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Tomography is hard

Doing so in infinite dimensional | |
Hilbert space is harder Let’'s make it easier...
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Tomography is hard.

[§t3te torpogreiphﬂ

Process tomography

We do tomography to Gate Set tomography
make the unknown knowable




Tomography in infinite dimensional
Hilbert space is harder.

484 Simulated Heterodyne
Measurement Qutcomes

From measurements on
a continuous variable system,
we estimate...



Tomography in infinite dimensional

Hilbert space is harder.

484 Simulated Heterodyne
Measurement Qutcomes

...a Wigner function...



Tomography in infinite dimensional

Hilbert space is harder.

484 Simulated Heterodyne
Measurement Qutcomes
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...a Wigner function...

...0r a density matrix



INnite

Tomography in inf

Hilbert space is harder.
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| et’s make it easier.

Don’t use an infinite matrix... 0= P10 P11

Finite parameters

estimated from finite data.

>
|

...use a smaller one instead!




| et’s make it easier.

Low energy states can be modeled using

a truncated Fock basis: H; = span(|0),--- ,|d — 1))

(ﬂoo Po1| P02
P10 P11 P12

p= P20 P21 P22 -

model is p € D(H2)

(3 parameters)

model is p € D(H3)
(8 parameters)

model is p € D(Hy)
(d2 — 1 parameters)

D(Hg) is set of density operators

This is where we will do tomography.



| et’s make it easier.

We have an algorithm for deciding which dis best.

1) Take data

2)
3)

P10

£20

P01
P11
P21

£02
P12
P22

model is p € D(H2)

(3 parameters)

model is p € D(H3)
(8 parameters)

. 7_\- model is p € D(Hy)
' (d? — 1 parameters)

D(Hg) is set of density operators

—or din [2, 3, 4, ...], compare model dto d + 1

f model d + 7 fits significantly better, reject d
Otherwise, dis where we stop.



| et’s make it easier.

We can quantify “fitting signiticantly better”.

P10

£20

P01
P11
P21

£02
P12
P22

model is p € D(H2)

(3 parameters)

model is p € D(H3)
(8 parameters)

. 7_\- model is p € D(Hy)
' (d? — 1 parameters)

D(Hg) is set of density operators

Goodness of fit = loglikelihood ratio statistic:

A(dy,d2) = —2log (

L(dy)

L(d2)

)

max L
pED(Ha, ) (/0)

= —2log
max L
pED(Ha, ) (,0)



| et’s make it easier.

The precise algorithm for “fitting significantly better”.

max  L(p)
A(di,d2) = —2log (ﬁ(d1)> — —2log (pED(Hdl) )

L(ds) max L(p)

IOED(HCZQ)

1) Take data
2) Compute A(d,d + 1) for din [2, 3, 4, ...]

3) It AM(d, d + 1) greater than threshold, reject d
Otherwise, dis where we stop.



| et’s make it easier.

An example demonstrates use of loglikelihood ratio statistic.

2- 2 d=3
]
1 1- -
484 Simulated Heterodyne Py Py
Measurement Outcomes -1 -1
-2 -2
"""""""""""""""""""""""""""""""""""""""""""""""""""" _23 —2 -1 0 1 2 3 _%3 -2 -1 0 1 p) 3
X X
3- 3
2 d:4 5. d:5
1 1-
Pof Pof -
-1 —-1
-2 -2
33 2 21 0 1 2 3 33 2 21 0 1 2 3
X X

Can you tell which
model fits the best?



| et’s make it easier.

An example demonstrates use of loglikelihood ratio statistic.

d
4 F

2 2 =
0.0 i F'=0.004

484 Simulated Heterodyne
Measurement OQutcomes

3,
5 d=5
) F=0.464
]_,
POf J
-1
—2 -2
_3—3—2—10123 _%3—2—10123
X X

Can you tell which
model fits the best?



| et’s make it easier.

An example demonstrates use of loglikelihood ratio statistic.

3,
i d=3
F=0.004
17 -
484 Simulated Heterodyne Py
Measurement Outcomes -1 :
—2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -3

3
: d=5
F'=0.464
P
_3—3—2—1)%123 _%3—2—1)%123
Can you tell which What it you did not

model fits the best? know the true state?



| et’s make it easier.

A threshold decides when smaller models fit worse.

100 150 200 250 300 350 400 450 500
Values

Qubit/qutrit does not well
model 4 dimensional
system...statistic grows
with sample size.




| et’s make it easier.

When smaller model fits well, all larger models do too.

N =484

ACCEPT o

Values .

This is the focus of my current work.

Use numerics to investigate.



