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MHD: currents and the corresponding magnetic
fields can create high energy density matter
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Pressure Magnetic field as
velocity scalar pressure

fiel :
leld » Using pulsed power (current) as a source has advantages

— Can create high pressures without making material hot

— Generated over long time scales with control over the time history

— Large samples and energetic sources (2 MJ to load of 20 MJ stored)
— Low price - $4/Joule stored for refurbishment in 2007

* Integrated projects with theory/simulations/experiment
— Develop, design, analyze, and optimize experiments
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« 25 MA at 1cm radius is 1 Mbar drive
current

e 25 MA at 1mm radius is 100 Mbar 7




The current pulse on Z is tenfold compressed and T
then shaped depending on the experimental objective

20 MJ stored on Z to:

0.5 MJ in MagLIF targets
0.1 MJ in DD fuel

1.5 MJ broad band x-ray
0.4 MJ Al K-shell x-ray

Magnetically Driven Implosion

—Marx generators
—pulse-forming lines
—insulator stack
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We use magnetic fields to create HED matter in fh
different ways for different applications

Radiation physics using Materials Properties: EOS

Z-Pinch X-ray Sources
wire array Current
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Atomic- and plasma physics
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Inertial confinement fusion
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Properties of matter under HED (High Energy Density) Netiona
conditions are important to many geophysical problems

Laboratories

* Planetary science — Jupiter, Saturn, Uranus,
Neptune, and exo planets [e.g. hot Neptunes]
= Waterin 2005-2012: 2 Phys Rev Letts and 2 Phys Rev B
= Metallization of hydrogen/deuterium: Science 2015

* Planetary science — earths and super-earths
= Silicates, MgO (Phys. Rev. Lett. 2015), and iron/iron alloys

= Determining the vaporization threshold for iron — and
implications for planetary formation, Nature Geoscience
2015.

= Materials for Stockpile Stewardship, HED and
inertial confinement fusion (ICF)
= |nvestigating the periodic table from Aluminum to We have turned planetary
Zirconium: a broad range of materials are of interest - a science quantitative by high
talk in itself fidelity modeling and high-

= The programmatic work drives precision — we rely on the precision experiments
data!




Understanding the properties of hydrogen is
crucial for understanding giant planets
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JUPITER SATURN URANUS NEFTUNE
B Molecular hydrogen B Hydrogen, helium, methane gas
Metallic hydrogen I Mantle (water, ammonia, methane ices)

Core (rock, ice)

= Present structure

= Layers of different composition
while fulfilling observational
constraints

= Evolution

= Discrepancies in modeling the
evolution of Jupiter and Saturn —
the “Saturn age problem”

= Why is Saturn so luminous?

= Magnetic fields

= QOrigin of multi-polar fields in
Neptune and Uranus




We have located the Liquid-Liquid Insulator-to-Metal
Transition in deuterium to be a steep curve at 300 GPc¢
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5 = Experiments used a new
| ! " Experimental shock + ramp drive to scan
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““\ is a p-driven transition
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L = p at the transition is inferred to be
| ‘ ~2-2.1 g/cc in deuterium
R = Qualitatively different transition

\ than in shock experiments (T
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Broad team with expertise in

100 200 diagnostics, pulse-shaping,
Pressure (GPa) experimental design, and first-

principles simulations

M.D. Knudson. M.P. Desiarlais. A. Becker. R.W = A project within the Z
.D. Knudson, M.P. Desijarlais, A. Becker, R.W. Fundamental i
Lemke, K.R. Cochrane, M.E. Savage, D.E. Bliss, Pu dra me tal Science
T.R. Mattsson, and R. Redmer, rogra

Science 348 1455. 26 June 2015 * Professor Ronald Redmer’s group at
’ ' University of Rostock




Sandia’s dynamic material research facilities provide ()
= . Laboratories
a wide range of compressive states

Pressures <1 GPa to >500 GPa
Shock and isentropic compression

Uniaxial and combined pressure-shear loading
Sample sizes from ~ 0.25 — 4 inches

STAR Powder Gun

STAR 4" AIR GUN




We seek a deep understanding of matter under Sandi
extreme conditions — sets the research directions

National
Laboratories

= Multi-Mbar experiments on a broad range of materials

Shock- and ramp experiments
= Shock — high temperature states
= Ramp - quasi-isentropic compression

Diagnostics of HED conditions

= Modeling and simulations of materials and processes

Design, optimization, and analysis of experiments using multi-
physics codes

First-principles simulations (Quantum Monte Carlo, Density
Functional Theory, and more) for materials properties

Large-scale molecular dynamics of microphysics towards mesoscale

Development of material models — for use in multi-physics codes

The strong integration between theory and
experiments delivers a unique perspective




Backup slides




Magnetohydrodynamic simulations are
coupled with experiments

Hyd rOdynamiCS The hydrodynamics moves material

based on the material properties.
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‘Equatlon of State Conductlwty

Tom Haill, SNL

Most simulation codes will tally
the total energy in each cell
and, based on that energy and
the density, compute a new
pressure and temperature in
preparation for the next
hydrodynamic step.

Radiation

Radiation is a key energy

Nuclear Mathematical and Tom Brunner : .
Computational Sciences: A LLNL . transfer mechanism in some

Century in Review, A Century systems

h Thermal conduction augments the

movement of energy in a simulation.
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Magnetics

Chris Garasi, SNL

Conductivity determines
magnetic
field diffusion.




We have seen tremendous scientific impact over the last

Sandia

ten years in combining high-fidelity orors
theory/simulations/experiments

e AT Predictive DFT-MD simulations are
800 * Gun, Nellis et al.

+  Gun, Radousky and Ross 1 tranSforming the deSign and

700 « @Gun, Urlin et al.

- LDA, SNL - interpretation of Z experiments
*+  AMO5, SNL

[ L ‘ _ = SCIENCE 322, 822-1825 (2008)

-~ LEOS 540 : _ = |CARUS 211, 798 (2011)

- _’5(1E905885;E = Phys. Rev. Letts.

' ] = 2006, 2007, 2008, 2009, 2010, 2011,
2012, 2013, 2015

= SCIENCE 348, 1455 (2015)

= Many articles in PRB, PoP, JAP, JCP, etc.
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Shock Hugoniot in xenon predicted by We perform multi-scale research — ranging
DFT/QMD (calculations by Rudy Magyar, from quantum mechanics to new advanced
experiments by Seth Root: PRL 2010) Magneto Hydrodynamics theory, -
algorithms, and —codes.

This DFT-MD based response of

xenon were a true prediction —

published before the experiments




