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axial vibration modes or dual modes. This work explores the accuracy of
the enforced displacements ROM strategy by comparing the efficiency
of these basis vectors, as well as the use of three different parameter
estimation procedures and the effect of scaling factors on the static load
cases used to generate the ROM. The different modeling decisions are
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a flat geometrically nonlinear beam with fixed-fixed boundary conditions
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each of the modeling decisions on the resulting enforced displacement
ROM is evaluated by computing the Nonlinear Normal Modes (NNMs)
of the full finite element model and comparing them with the NNMs
calculated from the ROMs. The NNMs offer a powerful metric that
indicates whether or not the ROM captures a variety of important physics
in the original model.
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Chapter 30 1

Considerations for Indirect Parameter Estimation in Nonlinear 2

Reduced Order Models 3

Lorraine C.M. Guerin, Robert J. Kuether, and Matthew S. Allen 4

Abstract Over the past few decades, there have been many developments in techniques that extract a reduced order model 5

(ROM) from a geometrically nonlinear finite element model. The enforced displacement ROM strategy that is of interest 6

in this work is known as an indirect approach because it does not require altering the finite element code. Instead, one 7

uses a series of static displacement fields applied to the nonlinear finite element model to estimate the nonlinear stiffness 8

coefficients in the reduced equations. Geometric nonlinearity causes the bending and membrane displacements to become 9

coupled, and the enforced displacements method requires that the kinematics of the membrane motion be explicitly included 10

in the basis using either axial vibration modes or dual modes. This work explores the accuracy of the enforced displacements 11

ROM strategy by comparing the efficiency of these basis vectors, as well as the use of three different parameter estimation 12

procedures and the effect of scaling factors on the static load cases used to generate the ROM. The different modeling 13

decisions are shown to have a very significant effect on the accuracy of the ROMs, and the comparisons are used to 14

suggest best practices that result in the most accurate ROMs. These issues are explored using finite element models of a 15

flat geometrically nonlinear beam with fixed-fixed boundary conditions and a flat geometrically nonlinear exhaust cover 16

plate. The effect of each of the modeling decisions on the resulting enforced displacement ROM is evaluated by computing 17

the Nonlinear Normal Modes (NNMs) of the full finite element model and comparing them with the NNMs calculated from 18

the ROMs. The NNMs offer a powerful metric that indicates whether or not the ROM captures a variety of important physics 19

in the original model. 20

Keywords Reduced order modeling • Geometric nonlinearity • Nonlinear dynamics • Nonlinear normal modes • Finite 21

element analysis 22

30.1 Introduction 23

One popular modeling approach in structural dynamics uses finite element analysis (FEA) to generate the discretized 24

equations of motion. Detailed meshes may be needed to capture precise geometric features of a realistic structure, for 25

example, the stiffeners in an aircraft panel, so a large number of degrees-of-freedom (DOF) may be needed to accurately 26

describe the motion. Furthermore, when the model exhibits large deformations, the equations of motion become nonlinear 27

and the computational cost increases dramatically. As a result, many efforts have been put forth over the last few decades to 28

develop reduced order modeling strategies for geometrically nonlinear FEA models [1, 2]. One class of reduction methods, 29

referred to as indirect methods, uses a Galerkin approach to reduce the equations using a smaller set of modal DOF. An 30

additional nonlinear term persists in the modal equations due to the geometric nonlinearity, whose coefficients are determined 31

through a series of static load cases. This paper explores some of the challenges with producing accurate nonlinear reduced 32

order models (ROMs) using the enforced displacement procedure [3], particularly issues related to mode selection, parameter 33

estimation and displacement scaling factors. 34

The enforced displacement procedure was first developed by Muravyov and Rizzi in [3]. A set of component modes 35

describe the kinematics of a geometrically nonlinear FEA model, and are used to reduce the full model down to a low 36

order set of modal equations. These equations have a linear modal mass and modal stiffness term that can be determined 37

analytically since one typically has access to the linear mass and stiffness matrices in a commercial FEA package. However, 38

the nonlinear terms are usually not available unless one has access to the internals of the software. Assuming that the material 39

is linear elastic, and a quadratic strain–displacement relation is used, the nonlinear restoring force in modal form is a quadratic 40
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and cubic polynomial function of the modal displacements with unknown stiffness coefficients. To determine these values, 41

the nonlinear FEA model is enforced to take the shape of the scaled component mode shapes, or a combination of these 42

shapes, and a static analysis is performed to solve for the reactions forces to hold each shape. The nonlinear stiffness terms 43

in the modal equations are determined using a series of these displacements and reaction forces. 44

The bending-membrane coupling must be accounted for explicitly when creating ROMs using the enforced displacement 45

procedure. As the model experiences large bending deflections, membrane stretching can occur, so both bending and 46

membrane type component modes are explicitly needed in the basis set. This paper explores two approaches to capture these 47

kinematics, namely the use of axial vibration modes, and the dual modes method in [4]. Another modeling consideration is 48

the procedure used to fit the nonlinear stiffness coefficients based on a series of static solutions. The method referred to as 49

RANSTEP throughout this paper, which was first introduced in [3], uses special combinations of modal displacements to 50

solve for a small number of coefficients at a time. The coefficients could also be found by setting up a least squares problem 51

involving all of the static load solutions [5]. Finally, the effect of scaling on the static displacement fields is explored in this 52

paper using the constant modal scaling (CS) method proposed originally in [3] along with the constant modal displacement 53

(CD) approach used in [6–8]. The results presented here will show that the resulting accuracy of the ROM equations greatly 54

depends on the procedures used to fit the nonlinear stiffness coefficients and capture the membrane motions. 55

Rizzi and Przekop explored the effect of basis selection on the resulting ROM equations in [9], and assessed the accuracy 56

of the ROM by comparing its response to random inputs with the response of the full-order model (which is quite expensive to 57

compute). The authors recently suggested that a more rigorous comparison between two ROMs could be made by comparing 58

their nonlinear normal modes and used this to compare two ROM procedures [6]. The nonlinear normal mode [10, 11], which 59

is defined as a not necessarily synchronous periodic response of the undamped nonlinear equations of motion, provides an 60

excellent metric for comparison between ROMs and the full FEA model since these solutions are independent of any external 61

forces, and capture a wide range of response amplitudes seen by the nonlinear system. Previous works have shown that if the 62

NNMs predicted by the ROM converge, then the response predictions also tend to be accurate [12, 13]. The work presented 63

in this paper is an extension of the work in [6], but here we only focus on variations on the enforced displacement procedure. 64

The effect of mode selection, methods to identify the nonlinear stiffness terms, and the scaling on the static load cases are all 65

explored simultaneously to attempt to determine the best practices when using the enforced displacements ROM approach. 66

The paper is organized as follows. Section 30.2 reviews the theory of the enforced displacement reduction strategy, 67

along with considerations for mode selection, scaling of the static load cases, and identification of nonlinear stiffness terms. 68

The results in Sects. 30.3 and 30.4 demonstrate the reduction strategy applied to a geometrically nonlinear flat beam with 69

clamped-clamped boundary conditions. The nonlinear normal modes are used to compare a set of ROM equations generated 70

with different variations on the enforced displacements procedure, showing that the ROM predictions can diverge from those 71

predicted by the full FEA model in certain cases. Section 30.5 presents the results from a more complicated model of an 72

exhaust cover plate with geometric nonlinearity, using the best practices learned from the beam model. Section 30.6 presents 73

the conclusions. 74

30.2 Theoretical Development 75

The equations of motion for a geometrically nonlinear, N degree-of-freedom (DOF) system, discretized by the finite element 76

method can be written as 77

MRx.t/ C Kx.t/ C fNL .x/ D f.t/ (30.1)

where M and K are the N � N mass and stiffness matrices, respectively and the N � 1 displacement and acceleration vectors 78

are respectively represented as x(t) and Rx.t/. The N � 1 external force vector is denoted as f(t), while f NL (x) is the N � 1 79

nonlinear restoring force vector due to the geometric nonlinearity. 80

The size of the equations of motion are reduced using a coordinate transformation based on a set of component modes. 81

The relationship between physical and generalized coordinates is described as 82

x.t/ D Tq.t/ (30.2)

where q(t) is the m � 1 time-dependent modal displacement vector and T is the N � m matrix of component modes. A subset 83

of m basis vectors are included in each column of T, such that the degrees-of-freedom are significantly reduced (m < <N). 84

By substituting Eq. (30.2) into Eq. (30.1), and pre-multiplying by TT, the reduced equations of motion become 85
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bM Rq C bKq C TTfNL .Tq/ D TTf.t/ (30.3) 86

bM D TTMT (30.4) 87

bK D TTKT (30.5)

The ()T operator represents the transpose operator. The nonlinear restoring force in the modal form of the equation can be 88

generalized as 89

TTfNL .Tq/ D ™.q/ (30.6)

which is a nonlinear function of each of the displacements in q. For linear elastic materials with quadratic strain–displacement 90

relationships, it has been shown in previous works [1, 2] that the rth nonlinear restoring force in modal form may be written as 91

�r .q1; q2; : : : ; qm/ D
m

X

iD1

m
X

j Di

Br .i; j / qi qj C
m

X

iD1

m
X

j Di

m
X

kDj

Ar .i; j; k/qi qj qk

r D 1; 2; : : : ; m (30.7)

where Br are the quadratic nonlinear stiffness coefficients and Ar are the cubic nonlinear stiffness coefficients for the rth
92

nonlinear modal equation. Within most commercial finite element packages, the nonlinear stiffness matrices are inaccessible, 93

and therefore they must be determined indirectly by applying a set of forces or displacements to the FEA model. 94

There are several methods to evaluate the nonlinear stiffness coefficients. In this paper, the enforced displacement (ED) 95

procedure is used exclusively. The ED process uses specific static displacements fields (i.e. linear combinations of the 96

component modes in T) that are enforced on the model using any suitable commercial FEA solver. For example, the cth
97

static displacement can be a combination of up to three component modes given as 98

xc D Tibqi C Tjbqj C Tkbqk (30.8)

where the N � 1 vector xc is an enforced displacement for the cth static load case, and each component mode denoted with 99

subscript i, j, or k is scaled with the scalar amplitude bq. The FEA software computes the reaction force, fT,c, necessary to 100

hold the displacement field xc, which can be broken into linear and nonlinear internal force components by the relation 101

fT;c D fL C fNL D Kxc C fNL .xc/ (30.9)

After computing the nonlinear reaction force fT,c, a series of these displacement and forces can be used to determine the 102

nonlinear stiffness coefficients in Eq. (30.7), as will be reviewed in Sect. 30.2.3. 103

30.2.1 Selection of Modes 104

Mode selection becomes particularly important for finite element models with geometric nonlinearity. It is common to use 105

the linearized, mass normalized vibration modes ®r as basis vectors, which are computed from the eigenvalue problem 106
�

K � !2
r M

�

®r D 0. It is important to explicitly include the appropriate bending and membrane modes for the reduction 107

basis of the ED procedure in order to capture the kinematics of this bending-membrane coupling. The higher frequency 108

membrane motions can be incorporated into the basis by either including axial vibration modes, or using an alternative set 109

of component modes referred to as dual modes. Guidance for the computation and selection of each type of membrane mode 110

is provided below. 111
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30.2.1.1 Axial Vibration Modes 112

Many works have used axial modes to capture the membrane effects [1, 6, 9, 14] for enforced displacement ROMs. Since 113

these membrane motions are typically driven by large deformations of the bending modes, a set of these axial modes can be 114

selected and augmented to each bending mode in the basis set as done in [6]. The augmented axial vibration modes for the 115

rth bending mode are determined by applying a force proportional to that bending mode shape to the finite element model as 116

Kx C fNL .x/ D M®r
bf r (30.10)

The force amplitude bf r should be large enough to excite the nonlinearity in the response such that the displacements contain 117

components of the rth bending mode as well as components of other modes that are statically coupled to that mode. The static 118

displacement is then projected onto all the linear, mass normalized modes as q D ˆTMx, and axial modes with the largest 119

contribution to the response should be selected as the axial basis augmented to the rth bending mode. For flat structures, the 120

distinction for axial and bending type motion is clear. However, curved structures tend to produce vibrations modes that are 121

coupled between transverse and in-plane deformations making it more difficult to distinguish between the two. This approach 122

is discussed in more detail in [6]. 123

30.2.1.2 Dual Modes 124

A systematic approach to generating the membrane basis was developed by Kim et al. using the concept of the dual mode [4]. 125

The dual modes are computed from a pre-selected set of bending mode shapes using static forces applied to the nonlinear 126

structure. There are three types of dual modes, which are referred to as first, second, and third generation dual modes. For 127

the first generation dual mode, a static force proportional to only one bending mode is applied to the FEA model, given as 128

fT D M®r
bf r (30.11)

Again, bf r is the scaling value on the applied force that sufficiently excites a nonlinear response. Using a commercial 129

finite element package, the resulting static displacement field is computed as ur. The residual component of the response, 130

that which remains after removing the component of the rth bending mode ®r , is isolated by the following relationship 131

v.1/
r D ur � ®T

r Mur ®r (30.12)

where vr represents the remaining displacement field. This field contains the membrane motion due to bending displacement 132

in the rth mode. The notation (1) denotes that this type of response is used to compute a first generation the dual mode. A set 133

of first generation dual modes are computed for all bending modes in the basis set. 134

Similarly, second generation dual modes result from an applied static force that is a linear combination of two bending 135

mode shapes, such as 136

fT D M®i
bf i C M®j

bf j (30.13)

The linear bending modes components are subtracted from the resultant displacement field as given below 137

v.2/
ij D uij � ®T

i Muij ®i � ®T
j Muij ®j (30.14)

Third generation dual modes are found by applying forces made up of linear combinations of three bending modes. 138

The final computational step for the dual modes basis is to make the dual modes mutually orthonormal with respect to the 139

linear modes and the mass matrix. Each dual mode is orthonormalized with respect to the mass matrix using a Gram-Schmidt 140

procedure, so the final orthonormal basis vectors „
(g)
ijk are found using the following. 141

„
.g/

ijk D v.g/

ijk �
p

X

lD1

®l ®
T
l Mv.g/

ijk (30.15)
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The subscripts i, j, and k represent the linear mode(s) used to generate the dual mode, superscript g represents the type of 142

dual mode (first, second, or third generation), and p represents the number of linear bending modes in the basis. For further 143

details, see [4]. 144

30.2.2 Scaling of Modes 145

Two scaling methods are used in this paper when determining the displacement magnitude bq of each component mode 146

in Eq. (30.8). The displacement level dictates the level of nonlinearity excited during the static load cases used to fit the 147

nonlinear stiffness coefficients. The two scaling approaches are the constant modal scaling (CS) method and the constant 148

modal displacement (CD) method. Using the CD approach from [6], a scaling value bqr for the rth modal displacement is 149

defined as 150

bqr D CDr D wmax;r

max
d

.Tr /
(30.16)

where wmax,r is the desired maximum displacement in physical coordinates for the rth mode, and max
d

.Tr / is the maximum 151

displacement (i.e. ignoring any rotations) in the rth component mode shape. The CD method sets a specific scaling factor 152

for each mode in the displacement fields generated by Eq. (30.8). The authors have found that it is important to determine 153

adequate scaling levels for the bending and membrane modes in order to obtain accurate ROM equations. One approach to 154

guide the range of appropriate scaling values is to create a set of single-mode ROMs, which ultimately have one quadratic 155

and one cubic nonlinear stiffness term. By tracking the nonlinear stiffness coefficients as a function of the maximum 156

displacement, wmax,r, the coefficients should converge around a range of scaling levels, indicating that the geometric 157

nonlinearity is sufficiently exercised. 158

Previous works on the enforced displacement procedure have used what is referred to here as the CS approach, as 159

recommended in [3]. The CS factor takes the CD scaling factor for the lowest frequency mode in the basis set in Eq. 160

(30.16), and uses the same scaling factor for all modes in the basis set as bqr D CD1. The scaling factor is chosen based on 161

the maximum displacement of the first bending mode included in the ROM, allowing for no control over the displacement 162

level of the other modes in the basis. Displacements on the order of the thickness of the structure are recommended in [3], 163

however the results in Sect. 30.3 show that this approach may not always produce the most accurate model. 164

Mignolet, Perez, Wang and others have also employed the enforced displacements procedure successfully to many 165

structures [2, 7, 8, 15]. They typically set CDr for each mode such that each bending mode displaces 1.0 times the thickness 166

and a displacement < 1.0 times the thickness for the axial or dual modes. The optimal CD values are problem dependent and 167

so they typically employ a few values near 1.0 thickness and check whether the ROM coefficients vary significantly. They 168

also typically use the cleaning procedure described in [15] to set to zero any cubic Ar(r, r, r) and quadratic Br(r, r) terms 169

involving only one axial (or dual) mode. Finally, it should be noted that their approach to determine the ROM coefficients 170

differs slightly from that outlined in Sect. 30.2.3.3 in that they estimate both the linear and nonlinear terms in the ROM from 171

the results of the static load cases. The linear terms can then be compared against the known linear natural frequencies to 172

check the consistency of the results; they may vary from the linear natural frequencies if too large of loads have been applied. 173

This approach was not implemented in this work, but it should be kept in mind as it may explain some of the differences 174

between the scaling values that worked best in this work and those reported in their works. 175

30.2.3 Identification of Nonlinear Stiffness Coefficients 176

30.2.3.1 Least Squares Method 177

The nonlinear stiffness coefficients may be evaluated using the least squares method, which employs a pseudo-inverse of a 178

data matrix to determine the nonlinear stiffness coefficients for the rth modal equation in a single computation. From Eq. 179

(30.6) and a given static solution to the cth load case in Eq. (30.8), the quasi-static modal equations can be rearranged as 180

m
X

iD1

m
X

j Di

Br .i; j /bqibqj C
m

X

iD1

m
X

j Di

m
X

kDj

Ar .i; j; k/bqibqjbqk D TT
r fT;c � TT

r Kxc (30.17)
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For P static load cases of different permutations of the mode displacement fields, the relation for the nonlinear stiffness terms 181

for the rth equation can be written generally as 182

2

6

6

6

4

bq1
2

Œ1� bq1bq2 Œ1� : : : bqm
2

Œ1� bq1
3

Œ1� bq1
2
bq2 Œ1� : : : bqm

3
Œ1�

bq1
2

Œ2� bq1bq2 Œ2� : : : bqm
2

Œ2� bq1
3

Œ2� bq1
2
bq2 Œ2� : : : bqm

3
Œ2�

:::
:::

:::
:::

:::
:::

bq1
2

ŒP � bq1bq2 ŒP � : : : bqm
2

ŒP � bq1
3

ŒP � bq1
2
bq2 ŒP � : : : bqm

3
ŒP �

3
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7

7

5
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ˆ

ˆ
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ˆ

ˆ
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ˆ
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ˆ

ˆ
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ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Br .1; 1/

Br .1; 2/
:::

Br .m; m/

Ar .1; 1; 1/

Ar .1; 1; 2/
:::
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>

>
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>

>
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>
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D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

TT
r fT;1 � TT

r Kx1

TT
r fT;2 � TT

r Kx2

:::

TT
r fT;P � TT

r KxP

9

>

>

>

=

>

>

>

;

(30.18)

Note that each row will contain at most contributions from up to three modes. The algebraic equation in Eq. (30.18) is 183

simplified as 184

G›r D bFr (30.19)

where G represents the data matrix of modal displacements, ›r represents the vector of unknown coefficients for the rth
185

modal equation, and bFr represents the difference between the modal reaction force and linear contribution of the internal 186

force. The unknown coefficients for the rth modal equations are determined by computing the pseudo-inverse of the data 187

matrix G in Eq. (30.19). The data matrix is independent of the modal equation being evaluated, so the pseudo-inverse needs 188

to be computed only once. Only the right hand side of Eq. (30.19) need be updated to compute the coefficients for each of 189

the modes described by the subscript r. 190

30.2.3.2 Least Squares, Constrained Method 191

The least squares, constrained method evaluates the nonlinear stiffness coefficients with a similar procedure as the least 192

squares method. For multi-mode ROMs, dependency relations between the nonlinear stiffness coefficients are enforced 193

during the fitting procedure. The relations are given as 194

Bk .i; j / D Bi .j; k/ D Bj .i; k/ (30.20) 195

Bi .i; j / D 2Bj .i; i/ (30.21) 196

Ai .i; i; j / D 3Aj .i; i; i / (30.22) 197

Ai .i; j; j / D Aj .i; i; j / (30.23) 198

Al .i; j; k/ D Ak .i; j; l/ (30.24) 199

Aj .i; j; k/ D 2Ai .j; j; k/ D 2Ak .i; j; j / (30.25)

These relations are enforced to ensure that the nonlinear stiffness matrices remain symmetric. The least squares, constrained 200

method must solve for the nonlinear stiffness terms for all of the modal equations with a single pseudo-inverse of a modified 201

data matrix, rather than just the rth equation as done before. This matrix is larger than that in Eq. (30.19). The size of the 202

matrix is not important from the view of computational cost, since the computations in Eqs. (30.18), (30.19), (30.20), (30.21), 203

(30.22), (30.23), (30.24), and (30.25) are negligible compared to the cost required to solve the static load cases in the FEA 204

code. However, larger matrices may exacerbate ill-conditioning in the fitting process leading to less accurate ROMs. Further 205

details on both of the least squares methods can be found in [5]. 206
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30.2.3.3 RANSTEP Method 207

The RANSTEP method determines the nonlinear stiffness coefficients for each modal equation in a series of steps that 208

involve inverting much smaller data matrices. The method solves for the unknown coefficients in sequential steps, beginning 209

with the single-mode displacement fields 210

x1 D CTibqi

x2 D �Tibqi

(30.26)

The resulting quasi-static nonlinear modal equations for each mode r D 1, 2, : : : , m can be written in modal coordinates as 211

TT
r fT;1 � TT

r Kx1 D Br .i; i/bqibqi C Ar .i; i; i /bqibqibqi

TT
r fT;2 � TT

r Kx2 D Br .i; i/bqibqi � Ar .i; i; i /bqibqibqi

(30.27)

This relation provides an algebraic equation, similar to the form in Eq. (30.17), as 212

"

bqi
2

Œ1� bqi
3

Œ1�

bqi
2

Œ2� bqi
3

Œ2�

#

�

Br .i; i/

Ar .i; i; i /

�

D
�

TT
r fT;1 � TT

r Kx1

TT
r fT;2 � TT

r Kx2

�

(30.28)

By inverting the 2 � 2 matrix of modal displacements, the nonlinear stiffness coefficients Br(i,i) and Ar(i,i,i) can be identified 213

for modes r D 1, 2, : : : m and using all load cases involving modes i D 1,2, : : : m. 214

Similarly, the displacement fields that are combinations of two modes 215

x1 D CTibqi C Tjbqj

x2 D �Tibqi � Tjbqj

x3 D CTibqi � Tjbqj

(30.29)

and the coefficients from Eq. (30.28) are used to determine the Br(i,j), Ar(i,i,j), and Ar(i,j,j) coefficients. The displacement 216

fields combining three modes 217

x1 D CTibqi C Tjbqj C Tkbqk (30.30)

are used along with all the other computed nonlinear stiffness terms to compute the Ar(i,j,k) coefficients. Further details can 218

be found in [3]. 219

30.3 Numerical Results: Comparison of Parameter Estimation Method and Scaling Method 220

The least squares method, both constrained and unconstrained, and the RANSTEP method were first evaluated on a clamped- 221

clamped beam with geometric nonlinearity. The nonlinear beam model, constructed of structural steel, was 228.6 mm (9 in.) 222

long, with a cross section of 12.7 mm (0.5 in.) wide by 0.787 mm (0.031 in.) thick. The material properties are listed below 223

in Table 30.1. The beam was modeled with forty B31 beam elements in Abaqus®, resulting in 117 DOF. In this section, only 224

the axial vibration modes were used to capture the membrane kinematics, as ED ROMs were successfully obtained using 225

these modes on this particular model in [6]. Dual modes are used to model the membrane motions in Sect. 30.4. The ROMs 226

using axial vibration modes were computed with each of the different fitting procedures described in Sect. 30.2.3, along with 227

the two scaling methods in Sect. 30.2.2. The nonlinear normal modes were computed from the reduced equations of motion 228

using the algorithm in [16] and compared to the exact NNMs computed directly from the full FEA model using the AMF 229

algorithm in [17]. The comparison to the full order model allows one to determine at which energy, or response levels, the 230

solutions to the ROM equations deviate from the full model. 231

Table 30.1 Material properties
of clamped-clamped beam

Young’s modulus Shear modulus Density

t2.1E D 204.8 GPa (29,700 ksi) G D 80.0 GPa (11,600 ksi) � D 7,870 kg/m3 (7.36 � 10�4 lb-s2/in4)
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Fig. 30.1 Plot of NNM 1 using
modes (1, 3, 5, 7, 26, 39, 45, 47,
49, 51, 53, 55) and a CS scaling
set to a maximum displacement
of 1.0 times the thickness for
mode 1. The (black circles) show
NNM 1 computed with the AMF
algorithm, and ROMs built with
the (green dashed) least squares
constrained method (red dotted),
least squares method, and (blue
solid) RANSTEP method
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Based on the results from [6], a ROM was successfully computed for the clamped-clamped beam using bending modes 232

1, 3, 5 and 7, augmented with axial modes 26, 39, 45, 47, 49, 51, 53, 55. The axial modes were chosen based on the static 233

responses discussed in Sect. 30.2.1.1, such that two associated axial modes were added for every bending mode. This basis 234

is used throughout Sect. 30.3 in order to understand how the parameter estimation schemes and scaling factors affect the 235

resulting ROM. The original development of the enforced displacement method by Muravyov and Rizzi suggested using the 236

constant scaling (CS) method to scale each mode during the static displacement fields. The sensitivity of the ED method 237

was observed by using two different CS factors, namely when the first mode was displaced to 3.0 times the beam thickness 238

(referred as CS (3.0)), and 1.0 times the thickness (CS (1.0)). After computing the ROM with these scaling factors, and each 239

of the parameter estimation schemes, the first NNM was computed from the reduced equations and compared to the full 240

order model results (denoted as AMF in the figure legend). These results are presented on the frequency energy plot (FEP) 241

in Figs. 30.1 and 30.2, where the frequency represents the fundamental frequency of the periodic response, and the energy 242

represents the conserved energy (potential plus kinetic) as the structure vibrates in that NNM. 243

Many interesting observations can be made from these results, and since each ROM used the same basis vectors, the 244

discrepancy can be attributed to the CS scaling level and parameter estimation method. For the smaller CS factor in Fig. 30.1, 245

none of the parameter estimation schemes predicted to correct results. The ROM estimated with RANSTEP was softer than 246

the AMF results, while the two least square methods predicted a stiffer NNM. (Softer or stiffer refers to the fact that at a 247

given energy level the frequency is either lower or higher than the actual frequency, respectively.) These results show that 248

the CS factor of 1.0 is not an adequate scaling factor, even though it was on the order of the beam thickness, as originally 249

recommended. 250

The results in Fig. 30.2 show the same ROMs but instead with a CS factor set to 3.0 times the beam thickness. At this 251

scaling level, the ROM with RANSTEP produced very accurate results as the first NNM nearly coincides with the AMF 252

results. The ROM with RANSTEP captured solutions along the backbone of the NNM, and also captured the two modal 253

interactions (i.e. the tongues emanating from the backbone around 88 and 120 Hz). Each of the least squares methods 254

were again inaccurate, even though they estimate the nonlinear stiffness coefficients from the same static responses at the 255

same scaling level. Apparently ill-conditioning in the equations leads to higher sensitivity to errors, ultimately producing 256

inaccurate predictions of the NNM. The RANSTEP approach is clearly the favorable method to estimate the nonlinear 257

coefficients, however, one must carefully select the scaling amplitudes to obtain accurate results. 258

The results in Figs. 30.1 and 30.2 defy the conventional wisdom, which suggests that scaling on the order of the beam 259

thickness will give a valid ROM. The root cause was investigated by computing a single-mode ROM with a particular mode 260
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Fig. 30.2 Plot of NNM 1 using
modes (1, 3, 5, 7, 26, 39, 45, 47,
49, 51, 53, 55) and a CS scaling
set to a maximum displacement
of 3.0 times the thickness for
mode 1. The (black circles) show
NNM 1 computed with the AMF
algorithm, and ROMs built with
the (green dashed) least squares
constrained method (red dotted),
least squares method, and (blue
solid) RANSTEP method
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Fig. 30.3 For modes 1, 7, 39 and
55, the effect of scaling is shown
for the computed absolute value
of the quadratic stiffness term,
B1(1,1), of a single-mode ROM
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in the basis set, and tracking how the nonlinear quadratic and cubic stiffness coefficients changed with scaling level. Since 261

the difference in the NNM essentially traces back to the stiffness coefficients at the different scaling levels, this provided 262

insight into the scaling range over which each mode could be accurately estimated. Examining a higher and lower mode 263

for both the bending and membrane modes, the absolute values of the stiffness coefficients versus scaling level for bending 264

modes 1 and 7 and membrane modes 39 and 55 are shown in Figs. 30.3 and 30.4. 265
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Fig. 30.4 For modes 1, 7, 39 and
55, the effect of scaling is shown
for the computed absolute value
of the cubic stiffness term,
A1(1,1,1), of a single-mode ROM
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Fig. 30.5 Plot of NNM 1 using
modes (1, 3, 5, 7, 26, 39, 45, 47,
49, 51, 53, 55) and a CD scaling
set to a maximum displacement
of 3.0 times the thickness for all
bending modes, and 1.0 times the
thickness for all axial modes. The
(black circles) show NNM 1
computed with the AMF
algorithm, and ROMs built with
the (green dashed) least squares
constrained method (red dotted),
least squares method, and (blue
solid) RANSTEP method
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Table 30.2 Equivalent displacement levels of each mode when using CS set to 3.0
times the thickness

Mode 1 3 5 7 26 39 45 47 49 51 53 55

t5.1Equivalent CD levels 3.00 2.85 2.84 2.85 2.67 2.67 2.67 2.54 2.67 2.67 2.67 2.54

For the two bending modes, the quadratic coefficients in Fig. 30.3 were essentially zero, which was expected for the 266

bending modes of a flat structure, but is still informative to see the level of scatter and the regimes where they are estimated 267

to be small. The two axial vibration modes produced quadratic terms that were nonzero. The quadratic term for mode 39 268

was nearly constant over the entire displacement range, however B1(1,1) for mode 55 appeared to increase as the scaling 269

increased. The cubic terms were less consistent throughout the scaling range for all of the modes. For both bending modes, the 270

cubic terms were increasing by several orders of magnitude as the displacement tended towards zero. Between displacements 271

of 0 and 1.0 times the beam thickness, the predicted A1(1,1,1) term dropped down about two orders of magnitude, but began 272

to stabilize as the scaling went above 1.0. 273

The “bend” of the first NNM predicted in Figs. 30.1 and 30.2 strongly depends on the cubic stiffness coefficient 274

associated with bending mode 1. For mode 1 in Fig. 30.4, scaling of 1.0 times the beam thickness produced a value of 275

A1(1,1,1) D 5.52 � 1012 lbf/in3, while a scaling of 3.0 produced a value of 6.51 � 1012 lbf/in3. The coefficient on mode 1 did 276

not converge until around the range of 2.0 or 3.0 times the beam thickness, which may explain why the scaling of CS (3.0) 277

produced more accurate results than CS (1.0). Unlike the bending modes, the quadratic and cubic terms for the axial modes 278

do not converge within the range of the scaling shown in Figs. 30.3 and 30.4. 279

The optimal scaling can vary for each mode in the basis, and hence this was the motivation for using the CD scaling 280

method which allows the scaling level to be chosen individually for each mode (recall that the CS method only allows 281

control of the displacement level on the lowest frequency bending mode). New ROMs were again produced using the same 282

basis and parameter estimation schemes, however this time using the CD scaling method. Each of the bending modes was 283

scaled to 3.0 times the beam thickness, while the axial modes were scaled to 1.0 times the beam thickness. Since there was 284

no clear consistency in the coefficients produced by the axial modes in Figs. 30.3 and 30.4, the 1.0 factor was chosen in order 285

to avoid the large spikes in the quadratic or cubic term. The results for NNM 1 are shown in Fig. 30.5. 286

With the CD scaling method, the ROM with RANSTEP again produced very accurate results, however the least squares 287

methods produced erroneous NNMs. Even though no difference was observed when using the CS or CD scaling with 288

RANSTEP, the CD method provides more flexibility in the selection of scaling each mode during the fitting process. The 289

connection between the CD scaling method, and CS is shown below in Table 30.2, where the equivalent CD factor is given 290

for each mode when using CS (3.0). It can be seen that the displacements on each mode with CS are not drastically different 291

from those used in Fig. 30.5, except that the axial modes are displaced slightly higher (2.5 times the thickness compared 292

to 1.0). The level of the reaction force required to enforce an axial displacement by one thickness tends to be much larger 293

than that required in bending, so the reduced scaling on the axial modes reduced the axial force levels and any associated 294

numerical ill-conditioning, explaining why least squares improved in Fig. 30.5 compared to the results in Fig. 30.2. 295

30.4 Numerical Results: Axial Modes Versus Dual Modes 296

The results in Sect. 30.3 showed that the RANSTEP estimation procedure was clearly the preferred method for parameter 297

estimation and that CD scaling was adequate. In this section, the bending modes Eqs. (30.1, 30.3, 30.5, and 30.7) will be used 298

exclusively with RANSTEP and CD in order to evaluate the effect of using dual modes instead of axial modes. The ROMs 299

used in the previous section used 12 modes to capture the response of only four bending modes, so one would hope that a 300

more compact model could be found. Recall from Sect. 30.2.1.2 that three types of dual modes exist, namely generation one, 301

two and three. In the following, a generation one dual mode estimated from bending mode 1 will be referred to as “dual 1” 302

or “D1”, and a generation two dual mode with bending modes 1 and 3 will be referred as “dual 1-3” or “D1-3”. 303

Before generating ROMs with the dual mode basis, the appropriate scaling levels for these modes were investigated 304

by computing the single-mode ROMs, and observing how the absolute values of the stiffness coefficients evolved with 305

displacement level. The results for duals 1 and 1–3 are shown in Fig. 30.6. 306

It was determined that these dual modes should be scaled to 1.0 times the beam thickness when using them to estimate the 307

ROMs, exactly as done with the axial modes in the previous section. There were no large spikes around this value observed 308

in Fig. 30.6 for the dual modes of interest, implying that this would be a safe displacement level to use. The work by Kim 309

et al. [4] discussed the use of dual modes with the enforced displacement procedure, and suggested the use of different 310
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Fig. 30.6 Variation in the
absolute values of the cubic and
quadratic stiffness terms,
B1(1,1,1) and A1(1,1,1) for dual
modes D1 and D1-3, respectively
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Table 30.3 Description of dual
mode basis used to generate the
ED ROMs

Description Dual modes included

t7.1Generation 1 duals „
(1)
1 , „

(1)
3 , „

(1)
5 , „

(1)
7

t7.2Generation 1 and 2 duals „
(1)
1 , „

(1)
3 , „

(1)
5 , „

(1)
7 , „

(2)
13 , „

(2)
15 , „

(2)
17 , „

(2)
35 , „

(2)
37 , „

(2)
57

t7.3Mode 1 dominant duals „
(1)
1 , „

(2)
13 , „

(2)
15 , „

(2)
17 , „

(3)
135, „

(3)
137, „

(3)
157

combinations of specific dual modes. For example, they discuss using only dual modes computed from one of the dominant 311

bending modes. In the case where bending modes 1, 3, 5, and 7 were used in the basis and mode 1 was expected to be 312

dominant in the responses of interest, then only the dual modes (1, 1-3, 1-5, 1-7, 1-3-5, 1-3-7, 1-5-7) would be included in 313

the ROM. To evaluate the use of dual modes to capture the in-plane kinematics, ROMs were created with only generation one 314

dual modes, generation one and two dual modes, and mode 1 dominant dual modes (see Table 30.3 for a list of dual modes 315

included in each ROM). The resulting ROMs were computed with the RANSTEP method and CD with each bending mode 316

scaled to 3.0 times the thickness and the appropriate duals to 1.0. The ROMs were then compared based on their computed 317

nonlinear normal modes. The results are shown in Fig. 30.7. 318

The ROM with the mode 1 dominant dual modes (green dashed) performed best when compared to the full order model, 319

as it captured solutions along the backbone as well as the two modal interactions. When using only generation one dual 320

modes (blue solid), the resulting ROM was able to accurately predict solutions along the backbone, but not along the modal 321

interactions. For example, the modal interaction at 88 Hz was an interaction with NNM 3. Since using only generation one 322

dual modes did not include „
(2)
13 or any other higher order dual modes, the necessary kinematics were not available in the 323

ROM to fully capture this interaction. When using generation one and two dual modes (red dotted), the ROM was able to 324

capture this interaction, further implying that the higher order kinematics were important. 325

There was one additional challenge with the ROM that was built with generation one and two dual modes; the authors 326

were not able to compute NNM solutions beyond 100 Hz with this ROM. (Notice that the red dotted line in Fig. 30.7 does not 327

continue past this point.) A similar observation was made when a ROM was constructed including all of generation one, two, 328

and three dual modes (not shown here). With this ROM the continuation algorithm could not compute past the linear range 329

of the NNM so its NNM was not included in Fig. 30.7. Apparently some of these higher generation modes introduce some 330

instability in the ROM equations at certain amplitude levels. One would hope that adding additional basis vectors to the ROM 331

would improve the results, or at the very least have no ill effect on the results so this behavior is certainly undesirable. The 332

cleaning procedure [15] briefly mentioned in Sect. 30.2.2 would perhaps help with this issue, although it was not explored in 333

this paper. 334
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Fig. 30.7 Plot of NNM 1 using
bending modes (1, 3, 5, 7) and
various combinations of dual
modes. A CD scaling factor was
set to a maximum displacement
of 3.0 times the thickness for all
bending modes, and 1.0 times the
thickness for all dual modes. The
(black circles) show NNM 1
computed with the AMF
algorithm, and ROMs built with
the (blue solid) generation 1 dual
modes (green dashed), mode 1
dominant dual modes, and (red
dotted) generation 1 and 2 dual
modes
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30.5 Numerical Results: FEA Model of Exhaust Cover Plate 335

A more complicated model is used now to evaluate the ability of the enforced displacement ROMs to accurately predict 336

NNMs of a structure for which an analytical solution is intractable. The FEA model of interest is a perforated exhaust cover 337

plate and is shown in Fig. 30.8. A similar model was studied in [6, 17], but the model here has an improved mesh. When 338

the authors originally investigated this model, they found that it was difficult to identify axial modes to augment the bending 339

modes and hence an accurate ROM was not obtained in [6]. Here, the problem is revisited in an attempt to model the in-plane 340

kinematics with dual modes. 341

The exhaust cover plate is 317.5 mm (12.5 in.) in diameter with a uniform thickness of 1.5 mm (0.059 in.). It is constructed 342

of structural steel with a mass density of 7,800 kg/m3 (7.29 � 10-4 lb-s2/in4) and a Young’s modulus of 208 GPa (30,160 ksi). 343

The Abaqus® model has a total of 1,440 S4 shell elements, and a total of 8,886 DOF. The boundary conditions were 344

approximated as fixed along the bottom ring of the plate in order to account for the relatively rigid boundary to which 345

the plate is welded. 346

The first NNM of the nonlinear plate model was computed using the AMF algorithm, and used to compare five different 347

ROMs. Four of the ROMs used bending modes (1 and 6), and “axial” modes (126, 135, 142, 157, 169, 375). These “axial” 348

modes were selected based on the static displacement results in Sect. 30.2.1.1, however each selected mode shape still 349

had noticeable transverse deformation and no true in-plane modes were identified. Another ROM was created with the 350

same bending modes, but instead with all the first and second generation dual modes („(1)
1 , „

(1)
6 , „

(2)
16 ). For all cases, the 351

RANSTEP parameter estimation procedure was used, and the CD scaling factors were selected such that the bending modes 352

and membrane (axial or dual) modes were displaced between 0.5 and 3.0 times the plate thickness. The frequency-energy 353

behavior of the NNMs estimated from these ROMs are shown in Fig. 30.9. 354

The enforced displacement ROMs that were built with axial modes and scaled the bending modes to a maximum 355

displacement of 3.0 times the thickness predicted stiffer NNMs than the full order model, as expected from previous 356

works [6]. The ROM that was built with axial modes and scaled the bending and membrane modes to a maximum 357

displacement of 1.0 times the thickness predicted slightly stiffer behavior at lower energies and then slightly softer behavior 358

at higher energies. For any of these first three ROMs with axial modes in the legend of Fig. 30.9, the accuracy may be 359

acceptable for some purposes. However, the last ROM created with axial modes predicted unphysical behavior, likely due 360

to the low scaling factors used during the static loads to fit the nonlinear coefficients. Additional kinematics are needed to 361
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Fig. 30.8 A geometrically
nonlinear finite element model of
an exhaust cover panel
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Fig. 30.9 Plot of NNM 1 using
bending modes (1 and 6) with
either all generation one and two

dual modes („(1)
1 , „

(1)
6 , „

(2)
16 ), or

six axial modes (126, 135, 142,
157, 169, 375). Various values for
the CD scaling factors were used
for the bending and membrane
modes and the parameters were
fit with RANSTEP. The (black
circles) show NNM 1 computed
with the AMF algorithm
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improve the accuracy of this model when using axial modes, but it is difficult to determine which modes are needed. Plus, 362

the model already has three times as many axial modes as it does bending modes, so additional modes increase the cost 363

required to build the ROM. The ROM with dual modes worked very well as the predicted backbone coincided with the AMF 364

results almost perfectly. This ROM was not able to capture the modal interaction near 175 Hz, however this is to be expected 365

because this internal resonance was an interaction with NNM 15, a bending motion that was not included in the basis set. 366

The use of dual modes provided a systematic approach to model the in-plane deformations, with only 3 in-plane component 367

mode shapes, and provided very accurate results for the exhaust cover plate model. 368
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30.6 Conclusion 369

This work has explored the effect of the various decisions to generate a ROM using the enforced displacement procedure by 370

comparing the accuracy of its computed nonlinear normal modes. The results in Sect. 30.3 clearly showed that the RANSTEP 371

procedure was much more robust at estimating the coefficients in the reduced order models than the least squares procedure. 372

This may also suggest that one can expect RANSTEP to be less sensitive to the amplitude of the load cases than the least 373

squares approach. The effect of the scaling of the modal displacements on these ROMs was also investigated. So long as 374

RANSTEP was used, either scaling method was found to be accurate as long as the bending modes were displaced a few 375

times the beam thickness. Previous works have made general recommendations of using a displacement on the order of the 376

thickness [3]. However, this discrepancy could be attributed to the fact that we assumed the linear term on the ROM equation 377

was determined from an eigenvalues solution, whereas in the works by Perez, they fit this when fitting the nonlinear terms. 378

The CD scaling method is recommended based on the flexibility it allows to displace each mode in the basis set. 379

This work has also explored the number of axial or dual modes that are needed to obtain an accurate ROM. For the systems 380

studied here it was sometimes possible to obtain an accurate ROM by simply selecting those axial modes that were statically 381

coupled to each of the bending modes in the basis. This worked for the beam but the ROM for the exhaust plate seemed to 382

converge slowly to the true NNM and there was noticeable inaccuracy even after several axial modes had been included. In 383

contrast, when dual modes were used, an accurate ROM for the exhaust plate was obtained with only two bending modes and 384

three dual modes. For the beam, the dual modes consistently produced ROMs that accurately captured the backbone of the 385

NNM. However, only the ROM with mode 1 dominant duals captured the internal resonances correctly. Additionally, several 386

of the ROMs with dual modes could not be integrated at large response amplitudes, presumably due to small errors in some of 387

the nonlinear coefficients. It was noted that Mignolet, Perez and Wang [2, 7, 8, 15] typically use the cleaning procedure in the 388

papers just cited to set certain terms in the ROM to zero. Perhaps this is a critical step when using these methods. However, it 389

is important to note that cleaning can only be done when the structure is flat since one needs to be able to classify each mode 390

as either axial or bending. For a curved structure, all modes contain bending and membrane components, making it difficult 391

to apply this approach. 392

In summary, the results so far confirm the effectiveness of the enforced displacements procedure so long as the best 393

practices outlined above are used. It seems to exhibit some sensitivity to the displacement levels but these can be addressed 394

by computing single-mode ROMs at different scaling levels and seeing how the coefficients change. These ROMs tend to 395

produce larger reduced order models since the membrane modes need to be explicitly included in the basis, and these can be 396

hard to identify. Dual modes seem to be promising as a means of obtaining an efficient ROM with relatively few membrane 397

degrees of freedom, but some expertise is still required to choose a set of dual modes that will be accurate while keeping the 398

ROM small. 399
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