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Tractable Experiment Design via 
Mathematical Surrogates 

 

 

 

Brian Williams 
 

 
Statistical Sciences Group, Los Alamos National Laboratory 



Abstract 
This presentation summarizes the development and 
implementation of quantitative design criteria motivated by 
targeted inference objectives for identifying new, potentially 
expensive computational or physical experiments. The first 
application is concerned with estimating features of quantities of 
interest arising from complex computational models, such as 
quantiles or failure probabilities. A sequential strategy is 
proposed for iterative refinement of the importance distributions 
used to efficiently sample the uncertain inputs to the 
computational model. In the second application, effective use of 
mathematical surrogates is investigated to help alleviate the 
analytical and numerical intractability often associated with 
Bayesian experiment design. This approach allows for the 
incorporation of prior information into the design process without 
the need for gross simplification of the design criterion. Illustrative 
examples of both design problems will be presented as an 
argument for the relevance of these research problems. 
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Rare Event Estimation 
•  Interested in rare event estimation 

–  Outputs obtained from computational model 
–  Uncertainties in operating conditions and physics variables 
–  Physics variables calibrated wrt reference experimental data 

•  In particular, quantile or percentile estimation 

–  One of qα or α is specified and the other is to be inferred 
–  qα may be random when inferring α	



•  Sequential importance sampling for improved inference 
–  Oversample region of parameter space producing rare events of 

interest 
–  Sequentially refine importance distributions for improved inference 
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Pr[ ⇥(x,�) > q� ] = �



Example:  VR2plus Model 

•  Scenario:  
Pressurizer failure, 
followed by pump 
trip and initiation of 
SCRAM (insertion 
of control rods) 

•  Goal:  Understand 
behavior of peak 
coolant temperature 
(PCT) in the reactor 

•  Interested in 
probability that PCT 
exceeds 700o K 
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VR2plus Details 
•  Single thermal-hydraulics loop with 21 components 

•  Working coolant is water at 16MPa and 600o K, single-phase flow 

•  Nominal power output of this reactor is 15MW  

•  Calculations performed with reactor safety analysis code R7 (INL) 
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Input Parameter Min Max Description 
PumpTripPre 15.6 MPa 15.7 MPa Min. pump pressure causing trip 
PumpStopTime 10 s 100 s Relaxation time of pump phase-out 
PumpPow 0.0 0.4 Pump end power 
SCRAMtemp 625o K 635o K Max. temp. causing SCRAM 
CRinject 0.025 0.24 Position of CR at end of SCRAM 
CRtime 10 s 50 s Relaxation time of CR system 

Input parameters assigned independent 
Uniform distributions on their ranges 



•  Sample from alternative distribution g(x,θ), evaluate 
computational model, and weight each output 

 

–  Percentile estimator: 

–  Quantile estimator:  Smallest value of qα for which  

•  Importance density g(x,θ) ideally chosen to increase the 
likelihood of observing desired rare events 

Importance Sampling 

�
1[�(x,�)>q�](x,�) w(x,�)g(x,�) dx d�

w(x,�) � f(x) �(�)
g(x,�)Importance weight Importance density 
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�̂(g) =
1
N

N�

j=1

w(x(j),�(j)) 1[�(x(j),�(j))>q�](x
(j),�(j))

�̂(g) � �

minimum variance 
importance density g(x,�) =

1
�

1[�(x,�)>q�]f(x)⇥(�)

Goal:  Approximate minimum variance importance 
density to achieve substantial variance reduction  
 



•  A subset of variables may be responsible for generating 
rare events 
–  Relevant xr, θr 

–  Irrelevant xi, θi 

•  Minimum variance importance distribution 

•  Importance distribution g(x,θ) becomes 

Relevant (Sensitive) Variables 
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�(x,�) = �( (xr, x̃i), (�r, �̃i) ) for all values of x̃i and �̃i

g(x,�) = gr(xr,�r)fi(xi|xr)�i(�i|�r)

gr(xr,�r) =
1
�

1[�(x,�)>q�](x,�)fr(xr)⇥r(�r) for any values of xi and �i

gi( (xi,�i)|(xr,�r) ) = fi(xi|xr)�i(�i|�r)



Many Applications Will Require Code 
Surrogates 

•  Many computational models run too slowly for direct use in 
brute force or importance sampling based rare event inference 

•  Use training runs to develop a statistical surrogate model for 
the complex code (i.e., the emulator) based on a Gaussian 
process 
–  Deterministic code is interpolated with zero uncertainty 

•  Kriging Predict 

 

•  Kriging Variance 
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correlations between	


prediction site z and	


training runs z1,..., zn	



pairwise correlations	


between training	


runs z1,..., zn	



outputs evaluated	


at training runs	


z1,..., zn	



⌘̃(z;�) = rT (z;�)R�1(�)⇥n

dV ar( �̃(z;�) ) = ⇥2
�
1� rT (z;�)R�1(�)r(z;�)

�



Surrogate-based Percentile/Quantile Estimation 
•  Gaussian Process model with plug-in covariance parameter 

estimates, e.g. 

•  Process-based inference 
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Pr [�(x,�) > q|(x,�)] = �

0

@ �̃(x,�)� qq
dV ar( �̃(x,�) )

1

A

� =

Z
�

0

@ ⇥̃(x,�)� q↵q
dV ar( ⇥̃(x,�) )

1

A w(x,�) g(x,�) dx d�

�̂(g) =
1

N

NX

j=1

�

0

@ ⇥̃(x(j),�(j))� q�q
dV ar( ⇥̃(x(j),�(j)) )

1

A w(x(j),�(j))

�̃(x,�)� �(x,�)q
dV ar( �̃(x,�) )

⇠ N(0, 1)



Adaptive Importance Sampling 
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•  Choose g(x,θ) by iterative refinement 
1.  Sample from initial importance density 

g(1)(x,θ) = f(x) π(θ) 
2.  Given target probability or quantile level, determine which 

parameters are sensitive for producing extreme output values 
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Figure 7: Rare Events at the 700�K (�) level.
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Figure 9: Rare Events at the 700�K (�) level.
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Adaptive Importance Sampling 

Slide 10 

3.  For sensitive parameters, adopt a family of importance 
densities (e.g. Beta, (truncated) Normal, etc.).  Fit the 
parameters of this family to the selected largest order 
statistics (e.g. method of moments, MLE).   

4.  Keep the conditional distribution for the insensitive 
parameters, given values of the sensitive parameters. 

5.  Combine the distributions of (3) and (4) to obtain g(2)

(x,θ). 
6.  If applicable, refine the surrogate in the input region of 

interest, e.g. using information provided by g(2)(x,θ). 
7.  Repeat (2)-(6) until the updated importance 

distribution g(k)(x,θ) “stabilizes” in its approximation of 
the minimum variance importance distribution. 



Convergence Assessment Through Iterative 
Refinement of Surrogate 

•  Surrogate bias may affect inference results 

•  Choose design augmentation that minimizes integrated 
mean square error with respect to the currently estimated 
importance distributions for sensitive parameters 
–  A version of “targeted” IMSE (tIMSE) 

IMSE(Db) = 1�trace

 "Z
r{D0,Db}(z;�) r

T
{D0,Db}(z;�)

nzY

i=1

wi(zi) dz

#
R�1

{D0,Db}(�)

!

For sensitive input i, select wi(zi) 
to be its importance distribution 

Estimate correlation parameters 
based on current design D0 
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VR2plus Analysis 
•  Percentile inference 

–  PCT > 700o K 
•  Importance distribution 

–  Independent Beta distributions for sensitive parameters 
–  Independent Uniform distributions for insensitive parameters 
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Pressurizer Failure:  Percentile Inference 
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Bayesian Experimental Design 

•  Decision-theoretic approach to designing experiments that 
assimilates the objectives of the experiment with prior 
information to arrive at an optimal set of new runs 

•  Chaloner, K. and Verdinelli, I. (1995) is an excellent review 
article on Bayesian experimental design 

•  Based on utility functions 
–  Represent preferences:  U(x) ≥ U(y) if and only if x is preferred to y 

•  Two primary experimental objectives:  estimation and 
prediction 
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Expected Utility 
•  Design η must be chosen from some set H 
•  Data y observed from sample space Y 
•  Based on y, a decision d is chosen from some set D 
•  Unknown parameter θ defined on parameter space Θ 
•  General utility function U(d, θ, η, y) 

•  Bayesian experimental design solution η* : 

U(⌘) =

Z

Y
max

d2D

Z

⇥
U(d, ✓, ⌘,y) p(✓|y, ⌘) p(y|⌘) d✓ dy

U(⌘⇤) = max

⌘2H

Z

Y

max

d2D

Z

⇥
U(d, ✓, ⌘,y) p(✓|y, ⌘) p(y|⌘) d✓ dy

p(y, θ | η) 
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Motivating Application:  Accelerated Testing 

•  Items will not fail under certain conditions 

•  Such items are exposed to accelerated conditions to 
induce failure 

•  Typical application:  Estimating the lifetime distribution of 
reliable items 

 

LANL:  Understanding the 
conditions that induce 
undesirable explosions 
 
Accelerated testing has become 
commonplace 
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Motivating Application:  Test Planning 

•  Key question:  How can prior knowledge be incorporated 
into accelerated test planning? 

•  Prior knowledge implemented as an informative prior 
distribution on model parameters 
–  Obtained from sequential testing 
–  Experience with similar populations 

•  A test consists of 
–  Choosing the levels of the accelerators 
–  Proportion of units at each selected level 
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Motivating Application:  Device A Data 
•  Data are from Meeker and 

Escobar (1998) 

•  165 items are exposed to 
accelerated temperatures 
–  30 units at 10oC with 0 failures 
–  100 units at 40oC with 10 failures 
–  20 units at 60oC with 9 failures 
–  15 units at 80oC with 14 failures 

•  Meeker and Escobar (1998) 
assume a lognormal 
distribution with Arrhenius 
relation for failure time T 
–  log( T ) ~ N( µ( x ), σ2 ) 
–  µ( x ) = α + βx 
–  x = 11605/(273.15 + Temp(oC)) 
–  θ = (α, β, σ) 
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Motivating Application:  New Data 

•  Suppose 
–  Different yet similar items to Device A are to be tested next 
–  Expect a similar failure mechanism as Device A 
–  Posterior distribution of θ resulting from Device A analysis is 

relevant 
–  Becomes the prior distribution p(θ) for planning and analyzing the next test 

•  Notation 
–  η is an accelerated test 

–  Temperatures to test and corresponding proportions 
–  t is a vector of failure and censoring times corresponding to η 
–  t0.1 is the 0.1 quantile of the failure-time distribution 
–  var( t0.1 | t, η, 10oC ) is the posterior variance of t0.1 at 10oC 
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Motivating Application:  Test Constraints 

•  Experimentalists specify a temperature range of [10oC,
80oC] for new tests 
–  10oC represents the use condition 
–  Testing above 80oC will introduce a new failure mechanism not 

seen at the use condition 

•  All tests end at a censoring time of tc = 5000 hours, 
independent of test η 

•  Interest in estimating t0.1 at 10oC with high precision 
–  t0.1(x) = exp{ α + βx + σ Φ-1(0.1) }, Φ denotes standard normal CDF 
–  x = 11605/(273.15 + Temp(oC)) = 11605/(273.15 + 10) ≈ 41 
–  Therefore, t0.1 at 10oC is a function t0.1(θ) of parameters θ only 

Slide 20 



Exact Bayesian Experimental Design 

•  Quadratic loss:  U(d,θ,η,t) = −(t0.1(θ) – d)2 

•  Expected utility: 

•  Choose η to minimize 

max

d2D

Z

⇥
U(d, ✓, ⌘, t) p(✓|t, ⌘) d✓ = �var(t0.1|t, ⌘, 10�C)

U(⌘) = �
Z

T
var(t0.1|t, ⌘, 10�C) p(t|⌘) dt

= �
Z

⇥

Z

T
var(t0.1|t, ⌘, 10�C) p(t|✓, ⌘) dt p(✓) d✓

⇤(⌘) =

Z

⇥

Z

T
var(t0.1|t, ⌘, 10�C) p(t|✓, ⌘) dt p(✓) d✓
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Design Criterion Estimation 

•  Given η, Λ(η) is estimated as follows: 
1.  Draw θ* from p(θ) 
2.  Simulate lifetimes t* from their lognormal sampling distribution 

given θ* and η 
3.  Censor the elements of t* exceeding tc 
4.  Using importance sampling or MCMC to generate a posterior 

sample of θ given t* and η, estimate var( t0.1(θ) | t*, η, 10oC ) and 
denote the resulting sample variance by V*(η) 

5.  Repeat steps 1-4 to obtain                                for J large (e.g. J 
= 10,000)  

6.  Compute the Monte Carlo estimate 

V ⇤
1 (⌘), . . . , V

⇤
J (⌘)

⇤̂(⌘) =
1

J

JX

j=1

V ⇤
j (⌘)

⇤(⌘) =

Z

⇥

Z

T
var(t0.1|t, ⌘, 10�C) p(t|✓, ⌘) dt p(✓) d✓
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Using GPs to Estimate Optimal Designs 
1.  Select a set of initial designs η1, η2, …, ηk and compute 

design criterion estimates 
–  Initial designs are generated, for example, via random or Latin 

hypercube sampling 

2.  Fit a GP to 

3.  Apply the Expected Quantile Improvement (EQI) 
algorithm with this GP to select the next design ηk+1. 

–  EQI selects a design that minimizes an upper quantile of Λ(η). 

4.  Increment k to k+1  

5.  Repeat steps 2-4 until run budget expires or EQI stopping 
criteria are satisfied. 

⇤̂(⌘1), ⇤̂(⌘2), . . . , ⇤̂(⌘k)

⇤̂k = [⇤̂(⌘1), ⇤̂(⌘2), . . . , ⇤̂(⌘k)]
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Motivating Application:  EQI Implementation 

•  Design η has the following form 

•  Zhang, Y. and Meeker, W.Q. (2006) suggests a near-
optimal test will have B = 2 
–  Our search restricted to this case, so that GP is a function of the 3 

inputs (Temp1, Temp2, π1): 

⌘ =

2

6664

Temp1 ⇡1

Temp2 ⇡2
.

.

.

.

.

.

TempB ⇡B

3

7775
where ⇡i � 0 for i = 1, . . . , B and

BX

i=1

⇡i = 1

⌘ =


Temp1 ⇡1

Temp2 1� ⇡1

�
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Motivating Application:  Results 

  0  20  40  60  80 10024
00

0
26

00
0

28
00

0
30

00
0

32
00

0
34

00
0

36
00

0
38

00
0

  0
 20

 40
 60

 80
100

Temperature 1

Te
mp

era
tur

e 2

Λ

Initial 30 Designs 

  0  20  40  60  80 10020
00

0
25

00
0

30
00

0
35

00
0

40
00

0

  0

 20

 40

 60

 80

100

Temperature 1

Te
m

pe
ra

tu
re

 2

Λ

EQI Designs 1-10 

  0  20  40  60  80 10020
00

0
25

00
0

30
00

0
35

00
0

40
00

0

  0

 20

 40

 60

 80

100

Temperature 1

Te
mp

er
atu

re
 2

Λ

EQI Designs 1-30 

Slide 25 



Motivating Application:  Comparisons 
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Exact Bayes:  EQI Iterates 
Approximate Bayes:  MLE & 
     Device A posterior for p(θ) 

Reduce censoring time so that 
posterior is not approximately 
Gaussian: 
Exact Bayes:  EQI Iterates 
EQI Optimal Design 
Approximate Bayes 
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Conclusions 
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•  Surrogates enable optimization of computationally 
intensive experimental design criteria 
–  Slow running codes 
–  Analytically intractable criterion functions 

•  Percentile and quantile estimation 
–  Importance sampling improves UQ of percentile and quantile 

estimates relative to brute force approach 
–  Sequential design improves surrogate quality in region of 

parameter space indicated by importance distributions 

•  Bayesian experimental design 
–  Powerful framework for incorporating prior information into optimal 

designs 
–  Estimation of analytically intractable design criteria can be 

mitigated through the application of surrogate-based optimization 
techniques 


