

1 Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-
2 induced breakdown spectroscopy (LIBS)

3
4 Tran X. Phuoc*, Ping Wang, and Dustin McIntyre
5 National Energy Technology Laboratory,
6 Department of Energy, P. O. Box 10940, MS 84-340
7 Pittsburgh, PA 15261

8 * Corresponding author: tran@netl.doe.gov

9

10 Abstract

11 We reported our preliminary results on the use of laser-induced breakdown spectroscopy
12 to analyze the rare earth elements contained in ash samples from Powder River Basin sub-
13 bituminous coal (PRB-coal). We have identified many elements in the Lanthanide series
14 (cerium, europium, holmium, lanthanum, lutetium, praseodymium, promethium, samarium,
15 terbium, ytterbium) and some elements in the actinide series (actinium, thorium, uranium,
16 plutonium, berkelium, californium) in the ash samples. In addition, various metals were also seen
17 to present in the ash samples.

18 Key words: Rare earth elements, LIBS, coal ash

19 Introduction

20 Rare earth elements are the chemical elements in group 3 of the periodic table. They are
21 grouped into two series: the Lanthanide series (lanthanum, cerium, praseodymium, neodymium,
22 promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium,
23 ytterbium, lutetium) and the Actinide series (Actinium, Thorium, Protactinium, Uranium,
24 Neptunium, Plutonium, Americium Curium, Berkelium, Californium, Einsteinium, Fermium,
25 Fm, Mendelevium, Nobelium, Lawrencium). Due to their unique magnetic, phosphorescent, and
26 catalytic properties, these elements are the critical and irreplaceable materials in modern
27 technologies (TVs, cellular phones, computers, permanent magnet motors for wind turbines and

28 disk drives, hybrid car batteries, compact fluorescent lighting, catalysts for refining heavier crude
29 oil, automobile catalytic converters, etc.).

30 Traditionally, rare-earth elements are extracted from natural mineral deposits (carbonatite
31 and weather-cut elution-deposited ores). Recently, however, it has been reported that many rare
32 earth elements were found in coal samples from certain regions in Germany and in the United
33 States [1-5] in Bulgaria [6], in Bangladesh [7], and in United Kingdom and Poland [8]. Since the
34 combustion of coal for energy generation results in highly concentrated non-volatile minerals in
35 the coal ash wastes, the concentrations of rare-earth elements in coal ash could be enriched up to
36 within the range of mineral ore deposits [1, 4, 8, 9]. For example, as reported by Seredin and
37 Dai [1], Mayfield and Lewis [9] the total rare earth concentrations in a Kentucky coal were about
38 54.9 mg/kg while in coal ash from a Kentucky power plant they were from 1312.6 – 1667 mg/kg
39 in fly ash and 1202.5 mg/kg in bottom ash. Zhang et al. [4] reported that germanium content in
40 Illinois coal from 4 to 42 ppm and it was enriched to 1810 ppm in fly ash. Therefore, it is
41 necessary to analyze rare earth concentrations in ash wastes produced from coal power plants in
42 order for identifying and evaluating the ash sources that are viable for rare earth recovery.

43 For that reason, we report in this short communication our preliminary results on the
44 characterization of various elements in ash samples produced from Powder River Basin sub-
45 bituminous coal. Many techniques such as X-ray fluorescence (XRF) [4], inductively coupled
46 plasma–mass spectrometry (ICP-MS) [4], neutron activation [6], and LIBS [7, 10-15] have been
47 used for coal and coal ash elemental composition analysis. We, however, use the LIBS technique
48 because this is the fast, simple, reagent-free, low-ppm level detection technique for many
49 different situations. The LIBS technique also provide better data correlations [15] and has an

50 important advantage in that the neutron activation method, because it requires a strong
51 radioactive/neutron source, is bulky and presents potential health hazards [7, 10, 15].

52 Experiment

53 For this work, rare earth elements content in sub-bituminous coal from Powder River
54 Basin and its ash are spectroscopically characterized using the LIBS technique. Small coal
55 pellets of 10 mm in diameter and about 2.5 mm thick were made for our LIBS measurements.
56 To do so, we first ground the supplied coal powder and shook it through a 150 μm sieving
57 machine. Each pellet was made by pouring about 1.5 g of the prepared powder into a pellet die
58 and compressed with a pressure of 15000 psi for 5 minutes. Ash samples were prepared by
59 drying, devolatilizing and burning the prepared coal powders in a TGA (Leco TGA-601). The
60 drying and devolatilization processes were carried out under N_2 atmosphere at 107 $^{\circ}\text{C}$ and 950
61 $^{\circ}\text{C}$, respectively. The devolatilized samples were cooled to 600 $^{\circ}\text{C}$ then burned at 750 $^{\circ}\text{C}$ under
62 air environment until the weight of the remaining ash became unchanged indicating that all the
63 moisture content in the coal has been removed and all the volatile gases and fix carbon have been
64 completely burned. The resulting ash was cooled down, collected and stored in a desiccator.
65 Ash pellets were prepared using the same procedure described above.

66 The LIBS apparatus is shown in Fig.1. It consists mainly of a laser system, a
67 spectrometer unit, a beam-delivery optics, and a sample holder. The laser system uses a single-
68 mode, Q-switched Nd-Yag laser that is able to produce a laser pulse up to 100 mJ either at 1064
69 nm or 532 nm with a pulse duration of 5.5 ns and it delivered to the sample using a 75 mm focal
70 length lens. The spectrometer (OceanOptics, LIBS2500) permits real-time, qualitative
71 measurements of elements in solids. It provides spectral analysis across the 200-980 nm range at
72 a resolution of \sim 0.1 nm (FWHM). During each experiment, LIBS sample was glued on the

73 sample holder which was mounted on xyz translator so that it can be manually and continuously
74 moved around the focal point. In our experiment, laser pulse energy of 25 mJ was focused onto
75 the sample to create a spot size of about 200 μm using a 100 mm focal lens. The laser intensity
76 was approximated to be about 14.5 GW/cm² at the spot. A delay of 1.5 μs between the firing of
77 the laser and the acquisition of the LIBS spectra was applied. In order to reduce errors due to
78 laser fluctuation and sample heterogeneity, a total of about 3 ash pellets and 3 coal pellets were
79 tested and, for each pellet, we created about 10 spectra.

80 Results and Discussions

81 Figure 2 shows a typical LIBS spectrum spreading from 200 to 900 nm for coal and coal
82 ash obtained by our present experiments. Our general observation indicates that the wavelengths
83 of the observed emission lines were independent of the laser intensity. Their intensities,
84 however, increased with the laser intensity. For all of these elements, their emission lines were
85 more significantly pronounced and many of them became saturated in the ash samples than in the
86 coal samples.

87 By comparing the wavelengths of the emission lines of the spectra in Fig. 2 with those
88 from the online NIST Atomic Spectra Database, we obtained a spectrum of numerous strong
89 emission lines emitted by both neutral and single-ionized states of the various metals and rare
90 earth elements in lanthanide and actinide series present in our PRB-coal and coal ash samples.
91 Many rare earth elements detected in ash samples were not detectable in the coal samples due to
92 their low concentrations. We also observed that the wavelengths of the emission lines from
93 neutral elements were mainly in the visible range (from about 450 to 700 nm) and the
94 wavelengths of the emission lines by single-ionized elements were mostly in the UV range (from
95 250 nm to about 420 nm).

96 Because many of the emission lines from an element interfered significantly with those
 97 from others, in our present experiments, an element was considered to be identified if it had three
 98 or more emission lines that were unambiguous and did not interfere with those from other
 99 elements. As an example, by analyzing the ash spectrum in Fig. 1 against the online NIST data
 100 on cerium (Ce), we obtained a total of thirteen strong emission lines assigned for cerium (Ce).
 101 The results are shown in Table 1. Among these lines, emission lines from Ce I (522.346), Ce I
 102 (524.592), Ce I (571.903), Ce II (413.765), and Ce II (456.236) were unambiguous and they
 103 were used for Ce identification. The other emission lines: Ce I (566.996), Ce I (594.086), Ce II
 104 (394.216, 394.275), Ce II (399.924), Ce II (413.380), Ce II (418.660), and Ce II (428.994) were
 105 discarded because they interfered with many emission lines from other elements.

Table 1. Emission lines from Ce and their interferences with the emission lines from other elements

Emission line (nm)	Interference with emission lines from other elements
Ce I (522.346)	None
Ce I (524.592)	None
Ce I (571.903)	None
Ce II (413.765)	None
Ce II (456.236)	None
Ce I (566.996)	Si II (566.956)
Ce I (594.086)	N II (594.165)
Ce II (394.216, 394.275)	Nd II (394.151), U (394.382), Al (394.401), Er (394.442), Dy II (394.468)
Ce II (399.924)	Sc I (399.660), Ti I (399.864), Pm II (399.896), Dy II (400.045)
Ce II (413.380)	Gd II (413.037), Ba II (413.065), V I (413.199), Cl II (413.250)
Ce II (418.660)	Dy I (418.682), La I (418.732), Tm I (418.762), Mo I (418.832)
Ce II (428.994)	Am I (428.926), Cr I (428.973)

106
 107 With the identification criterion described above, elements that were identified with 3 or
 108 more unambiguous emission lines are tabulated in the following Tables 2 and 3. Other rare earth
 109 elements such as Dy, Er, Gd, Nd, Tm, Pa, Am, Cm, Es and numerous metal elements (Ag, Au,
 110 Al, Cr, Ga, Ge, Hf, Hg, Mn, Mo, Na, Nb, Os, Pb, Pt, Ra, Rb, Ru, Sc, Si, Sn, Ta, Tc, Zn, Y) were
 111 also detected but were not included in these tables simply because the number of the

112 unambiguous detected emission lines for these elements did not meet the identification criterion.
 113 We, however, did not detect Cd, Cu, Ni, Pd, Rh and the remaining elements of the actinide series
 114 (Neptunium, fermium, mendelevium, nobelium, lawrencium). This might be possible that our
 115 ash samples contain these elements at the concentration levels that our present experiment could
 116 not detect.

Table 2. Summary of the rare-earth elements identified in PRB-coal ash

Element	Unambiguous line detected, (wavelength in nm)	# of lines Detected
<i>Lanthanide Series</i>		
Cerium , Ce	522.346(I), 524.592(I), 571.903(I), 413.765(II), 456.236(II)	5/16
Europium, Eu	462.722(I), 583.098(I), 272.778(II), 368.842(II), 372.494(II), 412.970(II), 452.257(II)	7/22
Holmium, Ho	410.862(I), 412.716(I), 598.285(I), 341.644(II)	4/26
Lanthanum, La	514.542(I), 550.134(I), 624.993(I), 639.423(I), 379.478(II)	5/27
Lutetium, Lu	308.147(I), 337.65(I), 364.777(I), 412.473(I), 451.857(I), 600.452(I)	6/31
Praseodymium, Pr	395.944(I), 463.955(I), 501.976(I)	3/23
Promethium,Pm	475.9(I), 489.252(I), 652.045(I), 554.608(II), 557.602(II)	5/33
Samarium, Sm	447.089(I), 476.027(I), 484.17(I), 392.24(II)	4/33
Terbium, Tb	431.885(I), 464.531(I), 475.253(II)	3/28
Ytterbium, Yb	555.647(I), 679.96(I), 275.048(II), 297.056(II)	4/20
<i>Actinide Series</i>		
Actinium, Ac	635.986(I), 356.559(II), 450.720(II)	3/20
Thorium, Th	616.982(I), 411.671(II), 439.111(II)	3/31
Uranium, U	348.937(I), 381.199(I), 386.592(II), 454.363(II)	4/30
Plutonium, Pu	387.854(I), 863.019(I), 297.25(II), 333.771(II)	4/31
Berkelium, Bk	344.266(I), 565.903(I), 341.213(II), 419.744(II)	4/23
Californium, Cf	540.888(I), 372.211(II), 399.357(II)	3/17

117
 118 Conclusions
 119 We have conducted a simple LIBS experiment for identifying various metal and rare
 120 earth elements in PRB-coal ash samples. Our preliminary results indicated that PRB-coal ash
 121 contains a number of rare earth elements in both the Lanthanide series and the Actinide series.
 122 Various metal elements were also detected. Although some rare earth elements in the lanthanide
 123 series have been identified for some coals and coal ash samples [2, 6-8], rare earth elements of
 124 both actinide and lanthanide series in PRB-coal ash are reported here for the first time.
 125 Comparisons with other detection techniques, therefore, could not be made at present. To
 126 quantify the concentrations of the detected elements requires that (a) the plasma spectrum must

127 have all the emission lines by all the elements of the sample and (b) spectroscopic data for all
 128 emitting species must be available and reliable. The first requirement is fulfilled because the
 129 spectrometer used by our present experiments permits a sensitive detection of a spectrum from
 130 200 to 900 nm range, which is typically required to record all the emission lines by the elements
 131 in coal and ash samples. The second requirement, however, is difficult to fulfill at present due to
 132 the scarcity of the spectroscopic data. We, therefore, report here only the various elements that
 133 were identified from PRB sub-bituminous ash samples, work on quantifying their concentrations
 134 is continued and the results will be reported in due course.

135

136

Table 3. Summary of non- metal and metal elements present in PRB-coal ash samples

Element	Unambiguous line detected, (wavelength in nm)	# of lines Detected
S	542.867(II), 543.282(II), 545.563.997(II), 831.459(II)	4/29
Co	240.726(I), 241.162(I), 252.137(I)	3/24
Fe	248.327(I), 240.489(II), 258.588(II), 261.187(II), 273.955(II)	5/31
Ti	365.35(I), 395.633(I), 498.173(I), 499.107(I), 506.465(I), 323.451(II)	6/31
V	385.585(I), 437.923(I), 439.522(I), 440.819(I), 440.85(I), 609.021(I), 268.795(II)	7/31
W	255.135(I), 272.435(I), 429.461(I)	3/29
Zr	471.007(I), 355.659(II), 357.685(II)	3/31
Bi	293.83(I), 298.902(I), 306.77(I)	3/32
Te	400.652(II), 465.437(II), 564.926(II)	3/23
Be	457.266(I), 825.407(I), 467.333(II)	3/22
Mg	277.983(I), 516.732(I), 518.36(I), 279.078(II), 448.113(II), 448.133(II)	6/23
Ca	649.378(I), 657.278(I), 854.209(II), 866.214(II)	4/24
Sr	487.249(I), 496.226(I), 496.794(I), 525.69(I), 548.084(I), 640.847(I), 679.105(I), 687.838(I), 707.01(I)	9/21
Ba	652.731(I), 659.533(I), 669.384(I), 705.994(I), 767.209(I), 856.743(I), 614.171(II)	14/22
Li	812.623(I), 812.645(I), 548.45(II), 548.511(II)	4/16
Cs	1852.113(I), 876.141(I), 894.347(I), 452.674(II)	4/17

137

138

139 **Disclaimer:**

140

141 "This report was prepared as an account of work sponsored by an agency of the United States
142 Government. Neither the United States Government nor any agency thereof, nor any of their
143 employees, makes any warranty, express or implied, or assumes any legal liability or
144 responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
145 product, or process disclosed, or represents that its use would not infringe privately owned
146 rights. Reference herein to any specific commercial product, process, or service by trade name,
147 trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
148 recommendation, or favoring by the United States Government or any agency thereof. The views
149 and opinions of authors expressed herein do not necessarily state or reflect those of the United
150 States Government or any agency thereof."

151

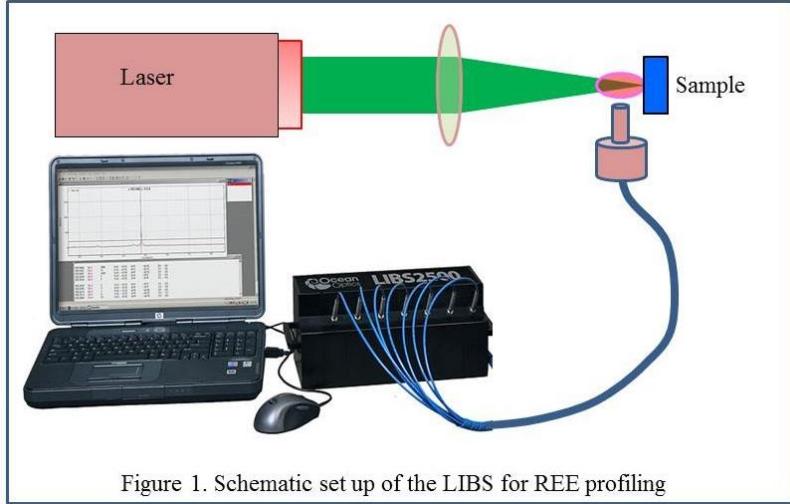
152 References

153

- 154 1. Seredin VV and Dai S. "Coal Deposits a potential alternative sources for lanthanides and
155 yttrium," International Journal of Coal Geology, 94 (2012) 67-93.
- 156 2. Coles DG, Ragaini RC., Ondov JM., Chemical studies of stack fly ash from a coal-fired
157 power plant," Am. Chem. Soc, 13 (1979) 455-459, .
- 158 3. Izquierdo M. and Querol, X., . "Leaching behavior of elements from coal combustion fly
159 ash: An overview," International Journal of Coal Geology, 94 (2012) 54-56.
- 160 4. Zhang Y., Talbott, J.L., Wiedenmann, L., DeBarr, J., and Demir, I., "Determination of
161 germanium content in coal ash by wavelength-dispersive x-ray fluorescence spectroscopy
162 and inductive coupled plasma-Mass spectroscopy,". Proceedings of the Denver X-ray
163 Conference, Advances in X-ray Analysis, 94 (1997) 879-891.
- 164 5. Arrioyo, F., Font, O., Fernandez-Pereira, C., Querol, X., Chimenos, J.P., and Zeegers, H.,
165 "Germanium and gallium extraction from gasification flyash: Optimisation for up-scaling
166 a recovery process," World of Coal Ash Conference, 2009, available at www.flyash.info].
- 167 6. Eskenazy GM. "Rare earth elements in a sample coal from Pirin deposit, Bulgaria,"
168 International Journal of Coal Geology, 7 (1987) 301-314.
- 169 7. Haider AFMY. Rony, MA. Lubna, RS. And Abedin, KM., "Detection of multiple
170 elements in coal samples from Bangladesh by laser-induced breakdown spectroscopy,"
171 Optics & Laser Technology, 43 (2011) 1405-1410.
- 172 8. Blissett, R.S., Smalley, N., and Rowson, N.A., "An investigation into six coal fly ashes
173 from United Kingdom and Poland to evaluate rare earth element content," Fuel, 119
174 (2014) 236-239
- 175 9. Mayfield, D.B, and Lewis, A.S., "Environmental review of coal ash as a resource for rare
176 earth and strategic elements," 2013 World of Coal Ash (WOCA) Conference, April 22-
177 25, 2013, Lexington, KY (<http://www.flyash.info>).
- 178 10. Shunchun Yao, Jidong Lu, Meirong Dong, Kai Chen, Junyan Li, and Jun Li., "Extracting
179 coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by
180 multivariate analysis," Applied Spectroscopy 65 (2011) 1197-1201.
- 181 11. Jie Li, Jidong Lu, Zhaoxiang Lin, Shunsheng Gong, Chengli Xie, Liang Chang, Lifei
182 Yang, and Pengyan Li, "Effects of experimental parameters on elemental analysis of coal
183 by laser-induced breakdown spectroscopy," Optics&LaserTechnology, 41 (2009) 907-
184 913.

185 12. Wangbao Yin, Lei Zhang, Lei Dong, Weiguang Ma, and Suotang Jia, "Design of a laser-
186 induced breakdown spectroscopy system for on-line quality analysis of pulverized coal
187 power plants," *Applied Spectroscopy* 63 (2009), 865-872.

188 13. Alice Stankova, Nicole Gilon, Lionel Dutruch, Viktor Kanicky, "A simple LIBS method
189 for fast quantitative analysis of fly ashes," *Fuel* 89 (2010) 3468-3474.


190 14. T. Ctvrtnickov , M.P. Mateo, A. Yañez, G. Nicolas, "Laser Induced Breakdown
191 Spectroscopy application for ash characterisation for a coal fired power plant,"
192 *Spectrochimica Acta Part B* 65 (2010) 734–737.

193 15. M. Gaft, E. Dvir, H. Modiano, U. Schone, "Laser Induced Breakdown Spectroscopy
194 machine for online ash analyses in coal," *Spectrochimica Acta Part B* 63 (2008) 1177–
195 1182.

196

197
198
199
200
201
202 Figure 1. Schematic set up of the LIBS for REE profiling
203

List of Figures

204
205

206
207

208
209
210
211
212
213
214
215
216
217

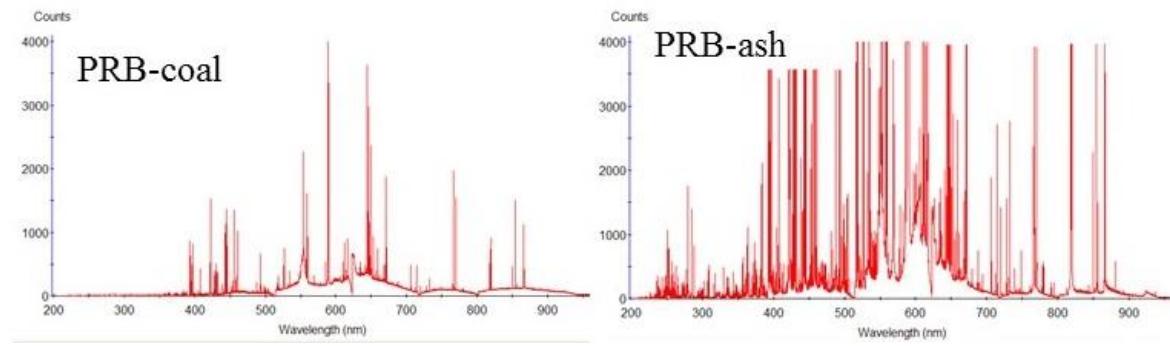


Figure 2. Typical LIBS spectrum observed for PRB-coal and PRB-coal ash

218
219
220
221
222
223
224

List of Tables

225
226
227
228
229
230

231
232
233
234
235
236
237
238
239
240