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Abstract Recently, nonlinear reduced order models (ROMs) of large scale finite element models have been used to 5

approximate the nonlinear normal modes (NNMs) of detailed structures with geometric nonlinearity distributed throughout 6

all of its elements. The ROMs provide a low order representation of the full model, and are readily used with numerical 7

continuation algorithms to compute the NNMs of the system. In this work, the NNMs computed from the reduced equations 8

serve as candidate periodic solutions for the full order model. A subset of these are used to define a set of initial conditions and 9

integration periods for the full order model and then the full model is integrated to check the quality of the NNM estimated 10

from the ROM. If the resulting solution is not periodic, then the initial conditions can be iteratively adjusted using a shooting 11

algorithm and a Newton–Raphson approach. These converged solutions give the true NNM of the finite element model, as 12

they satisfy the full order equations, and they can be compared to the ROM predictions to validate the ROM at selected points 13

along the NNM branch. This gives a load-independent metric that may provide confidence in the accuracy of the ROM while 14

avoiding the excessive cost of computing the complete NNM of the full order model. This approach is demonstrated on two 15

models with geometric nonlinearity: a beam with clamped-clamped boundary conditions, and a cantilevered plate used to 16

study fatigue and crack propagation. 17

Keywords Reduced order modeling • Geometric nonlinearity • Nonlinear normal modes • Periodic orbits • Finite 18

element analysis 19

33.1 Introduction 20

Geometric nonlinearity can be encountered in almost any structure where the thickness of a member is small enough that it 21

can deform significantly while the material remains in the linear elastic regime. The development of reduced order models 22

of such systems has been motivated by the efforts of the United States Air Force (USAF) and the National Aeronautics 23

and Space Administration (NASA) to model and design reusable hypersonic aircraft. At hypersonic speeds (Mach > 5) 24

the aerodynamic pressure is sufficient to cause skin panels to vibrate nonlinearly. Additionally, thermal loads can lead to 25

buckling and highly nonlinear vibration of the panel between two buckled states. Similar issues are encountered in stealth 26

aircraft as exhaust from engines, which are buried within the structure to minimize their thermal signature, impinges on 27

structural panels. While these are certainly two extreme environments, it is important to note that geometric nonlinearity can 28

also be encountered in a variety of more common situations. For example, when accelerated endurance tests are performed 29

on structures with thin sheet metal panels, the increased loads may cause the panels, and hence the structure, to behave 30

nonlinearly. This could invalidate the endurance test if the nonlinearity is not considered. As a rule of thumb, a thin panel 31

will tend to behave nonlinearly if the displacement is on the order of the panel thickness, as bending deformations induce 32

axial stretching. This is illustrated schematically in Fig. 33.1 for a clamped-clamped beam. 33

Finite element codes have been capable of geometrically nonlinear quasi-static analysis for several decades. On today’s 34

computers, this type of analysis is feasible for models containing tens or perhaps even hundreds of thousands of degrees 35

of freedom, with solution times on the order of tens of minutes to several hours, respectively. This capability can also be 36

used to compute the transient, dynamic response of the structure, essentially by solving a quasi-static problem at each time 37

step. However, considering the short time steps that are typically required and the time span over which analysis must be 38

performed to obtain meaningful results, a dynamic analysis tends to take thousands if not millions of times longer. Hence, 39
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Fig. 33.1 Schematic of
clamped-clamped beam subject
to bending loads. When the
deformations are small axial
stretching can be neglected, but
for large deformations the total
stiffness increases as the beam
must both bend and stretch
axially to accommodate the
deformation
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these analyses are far too expensive to be practical as a design tool except perhaps on relatively simple structures or when 40

considering short dynamic events. 41

Fortunately, in the past few decades Reduced Order Modeling (ROM) approaches have been developed which can extract 42

a lower order dynamic model from a detailed finite element model of a geometrically nonlinear structure and then its response 43

can be computed very inexpensively. The first approach of this kind seems to have been presented by Nash [1], and other early 44

contributors included Segalman and Dohrmann [2, 3], McEwan [4] and Muravyov and Rizzi [5]. All of these methods use a 45

small number of nonlinear quasi-static analyses to extract a low order model for the structure, typically using the structure’s 46

linear modal deformation shapes as a basis to describe the nonlinear response. As long as the method used accounts for the 47

way that axial stretching is induced as the structure vibrates in these low order bending modes, an accurate and efficient 48

reduced order model can be obtained. The works by Hollkamp and Gordon [6, 7] provide an excellent review and thorough 49

explanation of the methods. A recent review [8] provides additional perspective on the myriad of methods that have been 50

developed. 51

While these methods show tremendous promise, it can still be very challenging to create an accurate reduced order model 52

for a real structure. To succeed, not only must one include all of the linear modes that participate in the response, but the 53

static load cases used to determine the ROM must be chosen such that an appropriate level of nonlinearity is excited in each 54

mode’s response. If the loads are too small the numerical procedure becomes ill-conditioned and if they are too large they 55

may induce coupling between many modes so that fitting a low order model becomes unacceptable. Furthermore, the number 56

of static load cases required scales with more than the third power of the number of modes (or about the second power for a 57

recent method [9]), so there is strong motivation to use the minimum number of modes that will be adequate. 58

In order to validate the ROM, most works (see, e.g. [6, 9–12]) have generated responses from either a static or dynamic 59

load applied to the full order finite element model and compared this expensive set of truth data to the response predicted by 60

the ROM. From this truth data, the modes and load levels used to generate the ROM are fine tuned until it agrees acceptably 61

with these results. However, with this approach one cannot assure that the model will suitably agree with the results predicted 62

by the full order model at a different load level, or load type. The authors recently proposed to instead compare the Nonlinear 63

Normal Modes (NNMs) [13–15] of the candidate ROMs and to use them as a metric to gauge the convergence of the ROM 64

[16–18]. Nonlinear modes are typically depicted on a frequency versus amplitude or frequency versus energy plot, which 65

shows how each natural frequency evolves as the response amplitude changes, capturing a more complete amplitude range 66

involving the geometric nonlinearity, independent of any external forces. The NNMs are easy to relate, qualitatively at 67

least, to the response of the structure to sinusoidal [19], transient [17] or even random [20] excitation, so they still provide 68

a powerful connection back to the response to external loads. As a result, the NNMs provide an informative means for 69

comparing two or more candidate ROMs. 70

This paper builds upon the foundation established in [18], but instead here we discuss in more detail the general procedure 71

that is used to arrive at a valid ROM so that its NNMs agree with the true NNMs of the structure as the number of modes 72

included increases. This paper now proposes to use the deformations found by a ROM to integrate the full model subject to 73

those initial conditions at certain locations along the NNM curve in order to evaluate whether the ROM predicts an NNM 74

solution or not. If the solution is not periodic, than these deformations serve as an initial guess in a shooting algorithm [21] 75

that iterates on the dynamic simulation of the full finite element model over one period until it exhibits a periodic response 76

(to some tolerance) and hence a true NNM. This avoids the lengthy computational effort required to fully resolve the NNM 77

of interest using the continuation algorithm in [21], particularly because one can circumvent the internal resonances where 78

much of the computational effort is expended. These concepts are illustrated on a clamped-clamped beam, one of the simplest 79

structures that exhibits geometric nonlinearity, and on a much more complicated 32,000 DOF model of a specimen used to 80

study the fatigue behavior of Titanium [22]. 81

The paper is outlined as follows. Sect. 33.2 briefly reviews the ROM modeling strategy and the definition of nonlinear 82

normal modes used in this work. The general procedure for generating candidate ROMs and checking the computed NNM 83

solutions on the full order model is also discussed. In Sect. 33.3 the methods are applied to a clamped-clamped beam, 84
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capitalizing on the work presented in [18, 21]. The methods are then applied to a fatigue specimen, where the true NNMs 85

are too expensive to compute in detail, providing insight into how these approaches may fare in industrial practice. The 86

conclusions are then presented in Sect. 33.4. 87

33.2 Theoretical Development 88

While damping can be included in a ROM [6], the nonlinearity due to large deformations only depends on displacements so 89

this work focuses on the conservative model for the system. After discretization by the finite element method, the system can 90

be represented as, 91

MRx C Kx C fNL .x/ D f.t/ (33.1)

where M and K are the N � N linear mass and stiffness matrices and the geometric nonlinearity exerts a nonlinear restoring 92

force through the N � 1 vector, fNL(x). Note that this nonlinear internal force is purely a static effect. The external loads are 93

accounted for by including the N � 1 vector f(t), and the N � 1 vectors x(t) and Rx.t/ are the displacement and acceleration, 94

respectively. 95

33.2.1 Review of Reduced Order Modeling 96

A reduced order model is obtained by presuming that the response can be well represented using a small set of mode shapes 97�
K � !r

2M
�

®r D 0 so that, 98

x.t/ D ˆmq.t/ (33.2)

Each column in the N � m mode shape matrix, ˆm, is a mass normalized mode shape vector, ®, and q(t) is a vector of 99

time-dependent modal displacements. The vectors in ˆm are truncated to a small set mode shapes, typically reducing the 100

number of degrees of freedom down to a few tens, or even fewer, of modal coordinates, so m < < N. 101

After applying the modal transformation to the full order equations in Eq. 33.1, the equation of motion for each modal 102

degree of freedom becomes 103

Rqr C !2
r qr C �r .q1; q2; : : : ; qm/ D ®T

r f.t/ (33.3)

where !r is the linear natural frequency, ()T is the transpose operator and qr is the rth modal displacement. The nonlinearity 104

couples the modal degrees of freedom so the nonlinear modal restoring force is generally a function of all of the modal 105

displacements �r .q/ D ®T
r fNL .ˆmq/. The response of the modes that are excluded from the modal basis is hoped to be 106

negligible. The theory for geometric nonlinearity reveals that the nonlinear modal restoring force can be modeled with second 107

and third order polynomials, which are shown to be 108

�r .q1; q2; : : : ; qm/ D
mX

iD1

mX

j Di

Br .i; j /qi qj C
mX

iD1

mX

j Di

mX

kDj

Ar .i; j; k/qiqj qk (33.4)

The scalars Br and Ar are the coefficients of the quadratic and cubic nonlinear stiffness terms, respectively, for the rth equation 109

of motion. One approach to determine these coefficients is the Implicit Condensation and Expansion (ICE) method [10], 110

where a series of static loads are applied to the full order model having the shape 111

f D cr M®r (33.5)

with a scaling term cr defined for the rth mode in the basis set. Note that this force would only cause deformation in a single 112

mode if the system were linear. The nonlinear static response of the structure is found in response to the force in Eq. 33.5, 113

and the process is repeated for each mode in the basis and for combinations of up to three modes. With a series of these forces 114

and resulting nonlinear responses, a least squares problem is set up to solve for nonlinear stiffness coefficients Br and Ar. 115
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Another popular ROM approach, termed the Enforced Displacement (ED) method, involves the converse static solutions 116

where a series of modal displacements are applied to the structure and a quasi-static analysis extracts the reaction forces 117

required to hold that displacement [5, 9]. Those forces and displacements are used to solve a series of smaller algebraic 118

equations for the coefficients Br and Ar. Because a least squares problem is avoided, this method tends to be more numerically 119

stable but it does not implicitly capture the axial effects so axial modes must be included to obtain accurate results. 120

33.2.2 Review of Nonlinear Normal Modes 121

The nonlinear normal mode definition used throughout this work is based on the extended definition by Vakakis, Kerschen 122

and others [13, 14], where an NNM is a not necessarily synchronous periodic solution to the conservative, nonlinear 123

equations of motion. Each NNM must satisfy the condition of periodicity, and can account for motions that are not 124

synchronous which occur when two or modes interact at a specific integer frequency ratio. Nonlinear modes are typically 125

depicted on a frequency versus energy plot, or FEP, which shows how the natural frequency evolves as the response 126

amplitude changes, revealing many qualitative insights into the amplitude dependent dynamics. Even though the property 127

of superposition and orthogonality no longer hold for the NNM, they are still conceptually useful in the identification of 128

nonlinear dynamics as they form the backbone to the nonlinear forced response curves [13, 14], offer metrics for comparison 129

between nonlinear modeling domains [17, 18, 23–25], and closely follow the freely decaying response of a lightly damped 130

structure as energy dissipates [13, 26]. 131

A pseudo-arclength continuation algorithm, developed originally by Peeters et al. [27], is used throughout this work to 132

compute the NNMs of each of the undamped reduced order models. For the low order m-DOF systems represented by 133

Eqs. 33.3 and 33.4 with f.t/ D 0, there exist m nonlinear normal mode branches that each initiate at a linear mode at low 134

energy, or low response amplitude. (Continuation algorithms need an initial solution in order to start tracing an NNM branch, 135

and the linear mode solutions at low energy provide an excellent starting point.) The continuation algorithm uses the shooting 136

technique to find a set of initial conditions and an integration period that satisfy periodicity as the amplitude in the response 137

changes. A shooting function is defined as, 138

H .T; q0; Pq0/ D
�

q .T; q0; Pq0/

Pq .T; q0; Pq0/

�
�

�
q0

Pq0

�
D f0g ; (33.6)

where T is the period of integration, and q0 and Pq0 are the initial modal displacements and velocities, respectively, for a 139

candidate ROM. The ROM equations must be integrated over a period T subject to the initial conditions q0 and Pq0 to evaluate 140

whether or not these variables produce an NNM motion. The periodicity condition is based on a numerical tolerance "shoot, 141

such that an NNM motion is obtained when 142

kH .T; q0; Pq0/k
�
�
�
�

�
q0

Pq0

��
�
�
�

< "shoot (33.7)

Typically a numerical tolerance "shoot on the order of 10�4 to 10�6 is used, depending on the accuracy of the numerical 143

time integration scheme. Once periodicity is satisfied, an NNM solution is uniquely defined by q0, Pq0, and T, which is used 144

with the continuation algorithm to predict a new periodic solution at a slightly different energy level. A step size controller 145

determines the magnitude of the prediction step based on the number of iterations taken during the preceding correction 146

steps. 147

33.2.3 Proposed Procedure for Generating a Valid ROM 148

The authors have developed the following procedure to obtain a valid ROM for a finite element model of interest using its 149

computed NNMs as a convergence metric, as originally proposed in [18]. The analyst must first select the frequency and 150

energy range of interest, and ultimately choose which nonlinear normal modes it should accurately compute. In this section, 151

the procedure is outlined for a ROM that will only capture the NNM that initiates from the rth mode of interest. Note that the 152

procedure is similar for a ROM that needs to accurately compute many different NNMs. 153
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1. For a given force amplitude cr in Eq. 33.5, compute both the linear and nonlinear static response for the rth mode of 154

interest. As an initial guess, determine the load scaling cr that would give one thickness of deformation for the linear 155

response. 156

(a) If the ratio of the nonlinear displacement to the linear displacement is not between about 0.85 and 0.90, or 1.15 and 157

1.10, repeat with a larger or smaller load. This general rule of thumb has been found [6, 18] to activate the nonlinearity 158

sufficiently so that Br and Ar can be accurately determined from the static load cases. 159

2. Use q D ˆTMx to compute the modal displacement of each mode in response to the load case in step (1). Identify any 160

modes that are strongly coupled (statically) to the mode of interest. 161

3. Compute a 1-Mode ROM using only the rth mode and compute the NNM from those equations. 162

4. Add a few of the modes that were most strongly coupled to the rth mode in step (2). For the added modes, determine the 163

appropriate scale levels, and compute a multi-mode ROM with the new mode set. 164

5. Recompute the NNM using the improved multi-mode ROM of interest. Compare the NNM with that found in step (3). 165

6. If the NNM has not converged, one can either: 166

(a) Repeat the analysis in steps (4) through (5) by adding any additional modes to the ROM identified from step (2) and 167

using the appropriate load levels. 168

(b) Consider whether smaller or larger load levels should be used when generating the multi-mode ROM and repeat steps 169

(4) through (5). 170

In the authors’ previous work, the convergence of the ROM was evaluated based on the NNMs, just as outlined above, 171

but these results were ultimately deemed accurate by comparing those to the NNM computed directly from the full finite 172

element model using the Applied Modal Force (AMF) continuation algorithm in [21]. The AMF results are costly for large 173

scale models since the continuation algorithm uses many time integrations of the full model to iterate on the initial conditions 174

to satisfy the shooting function at many point along the NNM branch. The authors also found that much computational effort 175

was wasted seeking to map out the NNM branch through internal resonances where several modes respond and the frequency- 176

energy behavior is complicated, hence requiring many prediction/correction steps. This work approaches the final validation 177

step a little differently. Instead of running AMF on the full model to get the truth data, the NNM computed from the ROMs 178

using the procedure above is checked at a few points on the curve by integrating the full model subject to the initial conditions 179

found using the ROMs, thus requiring fewer numerical simulations on the full model. 180

Specifically, suppose that one ROM denoted ROMA, involving a certain set of modal coordinates qROM (for example, the 181

result for the ICE (1,3,5,7) ROM in Sect. 33.3.1 includes q1, q3, q5 and q7) produces a periodic response at a certain point 182

along the frequency energy curve with initial conditions qROM,0, PqROM;0 and integration period T. These initial conditions are 183

then used to compute the initial bending displacement at each point in the FE model using 184

xb;0 D ˆROMqROM;0 (33.8)

and similarly for the velocities. Then the expansion procedure in ICE [10] is used to compute the corresponding membrane 185

deformations xm,0 and the two are added xtot;0 D xb;0 C xm;0 to estimate the total deformation of the structure corresponding 186

to the point of interest. The result is then used as the initial condition for the full FE model. Note that when the enforced 187

displacements procedure is used the membrane modes are explicitly included in the ROM so Eq. 33.8 produces the total 188

deformation xtot,0 directly. 189

The finite element model is integrated subject to these initial conditions and the response after one cycle is extracted. This 190

is then used to check the quality of the solution for the NNM at this point by computing the shooting function (in terms of 191

the displacements only) as, 192

H .T; xtot;0; Pxtot;0/ D x .T; xtot;0; Pxtot;0/ � xtot;0 (33.9)

The convergence metric is similar to the one in Eq. 33.7, such that 193

kH .T; xtot;0; Pxtot;0/k
kxtot;0k D " (33.10)

In previous works [21] the authors used a tolerance threshold of 10�4 to realize a periodic solution within a finite element 194

code. This procedure is repeated at a few key points of interest on the NNM and used to assess how well the ROM represents 195

the full finite element model. 196
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If the candidate initial conditions do not provide an adequate periodic solution, then the Newton–Raphson approach can be 197

used to iterate on the initial conditions supplied by the ROM until the shooting function is satisfied to a preferred numerical 198

tolerance. This is the same approach used in the shooting portion of the AMF algorithm in [18] with the initial conditions 199

determined as follows. First, a nonlinear static analysis is performed to compute the reaction forces, ftot,0, required to hold 200

the structure at the displacement xtot,0 estimated from the ROM. Then, those reaction forces are projected onto each of the 201

modes in the ROM basis as, 202

bftot;0 D ˆROM
Tftot;0 (33.11)

wherebftot;0 is the m � 1 vector of modal force amplitudes. The initial conditions xFE,0 used to evaluate the shooting function 203

in Eq. 33.9 are then determined by solving the nonlinear static response of the full model to the force MˆROMbftot;0. The full 204

finite element model is integrated to these initial conditions to check for periodicity, and the free variablesbftot;0 and T are 205

updated using a Newton–Raphson approach until the shooting function is satisfied. Additional modal forces can be added if 206

convergence is not obtained, as outlined in [21] 207

33.3 Numerical Results 208

The proposed approach was applied to two different geometrically nonlinear finite element models: a clamped-clamped beam 209

that was modeled with forty B31 beam elements, and a flat cantilevered plate with over 30,000 degrees of freedom. Both 210

models were created and evaluated in Abaqus®, although in other works Nastran® [9] and Ansys® [16] have also been shown 211

to have similar capabilities. 212

33.3.1 Clamped-Clamped Beam from [18, 21] 213

The ROMs of the clamped-clamped beam and the approach used to find them were described thoroughly in [16, 18], so only 214

the final result will be highlighted here and used to explore whether the metric in Eqs. 33.9 and 33.10 can be effectively 215

used to discern between candidate ROMs. In [18], a 1-mode ROM denoted ICE (1) (e.g. a ROM generated with Implicit 216

Condensation and Expansion with only mode 1 in the basis) was found to accurately capture the backbone of the beam’s 217

first NNM, and a ROM that included modes 1, 3, 5 and 7, denoted ICE (1,3,5,7), captured the backbone more accurately and 218

also two of its modal interactions. An ED (1) ROM will also be considered here, as an example of a ROM that does not as 219

accurately reflect the structure. Recall that axial modes must be included in the Enforced Displacement method to obtain an 220

accurate ROM. In [18] the authors show that an ED (1,26,39) ROM can be created that has similar accuracy to the ICE (1) 221

ROM. The frequency energy plot (FEP) of the first NNM computed from each of these models is shown in Fig. 33.2a. 222

One can see that the FEPs predicted by the ICE (1) and ICE (1,3,5,7) ROMs agree very well with each other, except for 223

the fact that the former misses the 5:1 modal interaction with NNM 3 at 88 Hz. Because these successive ROMs agree along 224

the backbone, one might expect that they correspond to the true NNM, but in practice it can sometimes be difficult to be 225

sure that convergence has been achieved. For example, it is possible that a ROM with additional degrees of freedom, for 226

example an ICE (1,3,5,7,9,11) ROM, will encounter numerical ill conditioning and give a different answer. As a first attempt 227

to evaluate the quality of these ROMs, four points were selected (as shown with markers in Fig. 33.2a) and the full model 228

was integrated over one cycle with the initial conditions corresponding to those of the ROM at each of these points. The 229

shooting tolerance was then computed using Eq. 33.10 and the result is shown in Fig. 33.2b. The most refined ROM gave 230

a tolerance near 0.001, indicating that the full finite element model very nearly satisfies the shooting function for the initial 231

conditions that the ROM supplies. For reference, the authors used a tolerance of 0.0001 in the AMF algorithm described in 232

[21] to compute the “true” NNMs of this structure. Similarly, the results show that the ICE (1) ROM is quite adequate in 233

some cases while one can expect errors of 0.1 < " < 0.5 if the ED (1) ROM is used. 234

Certainly this evaluation of four points is not nearly as robust as the comparisons that were used in [18], where the NNMs 235

from each ROM were compared with the NNMs computed from the full FEA model. However, it only took about 30 s per 236

point to evaluate the shooting function in Eq. 33.9, while the AMF algorithm would take about two hours to compute the 237

backbone of this NNM over the same range, and even more time for the internal resonances. On larger systems this difference 238

will be even more dramatic. The time histories of the nodal transverse displacements are shown in Fig. 33.3 for the solutions 239

near 115 Hz in Fig. 33.2a, revealing the degree to which the displacements differ from a true, periodic response (and hence 240
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Fig. 33.2 (a) Frequency-energy
plot showing the first NNM of
various ROMs, and (black
circles) represent converged
NNMs with the full FE model.
(b) Base 10 logarithm of the
shooting tolerance, ", in
Eq. 33.10
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an NNM). The response from the ICE (1,3,5,7) ROM initial conditions appears to be periodic, whereas the ED (1) ROM 241

clearly does not predict the correct initial conditions to satisfy the full model. One could similarly compute the time history 242

of a different quantity of interest, such as strain or stress, to determine whether its deviation from perfect periodic motion is 243

large enough to invalidate life predictions or other key quantities of interest. 244

To further evaluate the quality of the ROMs, the black circles shown in Fig. 33.2a are converged NNM solutions using the 245

shooting algorithm to drive the tolerance below 0.0001, as done in the AMF algorithm. The initial conditions were seeded 246

from each of the ROMs at the four points of interest. During the Newton–Raphson iteration, the period of integration was 247

held fixed, therefore the algorithm only converged on solutions with the same initial frequency. Therefore, the percent errors 248

in the ROM energy and true energy, as shown in Table 33.1, can be used to gauge how close the ROM is to the truth model. 249

For each of the points on the ICE (1,3,5,7), the shooting algorithm took at most two iterations (approximately 7 min) to 250

converge below a tolerance of " < 0.0001. The algorithm converged in anywhere between two to four iterations with the 251
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Table 33.1 Percent error of
energy after AMF shooting
converged to true NNM solution

Point Energy error ED (1) Energy error ICE (1) Energy error ICE (1,3,5,7)

t2.11 56.4 % 8.4 % 1.8 %
t2.22 51.2 % 4.8 % 1.8 %
t2.33 47.8 % 2.4 % 0.1 %
t2.44 46.0 % 1.3 % 0.1 %

Fig. 33.4 (left) Finite element
model used to model the
cantilevered flat plate (right) 7th
bending mode
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ICE (1) NNM as starting guesses, and between three to five for the ED (1) NNM. The results suggests that if fewer than 252

about 15 points on the NNM were desired then it would be cheaper (for this system) to compute the ROM first and then use 253

its NNM to seed the shooting algorithm at each desired point. 254

The NNMs predicted by the ICE (1,3,5,7) ROM match the energy, within 2 % error, of that predicted by the NNM of 255

the full model at 4 frequency locations along the NNM: three points along the backbone and one along the tongue of the 256

5:1 internal resonance with NNM 3. Also, the initial conditions predicted by the ICE (1,3,5,7) ROM reasonably satisfies the 257

periodicity condition from the full FE model at the same four points. Both of these observations suggest that one can have 258

confidence that the other solutions along the backbone are also accurate, and that the ROM has converged to solutions on 259

NNM 1. The fact that the NNM has converged has important implications. For example, if the structure is lightly damped, 260

then one can show [19], that the forced response of the ROM (in the worst case resonant condition) is also likely to agree 261

over this same range of energy. 262

33.3.2 Cantilevered Plate 263

The next system studied is a cantilevered plate used to test the fatigue strength of materials and to validate models that 264

simulate crack growth [28]. The shape of the plate and sinusoidal clamp at the bottom edge cause this plate to have a two- 265

stripe mode (mode with two vertical node lines) where the region of highest stress is in the center of the top portion of the 266

plate. The design was optimized to minimize the stresses near the clamp because it is difficult to control the stress field and 267

to limit crack initiation in that region. The plate was modeled with a total of 5,378 nodes using a mixture of S3 and S4 268

shell elements, as shown in Fig. 33.4. The material properties of the model are those of a titanium alloy, having a Young’s 269

Modulus of 17.92 Mpsi, density of 0.164 lb/in3, and a Poisson’s ratio of 0.291. The thickness of the plate was 0.0511 in. 270

Springs are connected to each node below the curve in the out of plane direction. The bottom edge of the plate is constrained 271

in the vertical direction and the bottom-left node is constrained in the horizontal direction. The model was updated based on 272

experimental data to determine the stiffness of the springs (k D 141 lb/in for the model used in this work), and a comparison 273

of the linear natural frequencies of the plate are shown below in Table 33.2. 274
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Table 33.2 Linear natural
frequencies of the cantilevered
plate

Mode number Experimental Nat. Freq. (Hz) FE Nat. Freq. (Hz)

t4.11 27:7 28:424

t4.22 98:6 99:501

t4.33 167:9 169:71

t4.44 437:6 436:95

t4.55 566:0 567:65

t4.66 756:9 754:03

t4.77 861:1 848:07

t4.88 1; 041:3 1; 048:6

t4.99 1; 206:5 1; 188:8

t4.1010 1; 378:5 1; 370:6

t4.1111 1; 408:4 1; 396:4

t4.1212 1; 608:9 1; 607:5

t4.1313 2; 043:3 1; 983:6

t4.1414 2; 062:8 2; 066:3

The key mode of interest of this plate is the two stripe mode, Mode 7, which is the only mode that is significantly excited 275

during fatigue testing. During the endurance test, the plate is excited with a base excitation at a monoharmonic frequency 276

near Mode 7’s natural frequency and typically at a large enough response amplitude to cause the plate to exhibit significant 277

geometric nonlinearity. As a result, it is important to capture the 7th NNM when creating a ROM that will be used to model 278

the response to such harmonic excitation. O’Hara and Hollkamp have successfully predicted both the direction and the rate 279

of crack growth using a reduced order model in combination with the generalized finite element method (GFEM) [28]. When 280

selecting a modal basis for the ROM, one should include any modes that are nonlinearly coupled with linear Mode 7, as these 281

will influence the deformation field, and hence stress distribution, that will drive crack growth. 282

As a result, Mode 7 was used to seed the process presented in Sect. 33.2.3 and various load scales were applied using 283

Eq. 33.5 to evaluate its nonlinearity and the modes statically coupled to it. The result is shown below in Fig. 33.5, where the 284

vertical axis shows the modal displacement amplitude, and the horizontal axis shows the maximum linear displacement to 285

thickness ratio if the force in the shape of Mode 7 were applied to the linear structure. A force-displacement analysis with 286

60 static solutions takes about 17 min for this model. This analysis revealed that the displacement must reach between 2 and 287

4 plate thicknesses to see appreciable nonlinearity. The results of these loadings were also used to determine which linear 288

modes of the structure were activated and hence statically coupled to Mode 7. As shown in Fig. 33.5, Modes 1, 3 and 6 are 289

most strongly coupled (statically) to Mode 7, so they were the next candidates to add to the model. 290

On the first iteration, a one mode ROM was created with a force that would have displaced Mode 7 two times the 291

thickness, denoted ICE (7) CD (2). Based on the couplings observed above, a 4-mode ROM was then created and additional 292

static load cases were performed for Mode 1 and 3 and linear displacements CD (10,3,1,2) were determined to be suitable 293

(the values for Modes 1 and 3 were determined through additional force-displacement calculations, while that for Mode 6 294

was assumed to avoid computing an additional set of static load cases). These displacements caused nonlinear displacements 295

that, respectively, had the following ratios relative to the computed linear displacement: 0.995, 0.84965, 0.6174, 1.1476. The 296

first value is well outside the desired range of 0.85–0.9, but little nonlinearity was expected from this fundamental cantilever 297

mode. It was hoped that this load level would be adequate to assure that the ROM did not prematurely predict nonlinear 298

response in this mode, while being small enough to avoid contaminating the other modes. For reference a second ROM was 299

created with the same modes and using CD (1,1,1,1), which could be considered an approach based on blindly applying a 300

rule of thumb. Finally, an even higher order ICE (1,3,6,7,9,10,12) ROM was generated with the load case CD(10,3,1,2,1,1,1), 301

referred to as Case 1. Case 2 was also generated with the same modes, but instead using half as large of force amplitudes 302

when creating the ROM. 303

Figure 33.6 shows the NNM for Mode 7 computed with each of these ROMs. The NNM computation has revealed 304

that there are quite significant differences between the five ROMs and the variations are such that it is difficult to say 305

which of these ROMs might be most accurate. One might wonder, which load cases will give the best results? Will adding 306

modes increase the accuracy due to the more complete modal basis, or decrease it as numerical ill conditioning becomes 307

more severe? 308

Three points were identified on the NNM computed with each of the ROMs, as shown with black squares in Fig. 33.6, and 309

were used to initiate a transient response on the full finite element model. About 42 min were required to compute each of 310

the nonlinear transients and to write the response (at all nodes) to disk at all time instants during the response. The resulting 311

shooting tolerances in Eq. 33.10 are summarized in Table 33.3, suggesting that both of the seven mode ROMs are similar 312
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Fig. 33.5 Force-displacement analysis of the plate when a force in the shape of Mode 7 is applied to the nonlinear finite element model. The
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and quite close to the true NNM of the FEA model at the first two points. At the higher energy level, these ROMs apparently 313

deviate quite a bit from the true NNM, so the ROM may need to be further refined if that regime is of interest. At point 1 the 314

ICE (1,3,6,7) ROMs agree fairly closely with the higher order ROMs, so either of these might be close to the true NNM as 315

well, explaining why the FEPs of all the multi-mode ROMs nearly agree around 580 Hz in Fig. 33.6. 316

In order to illustrate how these values of " relate to the error in the solution, the time history of modal displacements over 317

the integration period is shown for points 1, 2 and 3 using the ICE (1, 3, 6, 7, 9, 10, 12) CD (10, 3, 1, 2, 1, 1, 1) ROM. The 318

physical displacements from the full finite element model were projected onto the unit displacement normalized modes, such 319

that the modal degrees of freedom have units of inches. Each of these time histories are plotted below in Fig. 33.7, showing 320

just the first 8 most dominant modes of each response from the full order model. 321

The integrated response from points 1 and 2 show that the solution is nearly periodic, although point 2 begins to have 322

significant contributions from the other modes coupled to Mode 7. The significant error in " for the response at point 3 may 323

be attributed to the fact that modes 14, 16 and 18 become excited, indicating that these modes are dynamically coupled to 324

Mode 7 and may need to be included in the ROM to more accurately compute NNM 7. It is interesting that there is noticeable 325

difference in modal amplitude of Mode 7 from t D 0 to the final time. This suggests that this mode is not well represented in 326

the ROM or that coupling with other modes has caused it to deviate from a periodic response. The time histories show how 327

" reveals the inaccuracy of the ROM at point 3, however the response at points 1 and 2 would be considered acceptable. 328

Based on these results, the next step would be to generate a ROM with additional modes (14, 16 and 18) and track how 329

the NNM computed from the new ROM compares to the ones in Fig. 33.6. The initial conditions from these NNMs could 330

then be used to seed the shooting algorithm discussed in Sect. 33.2.3, providing further insight into the location of the true 331

NNM of the full order model and whether any of the ROMs capture these solutions. Neither of these items were explored in 332

this work, but will certainly be considered in the future. Also, so far only NNM 7 has been studied in detail, but in reality 333

it is significantly affected by the other NNMs that are extensions of the linear modes in the basis. Modal interactions with 334

NNM 7 are strongly dependent on the accuracy of the other NNMs generated by the ROM, therefore it would probably be 335

wise to assess the convergence of those NNMs. 336
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Fig. 33.6 Estimate of 7th NNM
computed from various ROMs of
the cantilevered plate. In the last
two lines of the legend, Case 1
corresponds to
CD(10,3,1,2,1,1,1) while Case 2
used forces half as large with
CD(5,1.5,0.5,1, 0.5, 0.5, 0.5)
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Table 33.3 Values of shooting function tolerance, ", from Eq. 33.10 for the points shown with black squares in Fig. 33.6

Point Frequency (Hz) " ICE (7) CD (2)
" ICE (1,3,6,7) CD
(1,1,1,1)

" ICE (1,3,6,7) CD
(10,3,1,2)

" ICE
(1,3,6,7,9,10,12)
CD (10,3,1,2,1,1,1)

" ICE (1,3,6,7,9,10,12) CD
(5,1.5,0.5,1,0.5,0.5,0.5)

t7.1 1 580 0.241 0.0853 0.0875 0.00896 0.00897
t7.2 2 610 0.344 0.205 0.216 0.0663 0.0657
t7.3 3 640 0.396 0.267 0.278 0.177 0.173

33.4 Conclusion 337

This work explores a systematic approach to obtain validated reduced order models from finite element models with 338

geometric nonlinearity based on their computed nonlinear normal modes. Ideally, as more modes are added to the basis 339

set, or the scaling of the loads are adjusted, these low order equations should converge and accurately predict the NNMs of 340

the full order model. In this paper, the ROMs provide a set of initial conditions from the predicted NNM, which are integrated 341

with the full order model to check the quality of the ROM. A small set of points along the branch can be selected to span 342

the desired range of response amplitude, covering a more complete operating range of interest. If the initial conditions of the 343

ROMs do not produce periodic motions, they can be iteratively adjusted using the shooting algorithm and a Newton–Raphson 344

approach in hopes of converging on a true NNM. These converged solutions provide further insight into the deficiencies of 345

the ROM. This approach avoids the need to run the costly AMF continuation algorithm [21] to trace the full NNM branch 346

directly from the full finite element model, which has shown to require many more time integrations, and has a tendency to 347

waste a lot of computational effort when tracing out the internal resonances. 348

The approach was demonstrated on a simple beam with geometric nonlinearity and fixed boundary conditions at both 349

ends. The ICE ROM had nearly converged on the backbone of the 1st NNM using only a single-mode ROM, and captured 350

one of the beams internal resonances when using four modes. The initial conditions supplied by these ROMs were integrated 351

with the full finite element model and produced acceptable NNMs. Even the converged NNMs found with the shooting 352

algorithm agreed very well with these ROMs, validating them at various energies and frequencies. The single-mode ED 353
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ROM did not perform as well (as predicted due to the lack of membrane modes in the basis) since the estimated backbone 354

was much stiffer than the true NNM, resulting in integrated responses that were clearly not periodic and FEPs that were far 355

of from the true NNM. A cantilever plate model with 32,000 degrees of freedom was used as an industrial application where 356

this approach might be useful. The ICE ROMs with various mode shapes showed that the 7th NNM of interest was difficult 357

to accurately capture, as no convergence was observed in the FEPs. Integrating the initial conditions at three points along the 358

branch with each ROM revealed that the ROMs may be converging at lower energies, but more deformation shapes would 359

be needed in the ROM basis to capture the higher energy response. The results revealed that as more modes were added to 360

the basis, the evaluation of the shooting function improved, suggesting that the ROMs were converging to the true solution. 361

This procedure shows great promise as an approach to validate a ROM without having to run very many overly expensive 362

time simulations on the full order model. One can choose the operating range of interest for the ROM, and validate it at 363

those energy levels, or frequencies. The NNM is independent of any external forces applied to the structure, providing a 364

more robust comparison metric between candidate ROMs and the full order model. In future works, additional modes will be 365

added to the ICE ROM of the cantilever plate in hopes of further improving the prediction of the 7th NNM. Also, the shooting 366

algorithm will be used to find true NNMs at select points along the backbone, in hopes of guiding further improvements to 367

the ROM procedure, or validating the existing ones. Other NNMs will be considered as well. 368
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