

Nuclear Safety (Week 8 / Day 1)

Lecture #1: Overview of Radiation Safety

SAND2016-XXXX

Gulf Nuclear Energy Infrastructure Institute – 2016 Fundamentals Course

Mr. Brian Thomson
Sandia National Laboratories

*Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

Week 8 Learning Objectives

Learning Objectives:

- Understand the basics of radiation safety
- Understand the common causes of human error
- Understand the role and importance of Operational Radiation Protection and Environmental Monitoring Programs
- Understand the role and importance of emergency preparedness
- Understand the role and impact of human performance on the causes and/or consequences of the Three Mile Island, Chernobyl, and Fukushima Reactor Accidents

2 Fundamentals Course 2016

Week 8 / Day 1 Learning Objectives

- To review basic information related to Radiation Safety, and how it relates to the safe use of nuclear power.
- To review key Human Performance Improvement (HPI) principles and how they relate to human and organizational performance.

3

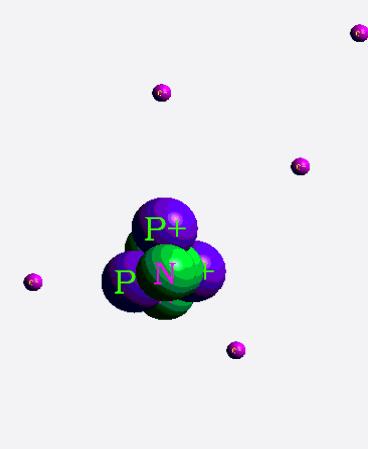
Fundamentals Course 2016

Week 8 / Day 1 / Lecture #1 Outline

- Ionizing Radiation – the Basics
- Radioactivity, Radioactive Material, & Radioactive Contamination
- Measuring Radiation and Radioactivity
- Sources of Radiation
- Biological Effects of Radiation Exposure
- Monitoring for Radiation Exposure
- As Low As Reasonably Achievable (ALARA) – Concept & Implementation

4

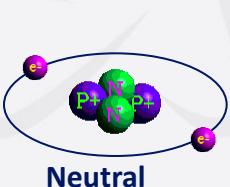
Fundamentals Course 2016


Atomic Structure

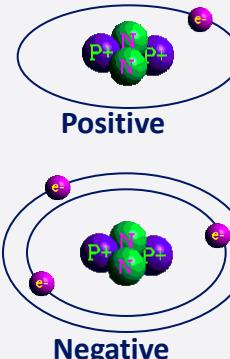
Protons (positive)

Neutrons (neutral)

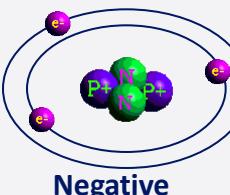
Electrons (negative)


5

Fundamentals Course 2016


Ions

Ions are atoms with positive or negative charge

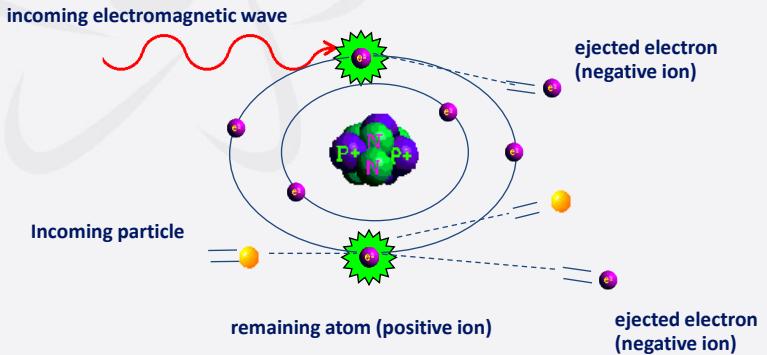


Neutral

Positive

Ions

Negative


6

Fundamentals Course 2016

Ionization

The process of removing electrons from atoms

Fundamentals Course 2016

Ionizing Radiation

- Radiation that possesses enough energy to cause ionization in the atoms with which it interacts
- Released from unstable atoms and some devices in the form of rays or particles
- Examples:

- Alpha (particle) α
- Beta (particle) β
- Gamma/x-ray (ray) γ
- Neutron (particle) η

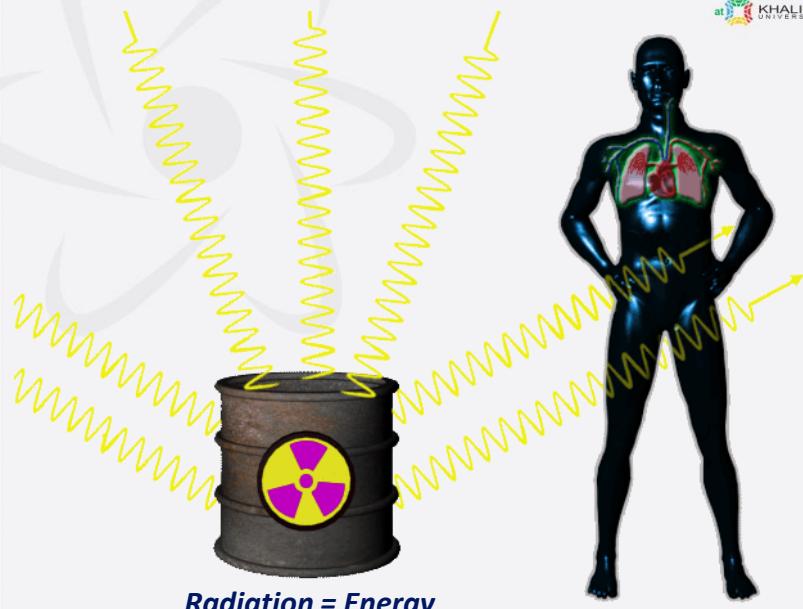
Fundamentals Course 2016

Non-Ionizing Radiation

- Radiation that does not have enough energy to ionize atoms with which it interacts
- Examples:
 - radio waves
 - infrared radiation
 - visible light
 - radar waves
 - microwaves

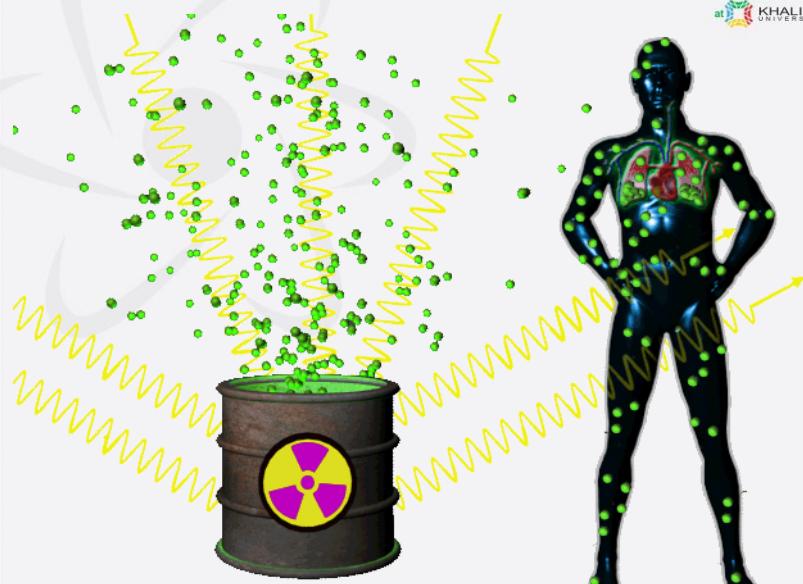
Fundamentals Course 2016

Radioactive Material vs. Contamination



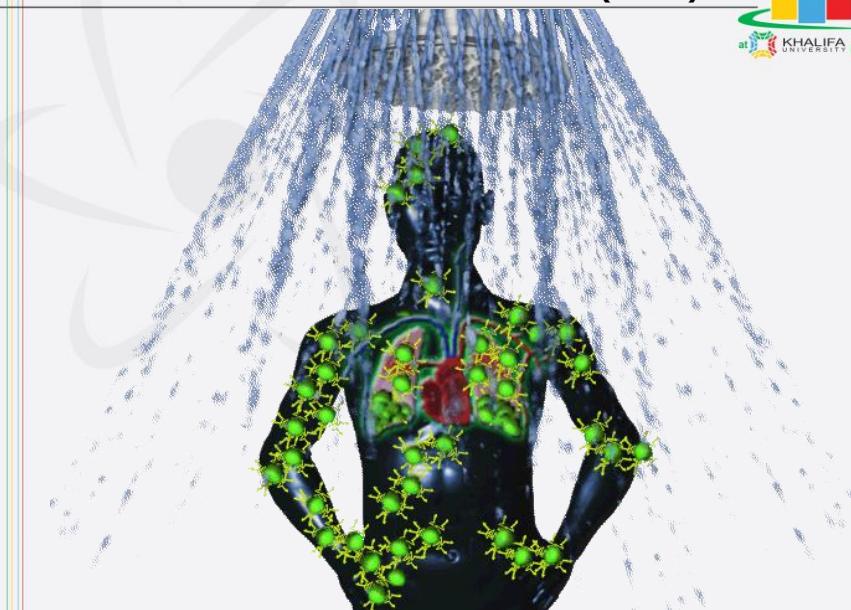
- Recall: Radiation is energy
- Radioactive Material = the physical material emitting the radiation (energy)
- Radioactive Contamination = radioactive material that is uncontained and in an unwanted place
- Exposure to radiation will not cause you to become contaminated

Fundamentals Course 2016


Radioactive Material vs. Contamination (Cont.)

11

Fundamentals Course 2016


Radioactive Material vs. Contamination (Cont.)

12

Fundamentals Course 2016

Radioactive Material vs. Contamination (Cont.)

External contamination is easily removed

Fundamentals Course 2016

13

Radioactive Material vs. Contamination (Cont.)

Internal contamination is NOT easily removed

Fundamentals Course 2016

14

Types of Radioactive Contamination

- Fixed

- Contamination that can not be readily removed from surfaces
- Detected by direct frisking of the item or surface

15

Fundamentals Course 2016

Types of Radioactive Contamination

- Removable

- Contamination that can be readily removed from surfaces
 - May be transferred by casual contact
 - Air movement may cause removable to become airborne
- Measured by wiping the area with a piece of paper and then counting the sample

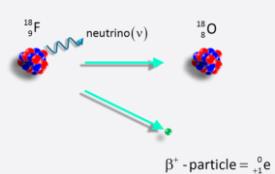
16

Fundamentals Course 2016

Types of Radioactive Contamination

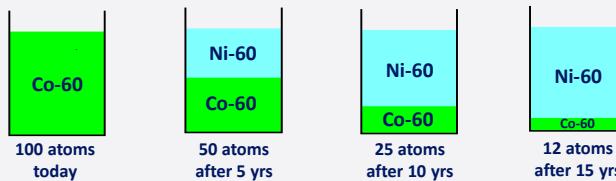
- Airborne

- Contamination suspended in air - dusts, fumes, particulates, mists, vapors, or gases
- Radiation Protection personnel have equipment designed to sample the air for airborne contamination
 - Air is pulled through a filter paper, and the paper is counted using a contamination monitoring instrument


17

Fundamentals Course 2016

Radioactivity vs. Radioactive Half-Life



beta plus decay

- Radioactivity - the process of unstable atoms becoming stable by emitting radiation
- Radioactive Half-Life - the time it takes for one half of the radioactive atoms present to decay

Example: Cobalt-60 half-life = 5.27 years

18

Fundamentals Course 2016

Measuring Radiation

- Gray (Gy)

- SI Unit = Gray (Gy) an absorbed dose of 1 joule/kilogram.
- Unit for measuring absorbed dose in any material
- Applies to all types of radiation
- Does not take into account the potential effect that different types of radiation have on the body
- Gray is a very large unit
 - mGy (0.001 Gy)
 - μ Gy (0.000001 Gy)

$$1 \text{ Gy} = 100 \text{ rad}$$

19

Fundamentals Course 2016

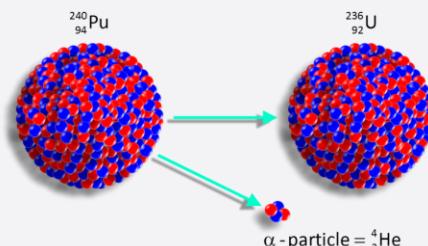
Measuring Radiation

- Sievert (Sv)

- SI Unit = Sievert (Sv) unit for measuring dose equivalence
- Pertains to the human body
- Takes into account the energy absorbed (dose) and the biological effect on the body due to the different types of radiation
- Sievert is a very large unit
 - mSv (0.001 Sv)
 - μ Sv (0.000001 Sv)

$$1 \text{ Sv} = 100 \text{ rem}$$

20

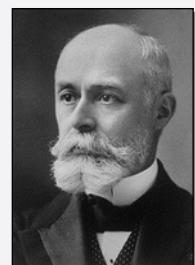

Fundamentals Course 2016

Measuring Radioactivity

- A measure of the number of spontaneous disintegrations radioactive material undergoes in a certain period of time
- We measure the rate of decay, which leads us to the quantity of radioactive material present

alpha decay

21


Fundamentals Course 2016

Radioactivity Units

Basic Unit:

- Becquerel (Bq)
- 1 Bq = 1 disintegration per second (dps)
- dps = derived from instrument counts and counting efficiency

Henri Becquerel
1852 - 1908
Discovered
natural radioactivity

22

Fundamentals Course 2016

Contamination Units

How spread out is the radioactive material?

$$\frac{\text{Radioactivity (Bq)}}{\text{Area (cm}^2\text{) or Volume (m}^3\text{)}}$$

23

Fundamentals Course 2016

Background Sources of Ionizing Radiation

Background = natural + man-made

We are *constantly* exposed to background radiation, from both natural and man-made sources

24

Fundamentals Course 2016

Natural Sources of Background Radiation

SOURCE	AVG DOSE
COSMIC - sun & outer space	30 - 39 mrem/yr (0.3 – 0.39 mSv/yr)
TERRESTRIAL - Earth's crust	21 - 48 mrem/yr (0.21 – 0.48 mSv/yr)
INTERNAL - our own bodies	28 - 40 mrem/yr (0.29 – 0.4 mSv/yr)
RADON - Uranium in the Earth	126 - 228 mrem/yr (1.26 – 2.28 mSv/yr)

25

Fundamentals Course 2016

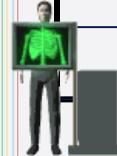
https://en.wikipedia.org/wiki/Background_radiation

Man-Made Sources of Background Radiation

SOURCE	AVG DOSE
Medical	300 mrem (3 mSv)/yr (USA) 60 mrem (0.6 mSv)/yr (World)
Consumer Products	13 mrem/yr (USA) (0.13 mSv/yr)
Industrial Uses	< 1 mrem/yr (< 0.01 mSv/yr)
Atmospheric Testing	0.5 mrem/yr (World) (0.005 mSv/yr)

26

Fundamentals Course 2016


https://en.wikipedia.org/wiki/Background_radiation

Man-Made Sources of Background Radiation

- Medical

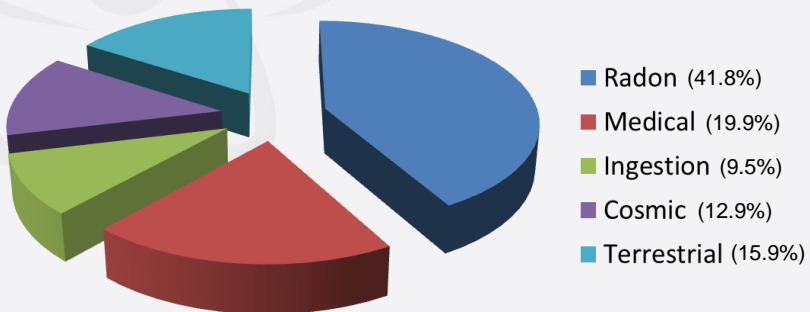
Radiation Therapy	600,000 mrem - tumor (6,000 mSv)
CAT Scan	5,800 mrem - head 1,500 mrem - lower spine (58 / 15 mSv)
Fluoroscope	5,000 mrem/min. - skin (50 mSv)
Mammogram	400 mrem - breast 0.2 mrem (low-dose screen) (4 / 0.002 mSv)
Dental X-Ray	0.5 - 1 mrem/shot - mouth (0.005 - 0.010 mSv)
Chest X-Ray	20 - 50 mrem/shot - chest (0.2 - 0.5 mSv)

27 Fundamentals Course 2016

Man-Made Sources of Background Radiation

- Consumer Products

PRODUCT	AVG DOSE
Cigarettes (1.5 packs/day)	8,000 mrem/yr - lungs (80 mSv/yr)
Dental Porcelain (old)	60,000 rem/yr - gums (600 mSv/yr)
Tinted Glasses (old)	4,000 rem/yr - eyes (40 mSv/yr)
Building Materials	7 mrem/yr - whole-body (0.07 mSv/yr)
Radium Dial Watch	6 mrem/yr - whole-body (0.06 mSv/yr)
Smoke Detector	1 mrem/yr - whole-body (0.01 mSv/yr)


28 Fundamentals Course 2016

World Average

- Radiation Doses from Natural and Man-Made Sources

World Average Doses from Background Radiation

(Ref.: United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR 2008)

29

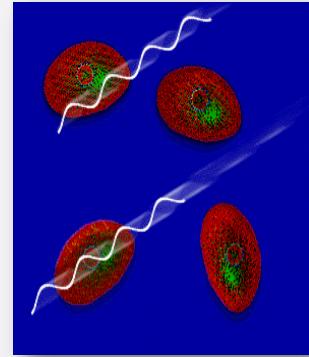
Fundamentals Course 2016

World Average (Cont.)

- Radiation Doses from Natural and Man-Made Sources

The average annual doses to the world population from all sources of radiation is estimated to be 3.01 mSv/year (301 mrem/year)

- Compared to 6.24 mSv/year (624 mrem/year) for the U.S.

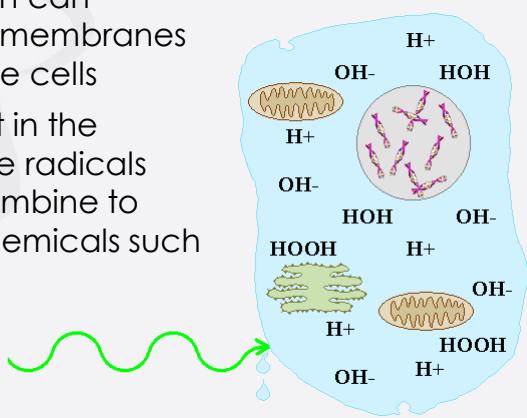

30

Ref.: https://en.wikipedia.org/wiki/Background_radiation

Fundamentals Course 2016

Radiation Risk

- Radiation exposure comes from a variety of natural and man-made sources
- The method by which radiation causes damage to human cells is by ionization of atoms in the cells
- Any potential radiation damage begins with damage to atoms



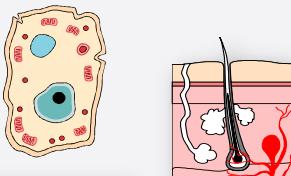
31

Fundamentals Course 2016

Cell Damage

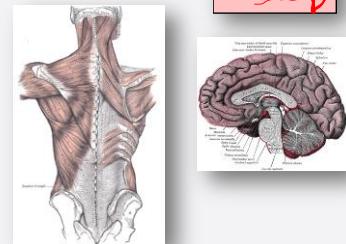
- Ionizing radiation can directly rupture membranes that surround the cells
- Ionizations result in the formation of free radicals which can recombine to form harmful chemicals such as H_2O_2

32


Fundamentals Course 2016

Cell Sensitivity

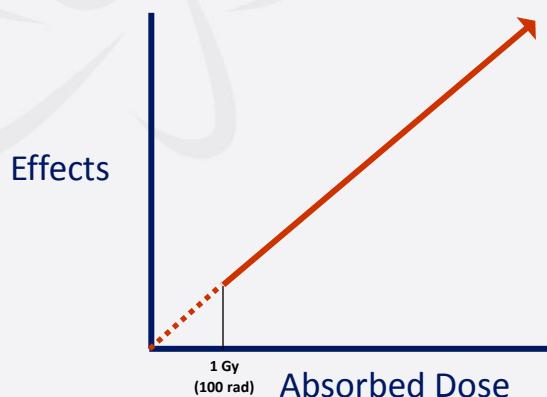
Some cells are more sensitive than others to environmental factors (viruses, toxins, ionizing radiation).


Highest Sensitivity:

- Actively dividing cells
- Non-specialized cells
- Examples: blood forming cells, hair follicles, cells that form sperm

Lowest Sensitivity:

- Less actively dividing cells
- More specialized cells
- Examples: brain and muscle cells



Fundamentals Course 2016

Radiation Damage Factors

- Total Dose Received

In general, the greater the dose, the greater the potential for biological effects.

Fundamentals Course 2016

34

Radiation Damage Factors

- Dose Rate

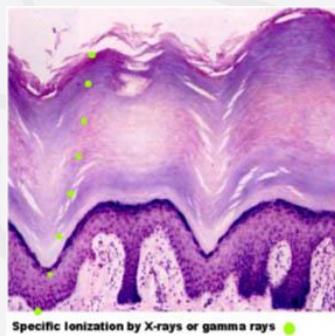
The faster the dose is delivered, the less time the body has to repair itself.

$$\frac{3.6 \text{ Sv}}{50 \text{ y}} = \frac{72 \text{ mSv}}{\text{y}} \times \frac{1 \text{ y}}{50 \text{ y}} \times \frac{\text{y}}{40 \text{ h}} = \frac{36 \mu\text{Sv}}{\text{h}} \rightarrow \approx 26\% \text{ increased risk of being diagnosed with cancer*}$$

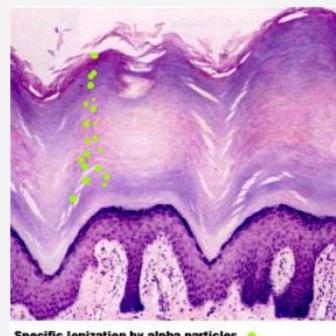
versus

$$\frac{3.6 \text{ Sv}}{1 \text{ h}}$$

→ 50% chance of dying in 60 days without medical intervention


*BIER VII Phase 2

35


Fundamentals Course 2016

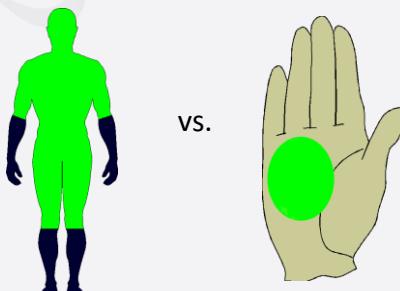
Radiation Damage Factors

- Type of Radiation

The specific ionization of X- and gamma rays does not create ion pairs as close together as particle radiation

The specific ionization of particle radiation is higher as ionization occurs more frequently and at closer intervals along the path.

36


Fundamentals Course 2016

Radiation Damage Factors

- Area of the Body Exposed

- In general, the larger the area of the body that receives a dose, the greater the biological effect
- Extremities are less sensitive than blood forming and other critical organs

Fundamentals Course 2016

37

Radiation Damage Factors

- Individual Sensitivity

Age

- The human body becomes less sensitive to ionizing radiation with increasing age; however, elderly people are more sensitive than middle-aged adults

Genetic make-up

- Some individuals are more sensitive to environmental factors

Fundamentals Course 2016

38

Embryo/fetus cells are rapidly dividing, which makes them sensitive to many environmental factors including ionizing radiation.

Possible effects:

- Slightly Smaller Head Size
- Lower Birth Weight
- Increased Incidence of Mental Retardation
- Increased Risk of Childhood Cancer

Source:
<http://www.exilestan.com/tag/connection/>

Source: <http://www.scienceclarified.com/II-Ex/Embryo-and-Embryonic-Development.html>

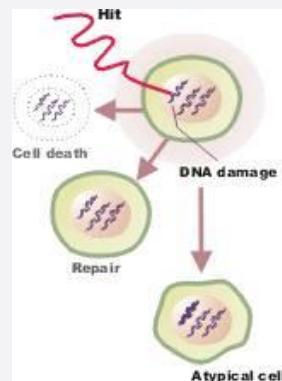
39

Fundamentals Course 2016

Potential biological effects depend on how much and how fast a radiation dose is received.

Radiation doses are grouped into:

- **Acute** - high dose of radiation received in a short period of time (seconds to days)
- **Chronic** - a small dose of radiation received over a long period of time (months to years)


40

Fundamentals Course 2016

Acute Radiation Dose

The body's cell repair mechanisms are not as effective for repairing damage caused by an acute dose.

- Damaged cells will be replaced by new cells and the body will repair itself, although this may take a number of months
- In extreme cases the dose may be high enough that recovery would be unlikely

41

Fundamentals Course 2016

Effects of Acute Radiation Exposure

AVG DOSE	DAMAGE
> 50,000 mSv (> 5000 rem)	Death Within 2-3 Days
> 5000 mSv (> 500 rem)	Gastrointestinal Damage
3,200 - 3,600 mSv (320 - 360 rem)	LD ₅₀
2,000 - 5,000 mSv (200 - 500 rem)	Blood System Damaged
1,000 - 2,000 mSv (100 - 200 rem)	Radiation Sickness
250 - 500 mSv (25 - 50 rem)	Slight Blood Changes
20 mSv (2 rem)	Annual Limit

42

Fundamentals Course 2016

Chronic Radiation Dose

The human body is better equipped to tolerate chronic doses.

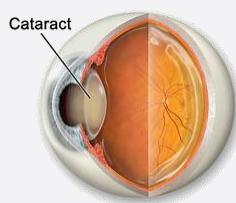
Typical examples include:

- The doses commonly received from natural background
- The doses commonly received from occupational exposure

43

Fundamentals Course 2016

Effects of Chronic Radiation Exposure


- Increased risk of cataract formation (eye doses > 4,500 mSv)
- Increased risk of developing cancer

Source: <http://tacancer.com/>

Source: <http://christinepaul.com/body/beat-cancer-without-chemo/>

Source: <http://www.lib.utk.edu/medicat/eye/cataract.html>

Source: <http://medicaljitters.blogspot.com/2010/10/complicated-cataract-cataract.html>

44

Fundamentals Course 2016

Monitoring for External Exposure

The body can be exposed to radiation from sources internal and external to the body.

External dosimetry is used to monitor exposure to radiation emanating from sources external to the body.

45

Fundamentals Course 2016

Monitoring for External Exposure (Cont.)

- Personnel Monitoring Devices

Various types of dosimetry devices are used to measure personal dose received from exposure to external sources of radiation:

Whole-Body Dosimeter (TLD)

Electronic Personal Dosimeter (EPD)

Extremity Dosimeter

46

Fundamentals Course 2016

Monitoring for External Exposure (Cont.)

- Whole-Body Dosimeter

The Thermoluminescent Dosimeter (TLD) is the primary device used to determine your occupational dose received from external sources.

47

Fundamentals Course 2016

Monitoring for External Exposure (Cont.)

- Electronic Personal Dosimeter (EPD)

- Used in some countries to supplement the whole-body TLD; *in other countries (e.g., Europe), the use of EPDs has replaced the use of whole-body TLDs*
- Sensitive to X-ray, gamma and beta radiation
- Measures dose and dose rate
- Provides dose and dose rate alarms
- Provides immediate, real-time, running of whole-body dose received

48

Fundamentals Course 2016

Monitoring for External Exposure (Cont.)

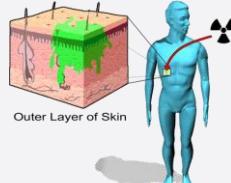
- Extremity Dosimeters

- Normally consists of a (2)TLD chips, divided by a Tin shield, embedded in a finger ring
- One normally issued – worn on the most exposed extremity
- One per extremity can be issued – to be worn separately when in use
- Worn under protective clothing such as gloves

49

Fundamentals Course 2016

Internal Exposure Pathways

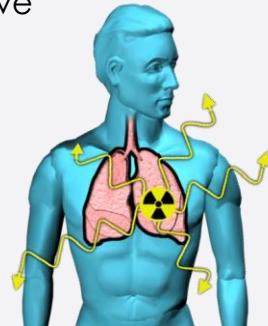

Internal dose results from radioactive material being taken into the body through:

Inhalation

Ingestion

Absorption

Injection


50

Fundamentals Course 2016

Monitoring for Internal Exposure

- Measure the amount of radioactive material present inside the body
- Calculate an internal dose
- Conducted to monitor workers for internal exposure to fission and activation products, Transuranics, tritium, etc.

51

Fundamentals Course 2016

Monitoring for Internal Exposure (Cont.)

- Bioassay

- Whole-body Counting (In-vivo)
 - Does not measure low-energy betas (e.g., Tritium)
- Sample(s) provided for analysis (In-vitro)
 - Examples:
 - Urine (most common)
 - Feces
 - Hair
 - Blood

52

Fundamentals Course 2016

Monitoring for Internal Exposure (Cont.)

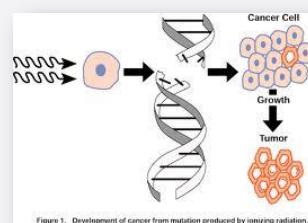
- Personal Air Sampling

Personal air sampling equipment may be used to sample the air in the breathing zone for radioactive material.

53

Fundamentals Course 2016

Somatic Effects vs. Heritable Effects


Somatic effects appear in the exposed individual.

Examples:

- Cells may become cancerous
- Increased risk of cataract formation
- Possible life-shortening

Heritable (genetic) effects appear in future generations

- Not yet observed in human populations

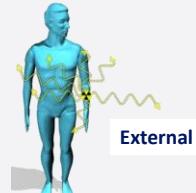
54

Fundamentals Course 2016

Cancer Risk from Radiation Exposure

- Health effects observed in humans at acute doses in excess of 250 mSv
- No increase in cancer observed in individuals who receive a dose of ionizing radiation at occupational levels
- The possibility of cancer induction cannot be dismissed even though an increase has not been observed
 - Current rate of cancer death is about 10%*
 - An individual who receives 250 mSv over a working life increases his/her risk of cancer to about 19%

*World Cumulative risk average (age 0-64)


Fundamentals Course 2016

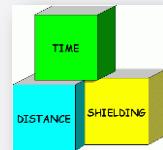
55

As Low As Reasonably Achievable (ALARA)

- Philosophy that strives to manage and control doses (individual and collective) to as low as is reasonably achievable
- Includes reducing both **external** and **internal** exposure
- Assumes that any exposure involves some risk
- No exposure without commensurate benefit

External

Internal


Fundamentals Course 2016

56

ALARA Implementation

- Basic protective measures used to reduce external doses:
 - minimizing **time**, maximizing **distance**, use of **shielding**, source reduction
- Basic protective measures used to reduce internal doses:
 - containments, robust contamination control program, personal protective equipment

57

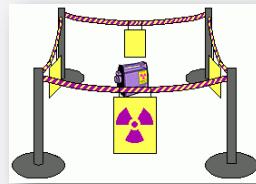
Fundamentals Course 2016

ALARA Implementation (Cont.)

- Personnel radiation doses are maintained ALARA through a combination of:
 - Administrative controls
 - radiological postings
 - warning labels and signals
 - work control documents
 - training
 - Engineered controls
 - safety interlocks
 - radiation shielding

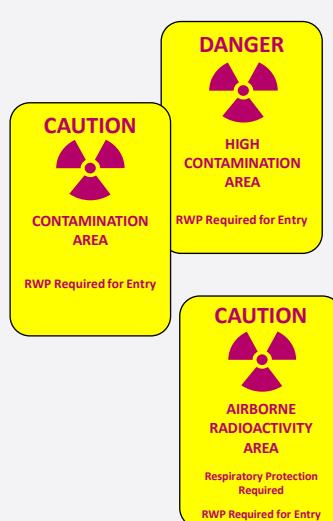
58

Fundamentals Course 2016


ALARA Implementation (Cont.)

- Radiological Postings

Alert personnel to the presence of radiological hazards

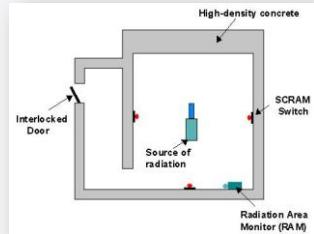


- hazards designated with a magenta (or black) standard radiation symbol on yellow background
- areas designated with yellow and magenta rope, chain, tape, or similar barrier material
- signs and physical barriers placed to be clearly visible from all entrances and accessible directions

ALARA Implementation (Cont.)

- Radiological Postings and Labels

Examples:


ALARA Implementation (Cont.)

- Engineered Controls

Radiation exposure in radiologically controlled areas is maintained ALARA *primarily* through facility established engineered controls:

- installed shielding
- containment systems
- facility design
- safety interlocks
- key- or code-controlled locks

61

Fundamentals Course 2016

ALARA Implementation (Cont.)

- Personal Protective Equipment (PPE)

Disposable Coveralls:

- The most commonly used
- Protects against skin, hair, and personal clothing contamination
- Frequently used with respiratory protection

Plastic Suits (with Supplied Air):

- Provides a high degree of protection
- Seldom needed - engineering comes first
- Slow to don, cumbersome, expensive
- Provides a source of breathing air

62

Fundamentals Course 2016

Questions?