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ABSTRACT

In next-generation extreme-scale systems, application per-
formance will be limited by memory performance charac-
teristics. The first exascale system is projected to contain
many petabytes of memory. In addition to the sheer volume
of the memory required, device trends, such as shrinking
feature sizes and reduced supply voltages, have the poten-
tial to increase the frequency of memory errors. As a result,
resilience to memory errors is a key challenge. In this paper,
we introduce the Similarity Engine, a lightweight software
service for identifying similarity in the memory of many im-
portant applications. We evaluate the performance of the
Similarity Engine and demonstrate that it is able to identify
significant similarity in the memory of HPC applications.
Further, we show that by leveraging memory content sim-
ilarity to improve application resilience, the Similarity En-
gine can improve application performance by up to 70% on
next-generation systems.

CCS Concepts

eSoftware and its engineering — Checkpoint / restart;
eComputer systems organization — Reliability;
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1. INTRODUCTION

Effective use of memory is a key challenge in next-gener-
ation extreme-scale systems [10]. These systems will likely
contain many petabytes of memory and will present diffi-
cult challenges to system performance, power management,
and resilience. In particular, the sheer volume of memory
required to build these systems coupled with device trends,
such as shrinking feature sizes and reduced supply voltages,
have the potential to increase the frequency of memory er-
rors. As a result, current projections suggest that a memory
error could happen as frequently as once per hour [20].
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A number of techniques that exploit content similarity in
application memory have been used to address memory chal-
lenges in large-scale commodity systems [5,13]. Despite sig-
nificant evidence of memory similarity in HPC systems [19],
such techniques have been only occasionally studied in HPC
systems [3,29].

In this paper, we present the design, implementation, and
evaluation of an HPC-oriented memory similarity service:
Similarity Engine. This system provides a general, light-
weight, application-independent service for detecting and
tracking per-node memory similarity in HPC applications.
This service enables the systematic implementation of a wide
range of memory optimizations, including more general im-
plementations of previous techniques, and new optimizations
specifically focused on the challenges presented by the design
of exascale systems. As part of this work, we describe the
design of one such service for improving resilience to mem-
ory errors and evaluate its potential effectiveness based on
the Similarity Engine’s ability to find and track similarity in
a broad range of HPC applications.

In the remainder of this paper, we describe our contribu-
tions towards leveraging HPC application memory similarity
to dramatically improve system resilience. These contribu-
tions include:

e A lightweight, application-independent, HPC-oriented
memory similarity tracking system, Similarity Engine,
that efficiently discovers similarity in the memory of
HPC applications. We present an empirical study of
key design trade-offs in the implementation of this ser-
vice.

e A novel, lightweight algorithm (xor+1z4) for evaluating
the similarity of memory pages;

e A study that evaluates similarity in a diverse set of
HPC applications using the Similarity Engine, show-
ing behaviors including: applications with abundant,
easy-to-track similarity, applications with significant
similarity that is infeasible to track, and applications
with minimal inherent similarity;

e A description and evaluation of a technique that ex-
ploits similarity identified by Similarity Engine to im-
prove the performance and increase the MTTI of HPC
applications by repairing uncorrectable memory errors.

Following an explanation of these contributions, we further
discuss our results and their implications, describe related
work and directions for future work, and conclude.



Application

Description

One of the Mantevo mini-applications [26]. Designed to mimic finite element generation, assembly and

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). A classical molecular dynamics
simulator from Sandia National Laboratories [25]. The data presented in this paper are from experiments
that use the Lennard-Jones (LAMMPS-lj) and Embedded Atom Model (LAMMPS-eam) potentials that

A multi-material, large deformation, strong shock wave, solid mechanics code [21] developed at Sandia
National Laboratories. The data presented in this paper are from experiments that use an input that

Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH). A proxy application from
the Department of Energy Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx).
LULESH approximates the hydrodynamics equations discretely by partitioning the spatial problem domain

Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI). A framework from the Cen-

HPCCG solution for an unstructured grid problem.
LAMMPS
are included with the LAMMPS distribution.
CTH
describes the simulation of the detonation of a conical explosive charge (CTH-st).
LULESH
into a collection of volumetric elements defined by a mesh [16].
SAMRAI

ter for Applied Scientific Computing at Lawrence Livermore National Laboratory that is designed to enable
the application of structured adaptive mesh refinement to large-scale multi-physics problems

Table 1: Descriptions of the set of workloads that we used for evaluating the performance characteristics of

the Similarity Engine.

2. BACKGROUND

We initially presented our idea for exploiting memory con-

tent similarity in HPC applications in earlier publications. [17,

19]. Our earlier work used an offline approach to charac-
terize the contents of memory snapshots from several HPC
applications [17,19]. These results demonstrated that it was
likely that we could efficiently exploit similarity in applica-
tion memory.

In this paper, we leverage these preliminary results and in-
troduce the implementation of a software library that allows
us to efficiently identify and track similarity during the exe-
cution of several important HPC applications. We provide a
detailed examination of the tradeoffs involved in identifying
and tracking similarity in real time as an application exe-
cutes. We also present and evaluate a technique for exploit-
ing similarity to improve system resilience characteristics.

3. IMPLEMENTING THE
SIMILARITY ENGINE

The goal of the Similarity Engine is to discover and exploit
process-level memory similarity in HPC applications that
can be used to improve their resilience and performance.
This section describes the mechanisms that the Similarity
Engine uses to identify and track similarity in application
memory.

3.1 Overview

The Similarity Engine categorizes all of the pages in an
application’s memory into four categories—zero, duplicate,
similar, and unique-defined as follows:

e Zero pages: pages whose contents are entirely zero

e Duplicate pages: pages that (a) are not zero pages; and
(b) exactly match the contents of one or more other
pages

e Similar pages: pages that (a) are not duplicate or zero

pages; and (b) can be paired with at least one other
page in application memory such that the difference
between the two is smaller than a tunable threshold:
the difference threshold.

e Unique pages: pages that do not fall into any of the
preceding three categories

Although they are categorized separately here, when we dis-
cuss similarity in general we mean the set of pages that are
duplicate, zero, or similar.

Based on these definitions, the Similarity Engine works
by first tracking application memory allocation and period-
ically scanning allocated memory. During this scan, it iden-
tifies zero and duplicate pages by computing hashes of page
contents, and uses efficient heuristics to detect similarity.

3.2 Tracking Application Memory

The Similarity Engine tracks an application’s memory al-
location by using features of the GNU linker to interpose
code between the application and the standard C/C++ mem-
ory allocation functions (e.g., malloc, free, new, delete).
The Similarity Engine maintains a database of the appli-
cation’s memory allocations. Each time the application al-
locates (or deallocates) memory, the Similarity Engine up-
dates its database to ensure that it has an up-to-date view
of the memory that is currently allocated by the application.

3.3 Managing Memory Modification

Exploiting memory contents requires the Similarity En-
gine to have an accurate picture of which pages have been
modified since they were last categorized. To this end, the
Similarity Engine uses mprotect to make every page of the
application’s allocated memory read-only. When the appli-
cation writes to a page of read-only memory, a segmentation
fault occurs. The Similarity Engine uses a SIGSEGV signal
handler to receive notification of each segmentation fault.
The Similarity Engine’s signal handler examines the fault
that occurred to identify the page of memory that is being



System Nodes Sockets/Node Processors Operating System Interconnect MPI
Intel Sandy Bridge . Mellanox MT26428

Compton 42 2 (2.6 GHz / 8 cores) Linux 2.6.32 QDR InfiniBand HCA OpenMPI 1.8.1

Chama 1,232 2 Intel Sandy Bridge Linux 2.6.32 QLogic QLET7340 OpenMPI 1.8.4

(2.6 GHz / 8 cores)

QDR InfiniBand HCA

Table 2: Configuration details of clusters used to gather experimental data.

written. It then updates its metadata accordingly, restores
write privileges to the accessed page, and returns control to
the application.

After write privileges have been restored to a memory
page, the Similarity Engine no longer knows its relationship
to other pages of memory. As the application executes and
more and more pages are written to, the Similarity Engine’s
knowledge of the state of the application’s memory dimin-
ishes. To re-establish its knowledge of inter-page relation-
ships, the Similarity Engine periodically restores the appli-
cation’s memory pages to read-only. It accomplishes this by
dividing the application’s execution time into tunable pro-
tection intervals. For the data presented in this paper, the
protection interval is 60 seconds long. The Similarity Engine
is notified by a SIGALRM signal at the end of each interval.
At the beginning of each protection interval, the Similarity
Engine removes write privileges for the memory allocated by
the application, identifies the set of pages that are similar,
and computes the MD5 hash of every page that has been ac-
cessed since the beginning of the preceding interval. Because
we assume that the contents of application memory are not
adversarial, two pages with same hash value will have the
same contents with very high probability. Similarly, if the
hash value of a page has not changed, then it is highly likley
that its contents have not been modified.

The Similarity Engine can also be configured to periodi-
cally examine and collect statstics about the state of the ap-
plication’s allocated memory. Each protection interval can
be subdivided into tunable sample intervals. At the end
of each sample interval, the Similarity Engine examines the
application’s memory to identify the current state of its sim-
ilarity relationships. For all of the statistical data presented
in this paper, the sample interval is 20 seconds.

3.4 Handling System Calls

When read-only memory is passed to the kernel in a sys-
tem call, writing to this memory does not invoke the Simi-
larity Engine’s user-level segmentation fault handler. As a
result, system calls may fail. If return values are not care-
fully checked by the application, the consequences of the
failure may be difficult to predict.

To determine the extent to which the applications ex-
amined in this paper may attempt to pass references to
read-only memory to the kernel, we created a version of
the Similarity Engine that leverages Linux’s ptrace mech-
anism to intercept and inspect the system calls made by
the application. Specifically, this version of the Similarity
Engine creates a child thread during its initialization and
uses ptrace to attach to the application (its parent). Each
time the application enters a system call, the child examines
the contents of the registers that contain the arguments be-
ing passed to determine whether they contain a reference to
memory that the Similarity Engine is actively tracking. For

the set of applications and associated input decks considered
in this paper, no references to tracked memory were found
in the arguments passed to any system call.

There are likely applications for which references to user-
allocated heap memory are passed to system calls. In these
cases, efficiently identifying similarity without jeopardizing
the correctness of the the simulation will likely require inte-
grating the Similarity Engine into the kernel.

3.5 Passing memory references to MPI

Passing read-only message buffers to the MPI library can
result in unpredictable behavior. The Similarity Engine uses
the PMPI profiling layer to intercept MPI calls that refer-
ence one or more message buffers. For each message buffer,
the Similarity Engine determines whether the buffer occu-
pies memory that it is tracking (i.e., whether it is comprised
of memory that is or may become read-only). If so, the Sim-
ilarity Engine makes it writable and updates its metadata
to reflect the fact that it is no longer tracking the state of
this memory. As a result, the pages that comprise the mes-
sage buffers passed to MPI are categorized as unique in all
of the statistics presented in this paper. The Similarity En-
gine currently lacks a mechanism for resuming the tracking
of memory used for MPI message buffers.

4. DISCOVERING SIMILARITY

The performance of the Similarity Engine depends on how
efficiently it is able to discover pairs of similar pages. This
section evaluates the tradeoffs involved in computing dif-
ferences between pages and identifying pairs of potentially
similar pages.

4.1 Experimental Setup

This paper presents results from experiments conducted
to evaluate the potential costs and benefits of exploiting
memory content similarity. The characteristics of six work-
loads are considered. These workloads, described in Ta-
ble 1, include two important DOE production applications
(LAMMPS and CTH), a proxy application (LULESH) from
the Department of Energy’s Exascale Co-Design Center for
Materials in Extreme Environments (ExMatEx), a mini-
application from Sandia’s Mantevo suite (HPCCG) and an
example application from an important library used in large-
scale DOE production applications (SAMRATI). For LAM-
MPS, we consider two input decks. We use 4 KiB memory
pages throughout.!

For all of the applications except for CTH, the experi-
ments were performed using Compton, a Linux Infiniband

IThroughout this paper, we use the binary prefixes defined
by the International Electrotechnical Commission (IEC) to
indicate binary orders of magnitude. For example, a KiB is
a kibibyte, 21° bytes.
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Figure 1: Similarity heuristic microbenchmark. For each target application a sequence of snapshots of
allocated memory were collected. Up to 5,000 candidate pages are randomly selected from each snapshot
of each application. For each candidate, differences are computed between it and all of the other pages
in memory (differences between pairs of pages that are identical are not computed). The resulting set of
differences is binned based on their size. This figure shows the size distribution for each of five categories of
differences. Neighbor is the set of differences that are computed between two pages that are adjacent in the
virtual address space and belong to the same allocation. Random is the set of differences the candidate page
and each of two pages chosen randomly from the same memory allocation as the candidate page. Same is
all of the pages (except for the neighbors) in the same memory allocation as the candidate page. Other are

the pages that are not in the same memory allocation as the candidate page. Compression is the result of

compressing each candidate page using 1z4.

cluster. Because CTH is export-controlled, the CTH exper-
iments were performed on Chama, also a Linux Infiniband
cluster. Details on the composition and configuration of
these clusters are presented in Table 2.

The remainder of this section evaluates the effectiveness
and costs of computing differences and identifying poten-
tially similar pages. It does so by presenting and examin-
ing the results of a series of small-scale experiments. These
experiments were conducted by running each of the seven
workloads on 8 MPI processes across 4 nodes of the clusters
described above.

4.2 Computing Page Differences

At the beginning of each protection interval, the Simi-
larity Engine identifies similarity by computing differences
between pairs of pages. This section evaluates the perfor-
mance characteristics of five algorithms for computing page
differences.

These algorithms include two well-known delta encoding
algorithms, a novel lightweight differencing algorithm, and
two page compression algorithms.? The differencing algo-
rithms allow the Similarity Engine to exploit redundancies
that exist between pairs of pages. Page compression en-
ables the Similarity Engine to exploit redundancies within

2In the case of page compression, the compressed page can
be viewed as the difference between a candidate page and a
null page.

a single page of memory. A description of each of the five
differencing algorithms follows:

e bsdiff (and its mirror, bspatch) uses suffix sorting and
bzip2 to compute differences between pairs of binary
files [7].

e Xdelta is an open-source delta encoder/decoder based
on VCDIFF [14]. VCDIFF is both an algorithm and
a format for encoding the differences between binary
files.

e [z/ is a lightweight, lossless data compression algo-
rithm that is based on LZ77 compression [2].

e zor+lz4 is a novel lightweight differencing algorithm
that combines naive differencing (bit-wise exclusive-
or) with lightweight compression (1z4).

e bzip2 is a lossless data compression algorithm that uses
Burrows-Wheeler transforms and Huffman coding [1].

These algorithms compute the difference between a candi-
date page and a reference page. This difference would allow
the Similarity Engine to recreate the contents of the candi-
date page from the reference page. Because xor+lz4 gen-
erates symmetric differences, the differences it generates to
can be used to reconstruct either the reference page or the
candidate page from the other. The other four algorithms



generate asymmetric differences (i.e., the difference between
the candidate page and a reference page can only be used
to reconstruct the candidate page). As a result, xor+1z4 re-
quires the computation of half as many differences as bsdiff
and Xdelta. Because the two compression algorithms, bzip2
and 1z4, consider the difference between an application page
and a null page, the Similarity Engine never has to compute
more than one difference per page of application memory.

Efficiently identifying similarity in application memory re-
quires that the Similarity Engine be able to quickly encode
small differences between pairs of pages. The speed of dif-
ference encoding strongly influences the runtime overhead
of the Similarity Engine. The size of the differences dictates
its memory overhead. To limit the memory overhead, sim-
ilarity is defined relative to a tunable difference threshold.
A memory page is similar only if the difference between it
and a reference page falls below this threshold. The dif-
ference threshold represents a tradeoff between identifying
more similarity and memory overhead. Increasing the dif-
ference threshold means that more pages will be similar, but
also that more memory must be devoted to storing differ-
ences.

Mean Mean Efficacy
Algorithm encode decode (compressed
time (us) time (us)  bytes/us)
XOR+1z4 19.57 3.58 70.41
1z4 14.12 2.39 155.67
xdelta 182.92 15.15 12.69
bsdiff 3474.69 612.25 0.73
bzip2 1381.12 174.56 1.92

Table 3: Temporal costs of identifying similarity.
This table shows the average time required to en-
code and decode differences. To examine the rela-
tionship between difference size and difference en-
coding speed, it also examines the efficacy of each
algorithm in terms of the number of bytes it is able
to compress out of the corpus of candidate pages per
microsecond.

The suitability of these algorithms for identifying similar-
ity was examined with two microbenchmarks. To run these
microbenchmarks, we constructed a library that takes peri-
odic snapshots of the allocated memory of each of our tar-
get workloads. We then randomly chose a maximum of 5,000
candidate pages—that were neither zero nor duplicate—from
each snapshot of each application. For each candidate, we
computed the difference between it and every other page in
the same snapshot.

The first microbenchmark measures the speed of difference
encoding and decoding. The results are shown in Table 3.
The fastest algorithms by a substantial margin are xor+I1z4
and 1z4. They are more than eight times faster than Xdelta
and nearly 200 times faster than bsdiff. Moreover, because
Xdelta, bzip2, and bsdiff generate asymmetric differences,
they would require the Similarity Engine to compute twice
as many differences as xor+1z4 for the same number of pages.

The second microbenchmark measures the size of the dif-
ferences generated by each algorithm. For each difference
algorithm, the smallest difference computed for each candi-
date was recorded. The results are shown in Figure 2. In
this figure, a point at (z,y) indicates that for a y fraction

1 [ bzip2 E—
bsdiff
0.8 Xdelta

T 1z4 e
J xor+lz4 ——

Cumulative fraction of patches computed

0 L L L L

7 < @ S
% e e %
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Figure 2: Difference size microbenchmark. The dis-
tribution of the size of the differences computed by
the four difference algorithms considered. These
data represent the result of computing the differ-
ence between 5,000 random pairs of pages from each
snapshot of each application.

of the candidates were considered, the size of the smallest
difference was less than or equal to z bytes.> As this fig-
ure demonstrates, the speed of xor+1z4 comes with a cost.
It generates substantially fewer small differences than the
other three algorithms. As a result, for a fixed difference
threshold, xor+1z4 will tend to identify fewer similar pages.
The differences generated by 1z4 tend to be smaller than
those generated by xor+4l1z4. This due in part to the fact
that this microbenchmark considers random pairs of pages.
The likelihood of randomly choosing a pair of pages such
that they contain redundant information is low. This also
demonstrates the importance of developing effective tech-
niques for identifying pairs of pages that are likely to be
similar.

These results demonstrate that there is a tradeoff between
the speed of computing a difference and the average size of
the difference that is generated. The fastest algorithms tend
to generate the largest differences. To quantify this tradeoff,
Table 3 shows the efficicay of each of the give differencing
algorithms: the mean number of bytes per microsecond that
each is able to compress out of the corpus of the candidate
pages. These results show that although xor+l1z4 and 1z4
generate larger differences, they are able to identify similar-
ity much more efficiently than the other three algorithms.

Computing the difference between two pages with bzip2
or bsdiff requires more than a millisecond. For applications
with even modest memory footprints, neither of these ap-
proaches are viable due to their speed. Because the xor+1z4
and 1z4 algorithms are significantly faster than even Xdelta,
we selected them for the Similarity Engine. Although this
choice means that the Similarity Engine will find fewer simi-
lar pages, it is not clear that the benefits of identifying more
similarity with one of the other three algorithms would out-
weigh the costs.

3In principle, the difference between any pair of 4 KiB pages
can be captured in 4 KiB (i.e., as the bitwise exclusive-or of
the two). However, as this figures shows, none of these algo-
rithms use this optimization. As a result, some differences
produced by these algorithms are larger than 4 KiB.
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Figure 3: Prevalence of Intra- and Inter-page Similarity. A comparison of the mean fraction of similar pages
that the Similarity Engine is able to identify by exploiting intra-page similarity (compression) and inter-page
similarity (differencing). These data use a difference threshold of 3 KiB.

4.3 Finding Potentially Similar Pages

Due to the cost of exhaustively computing differences be-

tween the pages in an applications memory, an efficient method

for identifying pairs of pages that are likely to be similar
(i.e., pairs of pages for which the difference between them is
small) is necessary. We examined four heuristics for identi-
fying potentially similar pages:

e Neighbor: the pages within the same memory alloca-
tion that are immediately adjacent to the candidate
page in the application’s virtual address space;

e Random: two pages chosen randomly from the same
memory allocation as the candidate page;

e Same: all of the pages (except for the neighbors) in the
same memory allocation as the candidate page; and

e Other: all of the pages that are not in the same mem-
ory allocation as the candidate page.

The costs of these four heuristics vary widely. The Neigh-
bor and Random heuristics each identify two potentially
similar pages for each candidate, requiring the computation
of two differences. The Same and Other heuristics may each
identify thousands or tens of thousands of potentially sim-
ilar pages for each candidate, requiring the computation of
potentially thousands of differences. We used a microbench-
mark to determine the relative effectiveness of these ap-
proaches. Using the same set of snapshots described above,
we randomly chose up to 5,000 candidate pages—that are
neither duplicate nor zero—from each snapshot. For each
candidate, we use xor+1z4 to compute the difference between
it and the pages in the sets of potentially similar pages iden-
tified by each of the four heuristics described above. Within
each of these categories, the size of the smallest observed
difference is recorded. The results are presented in Figure 1.
In addition to the four heuristics that we have described,
we also consider the distribution of the difference sizes when
we use page compression. This figure shows that there are
limits to the benefits of considering more potentially simi-
lar pages. Considering pages within the same allocation as
the candidate page is no worse than considering all of the
application’s other allocations. For all but CTH-st, this re-
quires the computation of many fewer differences. For the
two LAMMPS problems and, to a lesser extent, HPCCG, the
Same and Other heuristics identify much smaller differences.

But for CTH-st, LULESH, and SAMRALI, the distribution of
difference sizes generated by the Neighbor heuristics is very
similar to the distribution generated by the much more ex-
pensive Same heuristic. This figure also shows that for four
of our workloads, the neighbor heuristic enables xor+1z4 to
outperform 1z4. However, for the two LAMMPS problems,
1z4 tends to identify smaller differences.

Based on the results of this microbenchmarks, we imple-
mented the Similarity Engine to use the neighbor heuristic
for choosing potentially similar pages. Although this choices
reduces the amount of similarity that the Similarity Engine
is able to identify, it significantly reduces the cost of discov-
ering similarity. It seems unlikely that the Similarity Engine
would be viable if every candidate page required the com-
putation of thousands or tens of thousands of differences.

S. EVALUATING SIMILARITY

This section evaluates the amount of similarity that Sim-
ilarity Engine can discover and track in HPC applications,
and measures the cost of tracking this similarity. These ex-
periments used the set of workloads described in Table 1.
We ran each workload, except LULESH, with 128 processes
on 16 nodes of these clusters. Because LULESH requires
the number of processes be a perfect cube, it ran with 125
process. Each experiment is repeated ten times. We per-
form this entire sequence of experiments twice: once us-
ing xor+lz4 to identify similar pages, and once using lz4
to identify similar pages. The data presented in this sec-
tion required 1200 experiments to be conducted in which the
Similarity Engine was linked against one of the workloads.
Approximately, 10% (116/1200) of these experiments failed
to complete. We discarded all of the data collected during
these failed experiments and repeated the experiments.

5.1 Identifying Similar Pages:
Compression versus Differencing

As discussed in Section 4.2, we can identify similar pages
in application memory by exploiting similarities within a
page using compression or across pages using a differencing
algorithm. The microbenchmark data in that section sug-
gest that for some applications, the Similarity Engine may
be able to identify more similar pages by using compres-
sion (1z4) rather than a differencing algorithm (xor+1z4). In
this subsection, we compare the number of similar pages in
our full-scale tests that the Similarity Engine is able to iden-
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Figure 4: Page categorization. A comparison of the average page categorization at the beginning of a
protection interval and the average within a protection interval. When a page is modified, the Similarity
Engine no longer knows its relationship to other pages in memory. As a result, it must be categorized as a
unique page. These data use xor+1z4 and a difference threshold of 3 KiB.

tify in the memory of our six workloads by using these two
techniques to exploit intra- or inter-page similarities. Fig-
ure 3 shows the mean fraction of memory pages that the Sim-
ilarity Engine identifies as being similar based on whether
it uses compression (1z4) or differencing (xor+lz4). This
figure shows that for four (CTH-st, HPCCG, LAMMPS-
eam, and SAMRATI) of the six workloads the difference be-
tween the two approaches is negligible. In other words, the
volume of redundant information in the memory of these
workloads is approximately equal within and across memory
pages. However, the LAMMPS-1j and LULESH results do
reflect a significant difference based on the method chosen.
Compression allows the Similarity Engine to identify nearly
twice as many similar pages in LAMMPS-]j as differencing
does. In contrast, differencing allows the Similarity Engine
to identify nearly 50% more similar pages in the memory
of LULESH. Based on these results, the results presented
in the remainder of this section use 1z4 to identify similar
pages in the memory of the two LAMMPS problems and
xor+1z4 to identify similarity in the memory of the other
four workloads.

5.2 Prevalence of similarity

To evaluate how effectively our library can identify sim-
ilarity, we conducted a sequence of tests with each of our
applications linked with the Similarity Engine. These exper-
iments generated a three-dimensional dataset. The three di-
mensions are: samples, the Similarity Engine collects statis-
tics periodically (once per sample interval) as the applica-
tion executes; processes, the Similarity Engine collects statis-
tics for each application process; and trials, each experiment
was repeated ten times. The results of our examination are
shown in Figure 4. This figure shows the mean fraction of
the pages in application memory that fall into the four cat-

egories that we have defined. For each application, we show
the mean fraction of memory in each category for samples
taken at the beginning of a protection interval. We also show
the mean fraction of memory in each category for samples
taken within a protection interval. Each time the applica-
tion writes to a similar, duplicate, or zero page, we no longer
know its state or its relationship to other pages in memory.
Because accessed pages must be classified as unique, the
prevalence of similarity necessarily decreases between pro-
tection intervals.

For each application, we find significantly more similarity
at the beginning of a protection interval than within the in-
terval. The difference is particularly stark for SAMRALI; on
average nearly 60% of memory is similar, duplicate or zero
at the beginning of a protection interval, these categories
comprise less than 6% of memory within an interval. The
difference is less significant for LAMMPS-1j and LAMMPS-
eam and they exhibit more similarity within an interval.
The differences are more modest for the other three applica-
tions. For CTH-st, HPCCG, and LULESH we see significant
similarity even within a protection interval.

To measure the variability in the data shown in Figure 4
we computed the coefficient of variation® over each dimen-
sion of the dataset. The results are shown in Figure 5. Fig-
ure 5(b) shows the variation we observe in the total number
of pages allocated by each allocation. The total number
of memory pages allocation by these workloads is relatively
constant across all dimensions. In particular, there is little
variability in these data across trials; repeated experiments
yield consistent results. Figure 5(a) shows the variation we
observe in non-unique pages. The fraction of memory that is
comprised of non-unique (similar, duplicate and zero) pages

“The coefficient of variation is the standard deviation (o)
divided by the mean (u).
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Figure 5: Page category variability. An examination of the variability of the composition of each application’s
memory using a 3072-byte difference threshold. Non-unique pages are the set of pages that are duplicate,
zero, or similar. All is the value of the coefficient of variation when computed over the entire dataset. By
process represents how much variation exists across application processes. By sample represents the variation
over the lifetime of the application. By trial represents the variation across successive executions of the

application.
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Figure 6: Difference Threshold Benchmark. For each target application, we consider the trade off between
the number of similar pages and memory overhead. As we increase the difference threshold and allow for

larger differences, the memory overhead increases.

is a good proxy for the variability of the potential bene-
fits of exploiting memory content similarity. Figure 5(a)
demonstrates that the fraction of non-unique pages is also
consistent across trials. There is also very little variation
in the fraction of non-unique pages in the other dimensions
of the dataset for several of the applications. One excep-
tion is SAMRAI. SAMRALI exhibits signficant variation in
the fraction of non-unique pages that comprise its memory.
This behavior is largely due to the fact that we see significant
similarity in SAMRATI’s memory at the beginning of a pro-
tection interval and very little within an interval. Another

factor is that a significant fraction of SAMRAI’s memory
is composed of unique pages. As a result, small changes in
the absolute number of duplicate, similar, and zero pages
can result in large variations in their respective fractions.
The other two exceptions are the two LAMMPS workloads.
The variation in these data is due largely to the fact that
the Similarity Engine identifies much more similarity at the
beginning of the protection interval than within the interval.

5.3 Memory overhead

Effectively exploiting similarity requires that we maintain



metadata about the memory currently allocated. As we
identify pairs of similar pages, we need to store the encoded
difference and the address of the reference page. There is a
tradeoff between the difference threshold and the resulting
memory overhead. Increasing the difference threshold iden-
tifies more similar pages, but results in the retention of more
and larger differences.

To examine this tradeoff, we ran each of our six target
applications with four difference thresholds: 1 KiB, 2 KiB,
3 KiB, and 4 KiB. For each run we also tracked the memory
overhead. The results are shown in Figure 6. We observe
that for three of the applications (CTH-st, LULESH, and
SAMRALI) the memory overhead is quite stable as we con-
sider larger difference thresholds and small: on average, a
few hundred bytes of metadata per page. HPCCG requires
significantly more metadata, but this is due in part to the
fact that much of its memory is comprised of non-unique
pages. For LAMMPS-]j and LAMMPS-eam, increasing the
difference threshold above 2 KiB results in a significant in-
crease in the fraction of similar pages and the memory over-
head.

5.4 Runtime overhead

Identifying similarity using these techniques requires that
we occasionally interrupt the application. We interpose meta-
data maintenance operations between the application and
the standard C/C++ memory allocators. We restore write
privileges as accesses to read-only pages generate segmen-
tation faults. As each protection interval begins, we must
also change the access privileges for pages of allocated mem-
ory to be read-only and identify similar pairs of pages. For
each of our target workloads, we measured the inflation of
the application’s execution time. The results are presented
in Table 4. To examine the cost of identifying similar pages,
this table includes the runtime overhead of the Similarity
Engine when it is configured to identify similar, duplicate,
and zero pages (all similar) and the overhead when is con-
figured just to identify duplicate and zero pages (duplicate
only). It also shows how frequently each application writes
to read-only memory when linked with the Similarity Engine
and how frequently each application allocates memory.

For three of the applications, CTH-st, HPCCG, and SAM-
RAI, the runtime overhead is below 3%. LAMMPS-lj and
LAMMPS-eam have the highest runtime overhead. Part of
the reason for this overhead is that these two application
write to read-only memory much more frequently than any
of the other applications. Each time an application writes
to read-only memory, it incurs the costs associated with in-
voking the Similarity Engine’s signal handler. Additionally,
at the end of the protection interval, the Similarity Engine
has to re-evalaute whether the page is similar, duplicate, or
zero. LULESH also incurs relatively high overheads. This is
due in part to the fact that it allocates memory much more
frequently than any other the other applications. Each time
the application allocates (or deallocates) memory, the Sim-
ilarity Engine must update its metadata.

6. EXPLOITING MEMORY SIMILARITY
TO CORRECT MEMORY ERRORS

Uncorrectable DRAM errors have been shown to be a sig-
nificant source of failure on current and future leadership-
class HPC systems [28]. When an uncorrectable ECC error

is detected on a modern x86 system, the memory controller
raises a Machine Check Exception (MCE) in the proces-
sor. The consequences of raising an MCE vary by operating
system. Recent versions of Linux attempt to minimize the
impact of an MCE by adopting simple recovery strategies.
For example, if the fault occurred on a page whose contents
are backed up by disk (e.g., a clean page in the page cache),
the error can be handled by invalidating the appropriate
cache or page table entry. In the event that none of its re-
covery strategies is successful, Linux poisons the hardware
page and kills all of the processes that had the faulted page
mapped into their address space [15]. In other operating sys-
tems (e.g., the Kitten lightweight kernel [27], older versions
of Linux), raising an MCE simply crashes the node.

For each duplicate or similar page, we maintain a descrip-
tion of its reference page(s) (i.e., the other pages in the sys-
tem that are either duplicated by or similar to the page
under consideration). In the case of similar pages, we also
store the appropriate encoded difference. When an uncor-
rectable memory error occurs on a similar, duplicate, or zero
page, we can use the metadata that we have collected to re-
construct the damaged page. Reconstructing a duplicate
page is straightforward. We simply restore the contents of
the damaged page from the contents of one of its reference
pages.® For zero pages, we can simply replace the damaged
page with a page filled with zeros. For similar pages, the
process is only slightly more complex. We can reconstruct
the contents of the damaged page by applying the difference
stored in our metadata to the associated reference page. As
shown in Table 3, using xor+1z4 to reconstruct a damaged
page by decoding the difference stored in our metadata is
extremely fast: on average 3.58us per 4 KiB page. Using
124 is slightly faster: 2.39us per 4 KiB page.®

We observe that the additional memory required for our
metadata does not significantly increase the vulnerability of
the application to memory errors. An error in our metadata
does not affect the continued operation application. More-
over, if an error occurs in the set of stored differences (which
is the majority of our metadata), we can, with high proba-
bility, invalidate the difference and regenerate it at the be-
ginning of the next protection interval. In the worst case, we
can take a proactive checkpoint (to eliminate lost work that
would need to be re-executed) and restart the application.

Exploiting similarity in this way allows the application to
continue execution when an otherwise uncorrectable mem-
ory error occurs rather than restarting and rolling back to
the last checkpoint. This increases the mean time to inter-
rupt (MTTTI) of the system. Using an existing model of roll-
back avoidance [18]7, we can model how the increased MTTI
would affect the performance of an application executing on
a hypothetical next-generation system (see Table 5). Based
on the characteristics of this system, the predicted perfor-
mance of next-generation applications whose memory char-
acteristics are represented by one of our six target applica-
tions is shown in Figure 7. This figure examines the po-

SIn practice, it may be prudent to reconstruct the page in a
different physical location in memory

5Tt is the absolute difference between the two that matters.
When an uncorrectable memory error occurs, the Similarity
Engine will only need to reconstruct one memory page.
"Rollback avoidance is the set of techniques that allow an
application to continue to execute, rather than rolling back
to a previous checkpoint, when a failure occurs.



Runtime Runtime Write  Allocations

Application Overhead Overhead Exceptions Added
(all similar) (duplicate only) Per Second Per Second

CTH-st 2.76% 1.99% 485.46 0.06
HPCCG 1.26% 1.30% 54.31 0.06
LAMMPS-eam 14.27% 11.11% 2494.43 1.65
LAMMPS-]j 13.12% 9.95% 1985.54 1.96
LULESH 9.90% 8.89% 31.42 3319.75
SAMRAI 1.84% 1.58% 67.64 594.68

Table 4: Median runtime overheads (ratio of median execution times) using xor+l1z4, a 3 KiB difference
threshold, and a 60 second protection interval. The coefficient of variation for the execution time data
used to generate this table is below 1.5% for CTH-st, HPCCG, LAMMPS-eam, LAMMPS-1j, and SAMRALI.
The coefficient of variation for the “all similar” runtime overhead of LULESH is approximately 22%. The
coefficients of variation for the other LULESH experiments is less than 1%.
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Figure 7: Application speedup. We use the aver-
age fraction of memory that is duplicate, zero or
similar during a protection interval and an existing
model of rollback avoidance [18] to predict applica-
tion speedup for next-generation applications whose
memory characteristics resemble one of our four ap-
plications. To generate this figure, we used the run-
time overhead from Table 4 and the probability of
correcting a memory error from Figure 4. We con-
sidered a hypothetical extreme-scale system whose
characteristics are shown in Table 5. The x-axis cor-
responds to the reliability of a single DRAM device
in FIT, failures per billion device-hours of operation.
The lines in this figure predict the performance of
applications whose memory contents look like each
of our six workloads.

tential benefit of this approach as a function of memory
reliability, a concern for future extreme-scale systems. We
measure memory reliability in terms of the failures in time
(FIT) per DRAM device: the number of expected failures
per billion hours of device operation. We consider a system
comprised of nodes whose MTBF is approximately 100 years
when memory failures are excluded. A system comprised of
these nodes would have an MTBF of approximately 7 hours.
We consider a range of potential values for memory reliabil-
ity, from very reliable (one or two memory failures in the
system per day) to very unreliable (several memory failures

PARAMETER VALUE
nodes 131,072
total system memory 32 PiB
memory devices/node 1152
FIT /node (excluding memory) 1100
checkpoint commit time 10 minutes

Table 5: Characteristics of the hypothetical next-
generation, extreme-scale system used to gener-
ate Figure 7. A FIT value of 1100 corresponds to an
MTBF of approximately 100 years The checkpoint
commit time assumes that checkpoints are written
to a parallel file system. Its value is based on exist-
ing studies of checkpoint performance [9,22].

in the system per hour). This range of memory reliability is
consistent with existing projections of memory performance
on future systems [8,20,28].

As this figure shows, exploiting similarity to correct mem-
ory errors is effective for some but not all memory-use pro-
files. Applications whose memory-use patterns resemble those
of SAMRALI are unlikely to see much benefit from this ap-
proach. However, applications that use memory like CTH-
st, HPCCG, and LULESH do can potentially see substantial
increases in application execution speed. If future memory
devices fall on the unreliable end of this range, as some pre-
dict for future leadership-class systems, then applications
with memory-use patterns that are similar to LAMMPS-]j
and LAMMPS-eam may also see significant gains.

7. RELATED WORK

7.1 Memory content similarity

Duplicate memory regions have been successfully exploited
to reduce memory consumption in the context of virtualiza-
tion for decades [5]. The Difference Engine relaxed the re-
quirement of exact duplicates and introduced the notion of
similarity [13].

More recently, techniques have been proposed for exploit-
ing similarity in HPC applications. SBLLmalloc reduces
the memory usage of HPC applications by sharing duplicate
pages between processes [3].° ConCORD is a distributed

8Many papers use the word “similarity”, but in most cases,



service for managing duplicate pages across nodes. As an ex-
ample of how their service can be used, the authors present
an implementation of collective checkpointing [29]. The Sim-
ilarity Engine, as described in this paper, is the first docu-
mented use of memory similarity for something other than
de-duplication.

Although we have previously examined the potential for
exploiting similarity in HPC applications [19], the Similarity
Engine is the first implementation of a system for identify-
ing similar (not just duplicate) pages in application memory.
Our earlier work relied on offline analysis of memory snap-
shots using a powerful, but expensive, differencing algorithm
(bsdiff). In this paper, we identified two lightweight algo-
rithms, 1z4 and xor+lz4, that enabled us to implement the
Similarity Engine, a lightweight software library, that is able
to efficiently identify significant similarity in the memory of
HPC applications.

7.2 Correcting memory errors

Given the dire predictions about the frequency of mem-
ory errors, substantial effort has been devoted to developing
mitigation techniques. These techniques include: exploit-
ing algorithmic properties to correct errors [4, 6], predicting
the occurrence of failures [11,12] and replication of instruc-
tions [23,24] or entire processes [9].

Our approach is neither a replacement for nor a direct
competitor with these approaches. We present a novel ap-
proach for exploiting memory similarity to correct memory
errors that could be used in conjunction with any of these
existing techniques to further improve application resilience
to memory errors.

8. FUTURE WORK

In this paper, we have focused on exploiting memory con-
tent similarity to correct memory errors. However, there are
other ways to exploit the similiarity identified by the Simi-
larity Engine. For example, we can use similarity to reduce
the volume of system-level checkpoints. A checkpoint need
only include a single copy of each duplicate page and a pair
of similar pages can be replaced by one of the pages and the
difference between the two. Similarity can potentially also
be used to detect silent data corruption. During an appli-
cation’s execution, the difference between two similar pages
can be used to ensure that neither page changes without
explicitly being written to.

9. CONCLUSION

We introduced a memory similarity service, Similarity En-
gine, and demonstrated that it can be used to identify sig-
nificant similarity in application memory: 94% in HPCCG,
87% in CTH-st, and 79% in LULESH. For other applica-
tions, the similarity is more modest: 32% in LAMMPS-j,
and 21% in LAMMPS-eam. We also observed that there are
applications for which we are unable to identify significant
similarity using our current approach (e.g., SAMRALI).

In this paper, we showed how similarity can be used to
improve performance by increasing application resilience to
memory errors. Specifically, we showed that for extreme-
scale systems where memory failures are projected to occur
frequently we can exploit similarity to increase application

it is used as a synonym for duplicated pages.

performance by more nearly 70% for HPCCG, 55% for CTH-
st and 36% for LULESH.”

We showed that the Similarity Engine imposes very low
overhead due to very efficient methods for identifying pairs
of potentially similar pages and computing differences. We
introduced a novel method (xor+1z4) for computing differ-
ences that is substantially faster than existing differencing
algorithms and allows the Similarity Engine to find nearly
50% more similar pages in the memory of LULESH than
compression alone. We also presented a lightweight heuris-
tic (neighbors) that allows the Similarity Engine to cheaply
and effectively identify pairs of potentially similar pages in
the memory of HPC applications.

The benefits of our approach could be significantly im-
proved with the development of even more efficient differ-
encing algorithms. The algorithms we used for our full-scale
experiments, xor+1z4 and 1z4, are very fast but the trade-
off is that they identify much less similarity than the other
algorithms we considered. Similarly, although our simple
neighbor heuristic is surprisingly effective, a more sophis-
ticated heuristic for identifying pairs of potentially similar
pages would also improve the impact of this technique.
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