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ABSTRACT

As high-performance computing (HPC) computing systems
become larger and more complex, fault tolerance becomes
a greater concern. At the same time, the data volume col-
lected to help in understanding and mitigating hardware and
software faults and failures also becomes prohibitively large.
We argue that the HPC community must adopt more sys-
tematic approaches to system event logging as opposed to
the current, ad hoc, strategies based on practitioner intu-
ition and experience. Specifically, we show that event cor-
relation and prediction can increase our understanding of
fault behavior and can become critical components of effec-
tive fault tolerance strategies. While event correlation and
prediction have been used in HPC contexts, we offer new
insights about their potential capabilities. Using event logs
from the computer failure data repository (cfdr) (1) we use
cross and partial correlations to observe conditional correla-
tions in HPC event data; (2) we use information theory to
understand the fundamental predictive power of HPC fail-
ure data; (3) we study reservoir computing and Bayesian
classifiers for failure prediction; and (4) finally, we use prin-
cipal component analysis to understand to what extent di-
mensionality reduction can apply to HPC event data. This
work results in the following insights that can inform HPC
event monitoring: ad hoc correlations or ones based on di-
rect correlations can be deficient or even misleading; highly
accurate failure prediction may only require small windows
of failure event history; and principal component analysis
can significantly reduce HPC event data without loss of rel-
evant information.
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High-performance computing (HPC) systems, including
clusters and supercomputers, have become critical infras-
tructure for computational science and engineering research
and in many commercial enterprises. As such systems be-
come larger and more complex, fault and failure manage-
ment becomes increasingly important. For tightly-coupled
and loosely-coupled resource-intensive applications, unmit-
igated failures can reduce resource availability and lead to
low application performance.

Understanding machine fault and failure behavior is key
to the development of effective fault tolerance strategies
for HPC systems. Researchers have applied statistical ap-
proaches in HPC contexts to help with this understanding.
For instance, information theory and event correlation have
been used for root cause analyses [10, 11, 9] and to inform
failure prediction [12, 3]. Additionally, support vector ma-
chines, neural networks and other probabilistic models have
been used for failure event predictions [3, 8, 12, 4]. How-
ever, none of this research is employed in state-of-the-art
system monitoring infrastructures. All aspects of current
system monitoring practices employ ad hoc strategies based
on practitioner expertise and intuition. Without trivializ-
ing the value of system administration experience, we ar-
gue that as HPC systems get larger and potential monitor
data volumes become prohibitively large, we need a system-
atic, principled approach to HPC system monitoring: we
should leverage the wide array of current and emerging sta-
tistical and data mining techniques to determine both the
space (which resources/events) and time (sampling resolu-
tion) attributes of HPC resource monitoring systems.

The fundamental challenge is that complex dependencies
amongst HPC system events make event log analysis a non-
trivial task. In this work, we explore the usefulness of well-
known data analysis techniques (that have been applied suc-
cessfully in other domains) for HPC system event analysis.
Our goal is not (yet) to discover new generalizable insights
or insights about specific systems, but to demonstrate that
such techniques can be used to obtain such insights in the
future.

Accordingly, using event logs from the computer failure

data repository (cfdr) [1] in addition to event cross-correlations,

here (1) we use partial correlations to observe statistical sig-
nificance and conditional correlations in HPC event data; (2)
motivated by our partial correlation results, we use principal
component analysis to understand how much dimensionality
reduction can apply to HPC event data; (3) we use informa-
tion theory to understand the fundamental predictive power



of failure event data; and (4) finally, we use a failure event
prediction case study to demonstrate the impact of our in-
formation theoretic analysis.

We offer the following novel contributions:

e a demonstration that for HPC systems direct corre-
lation used in isolation can suggest false interactions
between event time series;

e an approach for reducing the volume of event data that
are collected and maintained without reducing the ef-
fectiveness of that data;

e a principled approach for understanding the limits of
HPC event prediction capabilities; and

e an HPC failure event prediction case study that relies
solely on failure event history.

In addition to identifying candidate data analysis methods
with high impact potential for HPC event data collection,
analysis and prediction, we believe that these contributions
may have several broader impacts: (1) they suggest that
conditional correlations may be very apparent amongst such
data and should be accounted for; (2) dimensionality reduc-
tion may be a useful approach to consider for dramatically
reducing the impact of event data collection on computation,
communication and storage resources; (3) HPC failure pre-
diction approaches may need to consider only small windows
of failure event histories and, in fact, considering extraneous
data may have negative effects; and (4) probabilistic meth-
ods may be better suited for analysis and prediction of HPC
events. We believe this is the first work in HPC systems
research to show the potential relevance of the statistical
significance of apparent correlations and the irrelevance of
conditional event correlations as well as the first work to
suggest the theoretical predictive potential of HPC failure
event data.

The organization of the rest of this paper is as follows:
next (Section 2), we describe the data set and the data anal-
ysis methods we use in this study. Then, we describe our
methodology for applying these methods to our data set,
present the results of these applications and discuss the con-
tributions and impacts of these results (Section 3). We then
review related works in HPC event analysis (Section 4) after
which we conclude with a summary of our main findings and
the opportunities they open for future research.

2. BACKGROUND

We survey several well-known statistical techniques in-
cluding cross and partial correlations, principal component
analysis, information theory for temporal information con-
tent. In Section 3, we demonstrate the potential these tech-
niques have for HPC resource monitoring.

2.1 Cross and Partial Correlations

Cross and partial correlations are used to analyze direct
and conditional correlations between multiple variables. A
pairwise cross-correlation characterizes a direct linear corre-
lation between multiple variables at different time lags. Par-
tial correlation is a complementary technique that measures
the conditional correlation between two variables controlling
for all the other variables. Using the direct and the condi-
tional correlation, one can distinguish direct and indirect
interactions between multiple variables in a system.

2.1.1 Cross-correlations

We compute the correlation between two time series X
and Y, with means ux and py and standard deviations ox
and oy, using Pearson’s correlation coefficient:

p(X, Y) _ <(X7/1’o);?((7i7//‘y)>’ (1)

where (-) is the expectation operator. From the equation we
see that —1 < p(X,Y) < 1, where a correlation of 1 means
perfect correlation; the values of the time series change in
the same direction, with the same magnitude. A correlation
of —1 means perfect inverse correlation; values of the time
series change in opposite direction, with the same magni-
tude [5, 6].
With lag, 7, between the time series, the calculation is:

Xy = (XD =) =)y
OX0y

This lets us measure the correlation between two events in

time. To simplify the notation, we use p; ;(7) to denote

the correlation between variables X; and X; at lag 7. The

answer to the optimization:

7;; = arg max p; ;(7) (3)

gives the time lag with the strongest correlation between
variables X; and Xj;.

2.1.2 Partial Correlations

Cross-correlations observe the direct correlations between
X and Y However, this correlation may only be due to cor-
relation of X and Y with other variables. Partial corre-
lations [5, 6], measure conditional correlations, that is, the
correlation between two variables controlling for all the other
variables. Partial correlation is useful for root-cause analysis
and to filter out spurious statistical correlations.

Using the correlation matrix C(7) = [p;,;(7)], we can cal-
culate partial correlations that measure conditional correla-
tions. Let C(7) = [p:,;(7)] be the inverse correlation ma-
trix. The partial correlation matrix is calculated as follows:
C(7) = [pi,;(7)], where p; ;(7) is given by:

_ —pii(7)
pi(T) = —=——te. (4)
Pii(7)p3,5(T)
2.1.3  Correlation Motifs
Direct and partial correlations can help identify three dif-
ferent structural variable correlation motifs as shown in Fig-

ure 1: (a) direct correlation ; (b) partial correlation and (c)
both direct and partial correlations.
2 Xl > X2
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Figure 1: Correlations: (a) X; is directly correlated to Xo.
(b) X1 and X5 are only partially correlated via X3, (c) X1
and X» are partially correlated via X3 and also directly cor-
related.



2.2 Principal Component Analysis

Principal component analysis (PCA) is used to analyze
variations in multivariate datasets [2]. PCA transforms a
dataset by describing each data point by its variations along
its different dimensions. The transformed data are an un-
correlated multivariate datasets; that is, different dimen-
sions are uncorrelated. PCA can be used to sort the data
dimensions by total variation and, thus, is used commonly
in machine learning for dimensionality reduction in large
datasets.

PCA is carried out by calculating the covariance matrix
of the data D, its eigenvectors V = [vi]|...|va] and its
eigenvalues A = [A1,...,An]T. The transformed data can
be calculated using X’ = V - XT, where X is the original
dataset whose columns are different dimensions of the data.
The magnitudes of eigenvalues correspond to how much of
the total variance is explained by the corresponding column
in X’. We calculate the percentage of variation explained

by the ith principal component as follows: 100%.
j=1"J

2.3 Extracting Temporal Information Content

Information theory provides a framework for measuring
information transfer, noise, and loss between an information
source and destination. Using information theory, we can
identify the predictive information between the past and the
future of a time series. In Shannon’s information theory [15],
entropy is the basic quantity. For an information source S
that takes a state {s;|1 < i < n} with probability p(s;), the
entropy,H s, or amount of information in S is defined as:

Hs = — Zp(si) log, p(si)- (5)

i=1

Joining the entropy of information source and destination:

Hsp = —ZZp(si,dj)loggp(si,dj). (6)

i=1 j=1

we can measure how much information is transferred be-
tween a source and destination. The mutual information
Z(S : D) between a source S and a destination D with
states d; is:

Z(S:D)=Hs+Hp —Hsp. (7

We can use mutual information to measure the predic-
tive information in the history of a time series. In this
case, the source will be a finite interval in the past of the
time series and the destination will be the future value of
the time series. Let y(t) be a time-varying signal and let
Ye,Yioq, .. ,,Yt,(n,l) be the random variables that corre-
spond to the values of y during the last n time steps, i.e.,
y(t),y(t —1),...,y(t — (n — 1)). The source S will have
the joint probability distribution p(Y:, Yi—1,...,Yi—(n-1)),
and the destination D will have the probability distribution
p(Yeq1).

Information content dictates our (un)certainty about the
future of the time series, Y;+1. We can calculate uncertainty
U, a measure of our ignorance about the future of a time
series, based on our knowledge of its last n values as follows:

_ Hp—1Z(S:: D)

U
Hp

(8)

From this definition we observe that 0 < U < 1, where
U = 0 means a complete knowledge of the next step and
U =1 indicates a complete ignorance of it.

3. EXPERIMENTS AND RESULTS

In this work, we argue for a principled, systematic ap-
proach HPC resource monitoring and event analyses. We
used event and failure data collected from 22 HPC clus-
ters at Los Alamos National Laboratory (LANL) from De-
cember 1996 through November 2005 [1]. These systems
were large clusters consisting of either non-uniform-memory-
access (NUMA) nodes, or 2-way and 4-way symmetric mul-
tiprocessing (SMP) nodes. The systems comprised a total
of 4750 nodes and 24101 processors. Each failure record in-
cluded the cluster number and node number for the failed
nodes, the failure timestamp, the timestamp at which the
node was returned to operational state, and the determined
cause of failure. The logs also contained the events from a
variety of hardware and system software components. Each
event record contained the event timestamp, the node at
which the event occurred, the component that produced the
event, and the event type. From this repository wee used
the more comprehensive “System 20” logs.

3.1 Data Preparation

As described above, our event logs contained information
about the node on which the event occurred as well as the
component that produced the event, the event category, and
the timestamp at which the event was recorded. We needed
to preprocess these to convert them into a single multivari-
ate time series in which all events can be analyzed simul-
taneously. This allowed us potentially to observe the in-
teractions amongst events across different components and
different nodes. In the raw event logs, each line denotes
a type of event with its corresponding timestamp. Com-
monly, event correlations are analyzed by calculating either
time-between-events (TBEs) or by binning events into slid-
ing time windows along the time series, and generally, TBE
calculation and related statistics for a single event is trivial.
However, we could not use this approach for two reasons:
(1) event frequencies varied greatly among the events and
(2) the calculated TBE from the raw data is not synchro-
nized. Therefore, we synchronized the different time series
via a measure-and-hold schema. That is, for each time se-
ries, we set the value of the time series at each time step
equal to the calculated TBE at the last occurrence of that
event. This synchronized the time series by lengthening all
series to span the entire length of the longest time series. Ex-
trapolated time series will not miss any fluctuation in TBE
after downsampling. We performed this transformation on
all the data and sampled the result at every 7200 seconds
(two hours). This improved our analysis efficiency: process-
ing the unsampled data consumed a lot of memory. The
result of this extrapolation and synchronization process is
shown in Figure 2.

3.2 Finding Event Correlations

We now present the results from our application of the
cross and partial correlation methods from Section 2.1. Our
HPC cluster event logs contain event data from 2,831 total
devices including 512 computer nodes. Analyzing TBEs for
all the events logged by all the nodes is a very memory-
intensive task. However, since a majority of the nodes logged
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Figure 2: The time-between-events (TBE) time series before (a) and after (b) extrapolation and synchronization.

only a few events with many months in between, for our
event correlation study, we focused on 31 nodes-event pairs
that produced the most logged events. We consider both
node names and event subcategories to identify each TBE
uniquely.

These experiments test correlations amongst events with
no time lag. Further, we only consider event pairs with a
correlations greater than 0.7 with a p-value < 0.05. (This
means that there is only a 5% chance that correlation of the
same magnitude can be observed due to random effects.)
We highlight our key observations from these experiments:

1. 131 node-event pairs show direct correlation;
2. 13 node-event pairs show partial correlation; and

3. four node-event pairs show both direct and partial cor-
relations.

From the direct correlations in observation 1 alone, one
would conclude that there exists a large number of corre-
lated events. However, observation 2 and 3 show that the
large majority of these correlations only show up because
of the complex interactions amongst a set of event variables
and are therefore superfluous. In other words, there may be
a significant difference between the real interactions between
event time series and those suggested by direct correlations.

3.3 Dimensionality Reduction

In Section 3.2 we showed that many correlations are spu-
rious. While these spurious correlations hinder the process
of root cause analyses, they suggest that event inter-arrival
time series can be compressed significantly and later recon-
structed with high fidelity. We now show the results of ap-
plying the PCA method for dimensionality reduction (de-
scribed in Section 2.2) to our data set. Figure 3 show the
results of applying PCA to the TBE time series of Node 1
from the data set. Node 1 recorded nine different events in
its event logs (Figure 3a). We calculate the principal com-
ponents of these TBEs and use the five most informative of
those to reconstruct the original data (Figure 3b). These
five components cover 98.8% of the total variation in the
data. This reconstruction is not exact, but it is very close
to the original data. In fact, if we normalize the original
and reconstructed data between 0 and 1, the average mean-
squared-error (MSE) of the nine reconstructed events and
the original event is 3.1 x 107
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Figure 3: The time-between-events (TBE) of nine events
logged by Node 1. (a) The original data transformed into
continuous multivariate time series as explained in Sec-
tion 3.1. (b) Reconstruction of the TBE using only 5 most
informative components captures a majority of significant
events.

Figure 4a shows the average MSE in reconstructing the
TBE data as a function of the principal components used.
The components are sorted according to the percentage of
the variations they explain in descending order. The inset
plot shows the MSE as a function of cumulative variation
that the principal components explain. The higher the di-
mensionality of the original data, the fewer components we
will need to reconstruct them. To illustrate this we pick the
100 nodes from the data set that record the most events and
reconstruct them from principal components. These nodes
recorded 574 total events. Figure 4b shows the percent cu-



mulative explained variation as a function of the percent-
age of the principal components. Only 5% or 29 principal
components explain 99.4% of the variation. These results
further validate our conclusions from the correlation stud-
ies that event log data can contain a lot of extraneous and
unnecessary data.
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Figure 4: (a) Average mean-squared-error (MSE) of TBE re-
construction as a function of the number of principal compo-
nents used. The inset shows the average MSE as a function
of percent cumulative variation that the used components
explain. (b) Percentage explained variation as a function
of the percentage of the most informative principle compo-
nents. The first 5% of the components explain 94.4% of the
variation.

percentage explained variation

3.4 Temporal Information Content

Generally, event prediction often consists of time-between-
event (TBE) prediction. While previous work in event pre-

diction focused on exploiting spatiotemporal correlations among

other events, we show that sufficient predictive information
about an event’s time series is contained within the time
series itself. However, mappings between the past and the
future TBE values can be highly nonlinear and difficult to
discover. We show this using cross-correlations that can de-
termine linear correlations and then use mutual information
to find more complex event relationships.

Fu and Xu conducted a comprehensive study of failure
correlation and prediction using the moving average of TBE
extracted from the same data set that we use [3]. A moving
average of a time series can help to reduce measurement
errors. We call this the mean k-TBE to indicate that the
window length is k steps. Here, we extend this analysis to
the information content of the mean k-TBF (time-between-
failures) time series and show that, in principle, the history

of this time series can be predictive of its future.

First, we construct the mean 8-TBF time series from the
data set. We calculate the cross-correlation of the mean 8-
TBF and its corresponding p-values. Figure 5 shows the
correlations with p-value < 0.05. We observe significant
correlations with high values, especially in the first 50 future
values of the TBF. However, cross-correlation only signifies
the linear correlation between the current and future values
of a time series.
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Figure 5: Cross-correlation of the mean 8-TBF. The hori-
zontal axis are TBF index in chronological order. The solid
line (red) shows the significant correlation between the TBF
and its future. We observe the cross-correlation shows large
values within the first 50 indices.

We used mutual information (described in Section 2.3) to
study how much information about future time series values
is present in the past values of the time series. We first fit
an exponential distribution to the original data and use its
cumulative distribution function to convert the samples from
a uniform distribution. We then discretize the equalized
TBF values into 3 bins to avoid overfitting. We calculate
the mutual information between a window of length ¢ of the
past values of the discretized TBF and its future values. In
this case our source was a window of ¢ previous values of
TBF S; and destination will be the next TBF value D.

Recall that our uncertainty measure is a representation
that normalizes mutual information from zero to one: as un-
certainty approaches zero, the information about the future
contained in the previous values of a time series approaches
100%. Figure 6 shows the uncertainty about the next TBF
value as a function of the size of the window of past values.
As the window size increases, uncertainty rapidly declines,
and above window sizes of 15, U = 0.1. This suggests that
small event histories can contain most of the information
about a time series’ next step.

Most of the literature on TBF prediction focuses on pre-
dicting the next TBF value. In practical settings, this may
not allow sufficient time for remediation strategies to prepare
for the failure events or take preventative actions. Therefore,
it is most desirable to predict TBF's multiple steps ahead of
time. That is, we wish to predict the next several TBF val-
ues. For our data set, we calculated the uncertainty for the
ith future TBF value knowing the past ¢ values. Figure 7
summarizes the result of this calculation. Once again, we
find that the previous 15 steps of the TBF contain most of
the information about the next 10 future values of the TBF.
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Figure 6: Uncertainty U about the next TBF values based
on our knowledge of the past ¢ values of the TBF. With
growing window size t, the uncertainty rapidly declines and
approaches 0.1 above t = 15, which indicates the predictive
information in the TBF’s history.

In principle, this means that small event histories can con-
tain the information about a time series’ next several steps
into the future.
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Figure 7: Uncertainty U about the TBF value ¢ steps into
the future based on our knowledge of the past ¢ values of
the TBF. WIth growing the windows size ¢, the uncertainty
rapidly declines and approaches zero above ¢ = 15 which
shows that all predictive information about the future of
the TBF can be found in its past, in principle.

3.5 Failure Prediction

The results from Section 3.4 suggested to us two things:
(1) there is a lot of predictive potential in time series history
and (2) the event correlation data might be unnecessary for
this purpose. We test these theories by performing a com-
parison study to that of Fu and Xu [3]. Fu and Xu used a
neural network (NN) approach to predict next time series
values. Their training set included 450 failure events from
September 1, 2003 through August 31, 2004, along with the
spatiotemporal correlation between other events in the clus-
ters. They calculated the moving average of the TBF over
a window of size k = 8 as follows:

k
> om(t—j+1), (9)

=0

i(t) =

e

where m(t) and m(t) represent the average TBF and the
TBF at time ¢t. We call this 8-TBF. They used a NN with 8

step tapped-delay line and 3 hidden layers with 4 nodes in
each layer. They tested their predictor on the 8-TBF time
series of the 307 failure events between September 1, 2004
through August 31, 2005. For a sample of length n and
prediction values of m(¢), the prediction error is given by:

_ L fit) = ()]
D (10)

In addition to neural networks, we also investigated the
use of echo state networks (ESNs) for time series predic-
tions. We studied ESNs because in other contexts they have
demonstrated good success in time series prediction. Before
we feed the data to NN and ESN, we normalize the data to
values between 0 and 1. The error between the predicted 8-
TBF and the actual value is then calculated using the data
scaled back to minutes. Figure 8a shows the results when
we use a NN with 10 tapped-delay line and a single hidden
layer with 12 nodes. Our best observed testing error of 15%
is comparable to the 16% reported by Fu and Xu. First, the
fact that we are able to perform as well as they did without
using the correlation data confirms our finding that infor-
mation in the TBF time series alone is sufficient to predict
its future. Second, we hypothesize that the fact that we ac-
tually outperform their results suggests that the extraneous
correlation data may perturb negatively the NN’s learning
and prediction capabilities.

Figure 8b shows the performance of ESN on the predic-
tion task. The error for the best performing ESN is 20%.
Since the ESN computation depends on the dynamics of its
internal core, the spikes in the time series have a disruptive
effect on the performance of the ESN. However, the training
in ESN is much faster than standard neural network train-
ing, which justifies using ESN in situations where an early
approximate value for future TBF is needed.

We can put this result into better perspective. For our
predictions, we calculate that the average duration between
a failure prediction and its occurrence is 1,697 minutes. Us-
ing a result like this, for example as we discuss in the conclu-
sion, failure mitigation strategies can have on average almost
three hours to prepare for a component failure. A special
concern in TBF prediction is when we predict a larger TBF
than the actual value. This is called overestimation and can
cause a failure to occur without the proper mitigation in
place. The effect of such cases can be easily calculated. For
example in our best run, the average overestimation is 175
minutes, which still leaves a lot of time to prepare for the
failure.

Next, we performed multi-step prediction in which the
predictors had to predict the 8-TBF values ¢ steps into the
future. In these experiments, predictors used the 10 pre-
vious time steps of the time series; since our results from
Section 3.4 suggested more than 10 previous time steps our
uncertainty about the future does not increase. We used all
2,478 failure events in the data set and trained the predic-
tors on a window of 300 failure events starting at a random
location on the 8-TBF time series. We then tested them on
the window of 100 failures immediately following the train-
ing interval. We repeated this 10 times and averaged the
testing error over the 10 runs. Figure 9 summarizes the
results. As we can see from the figure, the prediction er-
ror of ESN increases significantly as the future TBF values
increase. These increasing errors could be due to the influ-



—prediction
400071 —target

0 20 40 60 80 100
failure index

(a)

—prediction
— ) —target
§ 3000t g i
S /
£
E 2000/
L
@
o 1000}

4000

0 20 40 60 80 100
failure index

(b)

Figure 8: (a) Prediction of the 8-TBF time series for LANL System 20 using neural network. Best observed testing error is
0.15. (b) Prediction of the 8-TBF time series for LANL System 20 using ESN. Best observed testing error is 0.20.

ences of dynamical effects of the time series on the internal
dynamics of the ESN.
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Figure 9: Multi-step prediction result of 8-TBF using neural
network (NN) and echo state network (ESN). However, the
prediction error of ESN increases significantly, which maybe
due to the dynamical effects of the time series on the internal
dynamics of the ESN.

A legitimate concern with the use of predictive methods
in HPC systems based on historical data is that the system’s
behavior is not stationary, that is, the statistical properties
of the system change over time. This is usually reflected in
the changing average and variance of the signals extracted
from the system. In Section 3.4 we showed that uncertainty
U about the future of the TBF is a function of a small win-
dow of its previous values. These results are calculated over
the entire TBF time series that contain 2,478 values. How-
ever, we can calculate U over a limited time interval and slide
this interval over the entire time series to see how U changes.
To study this, we calculate U over a sliding interval of 500
consecutive 8-TBF time series. Figure 10a shows the evolu-
tion of U over time characterized by periods of stability and
minor fluctuations around a well-defined value interleaved
by rapid jumps to another stable regime. Figure 10b shows
the distribution of uncertainty value over the entire failure
time series. This distribution is well-behaved and centered
around a well-defined value. This suggest that although the
local behavior of the system may show rapid fluctuations,

the global behavior is more or less well behaved. This jus-
tifies that predictive approaches based on historical value
may be useful. However, a second implication is that near
the rapid jumps the prediction performance may suffer.

4. RELATED WORK

Several studies have shown important spatial and tem-
poral correlations amongst failure events. Schroeder and
Gibson studied failure event logs from many high perfor-
mance clusters and showed important temporal correlations
between failure events [14]. The day-of-week and hour-of-
day correlation patterns in this work are useful for sched-
uled tasks on HPC systems, but is not suitable in informing
adaptive and predictive approaches of fault management.
Based on failure data from BlueGene/L at the IBM Thomas
J. Watson Research Center, researchers used log filtering
techniques to calculate the alert inter-arrival time. They
showed significant correlations between failure events, both
in space and time [13, 7]. Finally, Oliner, Kulkarni, and
Aiken discovered a structure of causal influence between the
components of HPC systems [11], by calculating time-lagged
cross-correlation and analyzing how the signals from differ-
ent system components deviate from their normal behavior.

While event cross-correlations have been used in HPC sys-
tem studies, partial correlations have not been well studied.
Using both cross-correlation and partial correlation can pro-
vide additional insight into the complex interactions between
multiple components that are hard if not impossible to ob-
tain using cross-correlation alone. This includes the statis-
tical significance of correlations as well as deciding whether
events are directly or only indirectly related.

5. CONCLUSIONS

In this study, we demonstrated the discrepancy between
the real interactions between event time series and those
suggested by direct correlations. Furthermore, we show that
principal component analysis can be used effectively for di-
mensionality reduction of HPC data. Moreover, we demon-
strated a principled approach for understanding the limits
of HPC event predictability and showed that accurate fail-
ure event prediction can rely solely on failure history, and
no further event information.
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Figure 10: Evolution of the uncertainty U over time and its corresponding distribution. The centered distribution indicates
that the function is well behaved and justifies the prediction based historical values.

We believe this work can and should influence resource
monitoring practice for current and future HPC systems.
Event correlation techniques, such as partial correlation,
that filter out noisy conditional correlations can lead to more
accurate and more efficient failure diagnoses, failure depen-
dence analyses and root cause analyses. Methods such as
partial correlation and PCA can reduce event data volumes
without loss of information or predictive effectiveness. This
allows us to consider optimizations to HPC event data col-
lection and management. For example, we can reduce data
volume via event filtering or dimensionality reduction. Or
we can take more drastic measures, such as only monitoring
and collecting events we know to be directly relevant for
other events that we care about. Finally, understanding the
theoretical limits of the predictive power of data sets lets us
know how close our prediction tools are to their peak capa-
bilities, so that we know when we have approached the point
of diminishing returns. Also, knowing what data is relevant
for effective predictions and monitoring and collecting only
that minimal set renders simpler, more efficient predictors
(such as neural networks) that improve prediction time and,
as our results have shown, prediction accuracy.
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