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 Material defects and heterogeneities such as dislocations, grain 
boundaries, entrained gas, and porosity play key roles in the shock-induced 
initiation of detonation in energetic materials. 

 Previously, we have performed a LAMMPS/ReaxFF NEMD shock simulation 
of a PETN crystal containing a 20 nm cylindrical void. We observed void 
collapse-induced hot spot formation and an exothermic reaction zone. 

 Size: 0.3 μm × 0.2 μm × 1.3 nm; 8.5 million atoms

 Impact velocity: 1.25 km/s (US= 4.64 km/s, P = 2.5 GPa)
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Computational setup

 Continue shock simulation after shockwave almost reached free surface

 Conventional way is to add more uncompressed material

 Disadvantage: adds significant amount of computational expense
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Computational setup

 Continue shock simulation after shockwave almost reached free surface

 Conventional way is to add more uncompressed material

 Disadvantage: adds significant amount of computational expense

 We utilize the “shock-front absorbing boundary condition (ABC)”

5Objective: To observe hotspot growth and identify growth mechanism
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Results: hot spot growth

 Normal NEMD shock runs from 0 – 64 ps

 Observed hotspot formation due to void collapse

 Shock-front ABC runs from 64 – 500 ps: 

 Observed hot spot growth due to coupling to exothermic chemical reactions
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Results: hot spot growth
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Results: hot spot morphology

 Asymmetry developed after 400 ps.  How?
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Results: hot spot morphology

 Asymmetry developed after 400 ps.  How?

 Due to interaction between primary hot spot and secondary hot zone.
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Formation of secondary hot zone

 Due to secondary shock wave 

 Which occurs after void upstream/downstream collision

 Forms a secondary hot zone as it fans out radially into uncompressed material
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Conclusions

 Performed NEMD shock simulation of a 0.3 × 0.2 ×
0.0013 μm3 PETN crystal containing a 20 nm cylindrical 
void

 Observed void collapse-induced hot spot formation

 Obtained an exponential growing hot spot

 Hot spot growth coupled to exothermic chemical reactions

 Asymmetry developed due to interaction between the 
primary hot spot and a secondary hot zone

 Secondary hot zone resulted from secondary shock wave 
after collision between upstream void fragments and 
downstream void surface
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