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axial vibration modes or dual modes. This work explores the accuracy of
the enforced displacements ROM strategy by comparing the efficiency
of these basis vectors, as well as the use of three different parameter
estimation procedures and the effect of scaling factors on the static load
cases used to generate the ROM. The different modeling decisions are
shown to have a very significant effect on the accuracy of the ROMs, and
the comparisons are used to suggest best practices that result in the most
accurate ROMs. These issues are explored using finite element models of
a flat geometrically nonlinear beam with fixed-fixed boundary conditions
and a flat geometrically nonlinear exhaust cover plate. The effect of
each of the modeling decisions on the resulting enforced displacement
ROM is evaluated by computing the Nonlinear Normal Modes (NNMs)
of the full finite element model and comparing them with the NNMs
calculated from the ROMs. The NNMs offer a powerful metric that
indicates whether or not the ROM captures a variety of important physics
in the original model.
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Chapter 30
Considerations for Indirect Parameter Estimation in Nonlinear
Reduced Order Models

Lorraine C.M. Guerin, Robert J. Kuether, and Matthew S. Allen

Abstract Over the past few decades, there have been many developments in techniques that extract a reduced order model
(ROM) from a geometrically nonlinear finite element model. The enforced displacement ROM strategy that is of interest
in this work is known as an indirect approach because it does not require altering the finite element code. Instead, one
uses a series of static displacement fields applied to the nonlinear finite element model to estimate the nonlinear stiffness
coefficients in the reduced equations. Geometric nonlinearity causes the bending and membrane displacements to become
coupled, and the enforced displacements method requires that the kinematics of the membrane motion be explicitly included
in the basis using either axial vibration modes or dual modes. This work explores the accuracy of the enforced displacements
ROM strategy by comparing the efficiency of these basis vectors, as well as the use of three different parameter estimation
procedures and the effect of scaling factors on the static load cases used to generate the. ROM. The different modeling
decisions are shown to have a very significant effect on the accuracy of the ROMs, and the comparisons are used to
suggest best practices that result in the most accurate ROMs. These issues are explored using finite element models of a
flat geometrically nonlinear beam with fixed-fixed boundary conditions and a flat geometrically nonlinear exhaust cover
plate. The effect of each of the modeling decisions on the resulting enforced displacement ROM is evaluated by computing
the Nonlinear Normal Modes (NNMs) of the full finite element model and comparing them with the NNMs calculated from
the ROMs. The NNMs offer a powerful metric that indicates whether or not the ROM captures a variety of important physics
in the original model.

Keywords Reduced order modeling ¢ Geometric nonlinearity ®* Nonlinear dynamics * Nonlinear normal modes ¢ Finite
element analysis

30.1 Introduction

One popular modeling approach in structural dynamics uses finite element analysis (FEA) to generate the discretized
equations of motion. Detailed meshes may be needed to capture precise geometric features of a realistic structure, for
example, the stiffeners in an aircraft panel, so a large number of degrees-of-freedom (DOF) may be needed to accurately
describe the motion. Furthermore, when the model exhibits large deformations, the equations of motion become nonlinear
and the computational cost increases dramatically. As a result, many efforts have been put forth over the last few decades to
develop reduced order modeling strategies for geometrically nonlinear FEA models [1, 2]. One class of reduction methods,
referred to as indirect methods, uses a Galerkin approach to reduce the equations using a smaller set of modal DOF. An
additional nonlinear term persists in the modal equations due to the geometric nonlinearity, whose coefficients are determined
through a series of static load cases. This paper explores some of the challenges with producing accurate nonlinear reduced
order models (ROMs) using the enforced displacement procedure [3], particularly issues related to mode selection, parameter
estimation and displacement scaling factors.

The enforced displacement procedure was first developed by Muravyov and Rizzi in [3]. A set of component modes
describe the kinematics of a geometrically nonlinear FEA model, and are used to reduce the full model down to a low
order set of modal equations. These equations have a linear modal mass and modal stiffness term that can be determined
analytically since one typically has access to the linear mass and stiffness matrices in a commercial FEA package. However,
the nonlinear terms are usually not available unless one has access to the internals of the software. Assuming that the material
is linear elastic, and a quadratic strain—displacement relation is used, the nonlinear restoring force in modal form is a quadratic
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and cubic polynomial function of the modal displacements with unknown stiffness coefficients. To determine these values,
the nonlinear FEA model is enforced to take the shape of the scaled component mode shapes, or a combination of these
shapes, and a static analysis is performed to solve for the reactions forces to hold each shape. The nonlinear stiffness terms
in the modal equations are determined using a series of these displacements and reaction forces.

The bending-membrane coupling must be accounted for explicitly when creating ROMs using the enforced displacement
procedure. As the model experiences large bending deflections, membrane stretching can occur, so both bending and
membrane type component modes are explicitly needed in the basis set. This paper explores two approaches to capture these
kinematics, namely the use of axial vibration modes, and the dual modes method in [4]. Another modeling consideration is
the procedure used to fit the nonlinear stiffness coefficients based on a series of static solutions. The method referred to as
RANSTEP throughout this paper, which was first introduced in [3], uses special combinations of modal displacements to
solve for a small number of coefficients at a time. The coefficients could also be found by setting up a least squares problem
involving all of the static load solutions [5]. Finally, the effect of scaling on the static displacement fields is explored in this
paper using the constant modal scaling (CS) method proposed originally in [3] along with the constant modal displacement
(CD) approach used in [6-8]. The results presented here will show that the resulting accuracy of the ROM equations greatly
depends on the procedures used to fit the nonlinear stiffness coefficients and capture the membrane motions.

Rizzi and Przekop explored the effect of basis selection on the resulting ROM equations in [9], and assessed the accuracy
of the ROM by comparing its response to random inputs with the response of the full-order model (which is quite expensive to
compute). The authors recently suggested that a more rigorous comparison between two ROMs could be made by comparing
their nonlinear normal modes and used this to compare two ROM procedures [6]. The nonlinear normal mode [10, 11], which
is defined as a not necessarily synchronous periodic response of the undamped nonlinear equations of motion, provides an
excellent metric for comparison between ROMs and the full FEA model since these solutions are independent of any external
forces, and capture a wide range of response amplitudes seen by the nonlinear system. Previous works have shown that if the
NNMs predicted by the ROM converge, then the response predictions also tend to be accurate [12, 13]. The work presented
in this paper is an extension of the work in [6], but here we only focus on variations on the enforced displacement procedure.
The effect of mode selection, methods to identify the nonlinear stiffness terms, and the scaling on the static load cases are all
explored simultaneously to attempt to determine the best practices when using the enforced displacements ROM approach.

The paper is organized as follows. Section 30.2 reviews the theory of the enforced displacement reduction strategy,
along with considerations for mode selection, scaling of the static load cases, and identification of nonlinear stiffness terms.
The results in Sects. 30.3 and 30.4 demonstrate the reduction strategy applied to a geometrically nonlinear flat beam with
clamped-clamped boundary conditions. The nonlinear normal modes are used to compare a set of ROM equations generated
with different variations on the enforced displacements procedure, showing that the ROM predictions can diverge from those
predicted by the full FEA model in certain cases. Section 30.5 presents the results from a more complicated model of an
exhaust cover plate with geometric nonlinearity, using the best practices learned from the beam model. Section 30.6 presents
the conclusions.

30.2 Theoretical Development

The equations of motion for a geometrically nonlinear, N degree-of-freedom (DOF) system, discretized by the finite element
method can be written as

Mi(1) + Kx(1) + fy, (x) = £(¢) (30.1)

where M and K are the N x N mass and stiffness matrices, respectively and the N x 1 displacement and acceleration vectors
are respectively represented as x(t) and X(¢). The N x 1 external force vector is denoted as f(t), while f y; (x) is the N x 1
nonlinear restoring force vector due to the geometric nonlinearity.

The size of the equations of motion are reduced using a coordinate transformation based on a set of component modes.
The relationship between physical and generalized coordinates is described as

x(t) = Tq(t) (30.2)
where q(?) is the m x 1 time-dependent modal displacement vector and T is the N X m matrix of component modes. A subset

of m basis vectors are included in each column of T, such that the degrees-of-freedom are significantly reduced (;m < <N).
By substituting Eq. (30.2) into Eq. (30.1), and pre-multiplying by TT, the reduced equations of motion become
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Mg + Kq + Ty, (Tq) = T"f(r) (30.3)
M = T"MT (30.4)
K = T'KT (30.5)

The ()T operator represents the transpose operator. The nonlinear restoring force in the modal form of the equation can be
generalized as

T'fy. (Tq) = 8(q) (30.6)

which is a nonlinear function of each of the displacements in q. For linear elastic materials with quadratic strain—displacement
relationships, it has been shown in previous works [1, 2] that the " nonlinear restoring force in modal form may be written as

O (@1 o) =D 9 B () qiqj + Y9 > A (i j. k)i G4k

i=1j=i i=1j=ik=j

r=12,....m (30.7)

where B, are the quadratic nonlinear stiffness coefficients and A, are the cubic nonlinear stiffness coefficients for the b
nonlinear modal equation. Within most commercial finite element packages, the nonlinear stiffness matrices are inaccessible,
and therefore they must be determined indirectly by applying a set of forces or displacements to the FEA model.

There are several methods to evaluate the nonlinear stiffness coefficients. In this paper, the enforced displacement (ED)
procedure is used exclusively. The ED process uses specific static displacements fields (i.e. linear combinations of the
component modes in T) that are enforced on the model using any suitable commercial FEA solver. For example, the c"
static displacement can be a combination of up to three component modes given as

XC - Tiz]\i + T]?]\j + ka]\k (308)

where the N x 1 vector X, is an enforced displacement for the ¢ static load case, and each component mode denoted with
subscript i, j, or k is scaled with the scalar amplitude ¢. The FEA software computes the reaction force, fr., necessary to
hold the displacement field x., which can be broken into linear and nonlinear internal force components by the relation

fro. =f, + vy = Kx. + far (xc) (30.9)

After computing the nonlinear reaction force fr., a series of these displacement and forces can be used to determine the
nonlinear stiffness coefficients in Eq. (30.7), as will be reviewed in Sect. 30.2.3.

30.2.1 Selection of Modes

Mode selection becomes particularly important for finite element models with geometric nonlinearity. It is common to use
the linearized, mass normalized vibration modes ¢, as basis vectors, which are computed from the eigenvalue problem
(K — wrzM) ¢, = 0. It is important to explicitly include the appropriate bending and membrane modes for the reduction
basis of the ED procedure in order to capture the kinematics of this bending-membrane coupling. The higher frequency
membrane motions can be incorporated into the basis by either including axial vibration modes, or using an alternative set
of component modes referred to as dual modes. Guidance for the computation and selection of each type of membrane mode
is provided below.
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30.2.1.1 Axial Vibration Modes

Many works have used axial modes to capture the membrane effects [1, 6, 9, 14] for enforced displacement ROMs. Since
these membrane motions are typically driven by large deformations of the bending modes, a set of these axial modes can be
selected and augmented to each bending mode in the basis set as done in [6]. The augmented axial vibration modes for the
7" bending mode are determined by applying a force proportional to that bending mode shape to the finite element model as

Kx + fy. (x) = Mo, /, (30.10)

The force amplitude 7, should be large enough to excite the nonlinearity in the response such that the displacements contain
components of the 7" bending mode as well as components of other modes that are statically coupled to that mode. The static
displacement is then projected onto all the linear, mass normalized modes as q = ®"Mx, and axial modes with the largest
contribution to the response should be selected as the axial basis augmented to the 7 bending mode. For flat structures, the
distinction for axial and bending type motion is clear. However, curved structures tend to produce vibrations modes that are
coupled between transverse and in-plane deformations making it more difficult to distinguish between the two. This approach
is discussed in more detail in [6].

30.2.1.2 Dual Modes

A systematic approach to generating the membrane basis was developed by Kim et al. using the concept of the dual mode [4].
The dual modes are computed from a pre-selected set of bending mode shapes using static forces applied to the nonlinear
structure. There are three types of dual modes, which are referred to as first, second, and third generation dual modes. For
the first generation dual mode, a static force proportional to only one bending mode is applied to the FEA model, given as

fr = Mo, f, (30.11)

Again, f, is the scaling value on the applied force that sufficiently excites a nonlinear response. Using a commercial
finite element package, the resulting static displacement field is computed as u,. The residual component of the response,
that which remains after removing the componentof the " bending mode ¢,, is isolated by the following relationship

vfl) =u, — (p,TMu,(p, (30.12)

where v, represents the remaining displacement field. This field contains the membrane motion due to bending displacement
in the " mode. The notation (" denotes that this type of response is used to compute a first generation the dual mode. A set
of first generation dual modes are.computed for all bending modes in the basis set.

Similarly, second generation dual modes result from an applied static force that is a linear combination of two bending
mode shapes, such as

fr = Mg, f, + Mo, f (30.13)
The linear bending modes components are subtracted from the resultant displacement field as given below
v =

=Wy — (piTMuij(pi — (pJTMuij 9 (30.14)

Third generation dual modes are found by applying forces made up of linear combinations of three bending modes.

The final computational step for the dual modes basis is to make the dual modes mutually orthonormal with respect to the
linear modes and the mass matrix. Each dual mode is orthonormalized with respect to the mass matrix using a Gram-Schmidt
procedure, so the final orthonormal basis vectors Z fjk) are found using the following.

)4
28 =v9 - 0/ My (30.15)
=1
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The subscripts i, j, and k represent the linear mode(s) used to generate the dual mode, superscript g represents the type of
dual mode (first, second, or third generation), and p represents the number of linear bending modes in the basis. For further
details, see [4].

30.2.2 Scaling of Modes

Two scaling methods are used in this paper when determining the displacement magnitude g of each component mode
in Eq. (30.8). The displacement level dictates the level of nonlinearity excited during the static load cases used to fit the
nonlinear stiffness coefficients. The two scaling approaches are the constant modal scaling (CS) method and the constant
modal displacement (CD) method. Using the CD approach from [6], a scaling value g, for the 7™ modal displacement is
defined as

~ Wmax,r

p r

where W,y » 1S the desired maximum displacement in physical coordinates for the " mode, and m;lx (T,) is the maximum

displacement (i.e. ignoring any rotations) in the " component mode shape. The CD method sets a specific scaling factor
for each mode in the displacement fields generated by Eq. (30.8). The authors have found that it is important to determine
adequate scaling levels for the bending and membrane modes in order to obtain accurate ROM equations. One approach to
guide the range of appropriate scaling values is to create a set of single-mode ROMs, which ultimately have one quadratic
and one cubic nonlinear stiffness term. By tracking the nonlinear stiffness coefficients as a function of the maximum
displacement, wn,x,, the coefficients should converge around a range of scaling levels, indicating that the geometric
nonlinearity is sufficiently exercised.

Previous works on the enforced displacement procedure have used what is referred to here as the CS approach, as
recommended in [3]. The CS factor takes the CD scaling factor for the lowest frequency mode in the basis set in Eq.
(30.16), and uses the same scaling factor for all modes in the basis set as ¢, = CD;. The scaling factor is chosen based on
the maximum displacement of the first bending mode included in the ROM, allowing for no control over the displacement
level of the other modes in the basis. Displacements on the order of the thickness of the structure are recommended in [3],
however the results in Sect. 30.3 show that this approach may not always produce the most accurate model.

Mignolet, Perez, Wang and others have also employed the enforced displacements procedure successfully to many
structures [2, 7, 8, 15]. They typically set CD, for each mode such that each bending mode displaces 1.0 times the thickness
and a displacement < 1.0 times the thickness for the axial or dual modes. The optimal CD values are problem dependent and
so they typically employ a few values near 1.0 thickness and check whether the ROM coefficients vary significantly. They
also typically use the cleaning procedure described in [15] to set to zero any cubic A,(r, r, r) and quadratic B,(r, r) terms
involving only one axial (or dual) mode. Finally, it should be noted that their approach to determine the ROM coefficients
differs slightly from that outlined in'Sect. 30.2.3.3 in that they estimate both the linear and nonlinear terms in the ROM from
the results of the static load cases. The linear terms can then be compared against the known linear natural frequencies to
check the consistency of the results; they may vary from the linear natural frequencies if too large of loads have been applied.
This approach was not implemented in this work, but it should be kept in mind as it may explain some of the differences
between the scaling values that worked best in this work and those reported in their works.

30.2.3 Identification of Nonlinear Stiffness Coefficients
30.2.3.1 Least Squares Method

The nonlinear stiffness coefficients may be evaluated using the least squares method, which employs a pseudo-inverse of a
data matrix to determine the nonlinear stiffness coefficients for the 7" modal equation in a single computation. From Eq.
(30.6) and a given static solution to the ¢ load case in Eq. (30.8), the quasi-static modal equations can be rearranged as

m m m m

DD BN+ YYD ARG = T fre — T Kx (30.17)

i=1j=i i=1j=ik=j
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For P static load cases of different permutations of the mode displacement fields, the relation for the nonlinear stiffness terms
for the " equation can be written generally as

B, (1,1)

B, (1,2)
@jm 3,3,01] ... amj [1] @3 [1] a;fiz 1 ... zi,; [1] : T} fr, — T/ Kx,
q, 121 99,121 ... 9,121 9,121 4,79,12] ... g, [2] B, (m,m) _ T, fr2 — T/Kx (30.18)
S ALLD ) |
3’ 1P) @ [P) .. 3, [P1 G°[P) @74, [P) ... 3, [P | A-(L12) T, frp =T/ Kxp

A, (m,m,m)

Note that each row will contain at most contributions from up to three modes. The algebraic equation in Eq. (30.18) is
simplified as

Gk, =F, (30.19)

where G represents the data matrix of modal displacements, k, represents the vector of unknown coefficients for the 7
modal equation, and E represents the difference between the modal reaction force and linear contribution of the internal
force. The unknown coefficients for the 7" modal equations are determined by computing the pseudo-inverse of the data
matrix G in Eq. (30.19). The data matrix is independent of the modal equation being evaluated, so the pseudo-inverse needs
to be computed only once. Only the right hand side of Eq. (30.19) need be updated to compute the coefficients for each of
the modes described by the subscript r.

30.2.3.2 Least Squares, Constrained Method

The least squares, constrained method evaluates the nonlinear stiffness coefficients with a similar procedure as the least
squares method. For multi-mode ROMs, dependency relations between the nonlinear stiffness coefficients are enforced
during the fitting procedure. The relations are given as

By (i.j) = Bi (j.k) = B (i, k) (30.20)

B (i,]) =2B; (i,i) (30.21)

Ai (0,0, ]) =34, (i,i,0) (30.22)

Ai (i, j,J) = A, (i1, )) (30.23)

A (. j. k) = A (i, j.1) (30.24)

Aj (i, ] k) =24;(j,j.k) =24k (. ], ]) (30.25)

These relations are enforced to ensure that the nonlinear stiffness matrices remain symmetric. The least squares, constrained
method must solve for the nonlinear stiffness terms for all of the modal equations with a single pseudo-inverse of a modified
data matrix, rather than just the 7" equation as done before. This matrix is larger than that in Eq. (30.19). The size of the
matrix is not important from the view of computational cost, since the computations in Egs. (30.18), (30.19), (30.20), (30.21),
(30.22), (30.23), (30.24), and (30.25) are negligible compared to the cost required to solve the static load cases in the FEA
code. However, larger matrices may exacerbate ill-conditioning in the fitting process leading to less accurate ROMs. Further
details on both of the least squares methods can be found in [5].
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30.2.3.3 RANSTEP Method 207

The RANSTEP method determines the nonlinear stiffness coefficients for each modal equation in a series of steps that 208
involve inverting much smaller data matrices. The method solves for the unknown coefficients in sequential steps, beginning 209

with the single-mode displacement fields 210
xi = +Tig; (30.26)
x; = —Tig;

The resulting quasi-static nonlinear modal equations for each mode r =1, 2, ..., m can be written in modal coordinates as 211

T fr) — TIKxy = B, (i,i)q;q; + Ar (i.1.1)G;4,4;

o~ o~ NS (30.27)
T fr, — TIKx, = B, (i,0)q,4; — Ar (i.1.1)4,4,4;
This relation provides an algebraic equation, similar to the form in Eq. (30.17), as 212
AR { B, (i.i) }z {T,T fr1 — TTKx, (30.28)
Z]\,- [2] Z]\i [2] Ar (i, i, l) TZfT,Z — TZKXz
By inverting the 2 x 2 matrix of modal displacements, the nonlinear stiffness coefficients B, (i,i) and A,(i,i,i) can be identified 213
for modes r =1, 2,... m and using all load cases involving modes i = 1,2, ... m. 214
Similarly, the displacement fields that are combinations of two modes 215

x; = +Tig; + Tjgq;
%o = 1,4, <T)3, (30.29)
x; = +T,q; —T;q;

and the coefficients from Eq. (30.28) are used to determine the B,(i,j), A,(i,i,j), and A,(i,j,j) coefficients. The displacement 216
fields combining three modes 217

X] = +TiZ]\i + sz]\j + Tkz]\k (30.30)

are used along with all the other computed nonlinear stiffness terms to compute the A,(i,j,k) coefficients. Further details can 218
be found in [3]. 219

30.3 Numerical Results: Comparison of Parameter Estimation Method and Scaling Method 220

The least squares method, both constrained and unconstrained, and the RANSTEP method were first evaluated on a clamped- 221
clamped beam with geometric nonlinearity. The nonlinear beam model, constructed of structural steel, was 228.6 mm (9 in.) 222
long, with a cross section of 12.7 mm (0.5 in.) wide by 0.787 mm (0.031 in.) thick. The material properties are listed below 223
in Table 30.1. The beam was modeled with forty B31 beam elements in Abaqus®, resulting in 117 DOF. In this section, only 224
the axial vibration modes were used to capture the membrane kinematics, as ED ROMs were successfully obtained using 225
these modes on this particular model in [6]. Dual modes are used to model the membrane motions in Sect. 30.4. The ROMs 226
using axial vibration modes were computed with each of the different fitting procedures described in Sect. 30.2.3, along with 227
the two scaling methods in Sect. 30.2.2. The nonlinear normal modes were computed from the reduced equations of motion 228
using the algorithm in [16] and compared to the exact NNMs computed directly from the full FEA model using the AMF 229
algorithm in [17]. The comparison to the full order model allows one to determine at which energy, or response levels, the 230
solutions to the ROM equations deviate from the full model. 231

Table 30.1 Material properties

Young’s modulus Shear modulus Density
of clamped-clamped beam

E =204.8 GPa (29,700 ksi) | G = 80.0 GPa (11,600 ksi) | p = 7,870 kg/m? (7.36 x 10™* Ib-s*/in*) t2.1
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Fig. 30.1 Plot of NNM 1 using @
modes (1, 3, 5, 7, 26, 39, 45, 47, —O— AMF '
49,51, 33, 55) and a CS scaling 130 Least Squares, Constrained T
set to a maximum displacement
of 1.0 times the thickness for | =eeeeeee- Least Squares, Unconstrained
mode 1. The (black circles) show
NNM 1 computed with the AMF 120 RANSTEP T
algorithm, and ROMs built with
the (green dashed) least squares
constrained method (red dotted),
least squares method, and (blue E 110 | T
solid) RANSTEP method =
2
S
3 100 - A
o
-
90 - A
80 - A
70 1 1 1 1
108 10°® 10 102 10°
Energy, in-lbf

Based on the results from [6], a ROM was successfully computed for the clamped-clamped beam using bending modes
1, 3, 5 and 7, augmented with axial modes 26, 39, 45, 47, 49, 51, 53, 55. The axial modes were chosen based on the static
responses discussed in Sect. 30.2.1.1, such that two associated axial modes were added for every bending mode. This basis
is used throughout Sect. 30.3 in order to understand how the parameter estimation schemes and scaling factors affect the
resulting ROM. The original development of the enforced displacement method by Muravyov and Rizzi suggested using the
constant scaling (CS) method to scale each mode during the static displacement fields. The sensitivity of the ED method
was observed by using two different CS factors, namely when the first mode was displaced to 3.0 times the beam thickness
(referred as CS (3.0)), and 1.0 times the thickness (CS (1.0)). After computing the ROM with these scaling factors, and each
of the parameter estimation schemes, the first NNM was computed from the reduced equations and compared to the full
order model results (denoted as AMF in the figure legend). These results are presented on the frequency energy plot (FEP)
in Figs. 30.1 and 30.2, where the frequency represents the fundamental frequency of the periodic response, and the energy
represents the conserved energy (potential plus kinetic) as the structure vibrates in that NNM.

Many interesting observationscan be made from these results, and since each ROM used the same basis vectors, the
discrepancy can be attributed to the CS scaling level and parameter estimation method. For the smaller CS factor in Fig. 30.1,
none of the parameter estimation schemes predicted to correct results. The ROM estimated with RANSTEP was softer than
the AMF results, while the two least square methods predicted a stiffer NNM. (Softer or stiffer refers to the fact that at a
given energy level the frequency is either lower or higher than the actual frequency, respectively.) These results show that
the CS factor of 1.0 is not an adequate scaling factor, even though it was on the order of the beam thickness, as originally
recommended.

The results in Fig. 30.2 show the same ROMs but instead with a CS factor set to 3.0 times the beam thickness. At this
scaling level, the ROM with RANSTEP produced very accurate results as the first NNM nearly coincides with the AMF
results. The ROM with RANSTEP captured solutions along the backbone of the NNM, and also captured the two modal
interactions (i.e. the tongues emanating from the backbone around 88 and 120 Hz). Each of the least squares methods
were again inaccurate, even though they estimate the nonlinear stiffness coefficients from the same static responses at the
same scaling level. Apparently ill-conditioning in the equations leads to higher sensitivity to errors, ultimately producing
inaccurate predictions of the NNM. The RANSTEP approach is clearly the favorable method to estimate the nonlinear
coefficients, however, one must carefully select the scaling amplitudes to obtain accurate results.

The results in Figs. 30.1 and 30.2 defy the conventional wisdom, which suggests that scaling on the order of the beam
thickness will give a valid ROM. The root cause was investigated by computing a single-mode ROM with a particular mode

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260



Author's Proof

30 Considerations for Indirect Parameter Estimation in Nonlinear Reduced Order Models

Fig. 30.2 Plot of NNM 1 using
modes (1, 3, 5, 7, 26, 39, 45, 47,
49, 51, 53, 55) and a CS scaling
set to a maximum displacement
of 3.0 times the thickness for
mode 1. The (black circles) show
NNM 1 computed with the AMF
algorithm, and ROMs built with
the (green dashed) least squares
constrained method (red dotted),
least squares method, and (blue
solid) RANSTEP method

this figure will be printed in b/w

Fig. 30.3 For modes 1, 7, 39 and
55, the effect of scaling is shown
for the computed absolute value
of the quadratic stiffness term,
B1(1,1), of a single-mode ROM
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in the basis set, and tracking how the nonlinear quadratic and cubic stiffness coefficients changed with scaling level. Since 261
the difference in the NNM essentially traces back to the stiffness coefficients at the different scaling levels, this provided 262
insight into the scaling range over which each mode could be accurately estimated. Examining a higher and lower mode 263

for both the bending and membrane modes, the absolute values of the stiffness coefficients versus scaling level for bending 264

modes 1 and 7 and membrane modes 39 and 55 are shown in Figs. 30.3 and 30.4.
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Fig. 30.4 For modes 1, 7, 39 and
55, the effect of scaling is shown
for the computed absolute value
of the cubic stiffness term,
A;(1,1,1), of a single-mode ROM

Fig. 30.5 Plot of NNM 1 using
modes (1, 3, 5, 7, 26, 39, 45, 47,
49, 51, 53, 55) and a CD scaling
set to a maximum displacement
of 3.0 times the thickness for all
bending modes, and 1.0 times the
thickness for all axial modes. The
(black circles) show NNM 1
computed with the AMF
algorithm, and ROMs built with
the (green dashed) least squares
constrained method (red dotted),
least squares method, and (blue
solid) RANSTEP method

this figure will be printed in b/w
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Table 30.2 Equivalent displacement levels of each mode when using CS set to 3.0
times the thickness

Mode 1 |3 |5 |7 26 |39 (45 |47 |49 |51 |53 |55
Equivalent CD levels 3.00 2.85| 2.84, 2.85| 2.67 2.67 2.67| 2.54, 2.67| 2.67 2.67 2.54 5.1

For the two bending modes, the quadratic coefficients in Fig. 30.3 were essentially zero, which was expected for the
bending modes of a flat structure, but is still informative to see the level of scatter and the regimes where they are estimated
to be small. The two axial vibration modes produced quadratic terms that were nonzero. The quadratic term for mode 39
was nearly constant over the entire displacement range, however B;(1,1) for mode 55 appeared to increase as the scaling
increased. The cubic terms were less consistent throughout the scaling range for all of the modes. For both bending modes, the
cubic terms were increasing by several orders of magnitude as the displacement tended towards zero. Between displacements
of 0 and 1.0 times the beam thickness, the predicted A;(1,1,1) term dropped down about two orders of magnitude, but began
to stabilize as the scaling went above 1.0.

The “bend” of the first NNM predicted in Figs. 30.1 and 30.2 strongly depends on the ‘cubic stiffness coefficient
associated with bending mode 1. For mode 1 in Fig. 30.4, scaling of 1.0 times the beam thickness produced a value of
A(1,1,1) =5.52-10'2 Ibf/in®, while a scaling of 3.0 produced a value of 6.51-10'? Ibf/in®. The coefficient on mode 1 did
not converge until around the range of 2.0 or 3.0 times the beam thickness, which may explain why the scaling of CS (3.0)
produced more accurate results than CS (1.0). Unlike the bending modes, the quadratic and cubic terms for the axial modes
do not converge within the range of the scaling shown in Figs. 30.3 and 30.4.

The optimal scaling can vary for each mode in the basis, and hence this was the motivation for using the CD scaling
method which allows the scaling level to be chosen individually for each mode (recall that the CS method only allows
control of the displacement level on the lowest frequency bending mode). New ROMs were again produced using the same
basis and parameter estimation schemes, however this time using the CD scaling method. Each of the bending modes was
scaled to 3.0 times the beam thickness, while the axial modes were scaled to 1.0 times the beam thickness. Since there was
no clear consistency in the coefficients produced by the axial modes in Figs. 30.3 and 30.4, the 1.0 factor was chosen in order
to avoid the large spikes in the quadratic or cubic term. The results for NNM 1 are shown in Fig. 30.5.

With the CD scaling method, the ROM with RANSTEP again produced very accurate results, however the least squares
methods produced erroneous NNMs. Even though no difference was observed when using the CS or CD scaling with
RANSTEP, the CD method provides more flexibility in the selection of scaling each mode during the fitting process. The
connection between the CD scaling method, and CS is shown below in Table 30.2, where the equivalent CD factor is given
for each mode when using CS (3.0). It can be seen that the displacements on each mode with CS are not drastically different
from those used in Fig. 30.5, except that the axial modes are displaced slightly higher (2.5 times the thickness compared
to 1.0). The level of the reaction force required to enforce an axial displacement by one thickness tends to be much larger
than that required in bending, so the reduced scaling on the axial modes reduced the axial force levels and any associated
numerical ill-conditioning, explaining why least squares improved in Fig. 30.5 compared to the results in Fig. 30.2.

30.4 Numerical Results: Axial Modes Versus Dual Modes

The results in Sect. 30.3 showed that the RANSTEP estimation procedure was clearly the preferred method for parameter
estimation and that CD scaling was adequate. In this section, the bending modes Egs. (30.1, 30.3, 30.5, and 30.7) will be used
exclusively with RANSTEP and CD in order to evaluate the effect of using dual modes instead of axial modes. The ROMs
used in the previous section used 12 modes to capture the response of only four bending modes, so one would hope that a
more compact model could be found. Recall from Sect. 30.2.1.2 that three types of dual modes exist, namely generation one,
two and three. In the following, a generation one dual mode estimated from bending mode 1 will be referred to as “dual 1”
or “D1”, and a generation two dual mode with bending modes 1 and 3 will be referred as “dual 1-3” or “D1-3".

Before generating ROMs with the dual mode basis, the appropriate scaling levels for these modes were investigated
by computing the single-mode ROMs, and observing how the absolute values of the stiffness coefficients evolved with
displacement level. The results for duals 1 and 1-3 are shown in Fig. 30.6.

It was determined that these dual modes should be scaled to 1.0 times the beam thickness when using them to estimate the
ROMs, exactly as done with the axial modes in the previous section. There were no large spikes around this value observed
in Fig. 30.6 for the dual modes of interest, implying that this would be a safe displacement level to use. The work by Kim
et al. [4] discussed the use of dual modes with the enforced displacement procedure, and suggested the use of different
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Fig. 30.6 Variation in the Dual 1 Dual 1-3
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combinations of specific dual modes. For example, they discuss using only dual modes computed from one of the dominant 311
bending modes. In the case where bending modes-1, 3, 5, and 7 were used in the basis and mode 1 was expected to be 312
dominant in the responses of interest, then only the dual modes (1, 1-3, 1-5, 1-7, 1-3-5, 1-3-7, 1-5-7) would be included in 313
the ROM. To evaluate the use of dual modes to capture the in-plane kinematics, ROMs were created with only generation one 314
dual modes, generation one and two dual modes, and mode 1 dominant dual modes (see Table 30.3 for a list of dual modes 315
included in each ROM). The resulting ROMs were computed with the RANSTEP method and CD with each bending mode 3
scaled to 3.0 times the thickness and the appropriate duals to 1.0. The ROMs were then compared based on their computed 317
nonlinear normal modes. The results are shown in Fig. 30.7. 318

The ROM with the mode 1-dominant dual modes (green dashed) performed best when compared to the full order model, 319
as it captured solutions along the backbone as well as the two modal interactions. When using only generation one dual 320
modes (blue solid), the resulting ROM was able to accurately predict solutions along the backbone, but not along the modal 321
interactions. For example, the modal interaction at 88 Hz was an interaction with NNM 3. Since using only generation one 322
dual modes did not include E (123) or any other higher order dual modes, the necessary kinematics were not available in the 323
ROM to fully capture this interaction. When using generation one and two dual modes (red dotted), the ROM was able to 324
capture this interaction, further implying that the higher order kinematics were important. 325

There was one additional challenge with the ROM that was built with generation one and two dual modes; the authors 326
were not able to compute NNM solutions beyond 100 Hz with this ROM. (Notice that the red dotted line in Fig. 30.7 does not 327
continue past this point.) A similar observation was made when a ROM was constructed including all of generation one, two, 328
and three dual modes (not shown here). With this ROM the continuation algorithm could not compute past the linear range 329
of the NNM so its NNM was not included in Fig. 30.7. Apparently some of these higher generation modes introduce some 330
instability in the ROM equations at certain amplitude levels. One would hope that adding additional basis vectors to the ROM 331
would improve the results, or at the very least have no ill effect on the results so this behavior is certainly undesirable. The 332
cleaning procedure [15] briefly mentioned in Sect. 30.2.2 would perhaps help with this issue, although it was not explored in 333
this paper. 334
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Fig. 30.7 Plot of NNM 1 using T —
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30.5 Numerical Results: FEA Model of Exhaust Cover Plate

A more complicated model is used now to evaluate the ability of the enforced displacement ROMs to accurately predict
NNMs of a structure for which an analytical solution is intractable. The FEA model of interest is a perforated exhaust cover
plate and is shown in Fig. 30.8. A similar model was studied in [6, 17], but the model here has an improved mesh. When
the authors originally investigated this model, they found that it was difficult to identify axial modes to augment the bending
modes and hence an accurate ROM was not obtained in [6]. Here, the problem is revisited in an attempt to model the in-plane
kinematics with dual modes.

The exhaust cover plate is 317.5 mm (12.5'in.) in diameter with a uniform thickness of 1.5 mm (0.059 in.). It is constructed
of structural steel with a mass density of 7,800 kg/m3 (7.29 - 10-4 1b-s*/in*) and a Young’s modulus of 208 GPa (30,160 ksi).
The Abaqus® model has a total of 1,440 S4 shell elements, and a total of 8,886 DOF. The boundary conditions were
approximated as fixed along the bottom ring of the plate in order to account for the relatively rigid boundary to which
the plate is welded.

The first NNM of the nonlinear plate model was computed using the AMF algorithm, and used to compare five different
ROMs. Four of the ROMs used bending modes (1 and 6), and “axial” modes (126, 135, 142, 157, 169, 375). These “axial”
modes were selected based on the static displacement results in Sect. 30.2.1.1, however each selected mode shape still
had noticeable transverse deformation and no true in-plane modes were identified. Another ROM was created with the
same bending modes, but instead with all the first and second generation dual modes (E(ll), 5(61), 5(126)). For all cases, the
RANSTEP parameter estimation procedure was used, and the CD scaling factors were selected such that the bending modes
and membrane (axial or dual) modes were displaced between 0.5 and 3.0 times the plate thickness. The frequency-energy
behavior of the NNMs estimated from these ROMs are shown in Fig. 30.9.

The enforced displacement ROMs that were built with axial modes and scaled the bending modes to a maximum
displacement of 3.0 times the thickness predicted stiffer NNMs than the full order model, as expected from previous
works [6]. The ROM that was built with axial modes and scaled the bending and membrane modes to a maximum
displacement of 1.0 times the thickness predicted slightly stiffer behavior at lower energies and then slightly softer behavior
at higher energies. For any of these first three ROMs with axial modes in the legend of Fig. 30.9, the accuracy may be
acceptable for some purposes. However, the last ROM created with axial modes predicted unphysical behavior, likely due
to the low scaling factors used during the static loads to fit the nonlinear coefficients. Additional kinematics are needed to

335

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361



Author's Proof

this figure will be printed in b/w

this figure will be printed in b/w

Fig. 30.8 A geometrically
nonlinear finite element model of
an exhaust cover panel

Fig. 30.9 Plot of NNM 1 using 190
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improve the accuracy of this model when using axial modes, but it is difficult to determine which modes are needed. Plus,
the model already has three times as many axial modes as it does bending modes, so additional modes increase the cost
required to build the ROM. The ROM with dual modes worked very well as the predicted backbone coincided with the AMF
results almost perfectly. This ROM was not able to capture the modal interaction near 175 Hz, however this is to be expected
because this internal resonance was an interaction with NNM 15, a bending motion that was not included in the basis set.

The use of dual modes provided a systematic approach to model the in-plane deformations, with only 3 in-plane component

mode shapes, and provided very accurate results for the exhaust cover plate model.
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30.6 Conclusion

This work has explored the effect of the various decisions to generate a ROM using the enforced displacement procedure by
comparing the accuracy of its computed nonlinear normal modes. The results in Sect. 30.3 clearly showed that the RANSTEP
procedure was much more robust at estimating the coefficients in the reduced order models than the least squares procedure.
This may also suggest that one can expect RANSTEP to be less sensitive to the amplitude of the load cases than the least
squares approach. The effect of the scaling of the modal displacements on these ROMs was also investigated. So long as
RANSTEP was used, either scaling method was found to be accurate as long as the bending modes were displaced a few
times the beam thickness. Previous works have made general recommendations of using a displacement on the order of the
thickness [3]. However, this discrepancy could be attributed to the fact that we assumed the linear term on the ROM equation
was determined from an eigenvalues solution, whereas in the works by Perez, they fit this when fitting the nonlinear terms.
The CD scaling method is recommended based on the flexibility it allows to displace each mode in the basis set.

This work has also explored the number of axial or dual modes that are needed to obtain an accurate ROM. For the systems
studied here it was sometimes possible to obtain an accurate ROM by simply selecting those axial modes that were statically
coupled to each of the bending modes in the basis. This worked for the beam but the ROM for the exhaust plate seemed to
converge slowly to the true NNM and there was noticeable inaccuracy even after several axial modes had been included. In
contrast, when dual modes were used, an accurate ROM for the exhaust plate was obtained with only two bending modes and
three dual modes. For the beam, the dual modes consistently produced ROMs that accurately captured the backbone of the
NNM. However, only the ROM with mode 1 dominant duals captured the internal resonances correctly. Additionally, several
of the ROMs with dual modes could not be integrated at large response amplitudes, presumably due to small errors in some of
the nonlinear coefficients. It was noted that Mignolet, Perez and Wang [2, 7, 8, 15] typically use the cleaning procedure in the
papers just cited to set certain terms in the ROM to zero. Perhaps this is a critical step when using these methods. However, it
is important to note that cleaning can only be done when the structure is flat since one needs to be able to classify each mode
as either axial or bending. For a curved structure, all modes contain bending and membrane components, making it difficult
to apply this approach.

In summary, the results so far confirm the effectiveness of the enforced displacements procedure so long as the best
practices outlined above are used. It seems to exhibit some sensitivity to the displacement levels but these can be addressed
by computing single-mode ROMs at different scaling levels and seeing how the coefficients change. These ROMs tend to
produce larger reduced order models since the membrane modes need to be explicitly included in the basis, and these can be
hard to identify. Dual modes seem to be promising as a-means of obtaining an efficient ROM with relatively few membrane
degrees of freedom, but some expertise is still required to' choose a set of dual modes that will be accurate while keeping the
ROM small.
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