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Motivations

 Sequential single axis testing has been firmly established as 
the preferred test method for environmental vibration 
characterization and analysis
 MIL STD 810G: U.S. Department of Defense Environmental Test 

Standard

 NAVMAT P-9492: U.S. Navy Manufacturing Screening Test Standards

 JESD22-B103B: JEDEC Environmental Test Standards for 
Microelectronics
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Motivations

 Unfortunately, vibrations in real world environments are 3-
dimensional and these vibrations can result in different 
failure modes and component lifecycles [1-5] 

 Recent developments in electrodynamic shaker capabilities 
have enabled reliable and controllable simultaneous multi-
axis testing [6,7]

 Multi-axis control makes possible true single axis testing by 
allowing control of off axis and rotational vibrations that may 
be present in uniaxial shakers [8]

 Model validation and system identification via single axis test 
results cannot account for off axis affects [9]
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Objective

 Through a collaboration of experimental and modeling work 
conducted on a given test article investigate:
 The relationship between single axis and multi-axis vibration testing

 What is the difference in response when off-axis energy is controlled vs 
when it is not?

 What is the influence of the boundary conditions of the different types of 
tests on the response?

 What’s the effect of multi-axis inputs on a test article’s modal response?

 How much off-axis energy is input for the different test methods?

 The benefit of single axis testing conducted on equipment capable of 
mitigating off-axis (and rotational) vibration
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Test Equipment – Multi-axis

 Shaker System: Team Corporation Tensor™ 900
 Simultaneous or sequential excitation of X, Y, and/or Z axes

 Complete control of rotations around all axes

 Controller Software: Spectral Dynamics JAGUAR Shaker 
Control and Analysis System
 Multi-Input and Multi-Output Control

 Input and Output Transformation for 6DOF Control 

 Data Acquisition: National Instruments™ LabVIEW and NI 
PXIe-4496 Data Acquisition Modules

Specifications

Table First Frequency 5,000 Hz

Test Frequency Range 10 - 5,000 Hz

Max Payload 9 lbs

Max Displacement 0.5 in

Max Acceleration (w/max payload) 10 g
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Test Equipment – Single Axis

 Shaker System: Unholtz-Dickie T2000
 Sequential excitation of X, Y, and Z axes

 To test different axes an adapter cube is required

 Controller Software: Spectral Dynamics JAGUAR Shaker 
Control and Analysis System

 Data Acquisition: National Instruments™ LabVIEW and NI 
PXIe-4496 Data Acquisition Modules

Specifications

Test Frequency Range 10 – 3,000 Hz

Max Displacement 1.0 in

Force Rating - Random 107 kN-rms

Force Rating - Sine 111 kN-peak
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Test Article

 A column supported square aluminum 6061 plate
 Base, columns, and top plate made of a continuous piece of material

 Both homogenous and isotropic

 Eliminates added dynamics due to support boundaries

 Evenly spaced mounting holes
 Eight (8) circumferential and one (1) central

 Uniform bolt tension applied to each

 Selected since its dynamics have been well documented
 Plate with four corner supports [10]

 Plate with four symmetric supports (not necessarily at corner) [11]

 Plate with corner column supports [12]

 Plate with symmetric column supports [13]
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Test Article

 Finite Element Model
 Used to predict dominant mode shapes and frequency components

 Confirms that support columns are not dynamically active in 
frequency range of interest

 Primary Mode Shapes Identified
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Experimental Test Article Mode 
Shapes
 Digitial Image Correlation used to extract and verify mode 

shapes

 The mode shapes and their frequencies agree with those 
predicted by the model

10



Sensor Configuration – Multi-axis

 Control Accelerometers, 
 PCB 356A15

 Triaxial ICP Accelerometer

 Nominal Sensitivity: 100 mV/g

 Weight: 0.37 oz

 Response Accelerometers
 PCB 356A33

 Triaxial ICP Accelerometer

 Nominal Sensitivity: 10 mV/g
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Sensor Configuration – Single Axis

 Control Accelerometers, 
 PCB 356A33

 Triaxial ICP Accelerometer

 Nominal Sensitivity: 10 mV/g

 Response Accelerometers
 PCB 356A33

 Triaxial ICP Accelerometer

 Nominal Sensitivity: 10 mV/g

12



Sensor Selection & Configuration

 Reference Sensor Placement:
 Center of plate

 Each corner

 Mid-span of each side

 Along each diagonal placed 
evenly between the center 
and corner accelerometers
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• The high number of accelerometers caused a 
mass loading affect on the top plate

• Their positions were selected to mitigate 
mode shape distortion

• FEA data confirms that modes are preserved 
although all frequencies were shifted lower



Test Sequence

 Control Signal

 Axes

 Input Level

 Cross-Axis 
Coherence & Phase

 Band-limited white noise 
(20Hz – 2kHz)

 Causes simultaneous 
excitation of all frequencies 
within range

 All frequency dependence in 
stimulated responses can be 
attributed to plate dynamics
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Test Sequence

 Control Signal

Axes

 Input Level

 Cross-Axis
Coherence & Phase

 Single and Multi-Axis
 Uniaxial: One translational 

axis at a time (X, Y, Z)

 Biaxial: Two translational axes 
at a time (XY,XZ,YZ)

 Triaxial: All three axes 
simultaneously (XYZ)

 All axes always controlled, 
but not all to full test levels
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Test Sequence

 Control Signal

 Axes

 Input Level

 Cross-Axis
Coherence & Phase

 Input Acceleration Levels: 
low (1����) & high (2����)

 Same acceleration level for 
all applicable axes

 All other DOFs controlled to 
low level
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X & Y Translation Controlled (@ 1g)
Z Translation & All Rotations Minimized

X & Y Translation Controlled (@ 2g)
Z Translation & All Rotations Minimized
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Test Sequence

 Control Signal

 Axes

 Input Level

 Cross-Axis
Coherence & Phase

 Zero phase between all axes

 Coherence is measure of 
relationship between two 
signals

 Levels: low (~0), medium 
(0.50), and high (~1)
 Coherence with and between 

all other DOFs set at zero
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X,Y Unrelated
��� ≅ 0

X,Y Partially Related
��� ≅ 0.5

X,Y Highly Related
��� ≅ 1



Off Axis Acceleration Levels

System Test Level

Acceleration

Transverse

X	 g

Longitudinal

Y	(g)
VerticalZ	 g

1D

X

1g - * *

2g - 7.01% 36.54%

Z
1g 6.95% 9.10% -

2g 6.35% 8.44% -

6D

X

1g - 6.17% 11.64%

2g - 3.24% 13.24%

Y
1g 6.03% - 8.18%

2g 3.13% - 5.78%

Z
1g 6.08% 6.46% -

2g 3.29% 3.38% -

*Data Not Available
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RMS Accelerometer Responses
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X Excitation Z Excitation X&Z Excitation

• Response of structure 
agrees well with 
expected response for 
multi-axis shaker (1)

• When conducting test 
on single axis shaker, 
uncontrolled off axis 
energy results 
dominated by Z axis.



RMS Accelerometer Responses (2)

 Controlled the vertical acceleration to the same level on both 
shakers, the RMS levels of the plate response on the systems 
differed substantially.
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Response at the Center of the Plate

 Response influenced by two critical modes.
 On multi-axis shaker, they are at 446Hz and 1073Hz

 On uniaxial shaker, they are at 440Hz and 1137Hz

 Larger response occurs at both resonances on uniaxial shaker system.
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Shock Response Spectra (SRS)

 SRS graphically portrays the peak acceleration that would be 
experienced  by a series of single degree of freedom system 
with a natural frequency fn due to the base input.

 The central accelerometer exhibits large shock responses at 
frequencies not observed in the multi-axis tests.
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• Additional modal contributions on uniaxial test likely due 
to boundary conditions created by the cube.

• Out of axis deformation of cube could contribute to 
observed dynamics.

• Additionally, some of the dynamics could be attributed to 
observed rocking of the cube.



Conclusions
 Single axis testing on uniaxial shaker results in larger peak energy levels 

than those conducted on multi-axial shakers

 Comparing results to multiaxial tests, it is not due contributions of off-axis 
translational excitation

 Tests were not conducted with added rotations, which may have contributed 
to this effect.

 Any test with a z-axis stimuli would be dominated by a response in the z-
axis, even the x-axis test on the uniaxial shaker.

 The peak acceleration levels found by the SRS demonstrated that the 
primary modes were invariant to the addition of lateral excitation.

 The lateral response had additional modes due to the dynamics of the 
mounting cube,

 For model validation, the uncontrolled effects of the testing system must 

be well documented.
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QUESTIONS?
Thank you for your attention!
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