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To characterize a system is tomography. We investigate state tomography of continuous variable (CV)
However, it can be difficult to do quantum tomography well. systems.

: o : : GV system = mode w of electromagnetic field
Tomography = set of techniques for characterizing quantum information processors (QIPs)

Hilbert space: L?(R) (infinite dimensional!)
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A possible measurement:
heterodyne detection (coherent state projection)

Tomography

Measure X, P simultaneously to within AXAP = £
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State tomography = estimate quantum state inside QIP 0 = P10 P11 or Wigner function W (z, p))
i : . from observed data {a1, - ,an}
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A £00 Choose an effective (small :
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11 Hilbert space dimension

(d? — 1 parameters)

D(H,) is set of density operators

For coherent state (heterodyne) tomography of low energy states
how do we choose d?

For systems with large/unknown Hilbert space dimension,
can we find an effective dimension for which tomography
i1s both accurate and feasible?

An example of different models We can use hypothesis testing to choose We devise an algorithm for choosing Hilbert
in CV tomography. between models in state tomography. space dimension without knowing the true state.

Irom this state. .. A model is a parametrized manifold of probability distributions
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...and made estimates usimng different models. by inspection. But for complex problems like tomography, we need rigorous, R ). ’ /
sremiteble eiienn amd/or almmims Numerics indicate Wilks theorem does not work:

Which model fits the best?

‘The loghkelihood ratio statistic compares two models.
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