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e Pressure induced phase transition at room temperature

A sequence of phase transitions in ammonia boran

e have been discovered and studied by

using both in situ x-ray diffraction and Raman spectroscopy. Our earlier Raman
measurements (Lin et al. 2008) confirmed a phase transition below 2 GPa observed

previously and indicated two new transitions at

5 GPa and 12 GPa (Figure 1). Our

sequential x-ray diffraction studies (Chen et al. 2010, Lin et al. 2012) demonstrated that
the transitions at 5 GPa and 12 GPa are a Cmc2: to Cmc2: second-order phase
transformation with a significant increase of bulk modulus from 12 GPa to 37 GPa
(Figure 2) and a Cmc21 to P21 first order phase transformation (Figure 3) respectively.
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e Phase relation at high P and low T

Figure 3. X-ray diffraction of ammonia borane at
high pressures collected at Advanced Photon
Source (Lin et al. 2012). The sequence of
patterns shows the evolution of the XRD of
ammonia borane as a function of pressure up to
15.0 GPa. First-order phase transitions were
observed at 1.6 and 12.9 GPa, indicated by
different colors of the diffraction patterns. The
numbers on the right-hand side indicate pressure
in GPa. The arrow shows the (101) reflection in
the P21 phase. Quality of diffraction patterns is
improved significantly compared with previous
work such that the crystal structure can be
determined with assistance of theoretical
simulation.

In situ Raman spectra of ammonia borane have been collected at high pressure up to 14
GPa and temperature down to 80 K. Abundant Raman feature changes were observed in
this pressure and temperature range. The phase boundary between the room temperature
tetragonal (14mm) phase and low temperature orthorhombic (Pmn21) phase is determined
having a positive Clapeyron slope (dP/dT = 25.7 MPa/K), indicating that the transition is
exothermic (Najiba et al. 2012). Figure 4 show the phase relation below room
temperature. Four new phases are observed in the Raman scattering experiments (Najiba
et al. 2013).
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4. Phase boundary of ammonia borane at high pressure and low temperature
determined by Raman spectroscopy (Najiba et al 2012, 2013)



e Phase relation at high P and elevated T

In situ Raman spectra of ammonia borane have been collected at high pressure and
elevated temperature to determine the phase boundary between the low pressure 14mm
phase and high pressure Cmc21 phase. The phase transition shows somewhat hysteresis
during compression and decompression. The transition hysteresis becomes less at higher
temperature. Figure 5 shows the experimental data for the P-T phase relation above room
temperature (Sun et al. 2014). The positive Clapeyron slope indicates that the pressure-
induced phase transition from 14mm to Cmc2: is exothermic. One of the barriers for
rehydrogenation of ammonia borane after the first two step decompositions is the high
exothermic enthalpies during the decompositions. The current study indicates that the
orthorhombic phase of ammonia borane has lower enthalpy than that of tetragonal phase.
If we assume decomposition from the orthorhombic phase yields the same products as
that from the tetragonal phase, the decomposition of the orthorhombic phase will be less
exothermic. Therefore rehydrogenation from the decomposed product into the
orthorhombic phase at high pressure may become easier. However, it is difficult to
quantify the enthalpy of the high pressure transition to give a quantitative estimation of
how much easier such a rehydrogenation is.
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¢ Influence of nanoconfinement on phase stability

Influence of confining ammonia borane in mesoporous confinement (i.e. SBA15 silica
nanoscaffold) on behavior of ammonia borane has also been studied. Not only does the
nanoconfinement change the dehydrogenation temperature and kinetics of ammonia
borance but also it influences phase equilibrium. Comparative study using Raman
spectroscopy indicates that the temperature induced body-centered-tetragonal (14mm)
structure to orthorhombic (Pmn21) structure transition is suppressed from 217 K to 195 K
when the sample is confined in SBA15 (Figure 7). Compared to the result with MCM-41,
this result demonstrates a size effect on the influence of nanoconfinement. When the pore
size is reduced from 7-9 nm to 3-4 nm, the tetragonal to orthorhombic structural
transition is totally suppressed in the temperature down to 80 K. A similar influence of
the nanoconfiement on pressure induced phase transitions is also observed using Raman
spectroscopy. The phase boundary between the 14mm phase and high pressure Cmc2:
phase at ambient temperature shifts from 0.9 GPa to 0.5 GPa; and that between the
Cmc21 phase and higher pressure P21 phase shifts from 10.2 GPa to 9.7 GPa.
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e Rehydrogenation

Remarkably, confining ammonia borane makes it possible to reverse its thermolysis
process by applying high pressure to the system. While the bulk ammonia borane does
not show clear evidence of reversal of the decomposition reaction at pressure up to 17
GPa, the sample confined in SBA15 indicate a rehydrogenation of the decomposed
products when the system pressure is increased to about 6 GPa. The result is more
promising for the case of lithium amidoborane (to be published). The bulk lithium
amidoborane shows such a rehydrogenation at about 7 GPa even without the
nanoconfinement.

e Phase relation of lithium amidoborane

In situ Raman spectroscopy study on lithium amidoborane has been conducted at room
temperature and high pressure up to 19 GPa. The result indicates that the sample



experiences two phase transition in this pressure range (Figure 8). The first transition is
observed about 3 GPa for peak splitting at 2175 cm™ and peak merging at 2300 cm™, and
the second phase transition is observed at about 12GPa for peak splitting at 3375 cm™
and 3450 cm (Figure 9).
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e Dehydrogenation mechanism of lithium amidoborane

Lithium amidoborane has attracted significant attention as hydrogen storage material. It
releases ~10.9 wt% hydrogen, which is beyond the Department of Energy target, at
remarkably low temperature (~90 °C) without borazine emission. It is essential to study
the bonding behavior of this potential material to improve its dehydrogenation behavior
further and also to make rehydrogenation possible. The high-pressure behavior of lithium
amidoborane in a diamond anvil cell was studies using in situ Raman spectroscopy
(Najiba and Chen 2012). The study indicated that there is no dihydrogen bonding in this
material, as the N-H stretching modes show blueshift with pressure instead of redshift a
characteristic feature of dihydrogen bounding in ammonia borane (Figure 10). The
absence of the dihydrogen bonding in this material is an interesting phenomenon, as the
dihydrogen bonding is the dominant bonding feature in its parent compound ammonia
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borane. This observation may provide guidance to the improvement of the hydrogen
storage properties of this potential material and to design new material for hydrogen
storage application.
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Figure 10. Evolution of N-H and B-H stretching modes at high pressure: B-H (A) and N-
H (B) stretching modes, arrow ( | ) indicates the position of merging and/or splitting of
Raman modes. (C) Pressure dependence of Raman shift of N-H stretching modes.

e Behavior of decomposed ammonia borane at high pressure

High pressure behavior of ammonia borane after thermal decomposition was studied
by Raman spectroscopy at high pressure up to 10 GPa using diamond anvil cell (DAC).
The ammonia borane was decomposed at around 140 degree Celsius under the pressure
of ~0.7 GPa. Raman spectra show the hydrogen was desorbed within 1 hour. The
hydrogen was sealed in DAC well and cooled down near to room temperature. Raman
shift of N-H stretching of the decomposed product as a function of pressure up to ~10
GPa indicates loss of dihydrogen bonding after the decomposition (Sun et al. 2015) by
the evidence of their pressure-induce blueshift (Figure 11).
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Figure 11. Pressure dependence of the N-H stretching Raman modes of ammonia borane
and its first step decomposition product poly-amidoborane (PAB) and second step
decomposition product poly-imidoborane (PIB). N-H stretching mode of ammonia
borane shows a refshift with increasing pressure, a characteristic feature for dihydrogen
bounding, whereas those of PAB and PIB show blueshift.
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