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Module Learning Goals é

i) Moot

= Understand why you might want to perform uncertainty
guantification (UQ)

= Understand prerequisites and have a practical process for UQ
at your disposal

= Be able to formulate your problem, present it to Dakota, and
run and understand studies

= Be able to select an appropriate Dakota UQ method

= Know how to use Dakota UQ results




Module Outline @
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= Introduction: application examples to define UQ, illustrate the UQ
process, and explain why you might care

= UQterminology: characterizing and expressing your problem to Dakota

= Monte Carlo sampling for UQ
= Exercise: Dakota input and output for Monte Carlo sampling

= Selecting an uncertainty quantification method; reliability and polynomial
chaos

= Exercise: Comparing UQ methods and problem assumptions

=  Beyond Dakota: follow-on activities using UQ results
=  Summary of advanced topics and references




Why Uncertainty Quantification? '@3

i) Moot

= What? Determine variability, distributions, statistics of code outputs,
given uncertainty in input factors; put error bars on simulation output
=  Why? Tactically, assess likelihood of typical or extreme outcomes. Given
input uncertainty...
= Determine mean or median performance of a system
= Assess variability or robustness of model response
= Find probability of reaching failure/success criteria (reliability metrics)
= Assess range/intervals of possible outcomes
= Ultimately, use simulations for risk-informed decision making, e.g., assess
how close uncertainty-endowed code predictions are to

= Experimental data
(validation, is model sufficient
for the intended application?)

Final Temperature Values

= Performance expectations or limits
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Example: &

Thermal Uncertainty Quantification i) o

= Device subject to heating (experiment or
corresponding computational simulation)

= Uncertainty in composition/ environment
(thermal conductivity, density, boundary),
parameterized by u,, ..., Uy

= Response temperature f(u)=T(u,, ..., uy)
calculated by heat transfer code

Given distributions of u,,...,u,, UQ
methods calculate statistical info on
outputs:

§ e Mean(T), standard deviation(7),
Probability(T > T_.ca)

e Probability distribution of
temperatures

eBounds on temperature (min/max)
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Example: &

MEMS Manufacturing Uncertainty ) i

Laboratories

= Micro-electromechanical system (MEMS): typically made
from silicon, polymers, or metals; used as micro-scale sensors,
actuators, switches, and machines

=  MEMS designs: subject to substantial variability, lack historical knowledge base;
uncertainty from materials, micromachining, photo lithography, etching process

= Resulting part yields can be low or have poor cycle durability

= Goal: UQ with finite element model of bi-stable switch to...
= Assess reliability in predicted actuation force and variability in min/max force
= Minimize sensitivity to uncertainties (robustness)

actuation force

| uncertain parameters:
anchors < | ehnttle! edge bias and residual stress

variable mean std. dev. | distribution

A -0.2 pm 0.08 normal
5, -11 Mpa 4.13 normal

bistable
MEMS
switch |- . L, I




Example: Uncertainty in Boiling Rate in @
Nuclear Reactor Core (DOE CASL) )

Laboratories

= Use nuclear reactor thermal-hydraulics model to assess uncertainty in
localized boiling due to variable operating conditions

= Compare Dakota UQ approaches and modelling assumptions

ME nnz ME meannz ME max
Mean Std Mean Std Mean Std
Method Dev Dev Dev
LHS (40) 651.225 | 297.039 | 127.836 27.723 361.204 55.862

LHS (400) 647.33 | 286.146 | 127.796 | 25.779 | 361.581 | 51.874
LHS (4000) | 688.261 | 292.687 | 129.175 | 25.450 [ 364.317 | 50.884
PCE (0(2)) 687.875 | 288.140 | 129.151 | 25.7015 | 364.366 [ 50.315
PCE (O (3)) | 688.083 | 292.974 | 129.231 | 25.3989 | 364.310 | 50.869
PCE (O (4)) | 688.099 | 292.808 | 129.213 | 25.4491 | 364.313 | 50.872

mean and standard deviation of key metrics

ME_nnz

Moments

‘ Mean 688.261
Std Dev 292 68724
4 Std Err Mean 46277916
T

3 oo 2o | Upper95% Mean 697.33405 . . .
Lower 95% Mean 679.18785 anisotropic uncertainty

— Gamma(5.30746,129.678.0) N 4000 e . . . epe
Ilv distributed i d . distribution in boiling rate
normally distributed inputs need not give throug hout quarter core mo del

rise to normally distributed outputs... (side view)




Discussion: @
Uncertainties in Your Domain ) i,
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= What are the key uncertainties that affect your experiments,
analysis, and work products?

= How do you account for them when using science and
engineering computational models?




A Practical Process for UQ &
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1. Determine your UQ analysis goal
= What are the key model responses (quantities of interest)
= What kinds of statistics or metrics do you want on them?

2. ldentify potentially influential uncertain input parameters

* Includes parameters that influence trend in response as well as those that influence
variability in response

3. Characterize input uncertainties and map them into Dakota variable
specifications

4. What are the model characteristics/behaviors? Recall: covered in
other modules

= Simulation cost, model robustness, input/output properties such as kinks,
discontinuities, multi-modal, noise, disparate regimes
5. Select a method appropriate to variables, goal, and problem
Set up Dakota input file and interface to simulation

7. Runstudy and interpret the results

Up next: Discuss 1, 2 and 3, relate to Dakota, and see a simple example of 6, 7




Familiarize Yourself with Key Statistics Ideas: @
Moments of Random Variables ) i,

Laboratories

Understanding the following basic concepts will help with Dakota UQ

Average = 100

-
- 0.0

= Concept of a random variable X

realizations of random variables
with mean u=100, standard

= Mean (m, u): expected or average deviation 0=10, 0=50

value of X, e.g., mean of sample of

size N: 13 : )
i=1

-
g 8 H

| 1 1 .
Stan-dard -deVIatIOI’? (S’_ _0)' measure In the earlier MEMS application, the
of dispersion / variability of X: manufactured edge has
1 QN : > mean bias of -0.2 um, with
Or = \/ W; [T (u) - '“T] standard deviation 0.08 um:
+ — I g_. edge bias
-0.36 -0.28 -0.2 -0.12 -0.04
u




Familiarize Yourself with Key Statistics Ideas: &
PDFs, CDFs, Intervals i i,

Laboratories

Understanding the following basic concepts will help with Dakota UQ

= Probability density / probability
mass function: relative likelihood
of a given value of X

o ()

oL

: ‘ 1 3 7
_ o _ _ probability density probability
=  Cumulative distribution function: functions mass function

probability that X will take on a
value less than or equal to x: S
P(X<x) S L1

T = ! ! .
J///'
L — :
g 2 3 B

cumulative
distribution
functions

I 2 3 +

" |nterval-valued uncertainty: X can
take on any value in the interval
[a,b], but no probability or
likelihood of one value vs. another

For the earlier thermal application,

a PDF or CDF can answer questions

about the probability of exceeding a
critical temperature.




Dakota Uncertainty Quantification é

i) Moot

= Dakota UQ methods primarily focus on forward propagation of parametric
uncertainties through a model: determine uncertainty in model output,
given uncertainty in input parameters

/ Uncertainty in input variables u \ / Uncertainty \
in output f(u)

[ ] Computational varlab.ll-lt-y,
[ ] Model probabilities,
[ intervals (ranges),

intervals belief/plausibility,

\probability densities / \ etc. /

= Example uncertain inputs: physics parameters, material properties
boundary/initial conditions, operating conditions, model choice, geometry

= Can also perform “inverse UQ” to determine uncertainties in parameters
consistent with data (not covered in this module)

-~ ...
12




Categories of Uncertainty &
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This distinction can help in selecting Dakota variable types and method

= Aleatory (think probability density function, frequency; sufficient data)

Inherent variability (e.g., in a population), type-A, stochastic
Irreducible: further knowledge won’t help
Ideally simulation would incorporate this variability

= Epistemic (e.g., bounded intervals, distribution with uncertain parameters)

Subjective, type-B, state of knowledge uncertainty

Reducible: more data or information, would [ ]
make uncertainty estimation more precise [ ]

Fixed value in simulation, e.g., elastic [ ]
modulus, but not well known for this material [ ]

See separate course on motivation for aleatory vs. epistemic uncertainty




Characterizing Uncertainties to Dakota

Dakota uncertain variable types:

LX)

Must characterize each variable’s uncertainty and (optionally) any
correlation between pairs of variables. Need not be normal (or uniform)!

&
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May require processing data with math/stats tool to fit distributions,

performing literature searches, or querying experts

normal

lognormal

0.40

0.35
030
025

,l< 0.20F

“0a1s
0.10
0.05
0,00

** Poisson *

A=
o A
\=

14

histogram

+ | I

Aleatory continuous: normal, lognormal, uniform, loguniform, triangular,
exponential, beta, gamma, Gumbel, Frechet, Weibull, histogram

Aleatory discrete: Poisson, binomial, negative binomial, hypergeometric,

histogram point (integer, real, string)

Epistemic: continuous interval, discrete interval, discrete set




Specifying Dakota Uncertain Variables mé";’“

variables
normal_uncertain 1

= UQ problems are specified to

. . . descriptors 'density’
Dakota using uncertain variables neans g 1
(keywords *_uncer‘taj_n) std_deviations 1.7
. . lognormal_uncertain 1
= Typically generic response descriptors 'specific_heat'
functions are used means 2.7

error_factors 1.1
poisson_uncertain
descriptors 'fire_strength'

= Thermal UQ example: here is a

) ] ) lambdas 1.5
possible Dakota input file fragment histogram_bin_uncertain 1
for the uncertain variable types descriptors ‘foam_thickness'
. . num_pairs 4
shown on the previous slide abscissas 2.5 3.8 3.5 4.0
counts 15 11 20 ©
=  See the Reference Manual responses

response_functions 2

variables section for all variable
types and their parameters

descriptors 'pressure' 'temperature’



https://dakota.sandia.gov/sites/default/files/docs/6.3/html-ref/variables.html
https://dakota.sandia.gov/sites/default/files/docs/6.3/html-ref/variables.html

Workhorse UQ Method:

Monte Carlo Sampling

&
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=  Sampling methods draw (pseudo-random) realizations from the specified
input distributions, run the simulation, and calculate sample statistics:

=  Sample moments, min/max, empirical PDF/CDF, based on ensemble of calculations

Ensemble
of Inputs

.... .«
.
. .... .-. o ’ 4 o
™ - ... .
RN Y
5 .-, L
- -~ *
s .-0.. ~ ..0.
v 28 . = |
s |

U,

S

Monte Carlb sample /\
of two input variables —

M

Model

= Robust even for complex, poorly-behaved simulations

)<

Ensemble
of Outputs

response 1

response 2

=

= Slow, though reliable convergence: O(N-Y/2), (in theory) independent of dimension

= Embarrassingly parallel: all samples are known at onset and can be evaluated

concurrently




Latin Hypercube Sampling (LHS) §f
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= Dakota has sample_type options random and lhs
= LHS is recommended when possible

= Better convergence rate and stability across replicates

= Any follow-on studies must double the sample size 02 |02102)02) 02

-0 A B C D w0

= LHS (McKay and Conover): stratified random example equi-probable

intervals for an LHS of size 5

sampling among equal probability bins for all 1-D ,
on a normal random variable

projections of an n-dimensional set of samples

Uniform LHS designs of sizes 5 and 10

samples = 3 samples = 10

A two-dimensional LHS of size 5

®

I
(=
=3
<
w

[
»
>

x2: uniform
-
|

A

-

A B C D o0

|
8

x1: normal ) 02 0.4 06 08 1 ' 02 04 ()‘6 08 1




Exercise: LHS Sampling &

Your boss announces that she can get a great
deal on coat hooks from a local machine shop
that happens to be owned by her brother-in-
law. He unfortunately is not a very good
machinist, but insists that the dimensions of
most of the parts he makes are within 10% of
what was requested.

Based on a design you developed earlier to
support a 350 Ib. horizontal load (X) and
500 Ib. vertical load (Y), your boss proposes
that the hooks be 5 in. long (L), 2 in. wide
(w), and 2 in. thick (t).




&
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Exercise: LHS Sampling

Putting aside for the moment the ethical concerns raised by your boss’s
obvious conflict of interest, create a sampling study in Dakota to address these
guestions using Cantilever Physics:

= Determine the variability in stress and displacement that 10% error in the

dimensions (L, w, and t) can be expected to produce.
= Hint 1: Produce plots of these responses vs. probability levels, i.e. cumulative distribution

functions (CDFs).
= Hint 2: Assume hook dimensions are normally distributed. Use the specified dimensions as
the means and 10% of the specified dimensions as standard deviations.

= Your boss previously stipulated that the stress and displacement under
load be no greater than 100,000 psi and 0.001 in., respectively. What
fraction of the coat hooks produced by her brother-in-law can be expected

to violate these constraints?
= Hint: These can be read off of the CDFs, but Dakota can also estimate them for you.

Assume that Young’s modulus (E) is 2.9e7 psi and density (p) is 500 Ib/ft3.

Exercise materials located in ~/exercises/uncertainty_analysis/1

I



Exercise Questions éﬁ

i) Moot

= Where do you find the relevant Dakota output?
= What statistical quantities do you find in the output?

= Group A: What happens if you increase/decrease the number
of samples?

= Group B: What happens if you change the uncertainty
characterization of one or more variables?




Percent

Observations

Probability Plot of L
MNormal - 95% CI

393

Mean 5.000

StDev 05014

2 N 400

AD 0.007

35 P-Value 1000
90
80
70
60
50
40

Probability plots created in Minitab
show how well the Dakota-generated
sample data follow an assumed
distribution (in this case normal)

Percent

&

Sandia
i) Moot

I My variables are

normally distributed.
Doesn’t that mean that

my responses will be,
too? 7)

Probability Plot of displacement
Mormal - 95% CI

. Mesn  0.0007345
& stDev 00003198

, L N 400
AD £.323

P-Value <0005

0.0000

0.0005 0.0010 0.0015 0.0020 0.0025
displacement




A Practical Process for UQ &
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1. Determine your UQ analysis goal
= What are the key model responses (quantities of interest)
= What kinds of statistics or metrics do you want on them?

2. ldentify potentially influential uncertain input parameters

* Includes parameters that influence trend in response as well as those that influence
variability in response

3. Characterize input uncertainties and map them into Dakota variable
specifications

4. What are the model characteristics/behaviors? Recall: covered in
other modules

= Simulation cost, model robustness, input/output properties such as kinks,
discontinuities, multi-modal, noise, disparate regimes
5. Select a method appropriate to variables, goal, and problem
6. Set up Dakota input file and interface to simulation

7. Runstudy and interpret the results

Based on variables, analysis goals, and properties, select an appropriate method...




Selecting a UQ Method &
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Consider variable characterizations, model properties, ultimate
UQ goal to choose a method

Sampling (Monte Carlo, LHS) Reliability
= Robust, understandable, and = Goal-oriented; target particular
applicable to most any model response or probability levels
= Slow to converge = Efficient local (require derivatives) /
=  Moments, PDF/CDF, correlations, global variants
min/max = Moments, PDF/CDF, importance
factors
Stochastic Expansions Epistemic
= Surrogate models tailored to UQ for = Non-probabilistic methods
continuous variables = Generally applicable, can be costly
= Highly efficient for smooth model when no surrogate
responses = Belief/plausibility, intervals,
=  Moments, PDF/CDF, Sobol indices probability of frequency



Reliability Methods: &
What Are They? i i,
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= Goal-oriented methods that focus on regions of probability or response
space of interest, for example:

= What temperature is achieved with 99% probability?
= What is the probability of exceeding T .;i..(?
= Naive sampling can be ineffective / under-resolved

= Run 10,000 samples, only 5 are in relevant region ST
T

critical

= Need to specify to Dakota

= Probability or response threshold(s) of interest using
probability levels, response levels

= Method choice
= Mean-value: best for linear problems, normally distributed parameters, efficient derivatives;
specify local_reliability (with no mpp_search)

= MPP: computes most probable point of failure when failure boundary is near linear or
quadratic; specify local _reliability (with an mpp_search option)

= Adaptive: computes probability of failure for complicated failure boundaries; specify
global _reliability




Reliability Methods:
How Do They Work?

= Reliability methods try to directly
calculate statistics of interest:
= Make simplifying approximations and/or

= Recast the UQ as an iterative procedure, such
as iteratively refined sampling or as a
nonlinearly constrained optimization problem

";i.‘Safe HEECE e e
e

&

Sandia
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Mean-value: uses derivatives; make a
linearity (and possibly normality)
assumption and project

pr =T (14,)
57 = 2 Yo% 1 ) () < (1)

MPP: solve an optimization problem to

directly determine input values giving

rise to most probable point of failure
minimize u'u
subject to T(u)=T,

ritical

Adaptive: iteratively refine
understanding of failure region

exploit

== explore




Stochastic Expansions:
What Are They?

= General-purpose UQ methods that build UQ-tailored
polynomial approximations of the output responses

=  Perform particularly well for smooth model responses

= Resulting convergence of statistics can be
considerably faster than sampling methods

= Need to specify the Dakota method:

= Polynomial Chaos (polynomial _chaos): specify the type of
orthogonal polynomials and coefficient estimation scheme,
e.g., sparse grid or linear regression.

= Stochastic Collocation (stoch_collocation): specify the type of
polynomial basis and the points at which the response will be
interpolated; supports piecewise local basis

(x,)

10°
07
107
1wk
8 gL
107
107

107 L

1.2

i

=]

training data
surrogate

0.8
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0.4+

0.2
-1

’\

Wy

spamegﬁdi

% tensor ]

—<— SC TPQ uniform
—=— SC TPQ adaptive
—#— SC S5G uniform | |
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~“LHS;
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| quadratare

A
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v

w
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10°
Simulations
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Polynomial Chaos: &

How Does It Work? 1) e
= Uses an orthogonal polynomial basis ¢;(u), e.g., TV T e
Wiener-Askey basis, with Hermite polynomials 1

oin

orthogonal w.r.t. normal density, Legendre
polynomials orthogonal w.r.t. uniform density

= Evaluates the model in a strategic way JTAA
(sampling, quadrature, sparse grids, cubature)... ,_ ) ,

= _.to efficiently approximate the coefficients of Hermite Polynomials
an orthogonal polynomial approximation of the

response fw) =~pu) = Z cip;(u)

l

= And analytically calculates statistics from the

approximation instead of approximating the el S

statistics with MC samples WEREIERE
Sparse Grid




Selecting a UQ Method &

)i,
A reasoning process: To select a Dakota method, ask yourself
=  What kinds of statistics do you require on the responses
=  What kinds of variables do you have an how are they characterized.
=  What are the problem characteristics, including cost, robustness?
=  Get help from the Dakota team if you can’t figure it out!
Scenario 1 Scenario 2
= Calculate probability of specific = (Calculate mean, standard
response level deviation
=  Smooth, unimodal response =  Smooth, multimodal response
= Continuous variables = Continuous variables
= Reliable gradients = Value-only data from previous
Local Reliability study

Regression PCE



Dakota UQ Methods Summary @
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character | method class problem character variants

aleatory probabilistic sampling nonsmooth, multimodal, Monte Carlo, LHS,
modest cost, # variables importance
local reliability smooth, unimodal, more mean value and MPP,
variables, failure modes FORM/SORM,
global reliability nonsmooth, multimodal, EGRA
low dimensional
stochastic expansions nonsmooth, multimodal, polynomial chaos,
low dimension stochastic collocation
epistemic interval estimation simple intervals global/local optim, sampling
evidence theory belief structures global/local evidence
both nested UQ mixed aleatory / epistemic  nested

Also see Usage Guidelines in User’s Manual



Exercise: Choose a method

The quasi-sine function is a multimodal function of two
variables, x1 and x2.

Cluasi-sine Function

Generated in Matlab

Sandia
National
Laboratories




Exercise: Choose a method m@a

Using some of the methods presented in this module, estimate the probability that
the quasi-sine function is (1) less than 0.11 and (2) less than 0.30 for two cases:

a) x1 and x2 are uniformly distributed with lower bounds [-0.8, -0.8] and upper
bounds [0.8, 0.8].

b) x1 and x2 obey a triangular distribution with lower bounds [-0.8, -0.8], upper
bounds [0.8, 0.8], and modes [0.0, 0.0].

Before diving in, take a moment to consider which methods you expect to perform
well. (Feel free to experiment with methods that you expect to perform poorly!)

Be prepared to discuss your findings. Potential observations:

= Did the distributions of the variables affect your results?
=  How many function evaluations were required by the methods you chose?

= Did increasing the number of evaluations (or approximation quality, basis size,
etc.) change the results?

= Did changing the initial points (for local reliability) have any effect?

A partial input file is located in ~/exercises/uncertainty analysis/2



A Practical Process for UQ &
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1. Determine your UQ analysis goal
= What are the key model responses (quantities of interest)
= What kinds of statistics or metrics do you want on them?

2. ldentify potentially influential uncertain input parameters

* Includes parameters that influence trend in response as well as those that influence
variability in response

3. Characterize input uncertainties and map them into Dakota variable
specifications

4. What are the model characteristics/behaviors? Recall: covered in
other modules

= Simulation cost, model robustness, input/output properties such as kinks,
discontinuities, multi-modal, noise, disparate regimes
5. Select a method appropriate to variables, goal, and problem
6. Set up Dakota input file and interface to simulation

7. Runstudy and interpret the results

What else can be done with the results?




Using Dakota-generated Data m@

= Users commonly work with the Dakota tabular data file
(dakota_tabular.dat by default)
= |mport tabular data into Excel, Minitab, Matlab, R, SPlus, JMP, Python to
= Generate histogram or other probability plots
= Generate scatterplots to assess variability or see outliers / extreme behavior
= Fit distributions to generated model outputs

= Post-process samples to generate other statistics, e.g., probability of failure,
ANOVA, variance-based decomposition, Sobol indices, safety factors

= Use Dakota results to refine characterization of variables and repeat study

= Decision making considerations
= Consider what form your customers needs the information in to have impact

= Consider engaging a Dakota team member in conversation with analyst and
decision maker



Common Question: UQ versus SA @
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What distinguishes sensitivity analysis from uncertainty analysis?

= With SA you primarily gain information about variables

= Rank importance of parameters and characterize in what way they influence
responses

= Sometimes called inverse UQ
=  Secondarily, characterize model properties

=  With UQ you primarily gain information about responses
= Statistical properties of output responses
= |ntervals indicating bounds on response
= Likelihood (probability of failure)

= Some methods can be used for both, e.g.,
= LHS is often used for SA (correlations) and UQ (moments, PDFs, CDFs)

= Polynomial chaos expansions (PCE) thought of as a UQ method, but also efficiently
produce Sobol indices for ranking parameter influence



Advanced Topics Teasers mt@

Some topics we can discuss during office hours or advanced topics modules:
= Mixed Aleatory/Epistemic UQ

= Interval analysis: sampling and optimization-based

= Probabilistic design under uncertainty

= Model form / multi-fidelity UQ

= Details on surrogates for UQ

=  Treating other high-level sources of computational model uncertainty
(may not be able to easily parameterize for Dakota):
= Code implementation / software quality
= Modelling assumptions and limitations
= Numerical errors from discretization or other approximations
= Data and expert judgment used to build models and inform parameter values
= Person performing the analysis



UQ References @

) e

e SAND report 2009-3055. “Conceptual and Computational Basis for the Quantification of
Margins and Uncertainty” J. Helton.

= Helton, JC, JD Johnson, CJ Sallaberry, and CB Storlie. “Survey of Sampling-Based Methods for
Uncertainty and Sensitivity Analysis”, Reliability Engineering and System Safety 91 (2006) pp.
1175-1209

= Helton JC, Davis FJ. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses
of Complex Systems. Reliability Engineering and System Safety 2003;81(1):23-69.

= Haldar, A. and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering
Design (Chapters 7-8). Wiley, 2000.

e Eldred, M.S., "Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation
Methods for Uncertainty Analysis and Design," paper AIAA-2009-2274 in Proceedings of the
11th AIAA Non-Deterministic Approaches Conference, Palm Springs, CA, May 4-7, 2009.

= Dakota User’s Manual: Uncertainty Quantification Capabilities
= Dakota Theory Manual
= Corresponding Reference Manual sections



Module Learning Goals @
Did We Meet Them? e
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= Understand why you might want to perform uncertainty
guantification (UQ)

= Understand prerequisites and have a practical process for UQ
at your disposal

= Be able to formulate your problem, present it to Dakota, and
run and understand studies

= Be able to select an appropriate Dakota UQ method

= Know how to use Dakota UQ results




BACKUP SLIDES




Quasi-sine Level Curves m@m

Cluasi-sine Level Curves; 011 and 0.30
I:IB T T T T T

0.6

0.4

0.2F

¥2
=

Generated with Matlab




Context for @

Uncertainty Quantification )
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= Customers increasingly want to use simulation-based analysis for risk-
informed decision making:

Is the simulation sufficiently representative of the real-world problem and any data?
How likely is my system to perform as needed? How much margin do | have?

= Ultimately, would like simulations endowed with error bars on their
output; best estimate plus associated uncertainty

=  Representative high-level sources of computational model uncertainty:

Code implementation / software quality

Modelling assumptions and limitations

Numerical errors from discretization or other approximations

Data and expert judgment used to build models and inform parameter values
Person performing the analysis



Sandia
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Method-oriented

BACKUP SLIDES




Algorithmic Strengths, @
Weaknesses, R&D Needs i) feboa

Sampling (nongradient-based)
« Strengths: Simple and reliable, convergence rate is dimension-independent
« Weaknesses: 1/sqrt(N) convergence - expensive for accurate tail statistics
Local reliability (gradient-based)
« Strengths: computationally efficient, widely used, scales to large n (w/ efficient derivs.)
* Weaknesses: algorithmic failures for limit states with following features
* Nonsmooth: fail to converge to an MPP

« Multimodal: only locate one of several MPPs
 Highly nonlinear: low order limit state approxs. insufficient to resolve probability at MPP

Global reliability (nongradient-based)

« Strengths: handles nonsmooth, multimodal, highly nonlinear limit states

« Weaknesses: global surrogate - scaling to large n (Research: probability bias, adjoints)
Stochastic expansions (typically nongradient-based)

Strengths: functional representation, exponential convergence rates

Issues:

 Discontinuity = Gibbs phen., slow conv.

 Singularity = divergence in moments

« Scaling to large n > exponential growth Research:

in terms & simulation regmts. * Pade approximaton
» Basis enrichment / discretization

(= local basis functions)
* p-/h-/hp-adaptive methods

———————eesssm © 20)0INt gradient-enhancement



Analytic Reliability: MPP Search ?@

National
Laboratories

Perform optimization in uncertain variable space to determine Most Probable
Point (of response or failure occurring) for G(u) = T(u).

Reliability Index Approach (RIA)

. . . T . . . .
Iinmize - u-u All the usual nonlinear optimization
subject to G(u) =z tricks apply...

1_ _

. 09F .
R | Region of u

values where sl
/ Tz Tcritical map TCI’_iti_CB.l to a
, 7rprobability

[}
]

Ly
=3

=
n

Cumulative Probability
o
.
T

a MY

O x-/u-space AMV .
O x-/u-space AMV+ & FORM

+ 100k Latin hypercube samples -

vt
w

2
[

Response Value



Efficient Global Reliability Analysis &
Using Gaussian Process Surrogate + MMAIS (i) i

Laboratories

= Efficient global optimization (EGO)-like approach to solve optimization problem

= Expected feasibility function: balance exploration with local search near failure
boundary to refine the GP

= Cost competitive with best local MPP search methods, yet better probability of
failure estimates; addresses nonlinear and multimodal challenges

Gaussian process model (level curves) of reliability limit state with

10 samples

PR BT R 5." R AERER T s pn
B m/v \j ek talira o
B \ N
= '/; R LR B L Rt S ::"'.‘: [EEE SRt 3R R ) eXpIOIt
0 |
S =

3 ‘ -1

. sae i

cHEREE A o e e R R, B explore




Generalized Polynomial @
Chaos Expansions (PCE) )

Laboratories

Approximate response with Galerkin projection using multivariate orthogonal
polynomial basis functions defined over standard
random variables

PRNCCLT) |

R(¢) = f(u)

" |ntrusive or non-intrusive

= Wiener-Askey Generalized PCE: optimal basis selection leads to exponential
convergence of statistics

Distribution  Density function Polynomial Weight function  Support range
Normal 712—1_('_'3; Hermite He,, () e 5 [—o0, o0
Uniform i Legendre P, (x) 1 [-1,1]

Beta IR ol Jacobi P\ () (1-2)*(1+a)° [—1.1]

Exponential e Laguerre L, (x) e [0, o]

Gamma r'“—;“ seneralized Laguerre Ly () g%e " [0, ]

= Can also numerically generate basis orthogonal to empirical data (PDF/histogram)
I —————



Sample Designs to Form Polynomial Chaos or @

Stochastic Collocation Expansions ) S
Random sampling: PCE Tensor-product quadrature: PCE/SC

Tensor product of 1-D integration rules, e.g.,

Expectation (sampling): Gaussian quadrature

— Sample w/i distribution of x
— Compute expected value of
product of R and each Y,

Linear regression
(“point collocation”):

!-oo.oo-uo-!oo-'oo--!c!

e R
e R T
L

!ooco..
ts s

ISR EREE]
R

Yo =R i
Smolyak Sparse Grid: PCE/SC Cubature: PCE
[Pririmenprapna Stroud and extensions (Xiu, Cools):

optimal multidimensional
integration rules




Adaptive PCE/SC:
Emphasize Key Dimensions

- [ w B w1 =] -4 ==}

[=]

Judicious choice of new simulation runs
Uniform p-refinement

= Stabilize 2-norm of covariance
Adaptive p-refinement

= Estimate main effects/VBD to guide

h-adaptive: identify important regions
and address discontinuities

h/p-adaptive: p for performance;
h for robustness

J Anisotropic index setﬁ Apisotropic Gauss.-Hermite
B R EEERRER S O
OOO0O0OCIOE] e v gegsgs s
1R P 000 0 N i e
LI e e 3o 0l 4
B I

N e

S (o

B g

rror

&

m Sandia

National
Laboratories

—<— SC TPQ uniform |3
—— SC TPQ adaptive (]
—&— 5C 556 uniform | |
—%— SC SSG adaptive (3

~LHS 3




Epistemic UQ: @
Dempster-Shafer Theory rh) i,

|nterva|S on the InpUtS are 00 01 02 03 ?Dﬂ;a 0.5 086 ggoz 08 09 1.0
propagated to calculate Sw:’:‘;“ 0% 7w L 2
: 33% I: \ 33:‘}".: : | |

Source 3 33%

= Belief: alower bound on a probability value that is consistent with the

evidence
= Plausibility: an upper bound on a probability value that is consistent with the
evidence.
N 10—<—— ~ T 7 T T ]
Frame 1a — 1 ' L Frame 1b
—~ 0.9F - —~ 0.9} 4
ﬁ 0.8 CPF ] i\x’ 0.8
% ' N D; ) /CCPF
c 0.7 S 7 o 0.7 -
< 0.6} CDF - < | -
3 — X 06 ]
S o5} - S 05} -
o
< 0.4F I . D_c; 0.4F - _~CCDF =
% 03 ~ T % 0.3 ccer " i
E 0.2} CBF . S 0.2} .
[a0]
0.1F - 0.1F -
I 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 I
0.0 0.0 0.5 1.0 0.0 0.0 0.5 1.0




Aleatory/Epistemic UQ;: @
Nested (“Second-order” JApproaches ) e,

= Propagate over epistemic and aleatory uncertainty, e.g.,
UQ with bounds on the mean of a normal distribution (hyper-parameters)

= Typical in regulatory analyses (e.g., NRC, WIPP)

= Quter loop: epistemic (interval) variables, inner loop UQ over aleatory (probability)
variables; potentially costly, not conservative

= |f treating epistemic as uniform, do not analyze probabilistically!

50 outer loop samples: 100
50 aleatory CDF traces
—— me [L, U ]
epistemic 0.75—
sampling 2
......................... o
1 E 050_
aleatory : ©
| 0.25 &y bound brobabil
: FogP S8 bound probability
| u~N (m’ 6) ‘g or bound response
- 0.00 —HFE =y

"""""""""""" ' response metric

“Envelope” of CDF traces represents response epistemic uncertainty



Dakota Mixed

Two models, each with a
different set of variables
Outer method operates
on nested model

Inner method operates
on simulation model

epistemic
sampling

aleatory
sampling

JQ with Nested Model

method
id_method = 'EPISTEMIC'
model_pointer = 'EPIST M'

sampling sample_ type 1hs
samples = 5 seed = 12347

Sandia
Laboratories

model,
id model = 'EPIST M'
nested
variables pointer = 'EPIST V'
sub_method pointer = 'ALEATORY'
responses pointer = 'EPIST R'
primary variable mapping = 'X' 'Y'
secondary variable mapping = 'mean' 'mean'
primary response_mapping =1. 0. 0. 0. O.

0. 0. 0. 0. 1.
0. 0. 0. 0. O.

variables,
id variables = 'EPIST V'
interval uncertain = 2
num _intervals =1 1

interval probabilities = 1.0 1.0
upper_bounds = 600. 1200.
lower_ bounds = 400. 800.

responses,

id responses = 'EPIST R'

response_functions = 3

descriptors ='mean mass' '95th perc_stress''95th perc disp'

n radien no h ian




Example Output: Intervals on Statistics @

<<<<< Iterator nond sampling completed.
<<<<< Function evaluation summary (ALEAT I): 971 total (971
new, 0 duplicate)

epistemic
Samp"ng Statistics based on 50 samples:

[T ! Min and Max values for each response function:

' mean wt: Min = 9.5209117200e+00 Max = 9.5209117200e+00
aleatory ccdf beta s: Min = 1.8001336086e+00 Max = 4.0744019409e+00
ccdf beta d: Min = 1.9403177486e+00 Max = 3.7628144053e+00

Simple Correlation Matrix between input and output:
mean wt ccdf beta s ccdf beta d

X mean 9.40220e-16 -6.38145e-01 -9.14016e-01

Y mean 1.38778e-15 -7.93481le-01 -4.39133e-01




Interval Estimation Approach &
(Probability Bounds Analysis) ) i,

Laboratories

=  Propagate intervals through simulation code

local or global = Quter loop: determine interval on statistics, e.g., mean,
optimization variance

: = global optimization problem: find max/min of statistic
of interest, given bound constrained interval variables

aleatory

= use EGO to solve 2 optimization problems with
essentially one Gaussian process surrogate

= |nner loop: Use sampling, PCE, etc., to determine the CDFs
or moments with respect to the aleatory variables

miN forur (Us 1Ug)| [MaX fop (U [Ue)
E

Ug

uLB — U uUB uLB — U uUB

Uy ~ F(UssUE) Uy ~ F(U,;UE)




Interval Analysis can be &
Tractable for Large-Scale Apps ) R

1 l T T T T T T T
L — — — Global OptVsSC w=23 Belief
I‘l Global Opt'sSC w=3 Plaus
B I — — — LHS 100/LHS 100 Belief N

=
©

LHS 100/LHS 100 Plaus
— — — LHS 1000/LHS 1000 Beliet
LHS 1000/LHS 1000 Plaus [
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Reliability Index &

Converge to more conservative bounds with 10—100x less evaluations




Model Form UQ in &
Fluid/Structure Interactions SEE

Discrete model choices for same physics: |
= A clear hierarchy of fidelity (low to high)
= An ensemble of models that are all credible High
(lacking a clear preference structure)

= With data: Bayesian model selection

=  Without data: epistemic model form
uncertainty propagation

SA-RANS [ KE-RANS-NBC — KE-RANS-DBC

Horizontal Axis Vertical Axis
Wind Turbine Wind Turbine

= Combination: | potential flow Vortex lattice wind turbine applications

SA-RANS [ KE-RANS-NBC — KE-RANS-DBC

Smagorinsky-LES Germano-LES

DNS
-~ ...




Multifidelity UQ using Stochastic Expansions éj

i) Moot

* High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ
* Low fidelity “design” codes often exist that are predictive of basic trends

* Can we leverage LF codes w/i HF UQ in a rigorous manner? = global approxs. of
model discrepancy

Nio Nhi
Fri€) =D fiol€)Li (&) + > Af(€;)L;(€) Ny, >> Ny,
j=1 j=1
Riigh (€) = €799 cos0.5¢ — 0.5¢~0-02E=5)"
= discrepancy 10° , , . 10°
Ry (€) = 7995 005 0.5¢,
-2
_ 10° ¢
107
<] <]
— = -4
E i 5 10
‘% - 210 2
s 2 2
8 : 107
B < <
5 -15
10 7 _
% 1078 L
— High-Fidelity =—— High-Fidelity
e High-Fidelity Model — Multifidelity m— ultifidelity
107} — COrrecton Functon 1070 ; ; . 107" : " .
é "0 |’5 20 0 5 10 15 20 0 5 10 15 20
Polynomial Order Number of High—-Fidelity Model Evaluations Number of High-Fidelity Model Evaluations
(a) Error in mean (b) Error in standard deviation

Low fidelity CACTUS: Code for Axial and High fidelity: DG formulation for LES

Crossflow TUrbine Simulation Full Computational Fluid Dynamics/
Fluid-Structure Interaction




Uncertainty Quantification @
not Addressed Here s

Laboratories

= Efficient epistemic UQ [Dakota]

" Fuzzy sets (Zadeh)

= Imprecise Probability (Walley)

= Dempster-Shafer Theory of Evidence (Klir, Oberkampf, Ferson) [Dakota]
= Possibility theory (Joslyn)

= Probability bounds analysis (p-boxes)

" Info-gap analysis (Ben-Haim)

= Bayesian model calibration / inference via MCMC [Dakota]

= Other Bayesian approaches: Bayesian belief networks, Bayesian updating,
Robust Bayes, etc.

=  Scenario evaluation
(Some available in [Dakota])



Sandia
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Application-oriented

BACKUP SLIDES




Nondeterministic Design: ’

Shape Optimization of Compliant MEMS )

Laboratories

=  Micro-electromechanical system (MEMS): typically made from silicon, polymers,
or metals; used as micro-scale sensors, actuators, switches, and machines

=  MEMS designs: subject to substantial variability, lack historical knowledge base;
uncertainty from materials, micromachining, photo lithography, etching process

= Resulting part yields can be low or have poor cycle durability

= Goal: shape optimize finite element model of bistable switch to...
= Achieve prescribed reliability in actuation force
= Minimize sensitivity to uncertainties (robustness)

actuation force

uncertainties to be considered
(edge bias and residual stress)

anchors ‘ variahle TNean std. dev, | distribution
) | JANTE -0.2 pm 0.08 normal
bistable ; & S, -11 Mpa 4.13 normal
MEMS £3
switch = VEernier

(




MEMS Switch Design:
Geometry Optimization

1_
.| 13 design vars d: N
of Wi’ I—i’ 6i $<—-
-05
_1_
‘g -15
-25 WG
I
-35
B ) L1 B L2 ) LS ) L4 ) —/
T 80 50 ~20 20 0
X (1 m)
force
L switch . .
omtact key relationship: force
Fmax__ """""""""""""" ) VS dlSplaCement Vla
| finite element analysis
E, E,
E, \/
B e Y (lisIJlacemf

= LY

tapered beam
anchor

»~—— shuttle

\

.nhew tapered beam design,_,

.—'A'~,

Sandia
National
Laboratories

Typical design specifications:
« actuation force F,;, reliably 5 uN

* bistable (F, > 0, F,;,<0)

« maximum force: 50 < F,_, < 150
 equilibrium E2 < 8 ym

* maximum stress < 1200 MPa




Optimization Under Uncertainty @

) e

Rather than design and then post-process to evaluate uncertainty...
actively design optimize while accounting for uncertainty/reliability metrics s (d),
e.g., mean, variance, reliability, probability:

min f(d) + Wsy(d)

Opt | «—
{d}‘ Sy} sit. g, <g(d) < gu
_ 00 h(d) = hy

{u}[ :|{Ru}_ d < d < dy
Slm . al S AZ Su(d) S Ay
(nested paradigm) Ae su(d) —

Bistable switch problem formulation (Reliability-Based Design Optimization):

force
A switch

simultaneously reliable and robust designs

E [Fiin(d, x)] contact 13 design vars d: W, L, q;
st. 2 < Beear(d) Fipay e 2 random variables x: AW, S,
50 < E[Fmaz(d,x)] <
E[E>(d,x)] < 8 E, Es
E [Smaz(d,x)] < 3000 ;

displacem




Reliability-based Design Optimization

&

[ ] [ ] e Sandia
inds Optima obust Design ) i
Laboratories
70 T -2 T T T
: . —— MVFOSM
: 5 == AMVZ4
2 3 | A |
i Y target force
i 35T 1] .
I —
I )]
i L 45
] L
! ol
-5.5
------ _6_
-6.5 ' ' '
10 3] 6.5 7 7.5 8
displacement (um) displacement (um)
Close-coupled results: DIRECT / CONMIN + reliability method yield optimal and
reliable/robust design:
metric MVFOSM | AMV?4 FORM
l.b. name u.b. || initial d° | optimal d}, | optimal d*, | optimal d}.
E [Fmin] (uN) -26.29 -5.896 -6.188 -6.292
2 _ 3 5.376 2.000 1.998 1.999
50 E [Fraz] (uN) 150 68.69 50.01 57.67 57.33
E [E>] (um) 8 4.010 5.804 5.990 6.008
E [Shaz] (MPa) 1200 470 1563 1333 1329
AMV?4 verified 3 3.771 1.804 - - —
FORM verified 3 3.771 1.707 1.784 -




