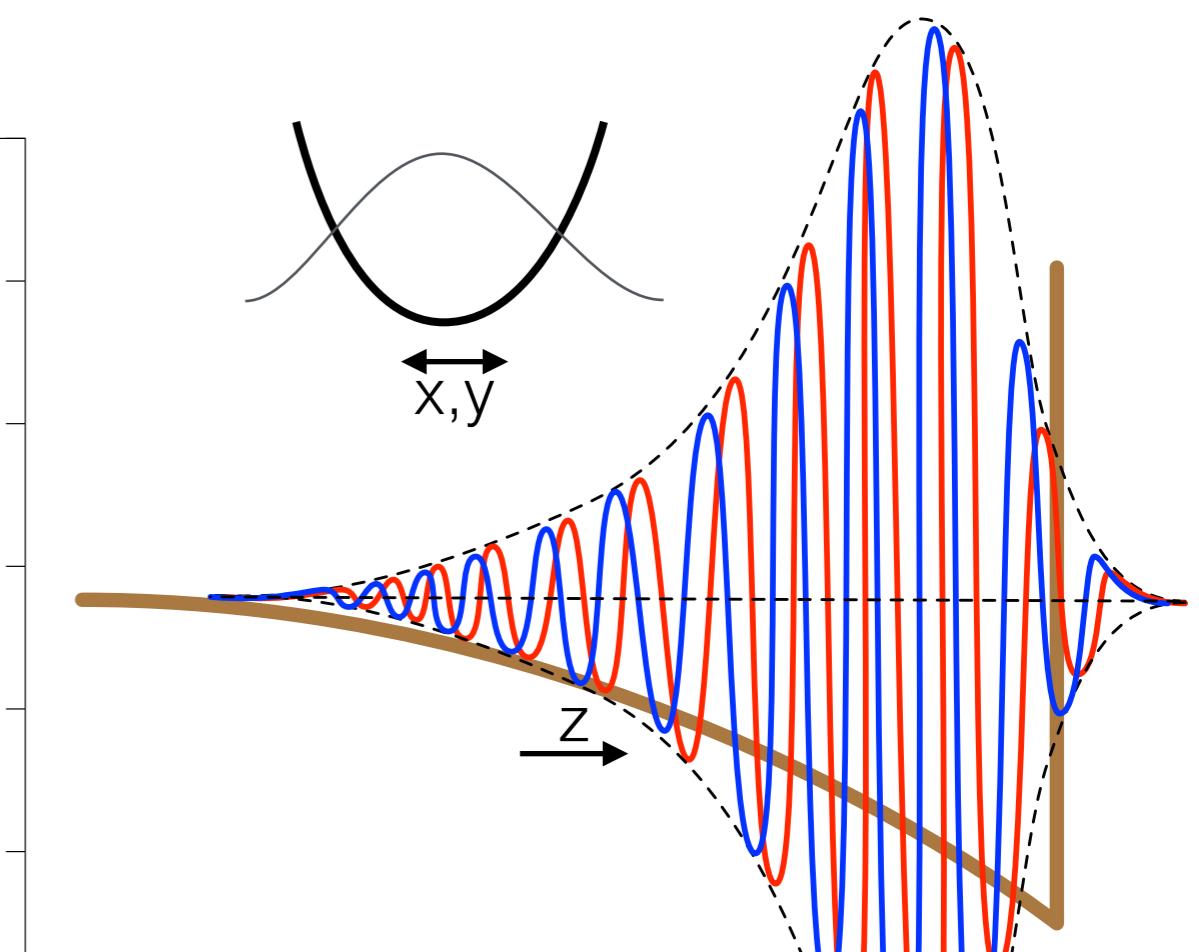
Valley splitting in silicon - 'traditional' approach



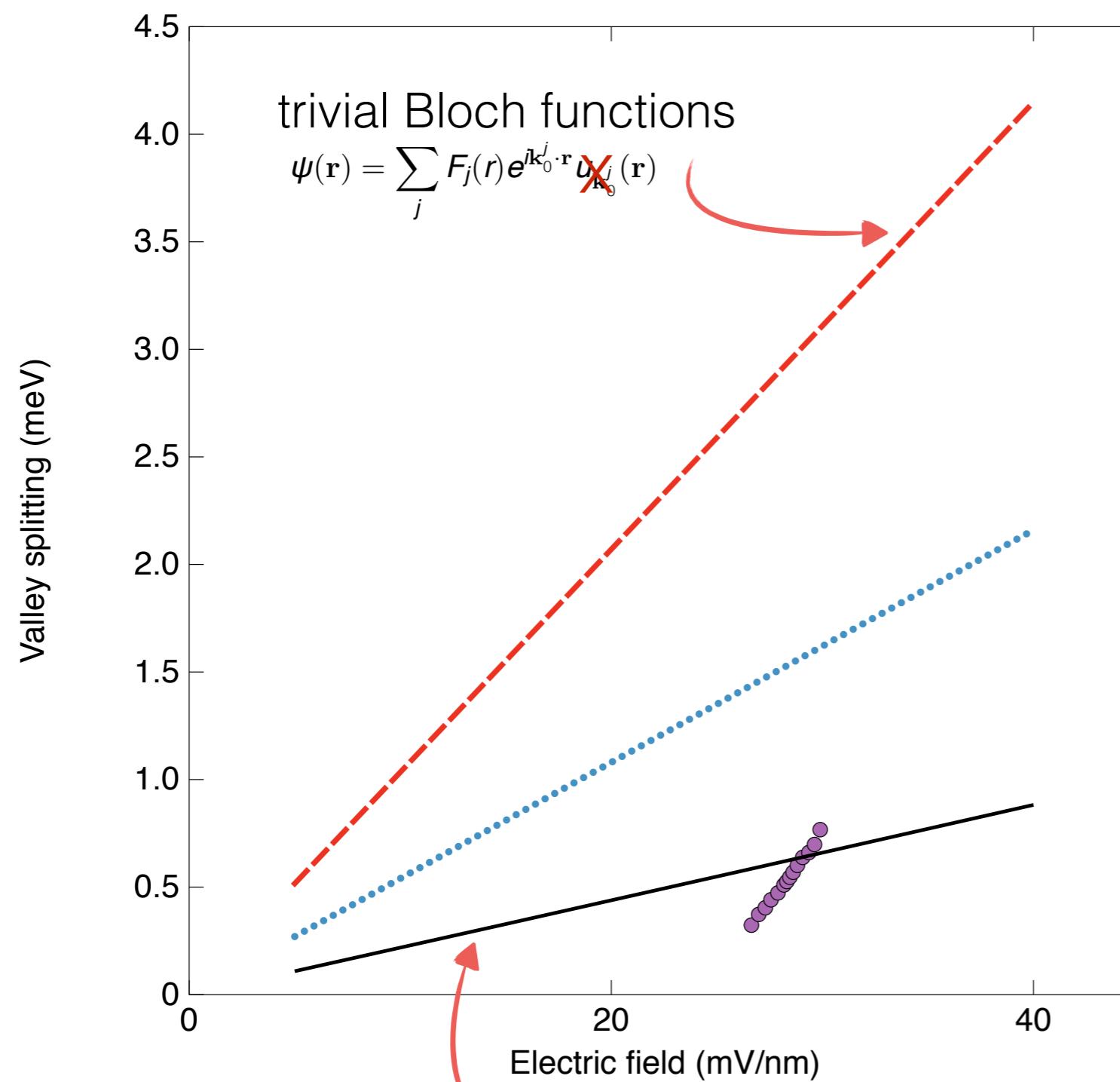
Valley splitting in silicon - 'traditional' approach



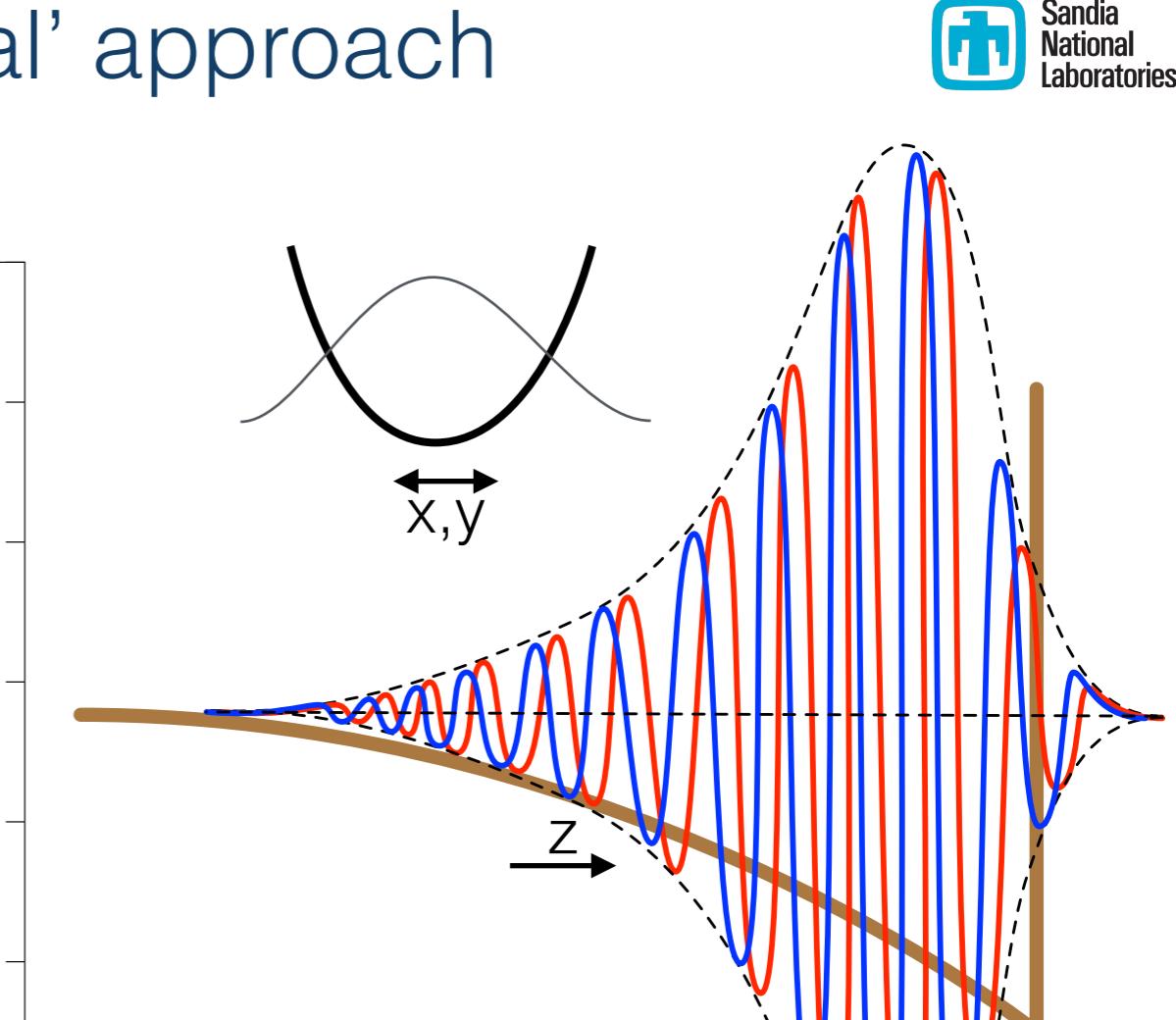
full Bloch functions



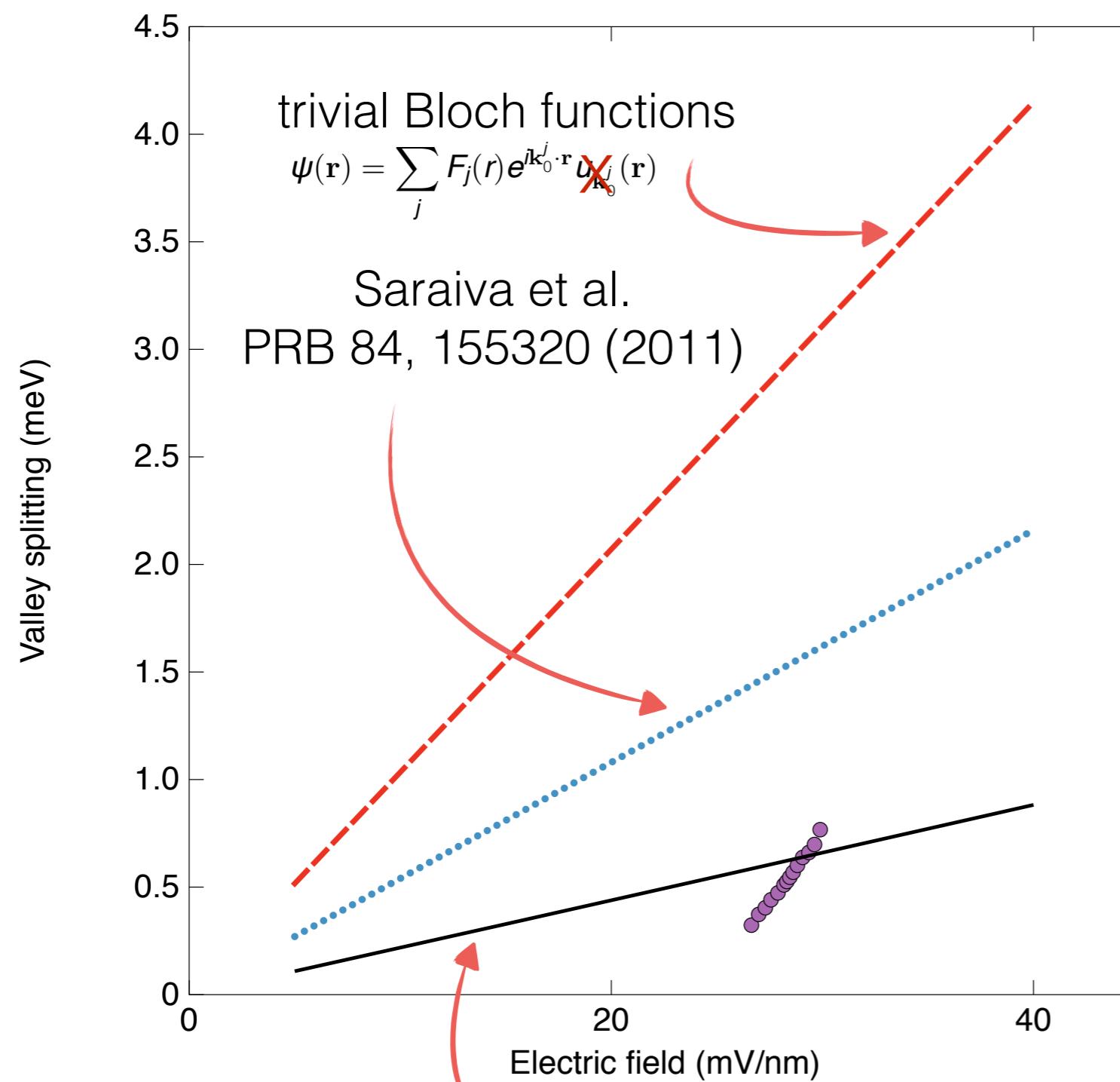
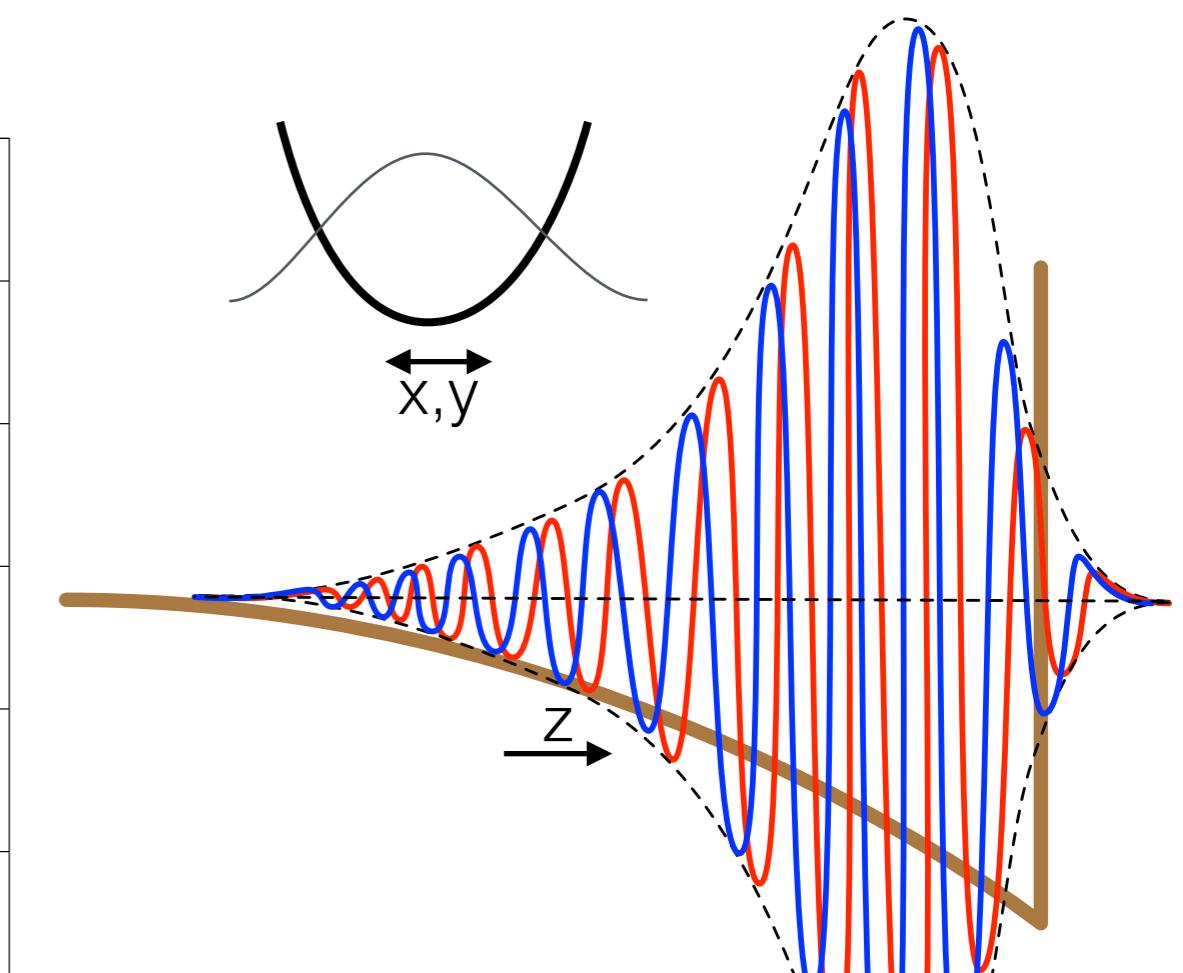
Valley splitting in silicon - 'traditional' approach



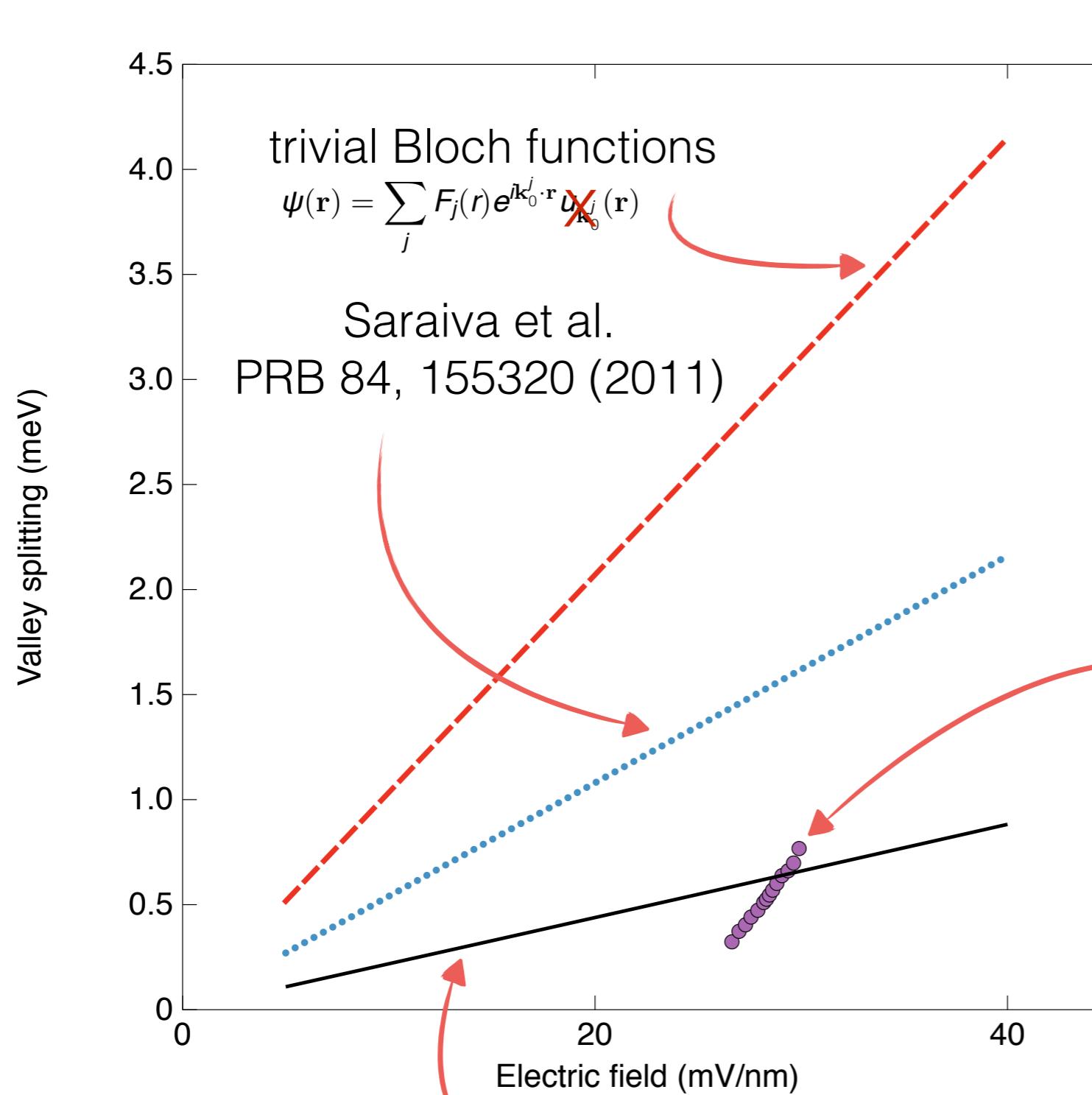
full Bloch functions



Valley splitting in silicon - 'traditional' approach

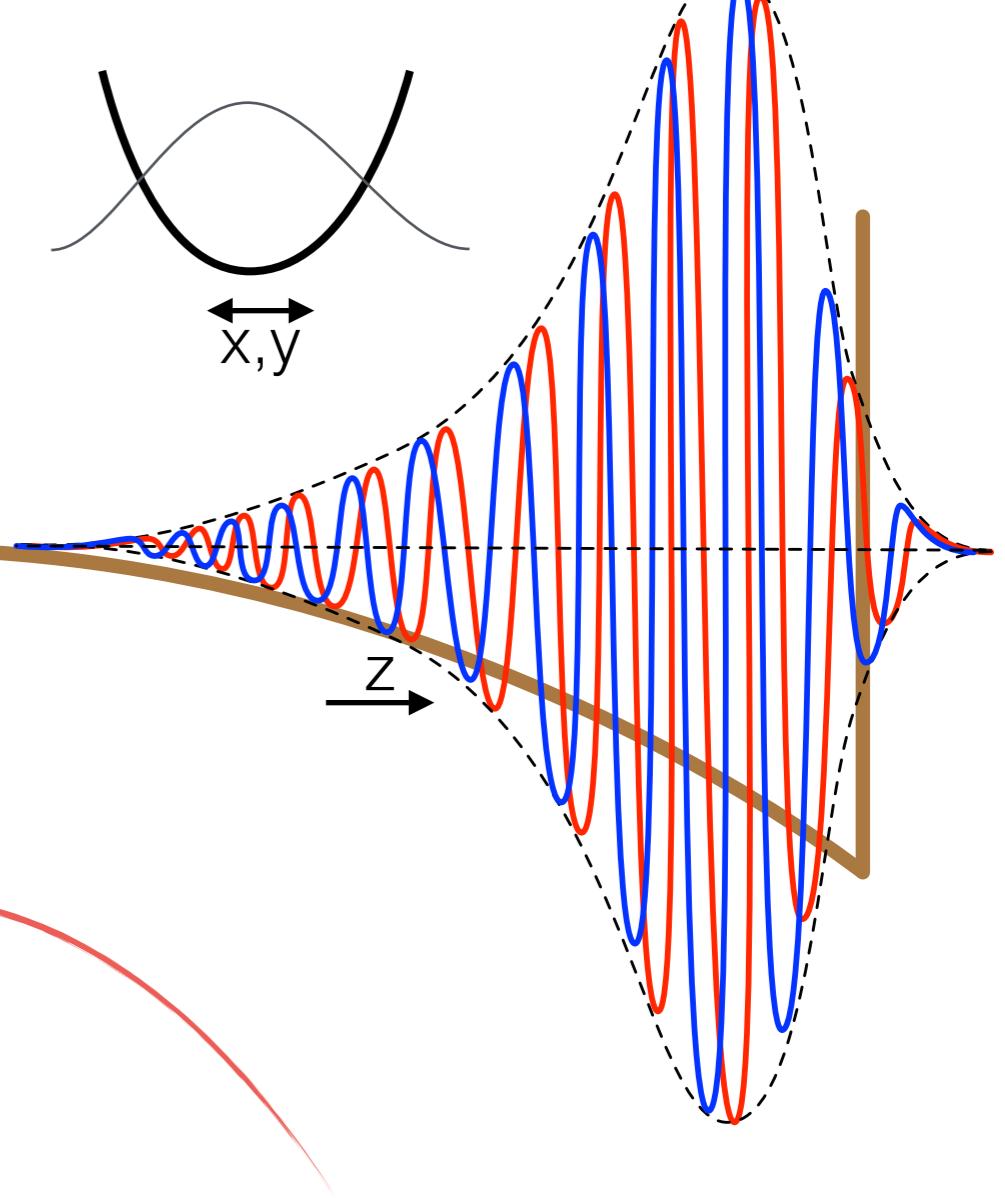


Valley splitting in silicon - 'traditional' approach

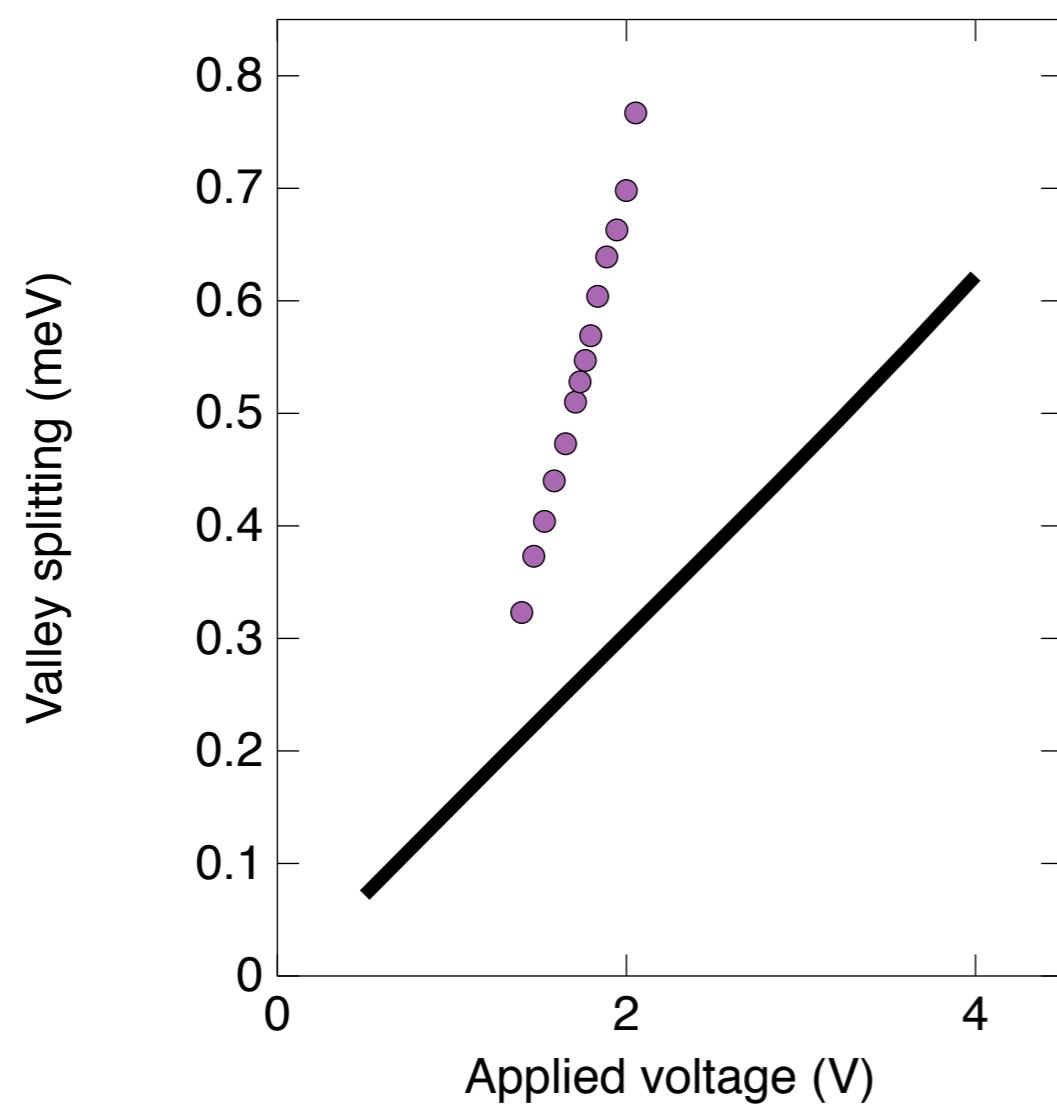
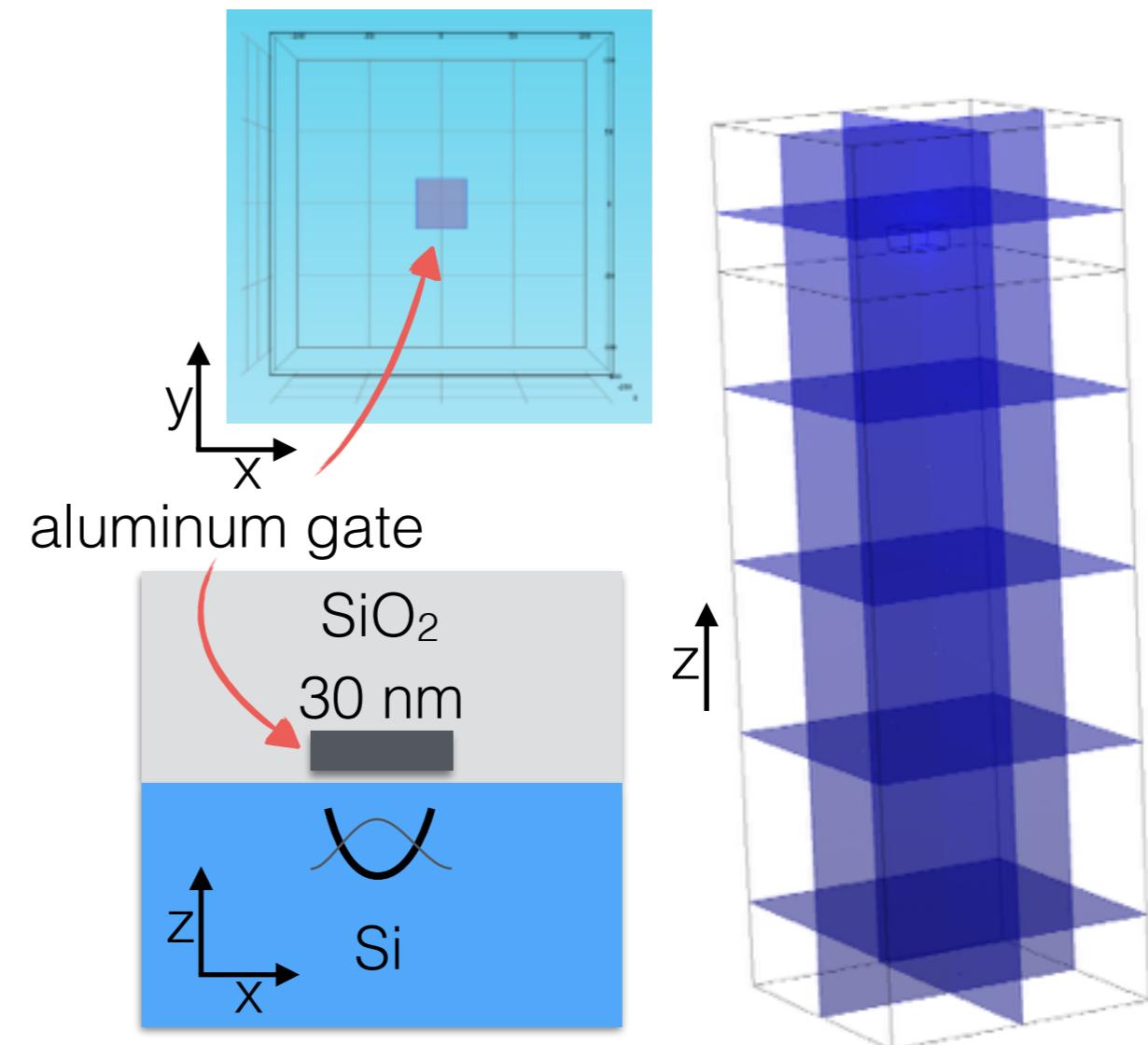


full Bloch functions

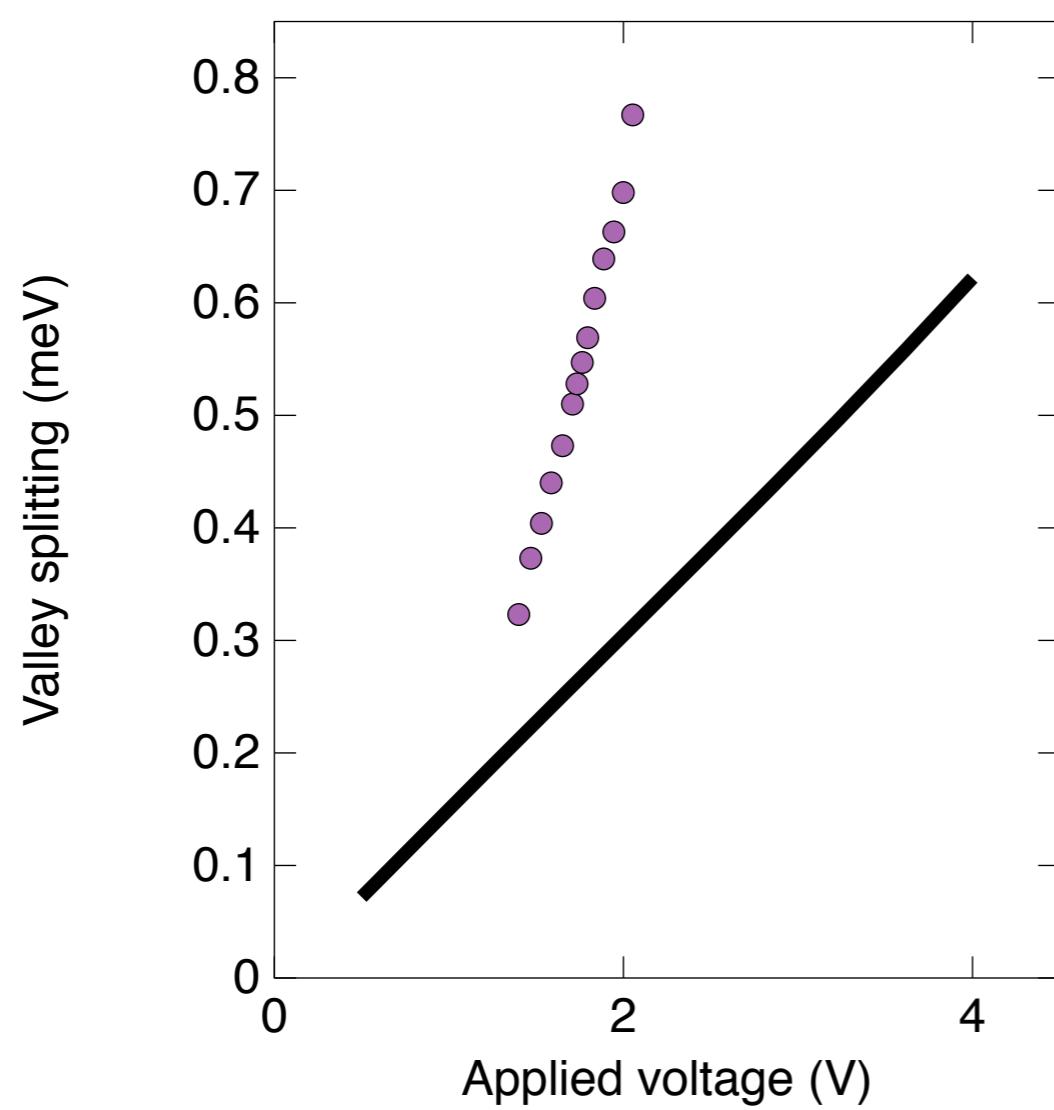
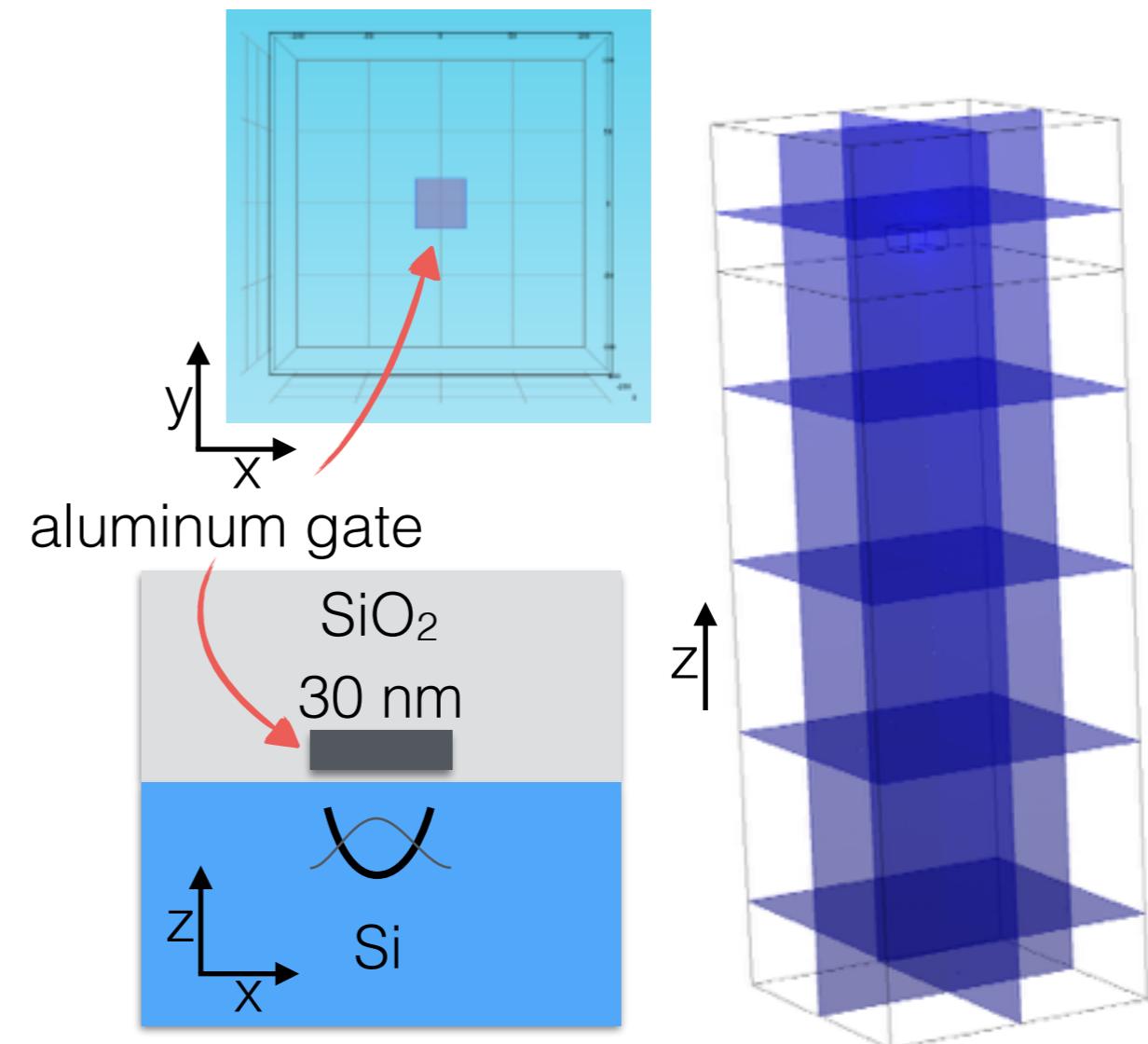
experiment: Yang et al.
Nature Comms. 4: 2069 (2013).



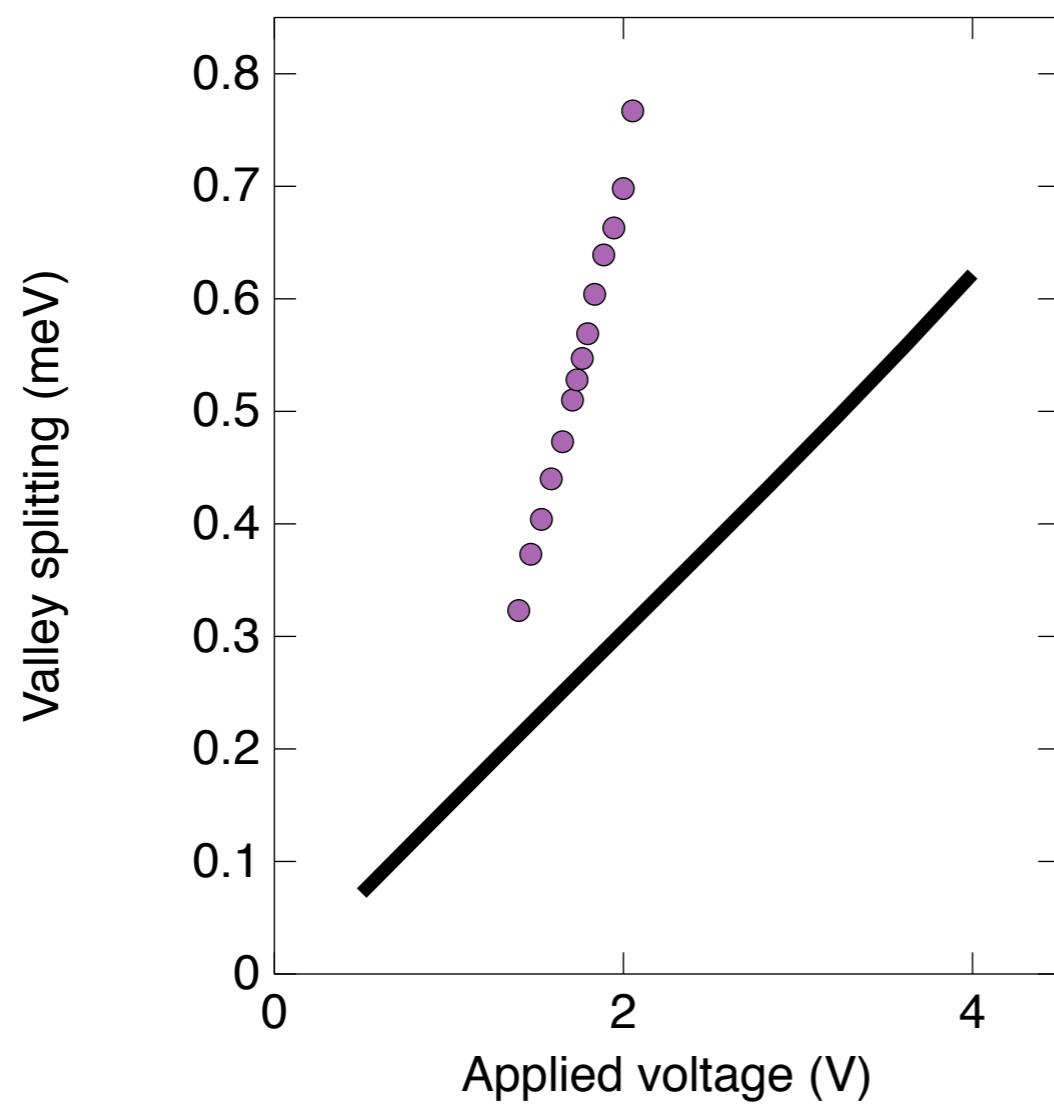
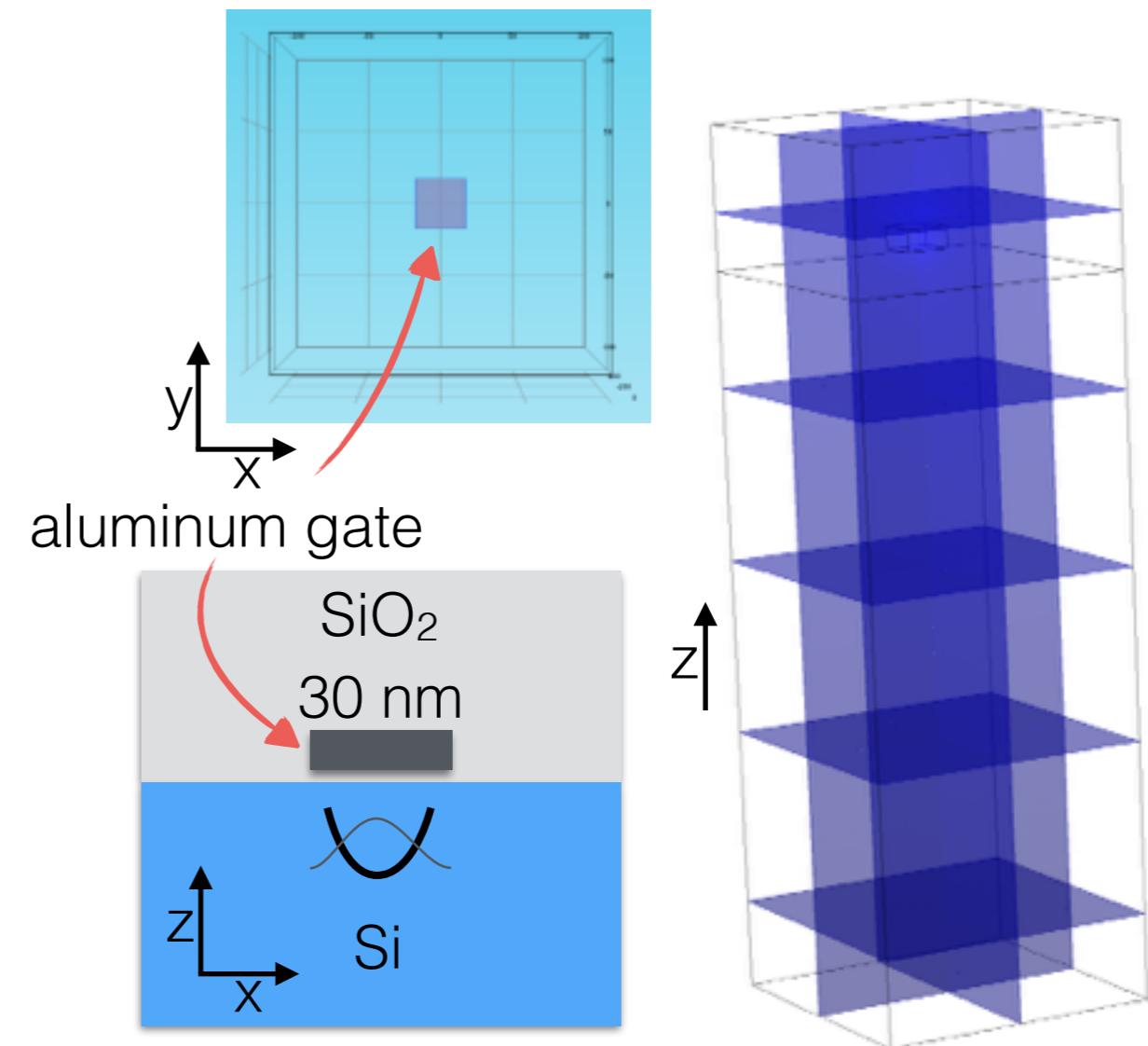
Valley splitting in silicon - full-scope approach



Valley splitting in silicon - full-scope approach



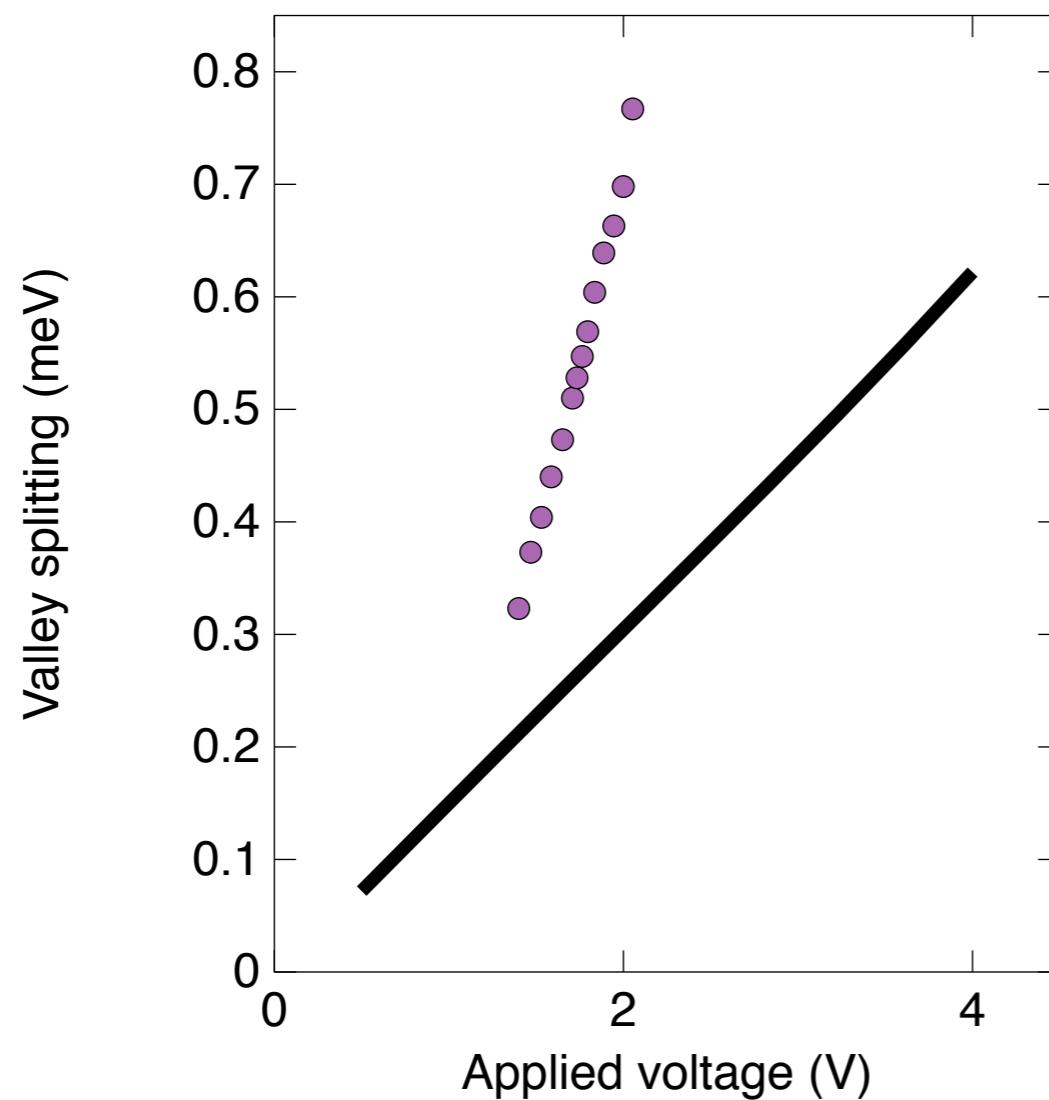
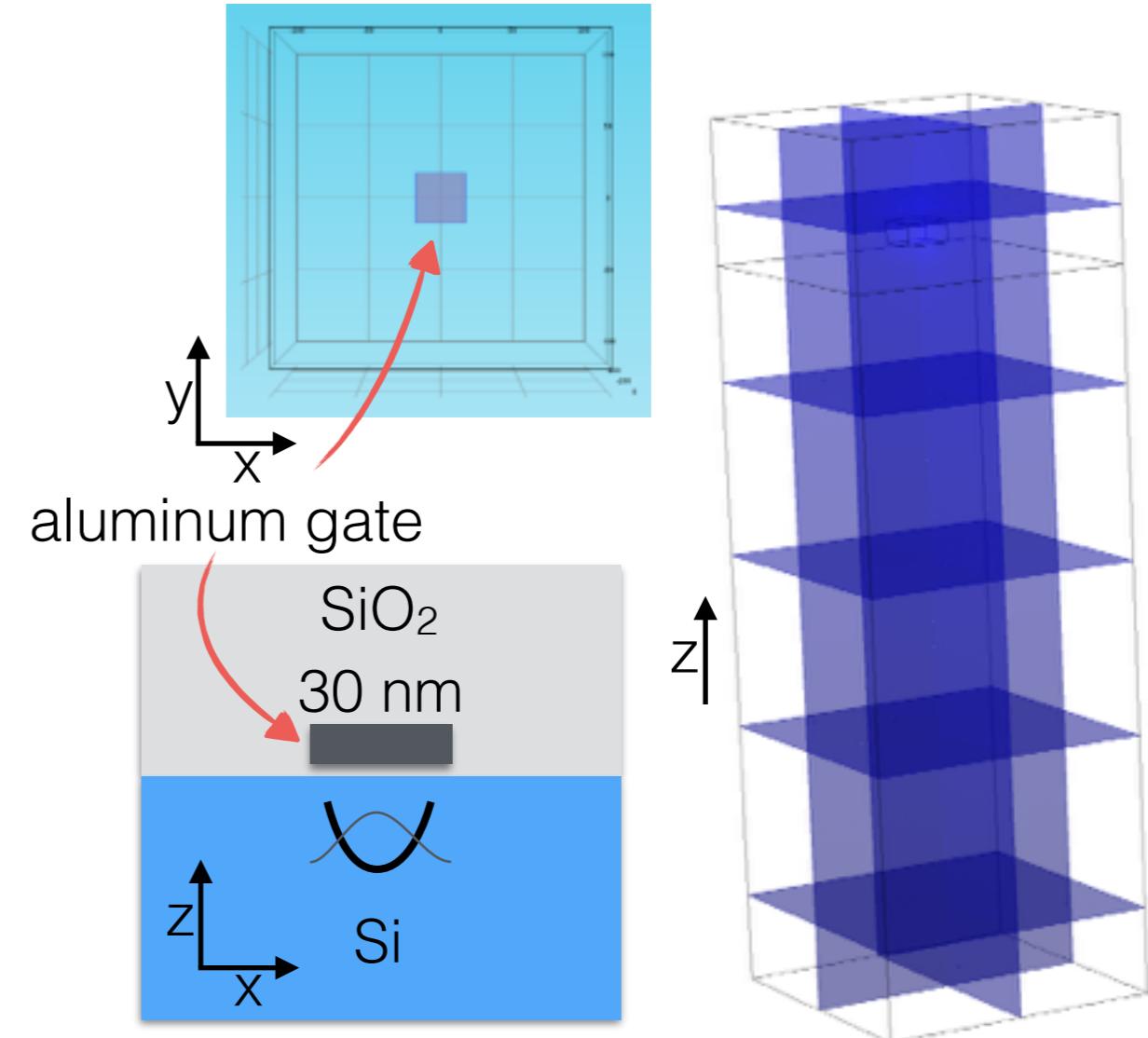
Valley splitting in silicon - full-scope approach



Used (6,6,60) grid of Gaussians
with both z valleys + full
Bloch functions.

Valley splitting in silicon - full-scope approach

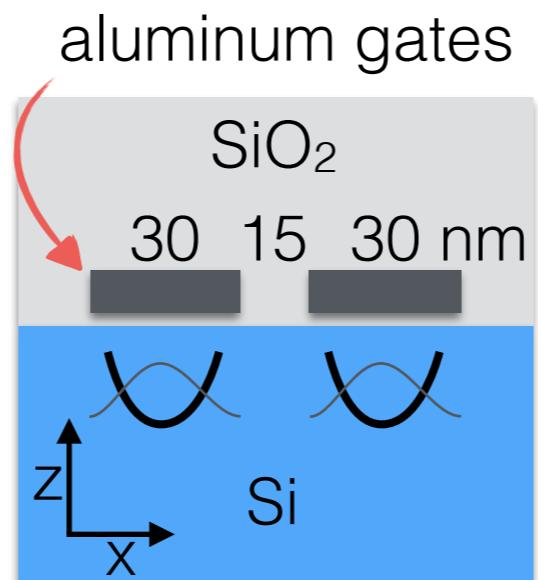
Ramping the voltage leads to both increased confinement and increased valley splitting - not separable.



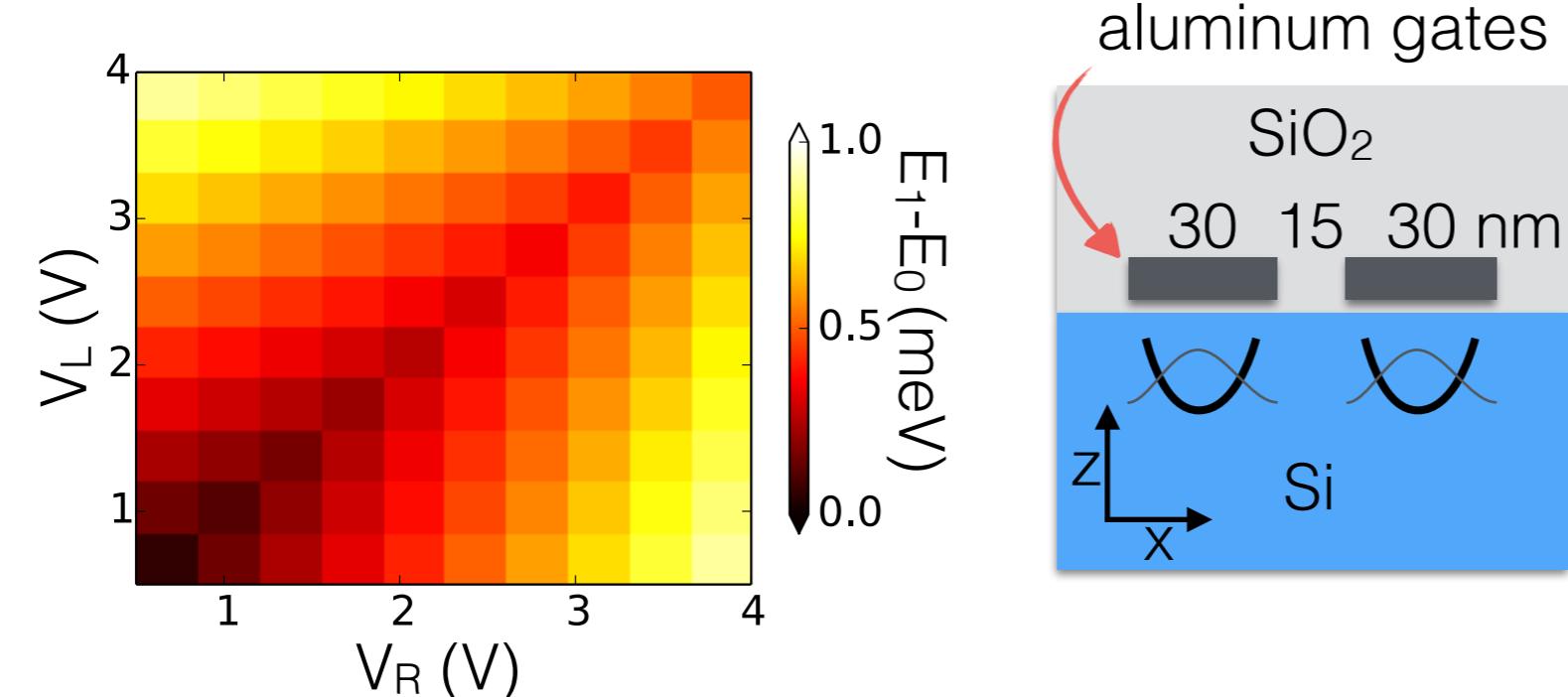
Used (6,6,60) grid of Gaussians with both z valleys + full Bloch functions.

Exploring two-dot tunneling with full valley physics

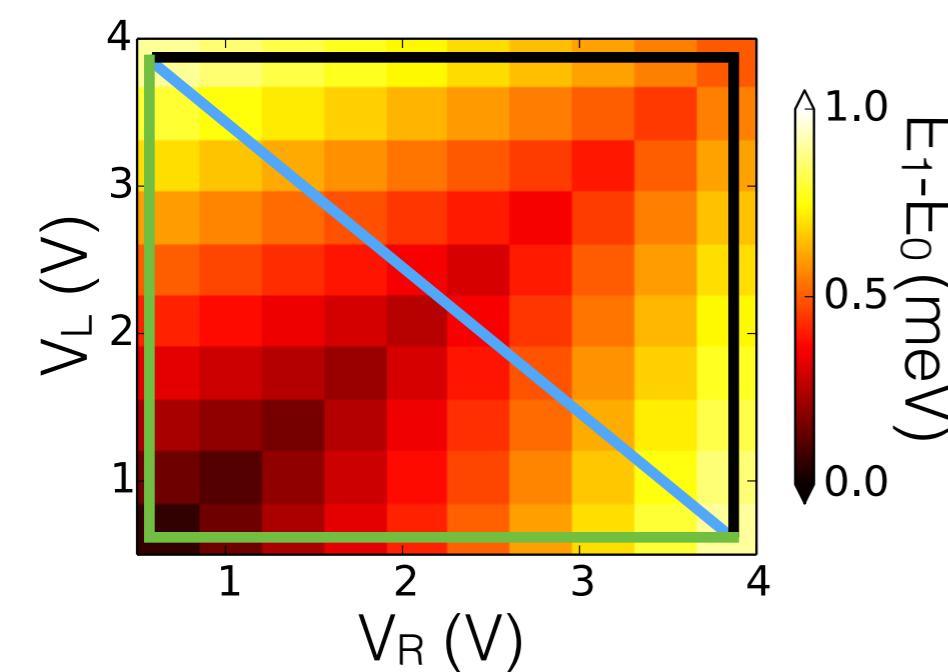
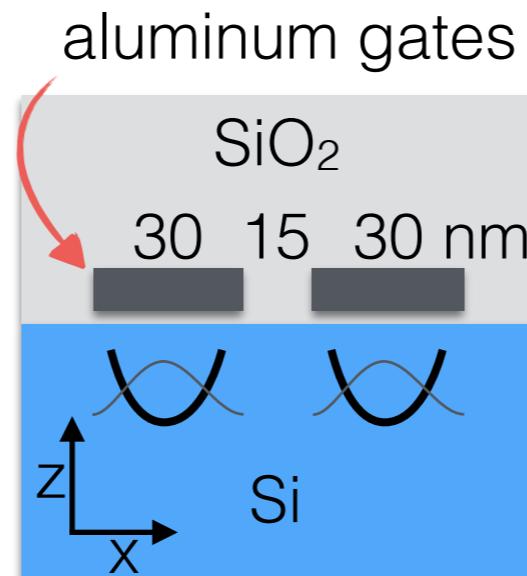
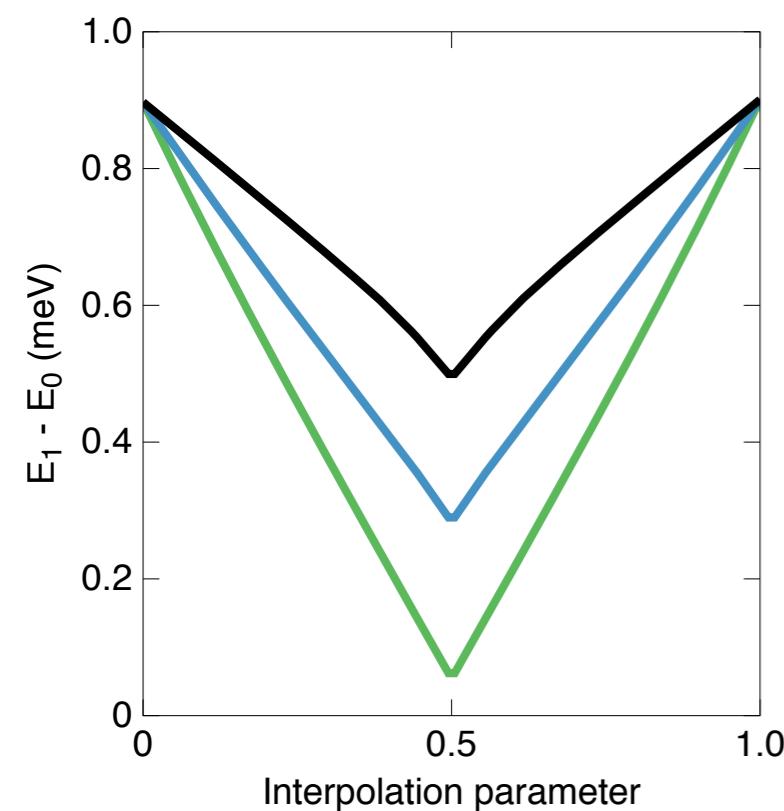
Exploring two-dot tunneling with full valley physics



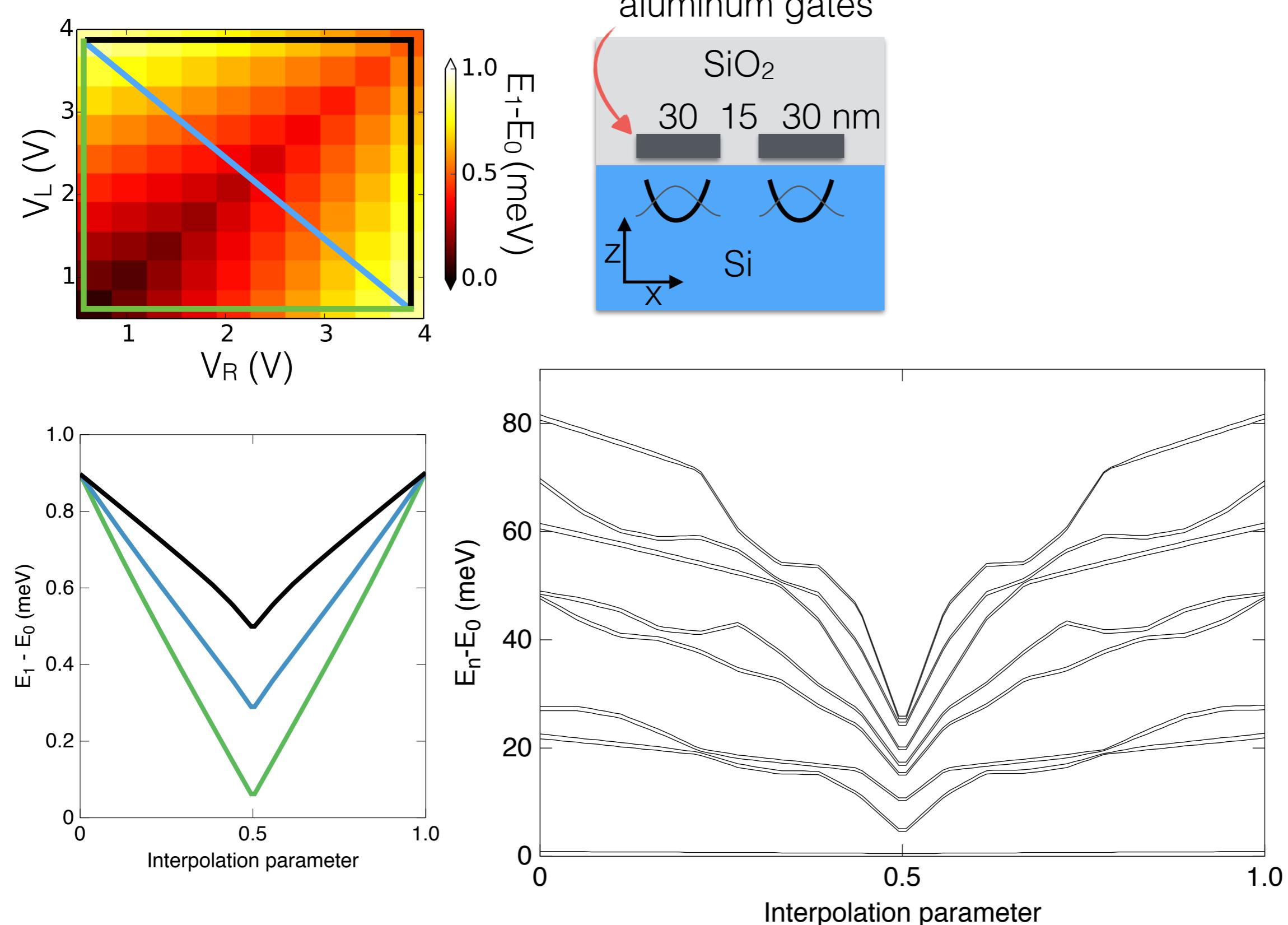
Exploring two-dot tunneling with full valley physics



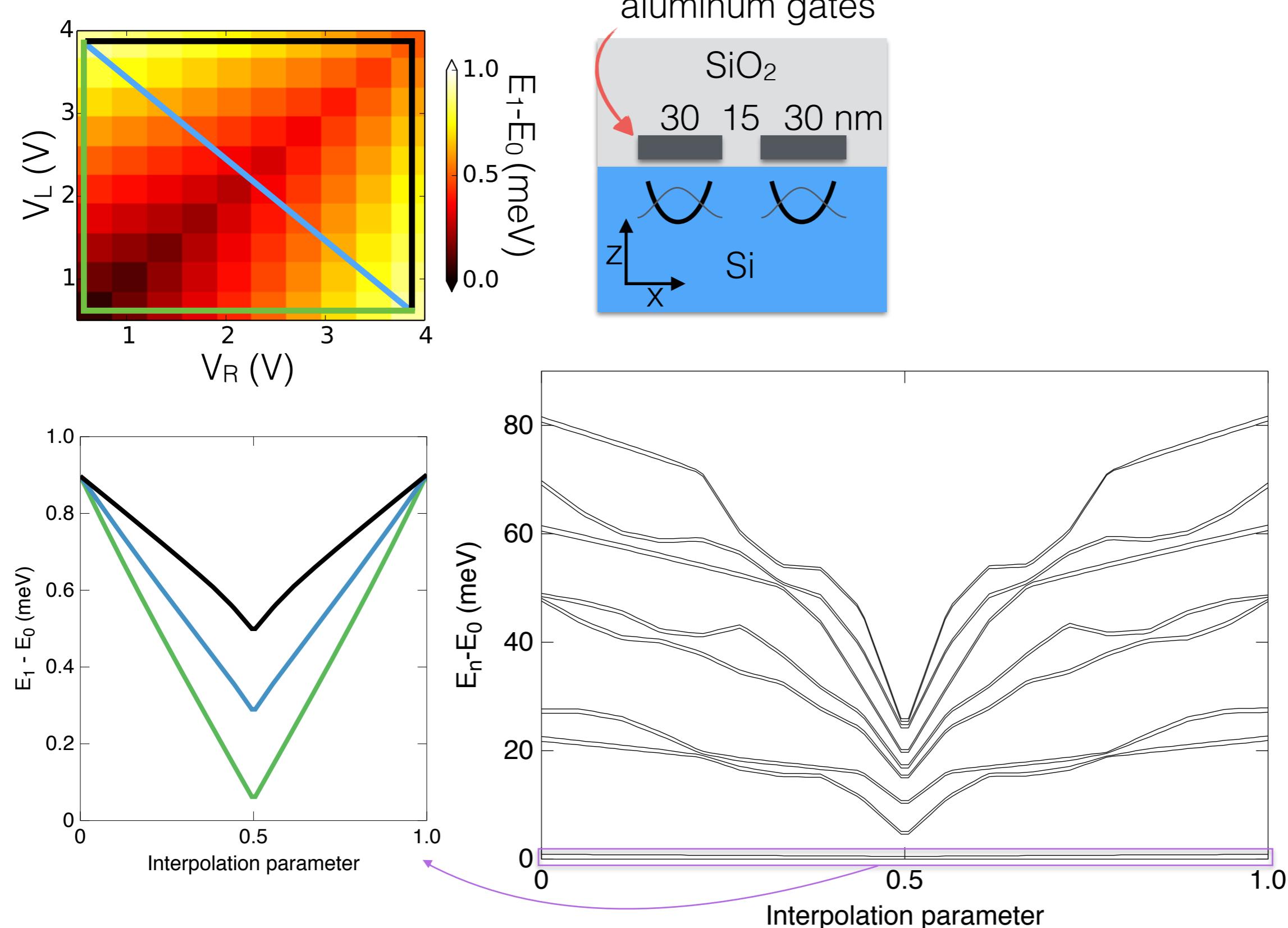
Exploring two-dot tunneling with full valley physics



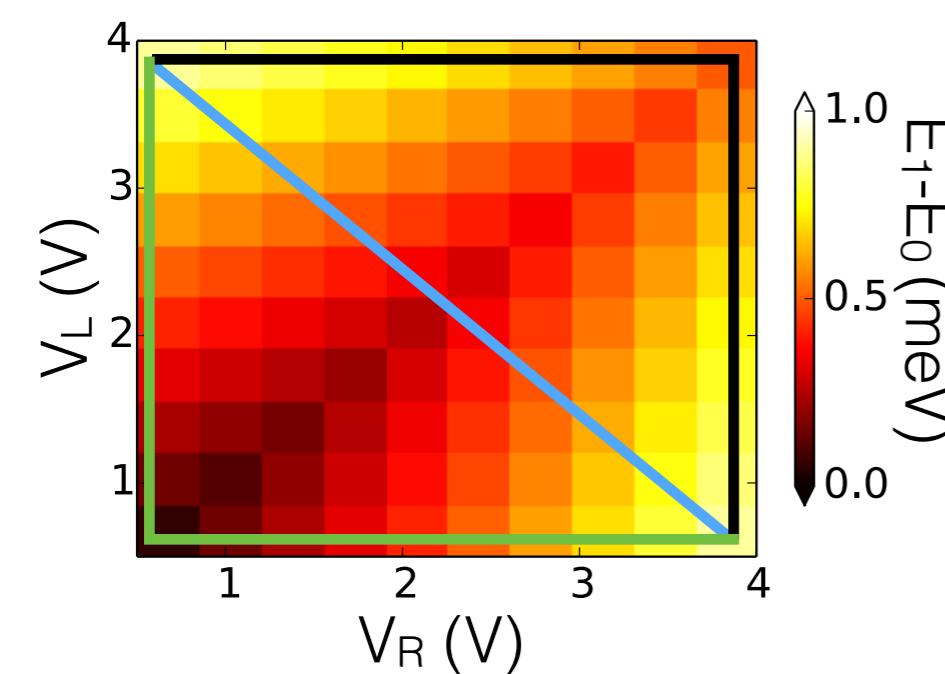
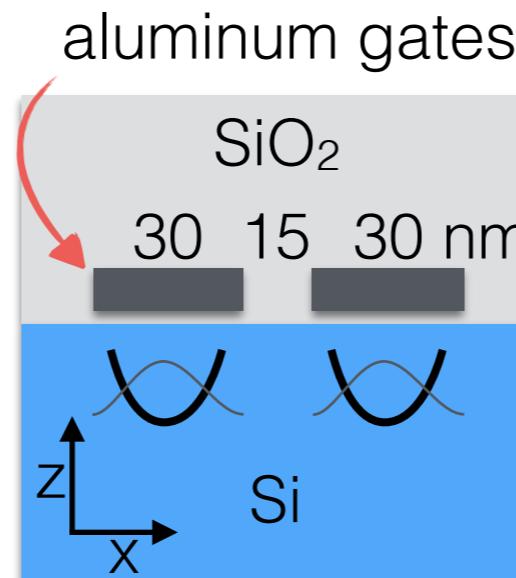
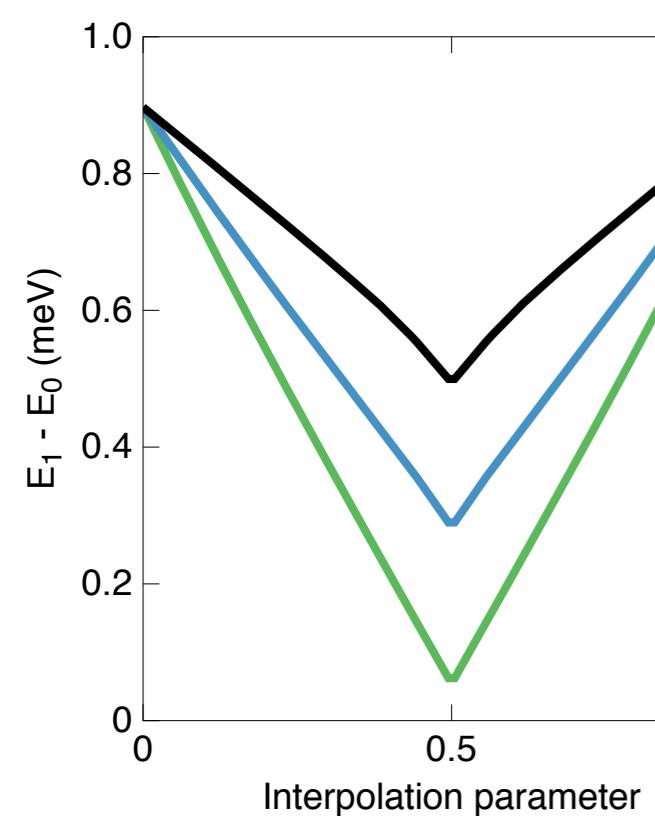
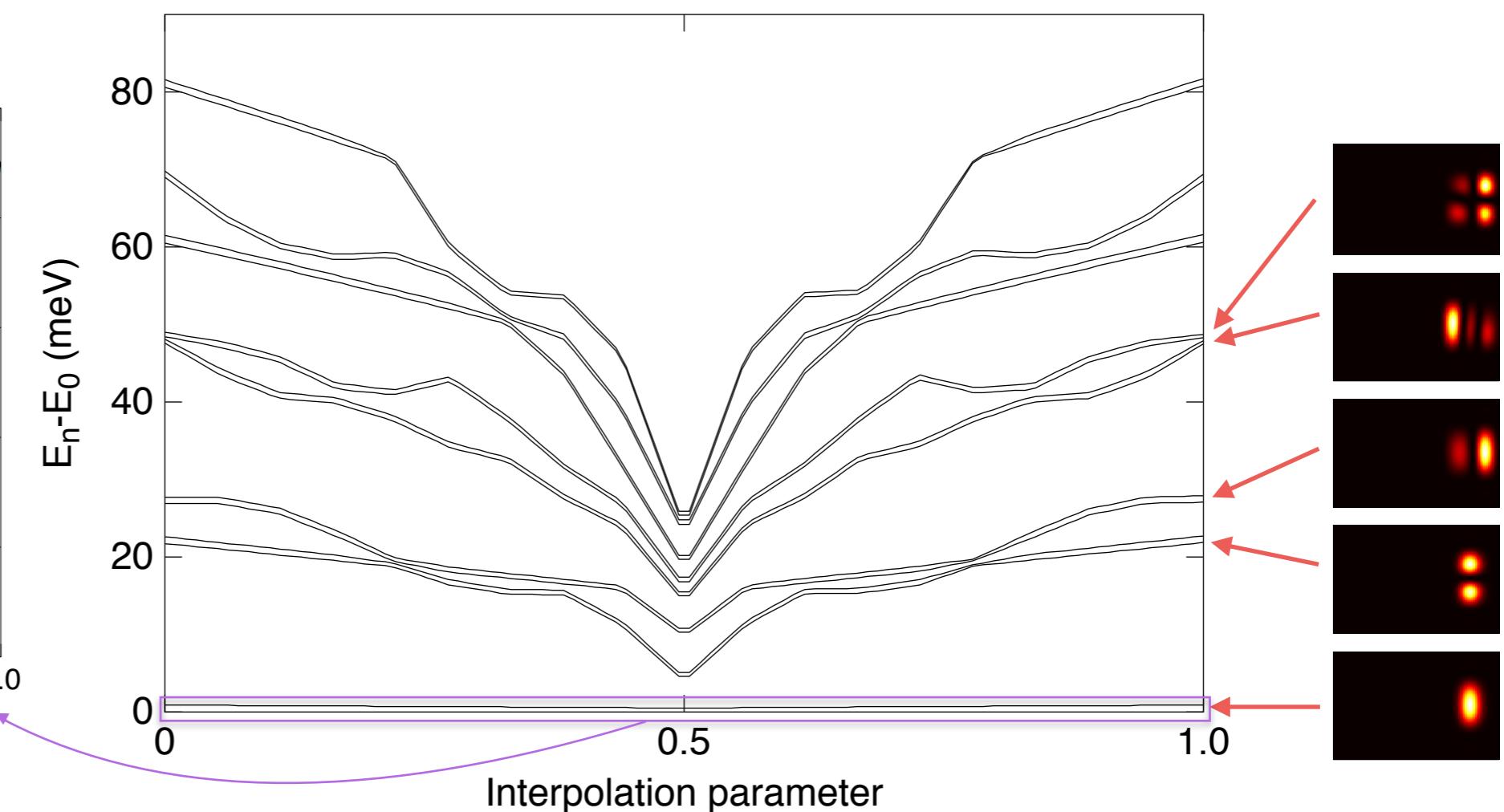
Exploring two-dot tunneling with full valley physics



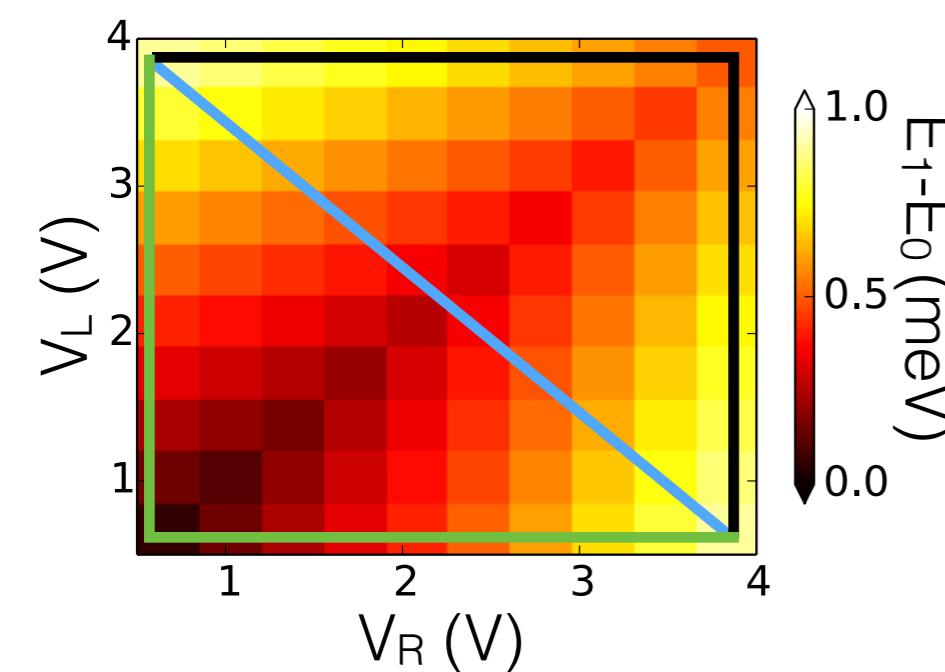
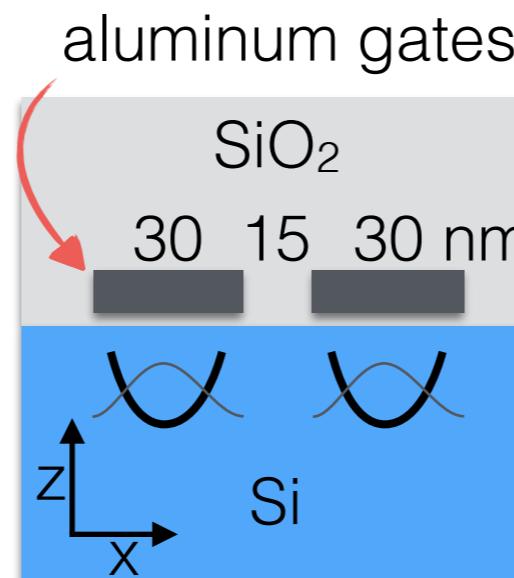
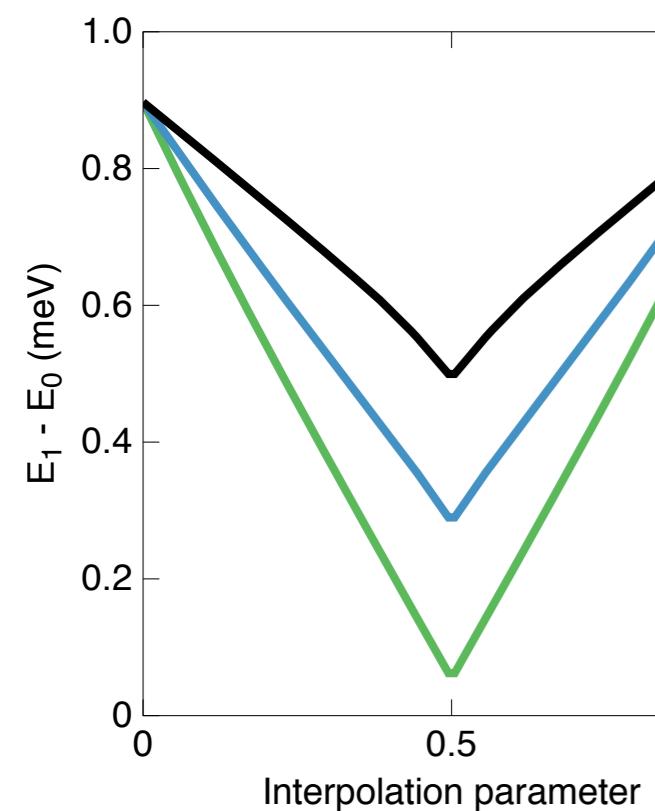
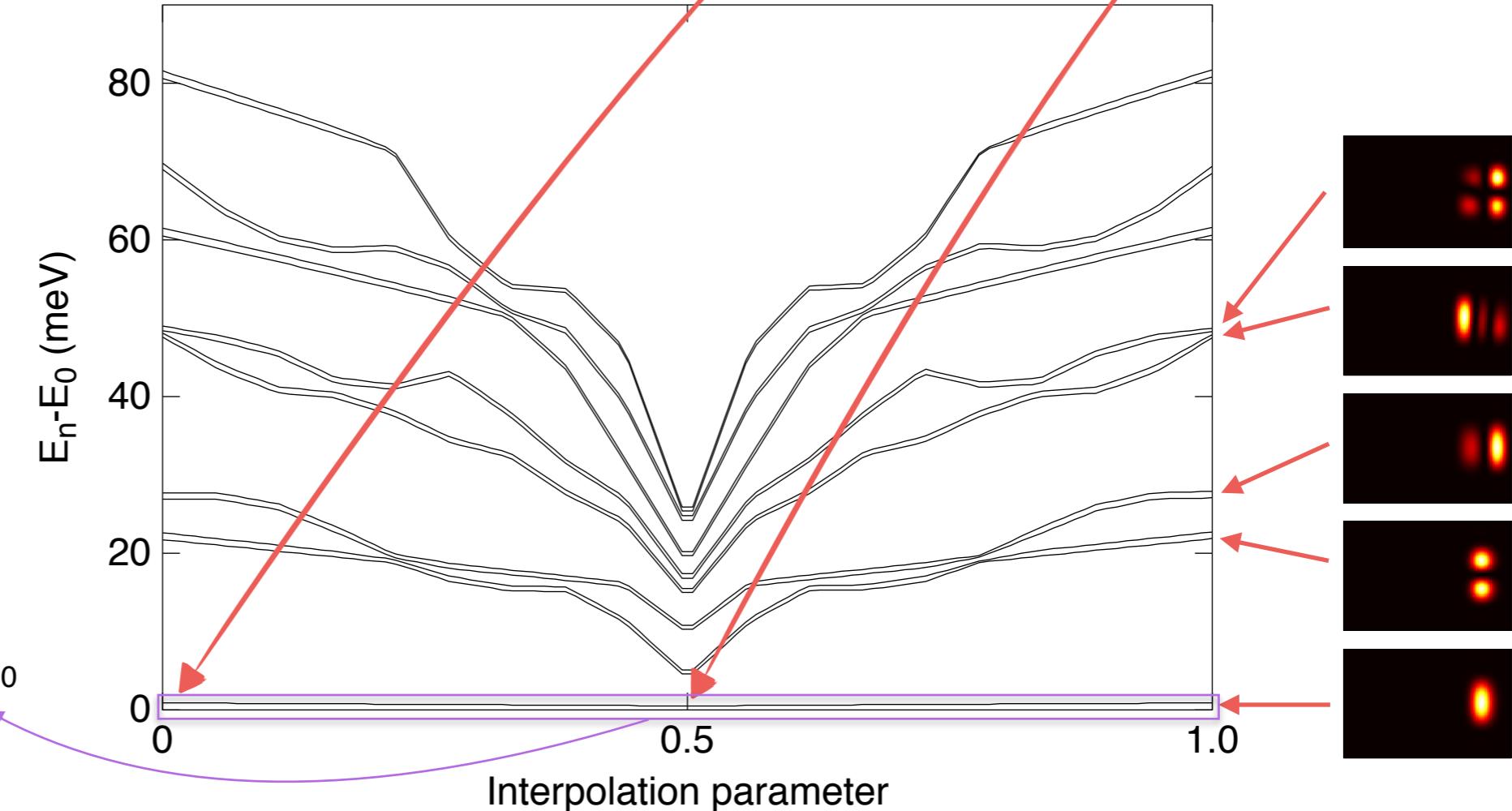
Exploring two-dot tunneling with full valley physics



Exploring two-dot tunneling with full valley physics



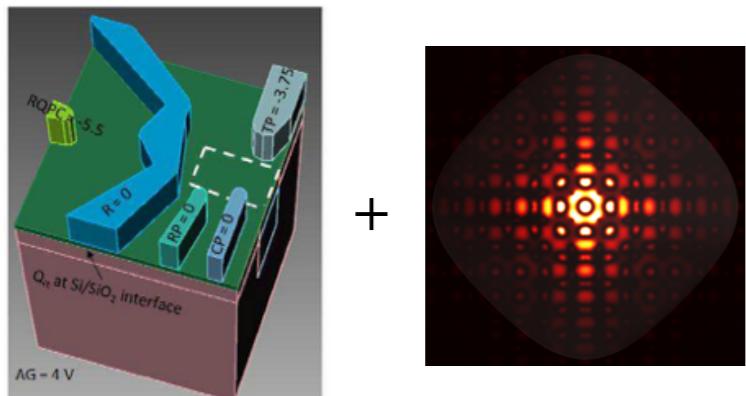
Exploring two-dot tunneling with full valley physics



Summary & future work

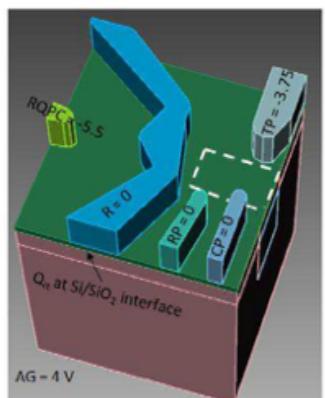
Summary & future work

Full scope modeling

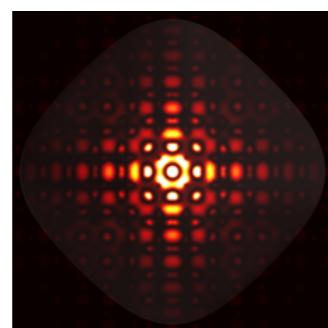


Summary & future work

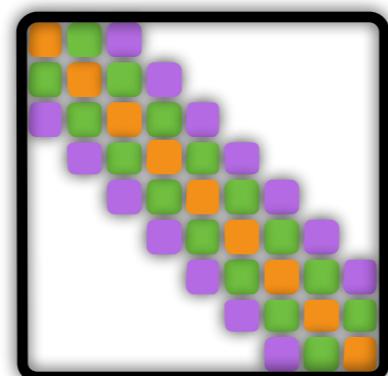
Full scope modeling



+

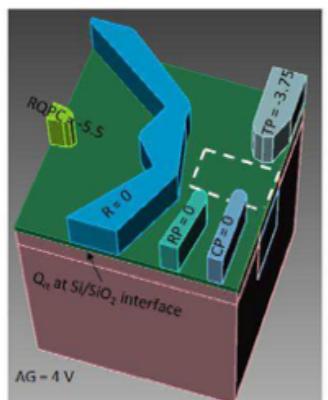


gaussian grid

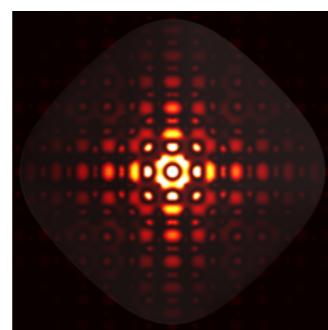


Summary & future work

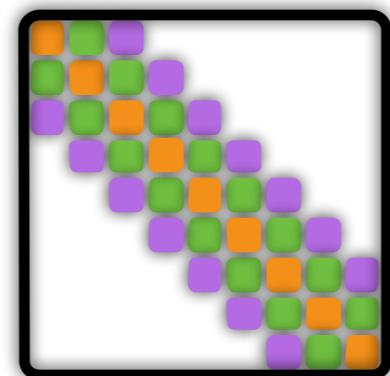
Full scope modeling



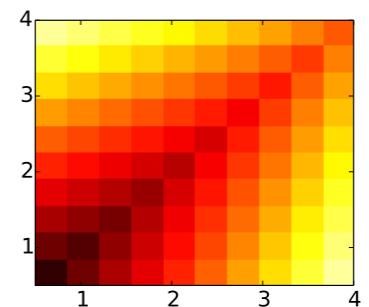
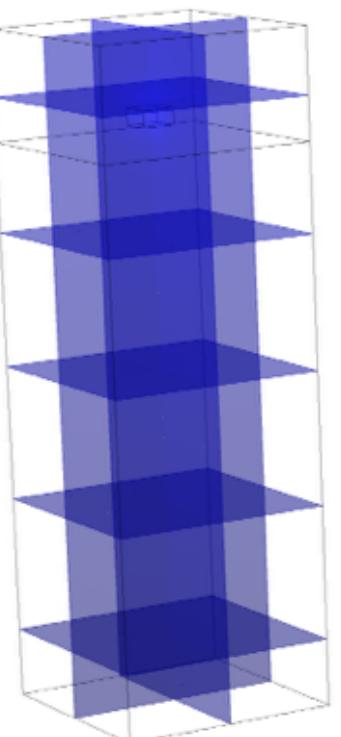
+



gaussian grid

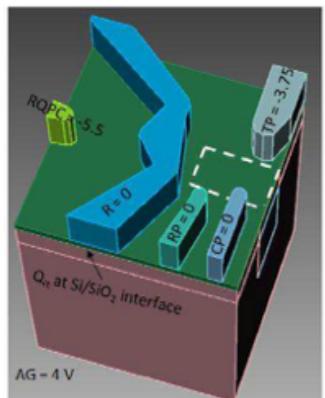


device-level simulation
with full valley physics

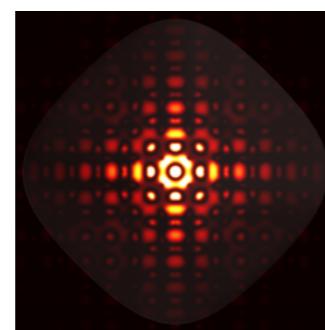


Summary & future work

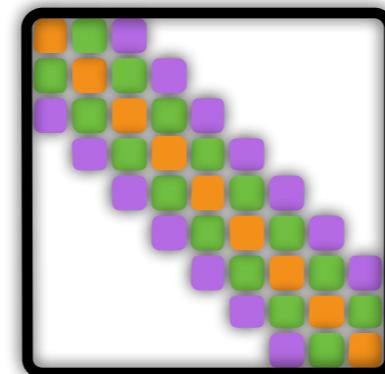
Full scope modeling



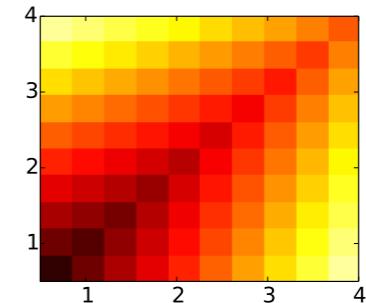
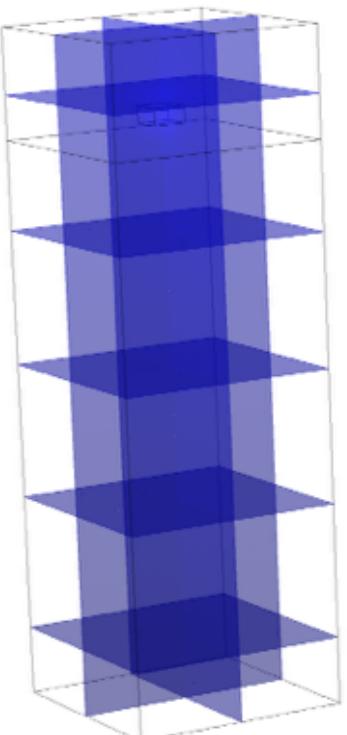
+



gaussian grid



device-level simulation
with full valley physics



- Multiple electrons
- More realistic structures (including disorder)
- Dynamical modeling (optimal control?)
- Spin physics

Collaborators:

Andrew D. Baczewski

W37.00008 - Device-Level Models Using Multi-Valley Effective Mass

N. Tobias Jacobson

W37.00009 - Multi-valley effective mass theory for device-level modeling of open quantum dynamics

Adam Frees

W37.00010 - Multi-valley effective mass treatment of donor-dot tunneling in silicon

Inès Montaño

Erik Nielsen

Richard P. Muller