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Chapter 33
Validation of Nonlinear Reduced Order Models with Time Integration
Targeted at Nonlinear Normal Modes

Robert J. Kuether and Mathew S. Allen

Abstract Recently, nonlinear reduced order models (ROMs) of large scale finite element models have been used to
approximate the nonlinear normal modes (NNMs) of detailed structures with geometric nonlinearity distributed throughout
all of its elements. The ROMs provide a low order representation of the full model, and are readily used with numerical
continuation algorithms to compute the NNMs of the system. In this work, the NNMs computed from the reduced equations
serve as candidate periodic solutions for the full order model. A subset of these are used to define a set of initial conditions and
integration periods for the full order model and then the full model is integrated to check the quality of the NNM estimated
from the ROM. If the resulting solution is not periodic, then the initial conditions can be iteratively adjusted using a shooting
algorithm and a Newton—Raphson approach. These converged solutions give the true NNM of the finite element model, as
they satisfy the full order equations, and they can be compared to the ROM predictions to validate the ROM at selected points
along the NNM branch. This gives a load-independent metric that may provide confidence in the accuracy of the ROM while
avoiding the excessive cost of computing the complete NNM of the full order model. This-approach is demonstrated on two
models with geometric nonlinearity: a beam with clamped-clamped boundary conditions, and a cantilevered plate used to
study fatigue and crack propagation.

Keywords Reduced order modeling ¢ Geometric nonlinearity ¢ Nonlinear normal modes ¢ Periodic orbits ¢ Finite
element analysis

33.1 Introduction

Geometric nonlinearity can be encountered in almost any structure where the thickness of a member is small enough that it
can deform significantly while the material remains in the linear elastic regime. The development of reduced order models
of such systems has been motivated by the efforts.of the United States Air Force (USAF) and the National Aeronautics
and Space Administration (NASA) to model and design reusable hypersonic aircraft. At hypersonic speeds (Mach > 5)
the aerodynamic pressure is sufficient to cause skin panels to vibrate nonlinearly. Additionally, thermal loads can lead to
buckling and highly nonlinear vibration of the panel between two buckled states. Similar issues are encountered in stealth
aircraft as exhaust from engines, which are buried within the structure to minimize their thermal signature, impinges on
structural panels. While these are certainly two extreme environments, it is important to note that geometric nonlinearity can
also be encountered in a variety of more common situations. For example, when accelerated endurance tests are performed
on structures with thin sheet-metal panels, the increased loads may cause the panels, and hence the structure, to behave
nonlinearly. This could invalidate the endurance test if the nonlinearity is not considered. As a rule of thumb, a thin panel
will tend to behave nonlinearly if the displacement is on the order of the panel thickness, as bending deformations induce
axial stretching. This is illustrated schematically in Fig. 33.1 for a clamped-clamped beam.

Finite element codes have been capable of geometrically nonlinear quasi-static analysis for several decades. On today’s
computers, this type of analysis is feasible for models containing tens or perhaps even hundreds of thousands of degrees
of freedom, with solution times on the order of tens of minutes to several hours, respectively. This capability can also be
used to compute the transient, dynamic response of the structure, essentially by solving a quasi-static problem at each time
step. However, considering the short time steps that are typically required and the time span over which analysis must be
performed to obtain meaningful results, a dynamic analysis tends to take thousands if not millions of times longer. Hence,

R.J. Kuether « M.S. Allen (D<)
Department of Engineering Physics, University of Wisconsin, Madison, WI 53706, USA
e-mail: rkuether@wisc.edu; msallen@engr.wisc.edu

© Springer International Publishing Switzerland 2015
G. Kerschen (ed.), Nonlinear Dynamics, Volume 1, Conference Proceedings of the Society
for Experimental Mechanics Series, DOI 10.1007/978-3-319-15221-9_33

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39


mailto:rkuether@wisc.edu
mailto:msallen@engr.wisc.edu

Author's Proof

this figure will be
printed in b/w

R.J. Kuether and M.S. Allen

Fig. 33.1 Schematic of bending deformation
clamped-clamped beam subject

to bending loads. When the
deformations are small axial
stretching can be neglected, but
for large deformations the total
stiffness increases as the beam
must both bend and stretch
axially to accommodate the

deformation axial stretching

these analyses are far too expensive to be practical as a design tool except perhaps on relatively simple structures or when
considering short dynamic events.

Fortunately, in the past few decades Reduced Order Modeling (ROM) approaches have been developed which can extract
a lower order dynamic model from a detailed finite element model of a geometrically nonlinear structure and then its response
can be computed very inexpensively. The first approach of this kind seems to have been presented by Nash [1], and other early
contributors included Segalman and Dohrmann [2, 3], McEwan [4] and Muravyov and Rizzi [5]. All of these methods use a
small number of nonlinear quasi-static analyses to extract a low order model for the structure, typically using the structure’s
linear modal deformation shapes as a basis to describe the nonlinear response. As long as the method used accounts for the
way that axial stretching is induced as the structure vibrates in these low order bending modes, an accurate and efficient
reduced order model can be obtained. The works by Hollkamp and Gordon [6, 7] provide an excellent review and thorough
explanation of the methods. A recent review [8] provides additional perspective on the myriad of methods that have been
developed.

While these methods show tremendous promise, it can still be very challenging to create an accurate reduced order model
for a real structure. To succeed, not only must one include all of the linear modes that participate in the response, but the
static load cases used to determine the ROM must be chosen such that an appropriate level of nonlinearity is excited in each
mode’s response. If the loads are too small the numerical procedure becomes ill-conditioned and if they are too large they
may induce coupling between many modes so that fitting a low order model becomes unacceptable. Furthermore, the number
of static load cases required scales with more than the third power of the number of modes (or about the second power for a
recent method [9]), so there is strong motivation to use the minimum number of modes that will be adequate.

In order to validate the ROM, most works (see, €.g..[6, 9-12]) have generated responses from either a static or dynamic
load applied to the full order finite element model and compared this expensive set of truth data to the response predicted by
the ROM. From this truth data, the modes and load levels used to generate the ROM are fine tuned until it agrees acceptably
with these results. However, with this approach one cannot assure that the model will suitably agree with the results predicted
by the full order model at a different load level, or load type. The authors recently proposed to instead compare the Nonlinear
Normal Modes (NNMs) [13—15] of the candidate ROMs and to use them as a metric to gauge the convergence of the ROM
[16—18]. Nonlinear modes are typically depicted on a frequency versus amplitude or frequency versus energy plot, which
shows how each natural frequency evolves as the response amplitude changes, capturing a more complete amplitude range
involving the geometric nonlinearity, independent of any external forces. The NNMs are easy to relate, qualitatively at
least, to the response of the structure to sinusoidal [19], transient [17] or even random [20] excitation, so they still provide
a powerful connection back to the response to external loads. As a result, the NNMs provide an informative means for
comparing two or more candidate ROMs.

This paper builds upon the foundation established in [18], but instead here we discuss in more detail the general procedure
that is used to arrive at a valid ROM so that its NNMs agree with the true NNMs of the structure as the number of modes
included increases. This paper now proposes to use the deformations found by a ROM to integrate the full model subject to
those initial conditions at certain locations along the NNM curve in order to evaluate whether the ROM predicts an NNM
solution or not. If the solution is not periodic, than these deformations serve as an initial guess in a shooting algorithm [21]
that iterates on the dynamic simulation of the full finite element model over one period until it exhibits a periodic response
(to some tolerance) and hence a true NNM. This avoids the lengthy computational effort required to fully resolve the NNM
of interest using the continuation algorithm in [21], particularly because one can circumvent the internal resonances where
much of the computational effort is expended. These concepts are illustrated on a clamped-clamped beam, one of the simplest
structures that exhibits geometric nonlinearity, and on a much more complicated 32,000 DOF model of a specimen used to
study the fatigue behavior of Titanium [22].

The paper is outlined as follows. Sect. 33.2 briefly reviews the ROM modeling strategy and the definition of nonlinear
normal modes used in this work. The general procedure for generating candidate ROMs and checking the computed NNM
solutions on the full order model is also discussed. In Sect. 33.3 the methods are applied to a clamped-clamped beam,
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capitalizing on the work presented in [18, 21]. The methods are then applied to a fatigue specimen, where the true NNMs
are too expensive to compute in detail, providing insight into how these approaches may fare in industrial practice. The
conclusions are then presented in Sect. 33.4.

33.2 Theoretical Development

While damping can be included in a ROM [6], the nonlinearity due to large deformations only depends on displacements so
this work focuses on the conservative model for the system. After discretization by the finite element method, the system can
be represented as,

Mx + Kx + fz, (x) = £(7) (33.1)

where M and K are the N X N linear mass and stiffness matrices and the geometric nonlinearity exerts a nonlinear restoring
force through the N x 1 vector, fy.(x). Note that this nonlinear internal force is purely a static effect. The external loads are
accounted for by including the N x 1 vector £(¢), and the N x 1 vectors x(#) and X(¢) are the displacement and acceleration,
respectively.

33.2.1 Review of Reduced Order Modeling

A reduced order model is obtained by presuming that the response canbe well represented using a small set of mode shapes
(K — a),.ZM) ¢, = 0 so that,

x(1) = ®,q(1) (33.2)

Each column in the N x m mode shape matrix, ®,,, iS a mass normalized mode shape vector, ¢, and () is a vector of
time-dependent modal displacements. The vectors in @, are truncated to a small set mode shapes, typically reducing the
number of degrees of freedom down to a few tens, or even fewer, of modal coordinates, so m < < N.

After applying the modal transformation to the full order equations in Eq. 33.1, the equation of motion for each modal
degree of freedom becomes

Gr +wr2‘]r +0, 1,92, ... qm) = (P;Ff(t) (33.3)

where w, is the linear natural frequency, ()T is the transpose operator and g, is the *" modal displacement. The nonlinearity
couples the modal degrees of freedom so the nonlinear modal restoring force is generally a function of all of the modal
displacements 6, (q) = @ fyy (®,,q). The response of the modes that are excluded from the modal basis is hoped to be
negligible. The theory for geometric nonlinearity reveals that the nonlinear modal restoring force can be modeled with second
and third order polynomials, which are shown to be

0 (q1: G2 qm) = DY B aiqj + Y)Y A k)aiq gk (33.4)

i=1j=i i=1j=ik=j

The scalars B, and A, are the coefficients of the quadratic and cubic nonlinear stiffness terms, respectively, for the 7! equation
of motion. One approach to determine these coefficients is the Implicit Condensation and Expansion (ICE) method [10],
where a series of static loads are applied to the full order model having the shape

f=c,Mop, (33.5)

with a scaling term ¢, defined for the 7" mode in the basis set. Note that this force would only cause deformation in a single
mode if the system were linear. The nonlinear static response of the structure is found in response to the force in Eq. 33.5,
and the process is repeated for each mode in the basis and for combinations of up to three modes. With a series of these forces
and resulting nonlinear responses, a least squares problem is set up to solve for nonlinear stiffness coefficients B, and A,.
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Another popular ROM approach, termed the Enforced Displacement (ED) method, involves the converse static solutions
where a series of modal displacements are applied to the structure and a quasi-static analysis extracts the reaction forces
required to hold that displacement [5, 9]. Those forces and displacements are used to solve a series of smaller algebraic
equations for the coefficients B, and A,. Because a least squares problem is avoided, this method tends to be more numerically
stable but it does not implicitly capture the axial effects so axial modes must be included to obtain accurate results.

33.2.2 Review of Nonlinear Normal Modes

The nonlinear normal mode definition used throughout this work is based on the extended definition by Vakakis, Kerschen
and others [13, 14], where an NNM is a not necessarily synchronous periodic solution to the conservative, nonlinear
equations of motion. Each NNM must satisfy the condition of periodicity, and can account for motions that are not
synchronous which occur when two or modes interact at a specific integer frequency ratio. Nonlinear modes are typically
depicted on a frequency versus energy plot, or FEP, which shows how the natural frequency evolves as the response
amplitude changes, revealing many qualitative insights into the amplitude dependent dynamics. Even though the property
of superposition and orthogonality no longer hold for the NNM, they are still conceptually useful in the identification of
nonlinear dynamics as they form the backbone to the nonlinear forced response curves [ 13, 14], offer metrics for comparison
between nonlinear modeling domains [17, 18, 23-25], and closely follow the freely decaying response of a lightly damped
structure as energy dissipates [13, 26].

A pseudo-arclength continuation algorithm, developed originally by Peeters et al. [27], is used throughout this work to
compute the NNMs of each of the undamped reduced order models. For the low order m-DOF systems represented by
Eqgs. 33.3 and 33.4 with f(z) = 0, there exist m nonlinear normal mode branches that each initiate at a linear mode at low
energy, or low response amplitude. (Continuation algorithms need an initial solution in order to start tracing an NNM branch,
and the linear mode solutions at low energy provide an excellent starting point.) The continuation algorithm uses the shooting
technique to find a set of initial conditions and an integration period that satisfy periodicity as the amplitude in the response
changes. A shooting function is defined as,

. _ ) 4(T,q0.90) qo
H(T. a0 %) = { q(7, (10,('10)} { (IO} 0} .

where T is the period of integration, and qq. and ¢ are the initial modal displacements and velocities, respectively, for a
candidate ROM. The ROM equations must be integrated over a period T subject to the initial conditions gy and g to evaluate
whether or not these variables produce an NNM motion. The periodicity condition is based on a numerical tolerance ggyoot,
such that an NNM motion is obtained when

[H (T’ q0. q0) || CIO,(IO)H

il

Typically a numerical tolerance &g,0r 0n the order of 107* to 107 is used, depending on the accuracy of the numerical
time integration scheme. Once periodicity is satisfied, an NNM solution is uniquely defined by qo, qo, and 7, which is used
with the continuation algorithm to predict a new periodic solution at a slightly different energy level. A step size controller
determines the magnitude of the prediction step based on the number of iterations taken during the preceding correction
steps.

Eshoot (337)

33.2.3 Proposed Procedure for Generating a Valid ROM

The authors have developed the following procedure to obtain a valid ROM for a finite element model of interest using its
computed NNMs as a convergence metric, as originally proposed in [18]. The analyst must first select the frequency and
energy range of interest, and ultimately choose which nonlinear normal modes it should accurately compute. In this section,
the procedure is outlined for a ROM that will only capture the NNM that initiates from the 7" mode of interest. Note that the
procedure is similar for a ROM that needs to accurately compute many different NNMs.
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1. For a given force amplitude ¢, in Eq. 33.5, compute both the linear and nonlinear static response for the " mode of
interest. As an initial guess, determine the load scaling ¢, that would give one thickness of deformation for the linear
response.

(a) If the ratio of the nonlinear displacement to the linear displacement is not between about 0.85 and 0.90, or 1.15 and
1.10, repeat with a larger or smaller load. This general rule of thumb has been found [6, 18] to activate the nonlinearity
sufficiently so that B, and A, can be accurately determined from the static load cases.

2. Use q = ®"Mx to compute the modal displacement of each mode in response to the load case in step (1). Identify any
modes that are strongly coupled (statically) to the mode of interest.

3. Compute a 1-Mode ROM using only the " mode and compute the NNM from those equations.

4. Add a few of the modes that were most strongly coupled to the " mode in step (2). For the added modes, determine the
appropriate scale levels, and compute a multi-mode ROM with the new mode set.

5. Recompute the NNM using the improved multi-mode ROM of interest. Compare the NNM with that found in step (3).

6. If the NNM has not converged, one can either:

(a) Repeat the analysis in steps (4) through (5) by adding any additional modes to the ROM identified from step (2) and
using the appropriate load levels.

(b) Consider whether smaller or larger load levels should be used when generating the multi-mode ROM and repeat steps
(4) through (5).

In the authors’ previous work, the convergence of the ROM was evaluated based on the NNMs, just as outlined above,
but these results were ultimately deemed accurate by comparing those to the NNM computed directly from the full finite
element model using the Applied Modal Force (AMF) continuation algorithm in [21]. The AMF results are costly for large
scale models since the continuation algorithm uses many time integrations of the full model to iterate on the initial conditions
to satisfy the shooting function at many point along the NNM branch. The authors also found that much computational effort
was wasted seeking to map out the NNM branch through internal resonances where several modes respond and the frequency-
energy behavior is complicated, hence requiring many prediction/correction steps. This work approaches the final validation
step a little differently. Instead of running AMF on the full model to get the truth data, the NNM computed from the ROMs
using the procedure above is checked at a few points on the curve by integrating the full model subject to the initial conditions
found using the ROMs, thus requiring fewer numerical simulations on the full model.

Specifically, suppose that one ROM denoted ROM,, involving a certain set of modal coordinates qrom (for example, the
result for the ICE (1,3,5,7) ROM in Sect. 33.3.1 includes ¢q;, g3, gs and g7) produces a periodic response at a certain point
along the frequency energy curve with initial conditions qrom.0, grom.o and integration period 7. These initial conditions are
then used to compute the initial bending displacement at each point in the FE model using

Xp,0 = ProMArROM,0 (33.8)

and similarly for the velocities: Then the expansion procedure in ICE [10] is used to compute the corresponding membrane
deformations Xy, 0 and the two are added Xo10 = Xp 0 + Xm0 to estimate the total deformation of the structure corresponding
to the point of interest. The result is then used as the initial condition for the full FE model. Note that when the enforced
displacements procedure is used the membrane modes are explicitly included in the ROM so Eq. 33.8 produces the total
deformation X directly.

The finite element model is integrated subject to these initial conditions and the response after one cycle is extracted. This
is then used to check the quality of the solution for the NNM at this point by computing the shooting function (in terms of
the displacements only) as,

H (T, X01,0, Xt01,0) = X (T, Xi01,0, Xt01,0) — Xto1,0 (33.9)

The convergence metric is similar to the one in Eq. 33.7, such that

IH (T, X010, Xto,0) _
[[Xtot0l

(33.10)

In previous works [21] the authors used a tolerance threshold of 10~ to realize a periodic solution within a finite element
code. This procedure is repeated at a few key points of interest on the NNM and used to assess how well the ROM represents
the full finite element model.
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If the candidate initial conditions do not provide an adequate periodic solution, then the Newton—Raphson approach can be
used to iterate on the initial conditions supplied by the ROM until the shooting function is satisfied to a preferred numerical
tolerance. This is the same approach used in the shooting portion of the AMF algorithm in [18] with the initial conditions
determined as follows. First, a nonlinear static analysis is performed to compute the reaction forces, fi. o, required to hold
the structure at the displacement X0 estimated from the ROM. Then, those reaction forces are projected onto each of the
modes in the ROM basis as,

E‘ot,O = (I’ROMTftot,O (33.11)

Where/ﬁotp is the m x 1 vector of modal force amplitudes. The initial conditions Xgg ¢ used to evaluate the shooting function
in Eq. 33.9 are then determined by solving the nonlinear static response of the full model to the force M® ROMEO[,O- The full
finite element model is integrated to these initial conditions to check for periodicity, and the free variables EOI,O and T are
updated using a Newton—Raphson approach until the shooting function is satisfied. Additional modal forces can be added if
convergence is not obtained, as outlined in [21]

33.3 Numerical Results

The proposed approach was applied to two different geometrically nonlinear finite element models: a clamped-clamped beam
that was modeled with forty B31 beam elements, and a flat cantilevered plate with over 30,000 degrees of freedom. Both
models were created and evaluated in Abaqus®, although in other works N astran® [9] and Ansys® [16] have also been shown
to have similar capabilities.

33.3.1 Clamped-Clamped Beam from [18, 21]

The ROMs of the clamped-clamped beam and the approach used to find them were described thoroughly in [16, 18], so only
the final result will be highlighted here and used to explore whether the metric in Egs. 33.9 and 33.10 can be effectively
used to discern between candidate ROMs. In [18], a 1-mode ROM denoted ICE (1) (e.g. a ROM generated with Implicit
Condensation and Expansion with only mode 1 in the basis) was found to accurately capture the backbone of the beam’s
first NNM, and a ROM that included modes 1, 3,5 and 7, denoted ICE (1,3,5,7), captured the backbone more accurately and
also two of its modal interactions. An ED (1) ROM will also be considered here, as an example of a ROM that does not as
accurately reflect the structure. Recall that axial modes must be included in the Enforced Displacement method to obtain an
accurate ROM. In [18] the authors show that an ED (1,26,39) ROM can be created that has similar accuracy to the ICE (1)
ROM. The frequency energy plot (FEP) of the first NNM computed from each of these models is shown in Fig. 33.2a.

One can see that the FEPs predicted by the ICE (1) and ICE (1,3,5,7) ROMs agree very well with each other, except for
the fact that the former misses the 5:1 modal interaction with NNM 3 at 88 Hz. Because these successive ROMs agree along
the backbone, one might expect that they correspond to the true NNM, but in practice it can sometimes be difficult to be
sure that convergence has been achieved. For example, it is possible that a ROM with additional degrees of freedom, for
example an ICE (1,3,5,7,9,11) ROM, will encounter numerical ill conditioning and give a different answer. As a first attempt
to evaluate the quality of these ROMs, four points were selected (as shown with markers in Fig. 33.2a) and the full model
was integrated over one cycle with the initial conditions corresponding to those of the ROM at each of these points. The
shooting tolerance was then computed using Eq. 33.10 and the result is shown in Fig. 33.2b. The most refined ROM gave
a tolerance near 0.001, indicating that the full finite element model very nearly satisfies the shooting function for the initial
conditions that the ROM supplies. For reference, the authors used a tolerance of 0.0001 in the AMF algorithm described in
[21] to compute the “true” NNMs of this structure. Similarly, the results show that the ICE (1) ROM is quite adequate in
some cases while one can expect errors of 0.1 < & < 0.5 if the ED (1) ROM is used.

Certainly this evaluation of four points is not nearly as robust as the comparisons that were used in [18], where the NNMs
from each ROM were compared with the NNMs computed from the full FEA model. However, it only took about 30 s per
point to evaluate the shooting function in Eq. 33.9, while the AMF algorithm would take about two hours to compute the
backbone of this NNM over the same range, and even more time for the internal resonances. On larger systems this difference
will be even more dramatic. The time histories of the nodal transverse displacements are shown in Fig. 33.3 for the solutions
near 115 Hz in Fig. 33.2a, revealing the degree to which the displacements differ from a true, periodic response (and hence
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Fig. 33.3 Time histories found after integrating the full FEA model subject to the initial conditions prescribed by each of the ROMs for the points
near 115 Hz in the FEP in Fig. 33.2

an NNM). The response from the ICE (1,3,5,7) ROM initial conditions appears to be periodic, whereas the ED (1) ROM
clearly does not predict the correct initial conditions to satisfy the full model. One could similarly compute the time history
of a different quantity of interest, such as strain or stress, to determine whether its deviation from perfect periodic motion is
large enough to invalidate life predictions or other key quantities of interest.

To further evaluate the quality of the ROMs, the black circles shown in Fig. 33.2a are converged NNM solutions using the
shooting algorithm to drive the tolerance below 0.0001, as done in the AMF algorithm. The initial conditions were seeded
from each of the ROMs at the four points of interest. During the Newton—Raphson iteration, the period of integration was
held fixed, therefore the algorithm only converged on solutions with the same initial frequency. Therefore, the percent errors
in the ROM energy and true energy, as shown in Table 33.1, can be used to gauge how close the ROM is to the truth model.
For each of the points on the ICE (1,3,5,7), the shooting algorithm took at most two iterations (approximately 7 min) to
converge below a tolerance of ¢ < 0.0001. The algorithm converged in anywhere between two to four iterations with the
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Table 33.1 Percent error of Point | Energy error ED (1) | Energy error ICE (1) | Energy error ICE (1,3,5,7)

energy after AMF shooting ] 56.4.% 84 18 %

converged to true NNM solution a0 a7 07 2.1
2 512 % 4.8 % 1.8 % t2.2
3 47.8 % 2.4 % 0.1 % t2.3
4 46.0 % 1.3 % 0.1 % t2.4

Fig. 33.4 (left) Finite element
model used to model the
cantilevered flat plate (right) 7th
bending mode
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ICE (1) NNM as starting guesses, and between three to five for the ED (1) NNM. The results suggests that if fewer than 252
about 15 points on the NNM were desired then it would be cheaper (for this system) to compute the ROM first and then use 253
its NNM to seed the shooting algorithm at each desired point. 254

The NNMs predicted by the ICE (1,3,5,7) ROM match the energy, within 2 % error, of that predicted by the NNM of 255
the full model at 4 frequency locations along the NNM: three points along the backbone and one along the tongue of the 256
5:1 internal resonance with NNM 3. Also, the initial conditions predicted by the ICE (1,3,5,7) ROM reasonably satisfies the 257
periodicity condition from the full FE model at the same four points. Both of these observations suggest that one can have 258
confidence that the other solutions along the backbone are also accurate, and that the ROM has converged to solutions on 259
NNM 1. The fact that the NNM has converged has important implications. For example, if the structure is lightly damped, 260
then one can show [19], that the forced response of the ROM (in the worst case resonant condition) is also likely to agree 261
over this same range of energy. 262

33.3.2 Cantilevered Plate 263

The next system studied is a cantilevered plate used to test the fatigue strength of materials and to validate models that 264
simulate crack growth [28]. The shape of the plate and sinusoidal clamp at the bottom edge cause this plate to have a two- 265
stripe mode (mode with two vertical node lines) where the region of highest stress is in the center of the top portion of the 266
plate. The design was optimized to minimize the stresses near the clamp because it is difficult to control the stress field and 267
to limit crack initiation in that region. The plate was modeled with a total of 5,378 nodes using a mixture of S3 and S4 268
shell elements, as shown in Fig. 33.4. The material properties of the model are those of a titanium alloy, having a Young’s 269
Modulus of 17.92 Mpsi, density of 0.164 1b/in, and a Poisson’s ratio of 0.291. The thickness of the plate was 0.0511 in. 270
Springs are connected to each node below the curve in the out of plane direction. The bottom edge of the plate is constrained 271
in the vertical direction and the bottom-left node is constrained in the horizontal direction. The model was updated based on 272
experimental data to determine the stiffness of the springs (k = 141 1b/in for the model used in this work), and a comparison 273
of the linear natural frequencies of the plate are shown below in Table 33.2. 274
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Table 33.2 Linear natural

) 3 Mode number | Experimental Nat. Freq. (Hz) | FE Nat. Freq. (Hz)
frequencies of the cantilevered

plate 1 27.7 28.424
2 98.6 99.501
3 167.9 169.71
4 437.6 436.95
5 566.0 567.65
6 756.9 754.03
7 861.1 848.07
8 1,041.3 1,048.6
9 1,206.5 1,188.8
10 1,378.5 1,370.6
11 1,408.4 1,396.4
12 1,608.9 1,607.5
13 2,043.3 1,983.6
14 2,062.8 2,066.3

The key mode of interest of this plate is the two stripe mode, Mode 7, which is the only mode that is significantly excited
during fatigue testing. During the endurance test, the plate is excited with a base excitation at a monoharmonic frequency
near Mode 7’s natural frequency and typically at a large enough response amplitude to cause the plate to exhibit significant
geometric nonlinearity. As a result, it is important to capture the 7th NNM when creating a ROM that will be used to model
the response to such harmonic excitation. O’Hara and Hollkamp have successfully predicted both the direction and the rate
of crack growth using a reduced order model in combination with the generalized finite element method (GFEM) [28]. When
selecting a modal basis for the ROM, one should include any modes that are nonlinearly coupled with linear Mode 7, as these
will influence the deformation field, and hence stress distribution, that will drive crack growth.

As a result, Mode 7 was used to seed the process presented in Sect. 33.2.3 and various load scales were applied using
Eq. 33.5 to evaluate its nonlinearity and the modes statically coupled to it. The result is shown below in Fig. 33.5, where the
vertical axis shows the modal displacement amplitude, and the horizontal axis shows the maximum linear displacement to
thickness ratio if the force in the shape of Mode 7 were applied to the linear structure. A force-displacement analysis with
60 static solutions takes about 17 min for this model. This analysis revealed that the displacement must reach between 2 and
4 plate thicknesses to see appreciable nonlinearity. The results of these loadings were also used to determine which linear
modes of the structure were activated and hence statically coupled to Mode 7. As shown in Fig. 33.5, Modes 1, 3 and 6 are
most strongly coupled (statically) to Mode 7, so they were the next candidates to add to the model.

On the first iteration, a one mode ROM was created with a force that would have displaced Mode 7 two times the
thickness, denoted ICE (7) CD (2). Based on the couplings observed above, a 4-mode ROM was then created and additional
static load cases were performed for Mode 1 and 3 and linear displacements CD (10,3,1,2) were determined to be suitable
(the values for Modes 1 and 3 were determined through additional force-displacement calculations, while that for Mode 6
was assumed to avoid computing an additional set of static load cases). These displacements caused nonlinear displacements
that, respectively, had the following ratios relative to the computed linear displacement: 0.995, 0.84965,0.6174, 1.1476. The
first value is well outside the desired range of 0.85-0.9, but little nonlinearity was expected from this fundamental cantilever
mode. It was hoped that this load level would be adequate to assure that the ROM did not prematurely predict nonlinear
response in this mode, while being small enough to avoid contaminating the other modes. For reference a second ROM was
created with the same modes and using CD (1,1,1,1), which could be considered an approach based on blindly applying a
rule of thumb. Finally, an even higher order ICE (1,3,6,7,9,10,12) ROM was generated with the load case CD(10,3,1,2,1,1,1),
referred to as Case 1. Case 2 was also generated with the same modes, but instead using half as large of force amplitudes
when creating the ROM.

Figure 33.6 shows the NNM for Mode 7 computed with each of these ROMs. The NNM computation has revealed
that there are quite significant differences between the five ROMs and the variations are such that it is difficult to say
which of these ROMs might be most accurate. One might wonder, which load cases will give the best results? Will adding
modes increase the accuracy due to the more complete modal basis, or decrease it as numerical ill conditioning becomes
more severe?

Three points were identified on the NNM computed with each of the ROMs, as shown with black squares in Fig. 33.6, and
were used to initiate a transient response on the full finite element model. About 42 min were required to compute each of
the nonlinear transients and to write the response (at all nodes) to disk at all time instants during the response. The resulting
shooting tolerances in Eq. 33.10 are summarized in Table 33.3, suggesting that both of the seven mode ROMs are similar
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99.501
169.71
356.42
401.64
436.95
567.65
754.03
848.07
1048.6
1188.8
1370.6
1396.4
1607.5
1800.6
1983.6
2066.3
2140.4
2501.9
2624.8
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2765.1
2894.7
2959.9
3234.7
3390
3480.4
3601.1
3642.6

—e—— 3828.6

Modal Amplitude

Linear Disp/Thick

Fig. 33.5 Force-displacement analysis of the plate when a force in the shape of Mode 7 is applied to the nonlinear finite element model. The
colored lines represent the modal amplitudes of the statically coupled modes, whose linear natural frequencies are in the legend

and quite close to the true NNM of the FEA model at the first two points. At the higher energy level, these ROMs apparently
deviate quite a bit from the true NNM, so the ROM may need to be further refined if that regime is of interest. At point 1 the
ICE (1,3,6,7) ROMs agree fairly closely with the higher order ROMs, so either of these might be close to the true NNM as
well, explaining why the FEPs of all the multi-mode ROMs nearly agree around 580 Hz in Fig. 33.6.

In order to illustrate how these values of ¢ relate to the error in the solution, the time history of modal displacements over
the integration period is shown for points 1, 2 and 3 using the ICE (1, 3, 6,7, 9, 10, 12) CD (10, 3, 1, 2, 1, 1, 1) ROM. The
physical displacements from the full finite element model were projected onto the unit displacement normalized modes, such
that the modal degrees of freedom have units of inches. Each of these time histories are plotted below in Fig. 33.7, showing
just the first 8 most dominant modes of each response from the full order model.

The integrated response from points 1 and 2 show that the solution is nearly periodic, although point 2 begins to have
significant contributions from the other modes coupled to Mode 7. The significant error in ¢ for the response at point 3 may
be attributed to the fact that modes 14, 16 and 18 become excited, indicating that these modes are dynamically coupled to
Mode 7 and may need to be included in the ROM to more accurately compute NNM 7. It is interesting that there is noticeable
difference in modal amplitude of Mode 7 from ¢ = 0 to the final time. This suggests that this mode is not well represented in
the ROM or that coupling with other modes has caused it to deviate from a periodic response. The time histories show how
¢ reveals the inaccuracy of the ROM at point 3, however the response at points 1 and 2 would be considered acceptable.

Based on these results, the next step would be to generate a ROM with additional modes (14, 16 and 18) and track how
the NNM computed from the new ROM compares to the ones in Fig. 33.6. The initial conditions from these NNMs could
then be used to seed the shooting algorithm discussed in Sect. 33.2.3, providing further insight into the location of the true
NNM of the full order model and whether any of the ROMs capture these solutions. Neither of these items were explored in
this work, but will certainly be considered in the future. Also, so far only NNM 7 has been studied in detail, but in reality
it is significantly affected by the other NNMs that are extensions of the linear modes in the basis. Modal interactions with
NNM 7 are strongly dependent on the accuracy of the other NNMs generated by the ROM, therefore it would probably be
wise to assess the convergence of those NNMs.
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Fig. 33.6 Estimate of 7th NNM 680
computed from various ROMs of
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Table 33.3 Values of shooting function tolerance, ¢, from Eq. 33.10 for the points shown with black squares in Fig. 33.6

e ICE
¢ICE (1,3,6,7) CD |¢ICE (1,3,6,7) CD |(1,3,6,7,9,10,12) ¢ ICE (1,3,6,7,9,10,12) CD
Point | Frequency (Hz) | ¢ICE (7) CD (2) |(1,1,1,1) (10,3,1,2) CD (10,3,1,2,1,1,1) |(5,1.5,0.5,1,0.5,0.5,0.5)
1 580 0.241 0.0853 0.0875 0.00896 0.00897
2 610 0.344 0.205 0.216 0.0663 0.0657
3 640 0.396 0.267 0.278 0.177 0.173

33.4 Conclusion

This work explores a systematic approach to obtain validated reduced order models from finite element models with
geometric nonlinearity based on their computed nonlinear normal modes. Ideally, as more modes are added to the basis
set, or the scaling of the loads are adjusted, these low order equations should converge and accurately predict the NNMs of
the full order model. In this paper, the ROMs provide a set of initial conditions from the predicted NNM, which are integrated
with the full order model to check the quality of the ROM. A small set of points along the branch can be selected to span
the desired range of response amplitude, covering a more complete operating range of interest. If the initial conditions of the
ROMs do not produce periodic motions, they can be iteratively adjusted using the shooting algorithm and a Newton—Raphson
approach in hopes of converging on a true NNM. These converged solutions provide further insight into the deficiencies of
the ROM. This approach avoids the need to run the costly AMF continuation algorithm [21] to trace the full NNM branch
directly from the full finite element model, which has shown to require many more time integrations, and has a tendency to
waste a lot of computational effort when tracing out the internal resonances.

The approach was demonstrated on a simple beam with geometric nonlinearity and fixed boundary conditions at both
ends. The ICE ROM had nearly converged on the backbone of the 1st NNM using only a single-mode ROM, and captured
one of the beams internal resonances when using four modes. The initial conditions supplied by these ROMs were integrated
with the full finite element model and produced acceptable NNMs. Even the converged NNMs found with the shooting
algorithm agreed very well with these ROMs, validating them at various energies and frequencies. The single-mode ED
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Fig. 33.7 Time histories of the integrated response of the full order- model for the points shown with black squares in Fig. 33.6 using the ICE (1,
3,6,7,9,10,12) CD (10, 3, 1, 2, 1, 1, 1) ROM. The first eight most dominant modal displacements are shown over one integration period

ROM did not perform as well (as predicted due to the lack of membrane modes in the basis) since the estimated backbone
was much stiffer than the true NNM, resulting in integrated responses that were clearly not periodic and FEPs that were far
of from the true NNM. A cantilever plate model with 32,000 degrees of freedom was used as an industrial application where
this approach might be useful. The ICE ROMs with various mode shapes showed that the 7th NNM of interest was difficult
to accurately capture, as no convergence was observed in the FEPs. Integrating the initial conditions at three points along the
branch with each ROM revealed-that the ROMs may be converging at lower energies, but more deformation shapes would
be needed in the ROM basis to capture the higher energy response. The results revealed that as more modes were added to
the basis, the evaluation of the shooting function improved, suggesting that the ROMs were converging to the true solution.
This procedure shows great promise as an approach to validate a ROM without having to run very many overly expensive
time simulations on the full order model. One can choose the operating range of interest for the ROM, and validate it at
those energy levels, or frequencies. The NNM is independent of any external forces applied to the structure, providing a
more robust comparison metric between candidate ROMs and the full order model. In future works, additional modes will be
added to the ICE ROM of the cantilever plate in hopes of further improving the prediction of the 7th NNM. Also, the shooting
algorithm will be used to find true NNMs at select points along the backbone, in hopes of guiding further improvements to

the ROM procedure, or validating the existing ones. Other NNMs will be considered as well.
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