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Strong Electric Dipole Moment

An example of the radial wavefunctions of a Cs atom at n = 100:
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A Rydberg atom has a strong electric dipole moment.
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Blockade & Electric Dipole-Dipole Interaction
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Interaction between Two Rydberg-Dressed Atoms

Normal light shift: With Rydberg blockade:
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Advantages of Rydberg-Dressed Atoms

Tunable interaction strength (J), low sensitivity to atom motion, and effectively
strong ground-state interactions.

He = > .69 1 10D + 1)

Ground-state coupling strength (J)
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Our Approach to Rydberg Dressing

.. Cesium energy levels

2.5

Advantages:
* Reduced photon scattering
15~/ /T * Minimizes dipole forces

Disadvantages:
* Increased Doppler sensitivity
* Laser system cost and complexity

Excitation energy from ground state (eV)
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318-nm Rydberg Excitation Laser

Doubling cavity 1575 nm. 5 W

200 mW, 318 nm =8

1070 nm input, 5 W Sum-frequency mixing

Hankin, et. al. “Two-atom Rydberg blockade using direct 6S to nP excitation,” Phys. Rev. A,
89, 033416 (2014)
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Experimental Setup
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Experimental Sequence
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Spin echo signal

First Evidence of Rydberg-Dressed Interaction
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Two-Qubit Microwave Resonances
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Direct measurement of two-qubit interaction strength J as a function of two-atom
separation with two conditions.

Weighted Rydberg Energy levels: Excitation from ground-state to 64P3/2
x-polarized light; B = 4.8 G; E = 6.4 V/Im;
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Producing Bell-State Entanglement

Initial state is |1) or |11), then apply 318-nm and Raman lasers
Experimental data with //h = 750 kHz

Single-atom Rabi
oscillation: |1) < |0)

| Single atoms

Two-atom Rabi oscillation:

111) & (|10) + |01))/V2

* /2 times faster

* No significant population
being transferred to |00)

Relative populations

Two atoms

* Bell state |¥, ) is produced
att = w/\V2Q,,,
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Parity: O(¢)

Entanglement Fidelity > 81%

Verify the entanglement via parity measurements

1'0'_ = ¥ )= [(0,1]p1,09 x 2= 0.81 £ 0.01 Prepare two Cs atoms in Bell
| S . o ) i |
0.8 4—"—x ——— L = l state |W,) or |®,)

05- \ 4

0.4 Apply a global /2 rotation
T with a given phase

$

Perform parity measurement
Q = Py1 + Pyo — (Po1 + P1o)

\ 4

Obtain the two-qubit
entanglement fidelity F,

10d ® @)= [0,0/p1,1) x2=0.81+0.02 where Q < F < 1.
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Summary and Outlook

We have demonstrated effective ground-state interaction //h~ 1 MHz via
Rydberg dressing technique.

* We experimentally show neutral-atom entanglement with a fidelity > 81+2%.

With two-atom survival probability is about 74% and about 10-Hz data rate, we
produce 6 entangled pairs per second.

Multi-atom entanglement can be achieved based on the similar approach.

Universal quantum gate control can be realized with individual addressing of
the trap atoms.

* We will implement adiabatic Rydberg dressing to improve the quantum control
fidelity. (see Tyler Keating’s poster for more details.) ¥
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Excitation energy from ground state (GHz)
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Blockade Strength vs Interatomic Distance
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ldeas of Rydberg Dressing

PHYSICAL REVIEW A, VOLUME 65, 041803(R)

Spin squeezing of atoms by the dipole interaction in virtually excited Ryvdberg states

Isabelle Bouchoule and Klaus Mélmer
Institute of Physics and Astronomy, University af Aarhus, DK 8000 Aarhus C, Denmark

(Received 7 May 2001; revised manuscript recerved 31 August 2001; published 10 Apnl 2002) .
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We show that the interaction between Rydberg atomic states can provide continuous spin squeezing of atoms
with two ground states. The interaction prevents the ssmultaneous excitation of more than a single atom 1n the
sample to the Rydberg state, and we propose to utilize this blockade effect to realize an effective collective spin
Hamultonian J’i —J’i. With this Hamiltonian the quantum-mechanical uncertainty of the spin varable J,—J,
can be significantly reduced. @)
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PHYSICAL REVIEW A 82, 033412 (2010)
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Interactions between Rydberg-dressed atoms
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J. E. Johnson and S. L. Rolston
Joint Quantwm Institute, Department of Physics, University of Marvland and
National Institute of Standards and Technology, College Park, Maryland 20742-4111, USA
(Received 15 June 2010; published 14 September 2010)

Energy (kHz)
=

=
in

We examine interactions between atoms continuously and coherently driven between the ground state and a
Rydberg state, producing “Rydberg-dressed atoms.” Because of the large dipolar coupling between two Rydberg
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atoms, a small admixture of Rydberg character into a ground state can produce an atom with a dipole moment 4

of a few debye, the appropriate size to observe interesting dipolar physics effects in cold atom systems. We have

calculated the interaction energies for atoms that interact via the dipole-dipole interaction and find that because FIG. 3. The energy of the dressed state, for two different
of blockade effects, the R dependent two-atom interaction terms are limited in size and can be R independent interactions: the dipole-dipole that varies as 1/R* (solid) and the

up until the dipolar energy is equal to the detuning. This produces R dependent interactions different from the Van der Waals that varies as 1/R® (dashed) for §/2r = 100MHz,
. . . . . . = 1000 3 — i
expected 1/R? dipolar form that have no direct analogy in condensed-matter physics and could lead to interesting ¢3/2m = 1000MHz pm’, and /2 = S00MHz pm®.

quantum phases in trapped Rydberg systems.
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Electric-Field Sensitivity of Rydberg States

B-field magnitude = 0 G; Relative angle between E-field and B-field = -90 DEG B-field magnitude = 0 G; Relative angle between E-field and B-field = -390 DEG
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Rydberg-State Lifetime
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lllumination of laser beams on the ITO coated glass surface is reducing the Rydberg state lifetime!
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Dynamically Tuning the Optical Tweezers
Return to the normal
position for signal
detection

L

Preparing atoms at Bring the atoms closer

normal trapping for strong Rydberg

separation interactions
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