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Abstract

The purpose of this paper is to describe and illustrate practical methods that can be used to 

construct tolerance bounds for a multivariate measurement associated with a covariate.  These 

methods rely on principal components analysis and the parametric bootstrap.  The methods are 

illustrated with an example in which the vibration environment experienced by a test object 

being carried by an aircraft (known as captive carry) is characterized. In this example, the 

dominant dimension extracted by principal components analysis is related to a measureable 

covariate (dynamic pressure).  Utilizing this relationship, tolerance bounds are constructed that 

are specific to a target value of the covariate. The multivariate measurement (vibration 

amplitude) relates to an ordered index (frequency). However, the ordering of the multivariate 

response is not useful for constructing tolerance bounds due to the discontinuous nature of the 

vibration amplitude across the range of frequencies.  Thus, the methods that are described here 

are simple and do not assume an underlying functional relationship of the response across the 

ordered index.

Keywords: Bootstrap, Captive Carry, Principal Components Analysis

Introduction

A tolerance bound is a data-dependent confidence limit on a specific quantile of a characteristic 

of interest (Wald and Wolfowitz (1946) and Krishnamoorthy and Mathew (2009)). Construction of a 

tolerance bound often involves the need for a statistical model.  Tolerance bounds are used 

across a wide variety of situations including making a reliable assessment of exposure to hazards 

in the workplace (Tuggle (1982)), characterizing the distribution of groundwater constituents 

(Gibbons (1991)), and assessing the sensitivity of explosives to an ignition stimulus (Neyer

(1994)). In manufacturing applications, tolerances bounds are frequently utilized in acceptance 

sampling contexts as evidence for accepting or rejecting a production lot (Montgomery (2012)).  

Consider the case where one is interested in the weld strength of a particular component, where 

the weld strength varies from unit to unit within the lot.  In such a situation, one might want to 

develop a lower tolerance bound for a specified percentile of weld strengths for the production 

lot. Alternatively, one might be interested in an upper tolerance bound or in a tolerance interval 

(involving both upper and lower bounds).  In this case, weld strength measurements conducted 

on a representative sample of units from the population of interest can serve as the basis for 
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constructing a lower tolerance bound. Suppose a sample of size n is selected from a population 

for testing resulting in estimates of the population mean and standard deviation of the 

characteristic of interest, given by �� and S.  Assuming that the population characteristic is 

normally distributed, a lower tolerance limit which bounds (1 − �) ∙ 100% of the population 

with � ∙ 100% confidence is given by	��� = �� − ����,�;� ∙ �, where ����,�;�is a factor 

computed to ensure accurate coverage. The lot will be accepted if the LTL exceeds a required 

level.  Thus, by construction, a tolerance bound accounts for the variability within the population 

(through specification of a percentile) and the uncertainty associated with a small sample size 

(through specification of a confidence level).

Tolerance bounds usually relate to an individual (univariate) characteristic of interest, such as

weld strength in the above example.  The construction of tolerance bounds in a multivariate 

context is less common.  Recently, Rathnayake and Choudhary (2015) described a method for 

constructing “tolerance bands” for multivariate functional data.  Functional data often take the 

form of repeated measurements over time but also may involve multivariate data collected across 

some other ordered index such as frequency (or wavelength). In the functional data context, an 

observation consists of an ordered multivariate measurement acquired from an object (or 

subject).  One characteristic of functional data is that the multivariate measurement is assumed to 

consist of noise superimposed on a smooth function of the ordered index (Ramsay and Silverman 

(1997)).  Other recent examples where functional data analysis was used to characterize 

multivariate data include Storlie et al. (2013) and Tucker et al. (2013).  Rathnayake and Choudhary 

(2015) and Storlie et al. (2013) represent the underlying function as a Gaussian process. In Storlie

et al. (2013) the underlying function is also modelled by B-spline basis functions.  Functional 

principal components analysis (Ramsay and Silverman (1997)) can also be useful. However, in 

order for such approaches to be effective and provide additional value, it is important that the 

underlying relationship be relatively smooth / continuous.

As described in Rathnayake and Choudhary (2015), the ordered multivariate data can also be 

classified as either “sparse” or “dense”.  The distinction between the two cases lies in the 

regularity of the ordered index across the set of observations. In addition, the multivariate data 

can be described in terms of “balance”, which reflects the consistency to which the observations 

are represented across all values of the ordered index. In this paper we consider an example in 

which the objective is to develop tolerance bounds for an ordered multivariate measurement that 

is both dense and balanced, but not particularly smooth and so does not fit the functional data 

paradigm. Nevertheless, the correlation is strong across the various dimensions of the response.  

A simple version of principal components analysis is able to provide a useful basis for 

constructing both pointwise and simultaneous tolerance bounds.  Furthermore, the dominant 

dimension extracted by principal components analysis is interpretable and strongly related to a 

measureable covariate. The statistical uncertainty of the relationship between scores of the 
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dominant dimension and the covariate is incorporated into the constructed tolerance bounds 

specific to a target value of the covariate.

The remainder of the paper discusses details of the example as well as the methods used to 

construct tolerance bounds.

Illustrative Example

Over the course of a lifetime, munition systems developed for the military are exposed to various 

sources of mechanical vibrations that can affect system performance.  A significant exposure to 

vibration environments occurs when the munition is being carried by an aircraft (known as 

“captive carry”).  During captive carry, the vibration level can be affected by flight conditions 

such as airspeed and altitude.  Often, as in the case of the example presented here, it is of interest 

to characterize the distribution of vibration levels that can be encountered during “straight and 

level” flight conditions, which is the predominate source of vibration exposure. In the 

illustrative example presented here, data were acquired from sensors located on various positions 

on a test system mounted on an aircraft as it was flown over a variety of flight segments.  The 

flight segments are considered to be a representative, random sample of “straight and level” 

captive carry conditions. For each sensor, the vibration data for each flight segment were

summarized by the Acceleration Spectral Density (ASD).  The multivariate ASD’s or “spectra”

are known to depend on dynamic pressure (Q) and Mach Number (M).  The dynamic pressure is 

a particularly useful summary measure of the aerodynamic forces acting on an object as it moves 

through the atmosphere (Piersol (1971)).

Figure 1 displays a set of ASD’s (log scale) that were acquired during 18 “straight and level” 

flight segments across a broad range of Q values in the transonic Mach regime from a sensor of 

interest. The transonic Mach regime, defined by	0.9 < ���ℎ < 1.0, is of particular interest 

since it is known to produce the worst-case levels of vibration.  It will be shown that within the 

ensemble of spectra displayed in Figure 1, there is a large predictable effect of Q such that the 

ensemble of data can be sensibly normalized to a target value of Q representing a specific worst-

case setting for vibration.  The normalized ensemble can then be used to construct an upper 

tolerance bound specific to a target dynamic pressure of interest, denoted by	�������. The 

remainder of this document describes the assumptions and details used to develop this upper 

bound.

First, it is interesting to examine the nature of the spectra displayed in Figure 1.  One observation 

is that the spectra do not appear to be smooth (note the numerous sharp peaks and valleys in the 

spectra). A second observation is that the features are generally well aligned with respect to 

frequency.  Hence, there appears to be, at most, negligible registration error.
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Figure 1 – Acceleration Spectral Densities (Spectra)

Based on these observations, we have developed methods for constructing tolerance bounds that 

are based on a version of principal components decomposition of an assumed representative set 

of spectra similar to what is described by Paez, et al. (2004).  In the random shock literature (see 

e.g., Bellizzi and Sampaio (2009)), this technique is known as the Karhunen-Loeve transform 

(KLT).  Note that if the underlying spectra appeared to be smooth and/or were affected by 

registration error, it would have been prudent to characterize the spectra using the functional data 

analysis methods discussed earlier. The KLT projects the log-transformed high-dimensional 

spectral data onto a smaller dimensional orthogonal space defined by latent variables, which 

facilitates more feasible analysis. The results from the analysis in this lower-dimensional space 

can easily be translated to the original dimensions as long as the lower-dimensional space 

adequately represents the original spectra.  

The following nomenclature is used to help describe the process.  

Y = matrix of spectra (number of spectra by channel dimension)

Yc = matrix of mean-centered spectra (number of spectra by channel dimension)

�� = � − �� , where �� is the average spectrum

E = matrix of eigenvectors (channel dimension by number of latent variables) 
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ek = kth column of E

S = matrix of scores (number of spectra by number of latent variables)

� = �� ∙ �

sk = kth column of S

 = vector of singular ������	(�� ≥ �� ≥ ⋯ > 0)

In summary, the KLT provides an approximation to the spectra via an orthonormal set of 

eigenvectors (shape-vectors) and an orthogonal set of scores (i.e.,	�� = �� + ��, where            

	�� = � ∙ �� ).  Typically, the row dimension of E is much smaller than the number of spectra;

hence, the dimension reduction.  Singular-value decomposition (SVD) is a method commonly 

used to obtain E from Yc (see Golub and Van Loan (1996)).

The SVD can produce an effective basis set E if it is applied to a set of spectra that are 

representative and are consistent in terms of modes of variation, such as is the case in Figure 1. 

Figure 2 displays the mean-centered spectra associated with the 18 observations from Figure 1.  

The SVD was applied to the set of mean-centered spectra in order to produce an orthogonal basis 

of eigenvectors and scores.  Each latent-variable dimension is also associated with a singular 

value k.  The magnitude of each singular value reflects the contribution of its associated 

dimension in modeling the total variation across all channels of the spectra.  Hence, the singular 

values can be used to determine the importance of each eigenvector.   While the SVD is capable 

of producing a decomposition that has as many latent variables as there are channel dimensions, 

the intent is to develop a basis set with a smaller dimension that also provides a good 

approximation to the mean-centered spectra.  A graphical means to identify an appropriate 

number of latent variables is via a scree plot (Cattell (1966)).  Figure 3 illustrates the scree plot 

produced from the SVD of the 18 observations.  The scree plot displays the relationship between 

the logarithm of each singular value versus its order.  Theory underlying the scree plot suggests 

that important, structural dimensions lie above a hypothetical line constructed to fit the least 

important dimensions.  Thus, in this case there appears to be a single structural dimension.  

Figure 4 displays the eigenvector associated with the largest singular value. The score values 

associated with this structural dimension clearly depend on Q (see Figure 5).  In fact, a simple 

linear model is able to accurately relate the score-value to Q.  From Figures 4 and 5, it is clear 

that vibration levels increase as Q increases, with the rate of increase depending on frequency.  

The other dimensions may be related to random measurement error or some other non-structural 

process.
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Figure 2 – Mean-Centered Spectra 

Figure 3 – Scree Plot
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Figure 4 – Eigenvector Associated with Largest Singular Value

Figure 5 – Scores Associated with Eigenvector #1 versus Q
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For the analysis that follows, additional dimensions are included to allow for a closer 

approximation to the spectra (i.e., 	�� = �� + � ∙ �� ).  Figure 6 compares the levels of variability 

across the original (Y) and reconstructed spectra (	�� ) based on using SVD with 5 latent variables.  

It is clear that the levels of variability of the original and reconstructed spectra are similar.  For 

computation of tolerance bounds, we use 10 latent variables, which allows for an even closer 

approximation. In other situations, one might specify the number of latent variables to include as 

the smallest set that accounts for some target percentage of the total spectral variation (say 95%).

Figure 6 – Standard Deviations of Spectra (Actual and Reconstructed)

Since the first dimension (eigenvector #1) accounts for a substantial portion of the variation 

across the spectra and the associated scores relate well with Q, it follows that Q has a dominant 

influence on the spectra.  Thus, it is not surprising that the shape of the standard deviation of the 

spectra (Figure 6) closely approximates eigenvector # 1.

The fitted relationship between the scores of the first dimension and Q (Figure 5) can be used to 

normalize the spectra to a particular target value of Q.   

To effect this normalization, the approximated spectra 	�� = �� + � ∙ �� are adjusted by correcting 

the values in the first column of S to account for the difference in the expected value between the 

observed values of Q and the targeted value of Q, given by	�������.   That is,
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����� = �� + � ∙ �� − ��� ∙ �� − �������� ∙ ��
�, where Q represents the column vector of values of 

dynamic pressure and 	���is from the fitted model displayed in Figure 5 (�� = 	��� + ��� ∙ �).  Thus, 

the adjusted spectra given by �����and displayed in Figure 7 have been normalized to resemble an 

ensemble of spectra associated with	�������.

Figure 7 –Spectra Adjusted to	������� , �����
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Use of the Parametric Bootstrap Method for Generating Pointwise Tolerance Bounds

The parametric bootstrap can be used to develop pointwise tolerance bounds that are specific to a 

target level of dynamic pressure.  The “parametric bootstrap” is a variant of the general bootstrap 

procedure (see Efron and Tibshirani (1993) and Hinkley (1988)) and assumes the form of the 

probability distribution associated with the observed variation in the adjusted spectra.  The 

method assumes that the sampled flight segments are a random sample of “straight and level” 

captive carry conditions.  It is also assumed that an appropriate basis set has been determined 

such that p latent variables are sufficient to adequately represent the spectral variation.  For this 

analysis, it is assumed that the score values are distributed as Gaussian random variables for each 

of the k=1:p dimensions.  The parametric bootstrap procedure is an iterative procedure such 

that, at each of B iterations, plausible values for the true (unknown) parameters of the assumed 

normal distributions (�� and	��) are simulated for k=1:p based on the estimate ���.  That 

is,	���~ ��� ∙ �
��

���
� , where ���

� is a chi-squared distributed random variable with df degrees of 

freedom, and ���~�������0, ���
��.  First, note that ���

� represents 1/16th of the sum of the 

squared differences between the observed data and solid curve in Figure 5 (�� = 16).  In the 

case of the other dimensions (� > 1), ��� is simply the standard deviation of the scores

associated with the kth dimension (�� = � − 1 = 17).  In the case of	��, the variance ���
� =

���
� ∙ ��

� ∙ (�� ∙ �)�� ∙ �� for � = 1 and ���
� =

���
2

�
for	� > 1. The first dimension (� = 1) is 

treated differently here since it is demonstrably related to Q.  X is the so-called “design matrix” 

with 18 rows and 2 columns.  The first column of X consists of ones.  The second column of X

consists of the values of Q. The column vector, 	��	(reflecting a dynamic pressure of�������), is 

defined by	�1	������� 	�
�
.  

For each bootstrap iteration, a set of separate plausible parameter pairs are generated 

independently: {��� , ���}���:�.  This set of parameter pairs could be used as the basis for 

simulating a set of scores which in turn could be used to simulate individual spectra.  Instead, the 

(1-) level percentile for the spectrum (point wise) is constructed for that particular set of 

parameter pairs as follows.

For the ith bootstrap iteration (ith set of parameter pairs), the mean bootstrap spectrum is 

constructed as   ������
� = 	����� + [��� … ���] ∙ ��.  For the same iteration, the standard 

deviation of the spectrum is reconstructed point wise. Due to the assumed independence of the 

score values (based on their orthogonal construction), the standard deviation of the jth channel is 

�����
� (�) = �∑ ���

� ∙ ���
��

��� .  The (1-) percentile for the jth spectral channel for the ith
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bootstrap iteration is	�����
� (�) = ������

�
(�)+�1−� ∙ �����

� (�), where ���� is the (1-) 

percentile of the standard normal distribution.  The  -percentile of the values within 

{�����
� (�)}���:� is the -level upper confidence bound for the (1-) percentile of the jth spectral 

channel. Figure 8 presents the 90% upper confidence bounds for the 99th percentile (pointwise, 

by frequency) specific to	�������.  The appendix provides the MATLAB code that was used to 

produce the tolerance bounds illustrated in Figure 8. 

Figure 8 – 90% Upper Confidence Bounds for the 99th Percentile at �������

It is important to evaluate the accuracy of the computed tolerance bounds obtained by using this 

method.  A straightforward way to do this is as follows.  First, assume that the model forms used 

are accurate. Furthermore, assuming that the estimates of the model parameters reflect the truth, 

one can compute the pointwise 99th percentiles for the ASD frequencies conditioned at	������� .  

Note that with these assumptions, the (1-) percentile for the jth spectral channel is

	����(�) = �����(�) + ���� ∙ ��(�), where	��(�) = �∑ ���
2 ∙�

�=1 ���
2.

Then, simulate the set of n spectra by adding random amounts of each the � = 10 eigenvectors 
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observed values of Q (i.e., �����(�)).  Next, using the simulated set of data, redo the complete

analysis (principal components analysis, model fitting, and construction of pointwise tolerance 

bounds). Then, repeat the simulation and analysis processes a large number of times and 

compare the constructed 99/90 upper tolerance bounds with the computed 99th percentiles for the 

ASD frequencies at	������� . Figure 9 displays the set of tolerance bounds that were acquired 

through 10,000 simulation trials involving the parametric bootstrap.  If the method provides 

accurate coverage, the 99th percentiles of the ASD frequencies will be exceeded 90% of the time 

by the tolerance bounds.  Figure 10 compares the 10th percentile of the 99/90 upper bounds with 

the 99th percentiles of the assumed distribution of ASD’s. It is indeed the case that the 10th

percentiles of the 99/90 upper tolerance bounds are nearly equivalent to the 99th percentiles.  

Figure 11 displays the coverage levels for the various frequencies that were estimated by the 

simulation. The levels of coverage range from 79% to 93%. Lower than expected coverage was 

observed at some frequencies from 30 to 200 hz. It is interesting that frequencies with lower than 

expected coverage generally are associated with relatively small loadings of the first principal 

component (compare Figures 4 and 11). 

Figure 9 – Simulated 99/90 Upper Tolerance Bounds 
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Figure 10 – Comparing the 10th percentile of the 99/90 upper bounds with the 99th percentiles

Figure 11 – Estimated levels of coverage, by frequency
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To further investigate the issue of marginal lower than expected coverage an additional 

simulation experiment was conducted. The intent is to simulate a simpler system; one that does 

not include the effects of Q and by association, the first principal component. A set of n spectra 

was constructed by adding random amounts of all but the first of the � = 10 eigenvectors 

(according to the assumed distributions of scores) to the estimated model spectrum at	������� .  

Next, using the simulated set of data, redo the complete analysis except for the adjustment of 

spectra at	������� and modeling of the effect of Q. Then, repeat the simulation and analysis 

processes 10,000 times and compare the constructed 99/90 upper tolerance bounds with the 

computed 99th percentiles for the ASD frequencies at	������� .  Figures 12 and 13 summarize the 

results. In this case, 10th percentiles of the 99/90 upper tolerance bounds are almost identical to 

the 99th percentiles (see Figure 12).  This is not surprising, since there is very little spectral 

variation due to dimensions 2-10.  However, as Figure 13 shows, the 99/90 upper tolerance 

bounds uniformly provide slightly less coverage than expected.

Figure 12 – Comparing the 10th percentile of the 99/90 upper bounds with the 99th percentiles: 

without first principal component 
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Figure 13 – Estimated levels of coverage, by frequency: without first principal component

These idiosyncrasies and risks associated with using the parametric bootstrap in conjunction with  

principal components analysis are not unknown. For example, Milan and Whittaker (1995) warn 

about extra nuisance variability when using the parametric bootstrap in association with principal 

components analysis.  The extra nuisance variability can reveal itself in: (1) a rotation of the 

principal components, (2) an inversion of the ordering of the singular values, and (3) an 

inversion of the signs of the eigenvectors (and associated scores). In the example presented here, 

the effects of the extra nuisance variability on the accuracy of the constructed tolerance bounds 

are mostly inconsequential as shown in Figures 10 and 11.  This is largely due to the manner in 

which the analysis is performed and the fact that the covariate relates to the “first” principal 

component which is dominant and hence accounts for most of the spectral variability. The nature 

of the first eigenvector (particularly where the loadings are large) will not be greatly distorted by 

spurious correlation of the first dimension with the other dimensions as created by the bootstrap 

iterations.  Also note that any inversion of the sign of the scores associated with the first 

eigenvector will be properly accounted for in the regression of those scores on Q. In the 

illustrative example, the dominance of the first principal component is believed to be responsible 

for the accurate coverage that is observed in the case of frequencies where the loadings of the 

first principal component are large.
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Here, the focus has been on frequency-specific, pointwise tolerance bounds.  Attempts to 

construct accurate joint tolerance bounds were unsuccessful.  Even a Bonferonni-type approach 

is difficult to implement due to the frequency-dependent coverage and the idiosyncrasies 

associated with using the parametric bootstrap in conjunction with   principal components 

analysis.

Conclusions

A parametric bootstrap procedure has been developed for constructing upper tolerance bounds 

relating to the acceleration spectral density associated with captive carry for a fixed condition 

defined by a target dynamic pressure.  These methods rely on the ability to create an ensemble of 

adjusted spectra that is normalized to a specific dynamic pressure of interest via the strong 

empirical relationship between the acceleration spectral density and dynamic pressure.  The 

method has been found to be applicable to similar situations where one or more covariates relate 

to scores associated with a dominant principal component. Furthermore, the parametric bootstrap 

procedure was shown to provide reasonably accurate coverage given that the distributional 

assumptions are met. The method is relatively simple and straightforward and do not assume 

continuity across the ordered index. Note that a different and more complex approach (utilizing 

functional data analysis methods) might be more appropriate if the multivariate data are 

continuous across the ordered index.  

  



17

References

Bellizzi, S., & Sampaio, R. (2009), “Smooth Karhunen–Loève decomposition to analyze 
randomly vibrating systems,” Journal of Sound and Vibration, 325(3), 491-498.

Cattell, R. B. (1966), “The scree test for the number of factors,” Multivariate behavioral
research, 1(2), 245–276.

Efron, B. and Tibshirani, R. J. (1993), An Introduction to the Bootstrap, New York: Chapman 
Hall, New York.

Gibbons, R. D. (1991), “Statistical Tolerance Limits for Ground-Water Monitoring,”

Groundwater, 29(4), 563-570.

Golub, G. H.  and Van Loan, C. F.  (1996), Matrix Computations, Third Edition, The Johns 

Hopkins University Press.

Hinkley, D. V. (1988) “Bootstrap methods,” J. R. Statist. Soc. B, 50, 321-337, 1988.

Krishnamoorthy, K. and Mathew, T. (2009), Statistical tolerance regions: theory, applications, 
and computation, New York: John Wiley.

Milan, L. and Whittaker, J. (1995), “Application of the parametric bootstrap to models that 
incorporate a singular value decomposition,” Applied Statistics, 31-49.

Montgomery, D. C. (2012), Introduction to Statistical Quality Control, 7th Edition, New York: 
John Wiley.

Neyer, B. T. (1994), “AD-Optimality-Based Sensitivity Test,” Technometrics, 36, 61-70.

Paez, T. L., Morrison, D. and Cap, J. S. (2004), “Generation of Nonstationary Random 
Excitations with a Specified Tolerance Limit,” 9th ASCE Specialty Conference on Probabilistic 
Mechanics and Structural Reliability, SAND2004-4301C, Sandia National Labs, Albuquerque 
New Mexico.

Piersol, A. G. (1971), "Vibration and acoustic test criteria for captive flight of externally carried 

aircraft stores," DIGITEK Corporation, AFFDL-TR-71-158.

Ramsay, J. O. and Silverman, B. W. (1997), Functional Data Analysis, New York: Springer.

Rathnayake, L. N. and Choudhary, P. K. (2015) “Tolerance bands for functional data,”

Biometrics, in press.



18

Storlie, C. B., Fugate, M. L., Higdon, D. M., Huzurbazar, A. V., Francois, E. G., and McHugh,

D. C. (2013), “Methods for characterizing and comparing populations of shock wave curves,”

Technometrics, 55, 436-449.

Tucker, J. D., Wu, W., and Srivastava, A. (2013) “Generative models for functional data using 

phase and amplitude separation,” Computational Statistics & Data Analysis, 61, 50-66.

Tuggle, R. M. (1982), “Assessment of occupational exposure using one-sided tolerance limits,”

The American Industrial Hygiene Association Journal, 43(5), 338-346.

Wald, A. and Wolfowitz, J. (1946), “Tolerance limits for a normal distribution,” The Annals of 
Mathematical Statistics, 208-215.



19

Appendix – MATLAB code, Parametric Bootstrap 

function [ub, y_recons, score1, evector1]=bootstrap_par_tolerance_qadj(y, q,  
p, n_boot, p_tile, gamma, target_q) 
%
%   OUTPUT VARIABLES:
%   -(1) ub--> "qq x 1" vector of upper bounds for spectra
%   -(2) y_recons--> "n x qq" matrix of reconstructed spectra (at target_q)
%   -(3) score1--> n dimensional set of scores for first e-vector 
%   -(4) evector1--> loadings of first e-vector: “qq x 1”
%
%   INPUT VARIABLES:
%   -(1) y--> "n x qq" matrix of all spectra 
%   -(2) q--> dynamic pressure associated with each spectrum (n dimensional)
%   -(3) p--> number of latent variables (scalar)
%   -(4) n_boot--> number of bootstrap simulations (scalar)
%   -(5) p-tile--> conforming fraction of population (scalar)
%   -(6) gamma--> fractional confidence level (scalar)
%  -(7) target_q--> spectra are normalized to this level
%

[n,qq]=size(y);
mcy=meancent(y);
my=mean(y);
alpha=1-p_tile;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Create basis set from mcy_pfc
%
[~, ~, e_vectors]=svds(mcy, p);
scores = mcy*e_vectors;
std_score=std(scores);
score1=scores(:,1);
evector1=e_vectors(:,1);

des=[ones(1,n); q']';
bhat=inv(des'*des)*des'*scores(:,1);
pred=des*bhat;
pred_error=pred-scores(:,1);
rmse_sav=sqrt(pred_error'*pred_error/(n-2));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Adjust spectra to target dynamic pressure
% Uses fitted linear regression 

%
adj_scores=scores;
for i=1:n
   adj_scores(i,1)=adj_scores(i,1)-bhat(2)*(q(i)-target_q); 
end;

mcy_est=adj_scores*e_vectors';
y_recons=ones(n,1)*my+mcy_est;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Bootstrap Portion of Analysis
mean_spectrum=mean(y_recons);

ind_confid=floor(n_boot*gamma);

[n,dum]=size(scores);
m=zeros(p,1);
s=zeros(p,1);

% Replicate setup 
simul_ub_spectrum=zeros(n_boot,qq);
extrap_mult=sqrt([1 target_q]*inv(des'*des)*[1 target_q]');

for k=1:n_boot

     
    for j=1:p;
        if j==1
            r1=chi2rnd(n-2,1,1);
            r2=normrnd(0,1,1,1);
            s(j)=rmse_sav*sqrt(n-2)./sqrt(r1);
            m(j)=r2.*s(j)*extrap_mult;
        end;
        if j> 1
            r1=chi2rnd(n-1,1,1);
            r2=normrnd(0,1,1,1);
            s(j)=std_score(j)*sqrt(n-1)./sqrt(r1);
            m(j)=r2.*s(j)/sqrt(n);
        end
    end;

    sim_mean_spectrum=mean_spectrum + m'*e_vectors';
    sim_std_spectrum=sqrt((e_vectors.^2)*(s.^2))';
    simul_ub_spectrum(k,:)=sim_mean_spectrum + norminv(1-
alpha,0,1)*sim_std_spectrum;
end;

ss=sort(simul_ub_spectrum);
ub=ss(ind_confid,:);


