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Tractable Experiment Design via
Mathematical Surrogates

Brian Williams

Statistical Sciences Group, Los Alamos National Laboratory
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Abstract

This presentation summarizes the development and
implementation of quantitative design criteria motivated by
targeted inference objectives for identifying new, potentially
expensive computational or physical experiments. The first
application is concerned with estimating features of quantities of
interest arising from complex computational models, such as
quantiles or failure probabilities. A sequential strategy is
proposed for iterative refinement of the importance distributions
used to efficiently sample the uncertain inputs to the
computational model. In the second application, effective use of
mathematical surrogates is investigated to help alleviate the
analytical and numerical intractability often associated with
Bayesian experiment design. This approach allows for the
incorporation of prior information into the design process without
the need for gross simplification of the design criterion. lllustrative
examples of both design problems will be presented as an
argument for the relevance of these research problems.
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Rare Event Estimation

* |nterested in rare event estimation
— Outputs obtained from computational model
— Uncertainties in operating conditions and physics variables
— Physics variables calibrated wrt reference experimental data

* |n particular, quantile or percentile estimation

Pr[n(wag) > QOz] — O
— One of g, or a is specified and the other is to be inferred
— q, may be random when inferring a

e Sequential importance sampling for improved inference

— Oversample region of parameter space producing rare events of
interest

— Sequentially refine importance distributions for improved inference

» Los Alamos
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Example: VR2plus Model

Scenario:
Pressurizer failure,
followed by pump
trip and initiation of
SCRAM (insertion
of control rods)

Goal: Understand
behavior of peak
coolant temperature
(PCT) in the reactor

Interested in
probability that PCT
exceeds 700° K
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VR2plus Details

Single thermal-hydraulics loop with 21 components

Working coolant is water at 16MPa and 600° K, single-phase flow

Nominal power output of this reactor is 15MW

Calculations performed with reactor safety analysis code R7 (INL)

Input Parameter Min Max Description
PumpTripPre 15.6 MPa | 15.7 MPa | Min. pump pressure causing trip
PumpStopTime 10 s 100 s Relaxation time of pump phase-out
PumpPow 0.0 0.4 Pump end power
SCRAMtemp 625° K 635° K Max. temp. causing SCRAM
CRinject 0.025 0.24 Position of CR at end of SCRAM
CRtime 10 s o0s Relaxation time of CR system

7t ok Alamos Input parameters assigned independent
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Importance Sampling

e Sample from alternative distribution g(x,0), evaluate
computational model, and weight each output

/ 1[n(:n,9)>qa] (CL‘, 9) UJ(Q’J, H)g(il?, 9) dx do
- S—

Importance weight w(zx,0) = f<‘27rg)9> Importance density
— Percentile estimator: 49 = Zw D,00) 11, 2 901y q.1 (), 09))

— Quantile estimator: Smallest value of g, for which al9) < «

* |Importance density g(x,0) ideally chosen to increase the

likelihood of observing desired rare events

1 minimum variance
g(wa 0) — al[n(w,9)>qa]f(w)ﬂ-(e) importance density

Goal: Approximate minimum variance importance
» Los Alamos : : . : :
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Relevant (Sensitive) Variables

* A subset of variables may be responsible for generating
rare events

— Relevant x;, 6,
— lrrelevant x;, 6,

n(x,0) =n((x,,x;), (0, éz)) for all values of &; and 6,

* Minimum variance importance distribution

1
gr(xr,0r) = —1ip(2.0)>q.1(x, 0) fr(x,)m(0,) for any values of x; and 0;
Q

9i((xi, 0:)[(zr,0;) ) = fi(x;|x,)m:(0;]6:)
* |Importance distribution g(x,0) becomes

g(il}, 9) — Gr (CET, Hr)fz(wz‘wr)wz(gz‘gr)
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Many Applications Will Require Code
Surrogates

e Many computational models run too slowly for direct use in
brute force or importance sampling based rare event inference

e Use training runs to develop a statistical surrogate model for
the complex code (i.e., the emulator) based on a Gaussian

process

1.5

— Deterministic code is interpolated with zero uncertainty

—— point predictions
N — — 95% prediction bounds
Y @data 7\

P

e Kriging Variance

» Los Alamos
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Var(i(z; 8))

outputs evaluated
at training runs

Ziyn 2, \
(2 6) =1 (% ﬂ)Ri(ﬁ)nn
correlations between pairwise correlations

prediction site z and between training

training runs z,.,..., Z runs z,..., Z

n n

=0’ (1—r"(2;8)R ' (B)r(2;8))



Surrogate-based Percentile/Quantile Estimation

e (Gaussian Process model with plug-in covariance parameter
estimates, e.qg.

ﬁ(él}, 0) - 77(337 6)

A

Var(n(xz,0))

~ N(0,1)

* Process-based inference

Pr [77(«’1379) > Q‘(wve)] =&

z,0) — ga
/ w(x, 0) g(x, ) dx do
(\/Var (x,0) )

A NONE. Zq) (@), 09)) — gq w(z), gl
- Los Alamos N \/Var (x0),000)))
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Control Rod Position

s Los Alamos "*

0.10 0.15 0.20

0.05

Adaptive Importance Sampling

* Choose g(x,0) by iterative refinement
1. Sample from initial importance density
g(x,0) = f(x) m(8)

2. Given target probability or quantile level, determine which
parameters are sensitive for producing extreme output values

NATIONAL LABORATORY
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Adaptive Importance Sampling

3. For sensitive parameters, adopt a family of importance
densities (e.g. Beta, (truncated) Normal, etc.). Fit the
parameters of this family to the selected largest order
statistics (e.g. method of moments, MLE).

4. Keep the conditional distribution for the insensitive
parameters, given values of the sensitive parameters.

5. Combine the distributions of (3) and (4) to obtain g®
(x,0).

6. If applicable, refine the surrogate in the input region of
interest, e.g. using information provided by g?)(x,0).

/. Repeat (2)-(6) until the updated importance
distribution g®)(x,0) “stabilizes” in its approximation of
the minimum variance importance distribution.
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Convergence Assessment Through Iterative
Refinement of Surrogate

e Surrogate bias may affect inference results

* Choose design augmentation that minimizes integrated
mean square error with respect to the currently estimated

importance distributions for sensitive parameters
— A version of “targeted” IMSE (tIMSE)

IMSE(Dy) = 1—trace ([/r{ ’I“{DO Dy} (2 H ] {D Db}(6)>

Estimate correlation parameters For sensitive input /i, select w(z;)
based on current design D, to be its importance distribution

» Los Alamos
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VR2plus Analysis

e Percentile inference
— PCT>700°K

Importance distribution

— Independent Beta distributions for sensitive parameters
— Independent Uniform distributions for insensitive parameters

Importance Distributions

PDF
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Pressurizer Failure: Percentile Inference
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Bayesian Experimental Design

* Decision-theoretic approach to designing experiments that
assimilates the objectives of the experiment with prior
information to arrive at an optimal set of new runs

e Chaloner, K. and Verdinelli, I. (1995) is an excellent review
article on Bayesian experimental design

e Based on utility functions
— Represent preferences: U(x) = U(y) if and only if x is preferred to y

* Two primary experimental objectives: estimation and
prediction

» Los Alamos
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Expected Utility

Design n must be chosen from some set H

Data y observed from sample space Y

Based on y, a decision d is chosen from some set D
Unknown parameter 6 defined on parameter space ©
General utility function U(d, 6, n, y)

/ max/ U(d,0,n,y d@dy

Bayesian experimental design solution n* : p(y, 6| n)
= %rleaglc/ ;‘?Eag/@U(dﬁ,n,y)p(@\ym)p(ﬂn) df dy

» Los Alamos
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Motivating Application: Accelerated Testing

e |tems will not fail under certain conditions

e Such items are exposed to accelerated conditions to
induce failure

e Typical application: Estimating the lifetime distribution of
reliable items
LANL: Understanding the

conditions that induce
undesirable explosions

Accelerated testing has become
commonplace

» Los Alamos
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Motivating Application: Test Planning

* Key question: How can prior knowledge be incorporated
into accelerated test planning?

* Prior knowledge implemented as an informative prior

distribution on model parameters
— Obtained from sequential testing
— Experience with similar populations

* A test consists of
— Choosing the levels of the accelerators
— Proportion of units at each selected level

» Los Alamos

AAAAAAAAAAAAAAAAAA

Slide 17



Motivating Application: Device A Data
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Temperature

Data are from Meeker and
Escobar (1998)

165 items are exposed to

accelerated temperatures

— 30 units at 10°C with O failures

— 100 units at 40°C with 10 failures
— 20 units at 60°C with 9 failures

— 15 units at 80°C with 14 failures

Meeker and Escobar (1998)
assume a lognormal
distribution with Arrhenius
relation for failure time T

— log(T)~N(p(x),0?)

~ H(x)=a+px
~ x=11605/(273.15 + Temp(°C))
- e = (G, B’ G)



Motivating Application: New Data
e Suppose

— Different yet similar items to Device A are to be tested next
— Expect a similar failure mechanism as Device A

— Posterior distribution of 8 resulting from Device A analysis is

relevant
— Becomes the prior distribution p(0) for planning and analyzing the next test

e Notation

— nis an accelerated test
— Temperatures to test and corresponding proportions

— tis a vector of failure and censoring times corresponding to n
— t,,is the 0.1 quantile of the failure-time distribution
— var(t,,|t, n, 10°C ) is the posterior variance of t, , at 10°C

» Los Alamos
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Motivating Application: Test Constraints

e Experimentalists specify a temperature range of [10°C,

80°C] for new tests

— 10°C represents the use condition

— Testing above 80°C will introduce a new failure mechanism not
seen at the use condition

* All tests end at a censoring time of {, = 5000 hours,
independent of test n

* Interest in estimating ¢, , at 10°C with high precision

— ty4(x)=exp{a+ px+ o ®'0.1) }, d denotes standard normal CDF
~ x=11605/(273.15 + Temp(°C)) = 11605/(273.15 + 10) = 41

— Therefore, t,, at 10°C is a function £, ,(8) of parameters 6 only

» Los Alamos
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Exact Bayesian Experimental Design

e Quadratic loss: U(d,0,n,t) = —(t, ,(8) — d)?
max/ U(d,0,n,t)p(0|t,n)dd = —var(tg.1|t,n,10°C)
deD e

* Expected utility:

U(n) = —/ var(to.1|t,n, 10°C) p(t|n) dt

T
_ / var(to.1 |6, 1, 10°C) p(t|6, 1) dt p(6) df
©JT

e Choose n to minimize

Aly) = /@ /T var(to.1[6,m, 10°C) p(t|0. 1) dt p(6) d6

» Los Alamos
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Design Criterion Estimation

A(n)://var(to,l\t,n, 10°C) p(t|0,n) dt p(0) db
eJT

* Given n, A\(n) is estimated as follows:

1.
2.

3.

Draw 6* from p(0)
Simulate lifetimes t* from their lognormal sampling distribution
given 8" and n
Censor the elements of t* exceeding ¢,
Using importance sampling or MCMC to generate a posterior
sample of 8 given t* and n, estimate var( t, ,(0) | t*, n, 10°C ) and
denote the resulting sample variance by V*(n)
Repeat steps 1-4 to obtain V*(n),...,V;(n)for Jlarge (e.g. J
=10,000) A 1
Compute the Monte Carlo estimate A(7n) = 5 Z V:E(n)

j=1

» Los Alamos
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Using GPs to Estimate Optimal Designs

1. Select a set of initial designs 4, N, ..., N, and compute

design criterion estimates A (1), A(n2), ..., A(n)
— Initial designs are generated, for example, via random or Latin
hypercube sampling

2. FitaGPto Ag = [A(m1),A(m2), ..., A(np)]

3. Apply the Expected Quantile Improvement (EQI)

algorithm with this GP to select the next design n,...
— EQI selects a design that minimizes an upper quantile of A(n).

4. Increment k to k+1

5. Repeat steps 2-4 until run budget expires or EQI stopping
criteria are satisfied.

» Los Alamos
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Motivating Application: EQI Implementation

e Design n has the following form
Temp, |

Temp, o B
n = : . where m;, > 0 for:=1,..., B and Zwizl
. : i=1

_TempB TB.

e Zhang, Y. and Meeker, W.Q. (2006) suggests a near-

optimal test will have B = 2

— Our search restricted to this case, so that GP is a function of the 3
inputs (Temp,, Temp,, 1,):

| Temp, 1
(h Temp, 1—m

» Los Alamos
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Motivating Application: Results
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Motivating Application: Comparisons
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Conclusions

e Surrogates enable optimization of computationally
iIntensive experimental design criteria
— Slow running codes
— Analytically intractable criterion functions

* Percentile and quantile estimation
— Importance sampling improves UQ of percentile and quantile
estimates relative to brute force approach

— Sequential design improves surrogate quality in region of
parameter space indicated by importance distributions

e Bayesian experimental design
— Powerful framework for incorporating prior information into optimal
designs
— Estimation of analytically intractable design criteria can be
mitigated through the application of surrogate-based optimization
techniques

» Los Alamos
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