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Abstract

The purpose of this paper is to describe and illustrate practical methods that can be used to
construct tolerance bounds for a multivariate measurement associated with a covariate. These
methods rely on principal components analysis and the parametric bootstrap. The methods are
illustrated with an example in which the vibration environment experienced by a test object
being carried by an aircraft (known as captive carry) is characterized. In this example, the
dominant dimension extracted by principal components analysis is related to a measureable
covariate (dynamic pressure). Utilizing this relationship, tolerance bounds are constructed that
are specific to a target value of the covariate. The multivariate measurement (vibration
amplitude) relates to an ordered index (frequency). However, the ordering of the multivariate
response is not useful for constructing tolerance bounds due to the discontinuous nature of the
vibration amplitude across the range of frequencies. Thus, the methods that are described here
are simple and do not assume an underlying functional relationship of the response across the
ordered index.

Keywords: Bootstrap, Captive Carry, Principal Components Analysis

Introduction

A tolerance bound is a data-dependent confidence limit on a specific quantile of a characteristic
of interest (Wald and Wolfowitz (1946) and Krishnamoorthy and Mathew (2009)). Construction of a
tolerance bound often involves the need for a statistical model. Tolerance bounds are used
across a wide variety of situations including making a reliable assessment of exposure to hazards
in the workplace (Tuggle (1982)), characterizing the distribution of groundwater constituents
(Gibbons (1991)), and assessing the sensitivity of explosives to an ignition stimulus (Neyer
(1994)). In manufacturing applications, tolerances bounds are frequently utilized in acceptance
sampling contexts as evidence for accepting or rejecting a production lot (Montgomery (2012)).
Consider the case where one is interested in the weld strength of a particular component, where
the weld strength varies from unit to unit within the lot. In such a situation, one might want to
develop a lower tolerance bound for a specified percentile of weld strengths for the production
lot. Alternatively, one might be interested in an upper tolerance bound or in a tolerance interval
(involving both upper and lower bounds). In this case, weld strength measurements conducted
on a representative sample of units from the population of interest can serve as the basis for
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constructing a lower tolerance bound. Suppose a sample of size 7 is selected from a population
for testing resulting in estimates of the population mean and standard deviation of the
characteristic of interest, given by X and S. Assuming that the population characteristic is
normally distributed, a lower tolerance limit which bounds (1 — &) - 100% of the population
with ¥ - 100% confidence is given by LTL = X — ky_g.n * S, Where ky_q,.is a factor
computed to ensure accurate coverage. The lot will be accepted if the L7L exceeds a required
level. Thus, by construction, a tolerance bound accounts for the variability within the population
(through specification of a percentile) and the uncertainty associated with a small sample size
(through specification of a confidence level).

Tolerance bounds usually relate to an individual (univariate) characteristic of interest, such as
weld strength in the above example. The construction of tolerance bounds in a multivariate
context is less common. Recently, Rathnayake and Choudhary (2015) described a method for
constructing “tolerance bands” for multivariate functional data. Functional data often take the
form of repeated measurements over time but also may involve multivariate data collected across
some other ordered index such as frequency (or wavelength). In the functional data context, an
observation consists of an ordered multivariate measurement acquired from an object (or
subject). One characteristic of functional data is that the multivariate measurement is assumed to
consist of noise superimposed on a smooth function of the ordered index (Ramsay and Silverman
(1997)). Other recent examples where functional data analysis was used to characterize
multivariate data include Storlie et al. (2013) and Tucker et al. (2013). Rathnayake and Choudhary
(2015) and Storlie et al. (2013) represent the underlying function as a Gaussian process. In Storlie
et al. (2013) the underlying function is also modelled by B-spline basis functions. Functional
principal components analysis (Ramsay and Silverman (1997)) can also be useful. However, in
order for such approaches to be effective and provide additional value, it is important that the
underlying relationship be relatively smooth / continuous.

As described in Rathnayake and Choudhary (2015), the ordered multivariate data can also be
classified as either “sparse” or “dense”. The distinction between the two cases lies in the
regularity of the ordered index across the set of observations. In addition, the multivariate data
can be described in terms of “balance”, which reflects the consistency to which the observations
are represented across all values of the ordered index. In this paper we consider an example in
which the objective is to develop tolerance bounds for an ordered multivariate measurement that
is both dense and balanced, but not particularly smooth and so does not fit the functional data
paradigm. Nevertheless, the correlation is strong across the various dimensions of the response.
A simple version of principal components analysis is able to provide a useful basis for
constructing both pointwise and simultaneous tolerance bounds. Furthermore, the dominant
dimension extracted by principal components analysis is interpretable and strongly related to a
measureable covariate. The statistical uncertainty of the relationship between scores of the



dominant dimension and the covariate is incorporated into the constructed tolerance bounds
specific to a target value of the covariate.

The remainder of the paper discusses details of the example as well as the methods used to
construct tolerance bounds.

Illustrative Example

Over the course of a lifetime, munition systems developed for the military are exposed to various
sources of mechanical vibrations that can affect system performance. A significant exposure to
vibration environments occurs when the munition is being carried by an aircraft (known as
“captive carry”). During captive carry, the vibration level can be affected by flight conditions
such as airspeed and altitude. Often, as in the case of the example presented here, it is of interest
to characterize the distribution of vibration levels that can be encountered during “straight and
level” flight conditions, which is the predominate source of vibration exposure. In the
illustrative example presented here, data were acquired from sensors located on various positions
on a test system mounted on an aircraft as it was flown over a variety of flight segments. The
flight segments are considered to be a representative, random sample of “straight and level”
captive carry conditions. For each sensor, the vibration data for each flight segment were
summarized by the Acceleration Spectral Density (ASD). The multivariate ASD’s or “spectra”
are known to depend on dynamic pressure (Q) and Mach Number (M). The dynamic pressure is
a particularly useful summary measure of the aerodynamic forces acting on an object as it moves
through the atmosphere (Piersol (1971)).

Figure 1 displays a set of ASD’s (log scale) that were acquired during 18 “straight and level”
flight segments across a broad range of Q values in the transonic Mach regime from a sensor of
interest. The transonic Mach regime, defined by 0.9 < Mach < 1.0, is of particular interest
since it is known to produce the worst-case levels of vibration. It will be shown that within the
ensemble of spectra displayed in Figure 1, there is a large predictable effect of O such that the
ensemble of data can be sensibly normalized to a target value of Q representing a specific worst-
case setting for vibration. The normalized ensemble can then be used to construct an upper
tolerance bound specific to a target dynamic pressure of interest, denoted by Q¢grger- The
remainder of this document describes the assumptions and details used to develop this upper
bound.

First, it is interesting to examine the nature of the spectra displayed in Figure 1. One observation
is that the spectra do not appear to be smooth (note the numerous sharp peaks and valleys in the
spectra). A second observation is that the features are generally well aligned with respect to
frequency. Hence, there appears to be, at most, negligible registration error.
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Figure 1 — Acceleration Spectral Densities (Spectra)

Based on these observations, we have developed methods for constructing tolerance bounds that
are based on a version of principal components decomposition of an assumed representative set
of spectra similar to what is described by Paez, et al. (2004). In the random shock literature (see
e.g., Bellizzi and Sampaio (2009)), this technique is known as the Karhunen-Loeve transform
(KLT). Note that if the underlying spectra appeared to be smooth and/or were affected by
registration error, it would have been prudent to characterize the spectra using the functional data
analysis methods discussed earlier. The KLT projects the log-transformed high-dimensional
spectral data onto a smaller dimensional orthogonal space defined by latent variables, which
facilitates more feasible analysis. The results from the analysis in this lower-dimensional space
can easily be translated to the original dimensions as long as the lower-dimensional space
adequately represents the original spectra.

The following nomenclature is used to help describe the process.

Y = matrix of spectra (number of spectra by channel dimension)

Y. = matrix of mean-centered spectra (number of spectra by channel dimension)
Y, =Y —Y , where Y is the average spectrum

E = matrix of eigenvectors (channel dimension by number of latent variables)
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ex = k™ column of £

S = matrix of scores (number of spectra by number of latent variables)
S=Y.-E
s¢ = k™ column of §

A = vector of singular values (1; = 4, = --- > 0)

In summary, the KLT provides an approximation to the spectra via an orthonormal set of
eigenvectors (shape-vectors) and an orthogonal set of scores (i.e., Y = Y, + ¥, where

Y, =S-ET). Typically, the row dimension of E is much smaller than the number of spectra;
hence, the dimension reduction. Singular-value decomposition (SVD) is a method commonly
used to obtain £ from Y. (see Golub and Van Loan (1996)).

The SVD can produce an effective basis set £ if it is applied to a set of spectra that are
representative and are consistent in terms of modes of variation, such as is the case in Figure 1.
Figure 2 displays the mean-centered spectra associated with the 18 observations from Figure 1.
The SVD was applied to the set of mean-centered spectra in order to produce an orthogonal basis
of eigenvectors and scores. Each latent-variable dimension is also associated with a singular
value A;. The magnitude of each singular value reflects the contribution of its associated
dimension in modeling the total variation across all channels of the spectra. Hence, the singular
values can be used to determine the importance of each eigenvector. While the SVD is capable
of producing a decomposition that has as many latent variables as there are channel dimensions,
the intent is to develop a basis set with a smaller dimension that also provides a good
approximation to the mean-centered spectra. A graphical means to identify an appropriate
number of latent variables is via a scree plot (Cattell (1966)). Figure 3 illustrates the scree plot
produced from the SVD of the 18 observations. The scree plot displays the relationship between
the logarithm of each singular value versus its order. Theory underlying the scree plot suggests
that important, structural dimensions lie above a hypothetical line constructed to fit the least
important dimensions. Thus, in this case there appears to be a single structural dimension.
Figure 4 displays the eigenvector associated with the largest singular value. The score values
associated with this structural dimension clearly depend on Q (see Figure 5). In fact, a simple
linear model is able to accurately relate the score-value to Q. From Figures 4 and 5, it is clear
that vibration levels increase as Q increases, with the rate of increase depending on frequency.
The other dimensions may be related to random measurement error or some other non-structural
process.
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For the analysis that follows, additional dimensions are included to allow for a closer
approximation to the spectra (i.e., Y =Y + S - ET ). Figure 6 compares the levels of variability
across the original (Y) and reconstructed spectra (Y) based on using SVD with 5 latent variables.
It is clear that the levels of variability of the original and reconstructed spectra are similar. For
computation of tolerance bounds, we use 10 latent variables, which allows for an even closer
approximation. In other situations, one might specify the number of latent variables to include as
the smallest set that accounts for some target percentage of the total spectral variation (say 95%).

Actual Spectra

Log1 O(Amplitude)

Frequency (Hz)

Figure 6 — Standard Deviations of Spectra (Actual and Reconstructed)

Since the first dimension (eigenvector #1) accounts for a substantial portion of the variation
across the spectra and the associated scores relate well with Q, it follows that O has a dominant
influence on the spectra. Thus, it is not surprising that the shape of the standard deviation of the
spectra (Figure 6) closely approximates eigenvector # 1.

The fitted relationship between the scores of the first dimension and Q (Figure 5) can be used to
normalize the spectra to a particular target value of Q.

To effect this normalization, the approximated spectra Y = ¥ + § - ET are adjusted by correcting
the values in the first column of S to account for the difference in the expected value between the
observed values of Q and the targeted value of O, given by Q¢qrger. That is,
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Use of the Parametric Bootstrap Method for Generating Pointwise Tolerance Bounds

The parametric bootstrap can be used to develop pointwise tolerance bounds that are specific to a
target level of dynamic pressure. The “parametric bootstrap” is a variant of the general bootstrap
procedure (see Efron and Tibshirani (1993) and Hinkley (1988)) and assumes the form of the
probability distribution associated with the observed variation in the adjusted spectra. The
method assumes that the sampled flight segments are a random sample of “straight and level”
captive carry conditions. It is also assumed that an appropriate basis set has been determined
such that p latent variables are sufficient to adequately represent the spectral variation. For this
analysis, it is assumed that the score values are distributed as Gaussian random variables for each
of'the k=1:p dimensions. The parametric bootstrap procedure is an iterative procedure such
that, at each of B iterations, plausible values for the true (unknown) parameters of the assumed

normal distributions (0} and Uy,) are simulated for k&=1:p based on the estimate }. That

Do~ ~ d . . - : .
is, O~ Oy * ’X—CZZ;, where )(621 £ 1s a chi-squared distributed random variable with df degrees of

freedom, and fi, ~Normal (0, 0 ﬁ) First, note that 62 represents 1/16™ of the sum of the
squared differences between the observed data and solid curve in Figure 5 (df = 16). In the
case of the other dimensions (k > 1), Gy is simply the standard deviation of the scores

associated with the " dimension (d f =n—1=17). Inthe case of Uy, the variance 0, 5 =

~2
5,? 'xg; -(XT-X)™1-x, fork =1and 55 = % for k > 1. The first dimension (k = 1) is
treated differently here since it is demonstrably related to Q. X is the so-called “design matrix”
with 18 rows and 2 columns. The first column of X consists of ones. The second column of X

consists of the values of Q. The column vector, X (reflecting a dynamic pressure ofQyqrget ), i

defined by [1 Qtarget ]T'

For each bootstrap iteration, a set of separate plausible parameter pairs are generated
independently: {fiy, 6%} k=1:p- This set of parameter pairs could be used as the basis for
simulating a set of scores which in turn could be used to simulate individual spectra. Instead, the

(1-a) level percentile for the spectrum (point wise) is constructed for that particular set of
parameter pairs as follows.

For the i” bootstrap iteration (i" set of parameter pairs), the mean bootstrap spectrum is
constructed as Y, = Yuq j+ [ dp]-E T For the same iteration, the standard

deviation of the spectrum is reconstructed point wise. Due to the assumed independence of the
score values (based on their orthogonal construction), the standard deviation of the j channel is

S;',oot(j) = \/ZZ=1EJ%< . 5,? . The (1-&) percentile for the ;” spectral channel for the i
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bootstrap iteration is Ppoot(j) = Y;oot(j) + Z1—q " Shoot(J), where zj_, is the (1-q)
percentile of the standard normal distribution. The y -percentile of the values within
{P;;oot (j)}i=1.p is the y-level upper confidence bound for the (1-c) percentile of the / spectral
channel. Figure 8 presents the 90% upper confidence bounds for the 99" percentile (pointwise,
by frequency) specific to Q¢qrgee- The appendix provides the MATLAB code that was used to
produce the tolerance bounds illustrated in Figure 8.
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Figure 8 — 90% Upper Confidence Bounds for the 99™ Percentile at Qtarget

It is important to evaluate the accuracy of the computed tolerance bounds obtained by using this
method. A straightforward way to do this is as follows. First, assume that the model forms used
are accurate. Furthermore, assuming that the estimates of the model parameters reflect the truth,
one can compute the pointwise 99" percentiles for the ASD frequencies conditioned at Qg get -

Note that with these assumptions, the (1-o) percentile for the j’h spectral channel is

Pio(D) = Youj () + 21_g - G(), where () = /zgzlE}k . G2

Then, simulate the set of n spectra by adding random amounts of each the p = 10 eigenvectors
(according to the assumed distributions of scores) to the estimated models evaluated at the
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observed values of Q (i.e., Yad j (j)). Next, using the simulated set of data, redo the complete

analysis (principal components analysis, model fitting, and construction of pointwise tolerance
bounds). Then, repeat the simulation and analysis processes a large number of times and
compare the constructed 99/90 upper tolerance bounds with the computed 99" percentiles for the
ASD frequencies at Q¢qrger- Figure 9 displays the set of tolerance bounds that were acquired
through 10,000 simulation trials involving the parametric bootstrap. If the method provides
accurate coverage, the 99" percentiles of the ASD frequencies will be exceeded 90% of the time
by the tolerance bounds. Figure 10 compares the 10" percentile of the 99/90 upper bounds with
the 99™ percentiles of the assumed distribution of ASD’s. It is indeed the case that the 10™
percentiles of the 99/90 upper tolerance bounds are nearly equivalent to the 99" percentiles.
Figure 11 displays the coverage levels for the various frequencies that were estimated by the
simulation. The levels of coverage range from 79% to 93%. Lower than expected coverage was
observed at some frequencies from 30 to 200 hz. It is interesting that frequencies with lower than
expected coverage generally are associated with relatively small loadings of the first principal
component (compare Figures 4 and 11).
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To further investigate the issue of marginal lower than expected coverage an additional
simulation experiment was conducted. The intent is to simulate a simpler system; one that does
not include the effects of Q and by association, the first principal component. A set of n spectra
was constructed by adding random amounts of all but the first of the p = 10 eigenvectors
(according to the assumed distributions of scores) to the estimated model spectrum at Q¢qrget -
Next, using the simulated set of data, redo the complete analysis except for the adjustment of
spectra at Qrqrger and modeling of the effect of Q. Then, repeat the simulation and analysis
processes 10,000 times and compare the constructed 99/90 upper tolerance bounds with the
computed 99" percentiles for the ASD frequencies at Qtarget- Figures 12 and 13 summarize the
results. In this case, 10" percentiles of the 99/90 upper tolerance bounds are almost identical to
the 99" percentiles (see Figure 12). This is not surprising, since there is very little spectral
variation due to dimensions 2-10. However, as Figure 13 shows, the 99/90 upper tolerance
bounds uniformly provide slightly less coverage than expected.
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These idiosyncrasies and risks associated with using the parametric bootstrap in conjunction with
principal components analysis are not unknown. For example, Milan and Whittaker (1995) warn
about extra nuisance variability when using the parametric bootstrap in association with principal
components analysis. The extra nuisance variability can reveal itself in: (1) a rotation of the
principal components, (2) an inversion of the ordering of the singular values, and (3) an
inversion of the signs of the eigenvectors (and associated scores). In the example presented here,
the effects of the extra nuisance variability on the accuracy of the constructed tolerance bounds
are mostly inconsequential as shown in Figures 10 and 11. This is largely due to the manner in
which the analysis is performed and the fact that the covariate relates to the “first” principal
component which is dominant and hence accounts for most of the spectral variability. The nature
of the first eigenvector (particularly where the loadings are large) will not be greatly distorted by
spurious correlation of the first dimension with the other dimensions as created by the bootstrap
iterations. Also note that any inversion of the sign of the scores associated with the first
eigenvector will be properly accounted for in the regression of those scores on Q. In the
illustrative example, the dominance of the first principal component is believed to be responsible
for the accurate coverage that is observed in the case of frequencies where the loadings of the
first principal component are large.
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Here, the focus has been on frequency-specific, pointwise tolerance bounds. Attempts to
construct accurate joint tolerance bounds were unsuccessful. Even a Bonferonni-type approach
is difficult to implement due to the frequency-dependent coverage and the idiosyncrasies
associated with using the parametric bootstrap in conjunction with principal components
analysis.

Conclusions

A parametric bootstrap procedure has been developed for constructing upper tolerance bounds
relating to the acceleration spectral density associated with captive carry for a fixed condition
defined by a target dynamic pressure. These methods rely on the ability to create an ensemble of
adjusted spectra that is normalized to a specific dynamic pressure of interest via the strong
empirical relationship between the acceleration spectral density and dynamic pressure. The
method has been found to be applicable to similar situations where one or more covariates relate
to scores associated with a dominant principal component. Furthermore, the parametric bootstrap
procedure was shown to provide reasonably accurate coverage given that the distributional
assumptions are met. The method is relatively simple and straightforward and do not assume
continuity across the ordered index. Note that a different and more complex approach (utilizing
functional data analysis methods) might be more appropriate if the multivariate data are
continuous across the ordered index.

16



References

Bellizzi, S., & Sampaio, R. (2009), “Smooth Karhunen—Lo¢ve decomposition to analyze
randomly vibrating systems,” Journal of Sound and Vibration, 325(3), 491-498.

Cattell, R. B. (1966), “The scree test for the number of factors,” Multivariate behavioral
research, 1(2), 245-276.

Efron, B. and Tibshirani, R. J. (1993), An Introduction to the Bootstrap, New Y ork: Chapman
Hall, New York.

Gibbons, R. D. (1991), “Statistical Tolerance Limits for Ground-Water Monitoring,”
Groundwater, 29(4), 563-570.

Golub, G. H. and Van Loan, C. F. (1996), Matrix Computations, Third Edition, The Johns
Hopkins University Press.

Hinkley, D. V. (1988) “Bootstrap methods,” J. R. Statist. Soc. B, 50, 321-337, 1988.

Krishnamoorthy, K. and Mathew, T. (2009), Statistical tolerance regions.: theory, applications,
and computation, New York: John Wiley.

Milan, L. and Whittaker, J. (1995), “Application of the parametric bootstrap to models that
incorporate a singular value decomposition,” Applied Statistics, 31-49.

Montgomery, D. C. (2012), Introduction to Statistical Quality Control, 7t Edition, New York:
John Wiley.

Neyer, B. T. (1994), “AD-Optimality-Based Sensitivity Test,” Technometrics, 36, 61-70.

Paez, T. L., Morrison, D. and Cap, J. S. (2004), “Generation of Nonstationary Random
Excitations with a Specified Tolerance Limit,” 9th ASCE Specialty Conference on Probabilistic
Mechanics and Structural Reliability, SAND2004-4301C, Sandia National Labs, Albuquerque

New Mexico.

Piersol, A. G. (1971), "Vibration and acoustic test criteria for captive flight of externally carried
aircraft stores," DIGITEK Corporation, AFFDL-TR-71-158.

Ramsay, J. O. and Silverman, B. W. (1997), Functional Data Analysis, New York: Springer.

Rathnayake, L. N. and Choudhary, P. K. (2015) “Tolerance bands for functional data,”
Biometrics, in press.

17



Storlie, C. B., Fugate, M. L., Higdon, D. M., Huzurbazar, A. V., Francois, E. G., and McHugh,
D. C. (2013), “Methods for characterizing and comparing populations of shock wave curves,”
Technometrics, 55, 436-449.

Tucker, J. D., Wu, W., and Srivastava, A. (2013) “Generative models for functional data using
phase and amplitude separation,” Computational Statistics & Data Analysis, 61, 50-66.

2

Tuggle, R. M. (1982), “Assessment of occupational exposure using one-sided tolerance limits,
The American Industrial Hygiene Association Journal, 43(5), 338-346.

Wald, A. and Wolfowitz, J. (1946), “Tolerance limits for a normal distribution,” The Annals of
Mathematical Statistics, 208-215.

18



Appendix - MATLAB code, Parametric Bootstrap

function [ub, y recons, scorel, evectorl]=bootstrap par tolerance gadj(y, g,
, n_boot, p tile, gamma, target q)

OUTPUT VARIABLES:

-(1) ub--> "gg x 1" vector of upper bounds for spectra

-(2) y recons--> "n x gq" matrix of reconstructed spectra (at target q)
-(3) scorel--> n dimensional set of scores for first e-vector

-(4) evectorl--> loadings of first e-vector: “gg x 1”7

INPUT VARIABLES:

-(1) y--> "n x ggq" matrix of all spectra

g--> dynamic pressure associated with each spectrum (n dimensional)
p--> number of latent variables (scalar)

n boot--> number of bootstrap simulations (scalar)

p-tile--> conforming fraction of population (scalar)

gamma--> fractional confidence level (scalar)

target g--> spectra are normalized to this level

00 A0 A O A° A° A° A° AC A° O° A A° o° d° o° T

[n,qg]l=size(y);
mcy=meancent (y) ;
my=mean (y) ;

alpha=1-p tile;

[~, ~, e vectors]=svds(mcy, p);
scores = mcy*e vectors;

std score=std(scores);
scorel=scores (:,1);

evectorl=e vectors(:,1);

des=[ones (l,n); gq'l]l"';

bhat=inv (des'*des) *des'*scores(:,1);
pred=des*bhat;

pred error=pred-scores(:,1);
rmse_sav=sqrt (pred error'*pred error/(n-2));

[CRNeRrelye] [ORre]
target dynamic pressure
% Uses fitted linear regression

[

adj scores=scores;
for i=1l:n

adj scores(i,1l)=adj scores(i,1l)-bhat(2)*(g(i)-target q);
end;

mcy est=adj scores*e vectors';
y_recons=ones (n, 1) *my+mcy est;
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% Bootstrap Portion of Analysis
mean spectrum=mean (y recons)

ind confid=floor (n_boot*gamma) ;

[n,dum]=size (scores);

m=zeros (p,1);

s=zeros (p, 1) ;

% Replicate setup

simul ub spectrum=zeros(n_boot,qq);

extrap mult=sqgrt ([l target g]*inv(des'*des)*[1l target gl]');

for k=1:n boot

for j=1l:p;
if j==
rl=chi2rnd(n-2,1,1);
r2=normrnd(0,1,1,1);
s(j)=rmse_sav*sqgrt (n-2)./sqrt(rl);
m(j)=r2.*s(j) *extrap mult;
end;
if > 1
rl=chi2rnd(n-1,1,1);
r2=normrnd(0,1,1,1);
s(j)=std _score(j)*sqgrt(n-1)./sqgrt(rl);
m(j)=r2.*s(j)/sqgrt(n);
end
end;

sim mean spectrum=mean spectrum + m'*e vectors';

sim std spectrum=sqrt ((e vectors.”2)*(s.”2))"';

simul ub spectrum(k, :)=sim mean spectrum + norminv (l-
alpha,0,1) *sim std spectrum;
end;

ss=sort (simul ub spectrum);
ub=ss (ind confid, :);
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