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Chapter 1

An In-Depth Analysis of the
Chung-Lu Model

1.1 Introduction

In the classic Erdős Rényi random graph model [5] each edge is chosen with uniform probability and the
degree distribution is binomial, limiting the number of graphs that can be modeled using the Erdős Rényi
framework [10]. The Chung-Lu model [1, 2, 3] is an extension of the Erdős Rényi model that allows for
more general degree distributions. The probability of each edge is no longer uniform and is a function
of a user-supplied degree sequence, which by design is the expected degree sequence of the model. This
property makes it an easy model to work with theoretically and since the Chung-Lu model is a special
case of a random graph model with a given degree sequence, many of its properties are well known and
have been studied extensively [2, 3, 13, 8, 9]. It is also an attractive null model for many real-world
networks, particularly those with power-law degree distributions and it is sometimes used as a benchmark
for comparison with other graph generators despite some of its limitations [12, 11]. We know for example,
that the average clustering coefficient is too low relative to most real world networks. As well, measures of
affinity are also too low relative to most real-world networks of interest. However, despite these limitations
or perhaps because of them, the Chung-Lu model provides a basis for comparing new graph models.

To compare the Chung-Lu model to other graph generators we often use instances of the models we
are interested in. However, the standard algorithm used to generate instances of the Chung-Lu model has
a runtime that is O(n2) where n is the number of nodes in the original graph. Thus, if we are dealing
with a very large graph this algorithm can be prohibitively expensive. Miller and Hagberg [7] introduce
an algorithm with expected runtime that is O(n + m) where m is the expected number of edges in any
instance of the model. They argue that for graphs with finite average degree n = O(m) and the expected
runtime is O(n). As part of their Block Two-Level Erdős Rényi graph generator, Kolda et al. [12, 6]
introduce a Fast Chung-Lu algorithm with an expected runtime of O(m) where m, in this case, is the
number of edges in the original graph. In [6], the authors note that duplicate edges and self-edges may
be created by their algorithm, but that they simply discard these edges, stating that in their experiments
the practical impact was small. In this paper, we are interested in examining the impact of discarding
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these edges. By removing these duplicate edges and self-edges we find that the model described by the
Fast Chung-Lu algorithm is in fact an approximation to the true Chung-Lu model. We are interested in
examining the size of the approximation and determining how different factors can affect it. Since the
original Chung-Lu model assumes that there are self-edges in the graph we are interested in examining the
approximation error as a result of removing self-edges separately from the impact of removing duplicate
edges. As well, certain restrictions are placed on the input degree sequence that must hold for the properties
of the Chung-Lu model to hold. Often the real-world networks we are interested in studying violate this
constraint, however, these degree sequences can still be used as inputs into the Fast Chung-Lu algorithm
and we are interested in studying how different the Fast Chung-Lu model and the true Chung-Lu model
are in this case. Since the Fast Chung-Lu model is only an approximation to the original model it is
important that when we generate instances using the Fast Chung-Lu algorithm we are aware of the degree
of approximation especially when we are using these instances to compare different graph generators. Note
that Kolda et al. [4], also introduce an algorithm for directed graphs that is based on the Fast Chung-Lu
algorithm, however, our discussion will be restricted to undirected, connected graphs although much of
the analysis does not require the graph to be connected.

In this paper, we explore the Chung-Lu model in detail and we look at how certain relaxations of the
model can lead to new models with different properties from the original Chung-Lu model. We begin
our discussion by presenting the basic Chung-Lu model, which we will refer to as the Bernoulli Chung-Lu
model for reasons that will become apparent in the next section, and we describe the standard O(n2)
algorithm that can be used to generate instances of this model. We calculate the expected degree for
each node and using the degree sequence from a real world network we use instances of the model to
show that for each node, the degree average approaches the expected degree as the number of instances
grows, as is predicted by the law of large numbers. In Section 1.3, we present the model described by
the Fast Chung-Lu algorithm which we will also refer to as the O(|Edges|) or O(m) Chung-Lu model.
We begin by allowing self-edges in the model (i.e. we do not remove self-edges in the algorithm, only
duplicate edges). As mentioned previously, instances of this model can be generated much more efficiently
than the Bernoulli Chung-Lu model however, they only approximate the Bernoulli Chung-Lu model. We
calculate the expected degree in this model and compare it to the Bernoulli Chung-Lu model. We also
use this model to generate instances of a real network and show that for each node the degree average
approaches the expected degree as the number of instances grows and show how the expected degree differs
from the expected degree under the Bernoulli Chung-Lu model. In Section 1.4 we explore how removing
self-edges from both the Bernoulli Chung-Lu and O(|Edges|) Chung-Lu models impact the properties of
the model. As we mentioned above, there is a constraint placed on the input degree sequence to ensure
that the properties of the model hold. In Section 1.5 we explore how the properties of both the Bernoulli
Chung-Lu and O(|Edges|) Chung-Lu models change when this constraint is violated. In Section 1.6 we
focus on another network property that is often important when modeling networks, the triangle count
and the related clustering coefficient. We calculate the expected triangle count for the various Chung-Lu
models we have presented and show how these values are different from the values found in real networks.

1.2 Bernoulli Chung-Lu Model

In the Chung-Lu model, as previously mentioned, each edge is chosen with a different probability. As such,
each edge can be represented as a random variable and we can formally define the probability distribution
for each edge. Edges between two distinct nodes can be represented as Bernoulli random variables. Written



CHAPTER 1. AN IN-DEPTH ANALYSIS OF THE CHUNG-LU MODEL 3

in terms the adjacency matrix, we have

Aij ∼ Bernoulli(pij), 1 ≤ i < j ≤ n, Aji = Aij . (1.1)

For self-edges, the probability distribution is more general although it is very similar to the Bernoulli
distribution. Written in terms of the adjacency matrix, self-edges, Aii, i = 1, . . . , n, can be defined as
random variables with support, S(Aii) = {0, 2}, and probability mass function given by the following

P (Aii = aii) =





1− pii aii = 0,

pii aii = 2,
(1.2)

where i = 1, . . . , n. Why is the support of each self-edge equal to {0, 2} and not {0, 1}? Essentially, this is
to ensure that all edges are counted equally. In general, if there is an edge in an undirected graph between
two distinct nodes i and j then both aij and aji are 1. If edges are to be counted equally, then self-edges
should also appear in the adjacency matrix twice but since there is only one diagonal matrix element, aii,
both appearances need to be recorded in the same element. Hence, aii = 2 if node i has a self-edge and
thus the support of the random variable Aii is {0, 2}.

We have not yet defined the probabilities, pij , i, j = 1, . . . , n, in the probability distributions, (1.1)
and (1.2). In the Chung-Lu model they have a very specific form and are based on the only input into the
Chung-Lu model, a sequence of degrees, k = (k1, . . . , kn), where ki is the degree of node i and n is the
number of nodes. Often, this degree sequence is taken from a real network we are interested in studying.
In the Chung-Lu model, pij , i, j = 1, . . . , n, has the following form

pij =





kikj
2m i 6= j,

k2i
4m i = j,

(1.3)

where m = 1
2

∑
i ki is the number of edges in the graph and we assume k2i ≤ 2m ∀ i which is sufficient

condition to ensure that pij ≤ 1 ∀ i, j.
One of the central properties of the Chung-Lu model is that the expected degree sequence is actually

given by the input degree sequence, k. In other words, the expected degree of node i is equal to ki. To
show this we note that in the model, the degree of node i is a random variable Di, i = 1, . . . , n, given by

Di =
∑

j

Aij , i = 1, . . . , n. (1.4)

Since the degree of node i, Di, is a random variable defined as the sum of random variables its expected
value will be equal to the sum of the expected values of its components. More formally, we have

E(Di) = E


∑

j

Aij


 =

∑

j

E(Aij). (1.5)

For distinct edges, Aij is a Bernoulli random variable and thus its expected value is given by

E(Aij) = pij =
kikj
2m

, i 6= j. (1.6)
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For self-edges we can use the probability mass function given in (1.2) to determine the expected value

E(Aii) =
∑

aiiP (Aii = aii)

= 0 · P (Aii = 0) + 2 · P (Aii = 2)

= 2pii =
k2i
2m

.

(1.7)

Thus, the expected degree of node i is given by

E(Di) =
∑

j

E(Aij) =
∑

j 6=i
E(Aij) + E(Aii)

=
∑

j 6=i

kikj
2m

+
k2i
2m

=
∑

j

kikj
2m

=
ki
2m

∑

j

kj = ki
2m

2m

= ki.

(1.8)

This is the central property of the Chung-Lu model. Since Di is a random variable we can also define its
variance,

Var(Di) = Var


∑

j

Aij


 =

∑

j

Var(Aij). (1.9)

where we can write Var
(∑

jAij

)
=
∑
j Var(Aij) because the random variables Aij , i, j = 1, . . . , n, are

independent. As mentioned previously, for distinct edges, Aij is a Bernoulli random variable and thus its
variance is given by

Var(Aij) = pij(1− pij) =
kikj
2m

(
1− kikj

2m

)
, i 6= j. (1.10)

For self-edges we can use the probability mass function given in (1.2) to determine the variance

Var(Aii) =
∑

(aii − E(Aii))
2P (Aii = aii)

= (0− 2pii)
2 · P (Aii = 0) + (2− 2pii)

2 · P (Aii = 2)

= 4p2ii(1− pii) + (2− 2pii)
2pii

= 4p2ii(1− pii) + 4(1− pii)2pii
= 4(1− pii)(p2ii + pii − p2ii)
= 4(1− pii)pii

=
k2i
m

(
1− k2i

4m

)
.

(1.11)
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Thus, the variance of the degree of node i is given by

Var(Di) =
∑

j

Var(Aij) =
∑

j 6=i
Var(Aij) + Var(Aii)

=
∑

j 6=i

kikj
2m

(
1− kikj

2m

)
+
k2i
m

(
1− k2i

4m

)
.

(1.12)

Although the variance of Di does not simplify nicely it is still useful in certain error bound calculations
described below.

In practice, model properties are often examined by generating instances of the model. In any given
instance of the Bernoulli Chung-Lu model the node degree will not match the expected degree; however,
by the law of large numbers as we increase the number of instances the average degree for each node should
approach the expected degree for each node. We test this theory using a small real network. Consider
the arXiv general relativity collaboration network which is an author collaboration network based on data
from the general relativity section of the arXiv preprint server and has 4158 nodes and 13422 edges. The
largest degree node has 81 neighbors. Thus, k2i ≤ 2m ∀ i, since the maximum value of k2i is 6561 and 2m is
equal to 26844. If we use the Chung-Lu model to generate a collection of synthetic graphs then the average
degree for each node should approach the expected degree as the collection size increases. Algorithm 1
describes an algorithm that can be used to generate instances of the Chung-Lu model. Given that we
will present several different versions of the Chung-Lu model throughout this paper, we need to provide
different names to each version. We refer to the Chung-Lu model presented in this section as both the
Bernoulli Chung-Lu model, a name based on the edge probability distributions and Model I. We will also
often refer to this model as the original Chung-Lu model since it was the model originally proposed by
Chung and Lu [2, 3]. Using the degree sequence from the general relativity collaboration network to define
the probabilities, pij , i, j = 1, . . . , n in Equation (1.3) we use Algorithm 1 to generate 10000 instances of
the Chung-Lu model. Figure 1.1 plots the difference between the expected degree of each node and the
average degree of each node where we have ordered the nodes from smallest degree to largest degree based
on their degree size in the original graph. The expected degree of each node is of course equal to the actual
degree of each node in the original graph as shown by Equation (1.8). The average degree of each node is
calculated using l instances of the Chung-Lu model where we vary l from 10 to 10000. We can see from the
plots that as we increase the number of instances in our average degree calculation the difference between
the average and the expected degree decreases where the largest difference between the two values is seen

in large degree nodes. Also note that the total number of possible graphs is 2
n(n+1)

2 ≈ 28 million, so we are
generating only a small fraction of the total number of graphs for our average degree calculations, however
we are still able to obtain fairly accurate approximations to the expected degree. In fact, we can use the

law of large numbers and Chebyshev’s inequality to put a bound on this difference. For any node i, let D
(j)
i

be the random degree variable from instance j, j = 1, . . . , l. Then D
(1)
i ,D

(2)
i , . . . ,D

(l)
i are independent,

identically, distributed random variables with mean E(D
(j)
i ) = ki and Var(D

(j)
i ) = σ2, j = 1, . . . , l where

σ2 is given by Equation (1.12). If we define the sample average as

Di =
D

(1)
i + D

(2)
i + · · ·+ D

(l)
i

l
, (1.13)

then using Chebyshev’s inequality on Di we get

P (|Di − ki| ≥ ε) ≤
σ2

lε2
(1.14)
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or

P (|Di − ki| < ε) ≥ 1− σ2

lε2
(1.15)

So the difference between the sample average and the expected value is a function of ε, the number of
instances, l, and the variance of Di. In the general relativity graph, we noted that the difference between
the average degree and the expected degree was largest for large degree nodes. For the largest degree node
if we let ε = 0.2 then

P (|Di − ki| < 0.2) ≥ 1− σ2

lε2
= 1− 1921.24

l
, (1.16)

which implies that l has to be at least 1922 to get this probability to be less than 1 and if l = 10000 then
this probability is approximately 0.808.

Additionally, we can also compare the expected number of edges in the graph with the average number
of edges, calculated from l instances of the model. Like the degree of node i, Di, we can define the random
variable M as the number of edges in the model where M is defined as

M =
1

2

∑

i

Di =
1

2

∑

i

∑

j

Aij (1.17)

Then the expected value of M can be calculated as follows

E(M) =
1

2

∑

i

E(Di)

=
1

2

∑

i

ki

=
1

2
(2m)

= m.

(1.18)

For l = 10000 the average number of edges is 13421.12. Compare this to 13422 which is the expected
number of edges in the graph (and the actual number of edges in the original graph). Table 1.1 lists the
average number of edges for l = 10, 100, 1000, 5000 and 10000.

Algorithm 1: Bernoulli Chung-Lu Algorithm

for i = 1 to n do
for j = i to n do

Draw a random number from the uniform distribution on [0,1];
if The random number is less than or equal to pij then

/* Add edge (i, j) to the graph */

if i 6= j then
aij = aji = 1;

else
aii = 2;

end

end

end

end
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Figure 1.1: General Relativity Collaboration Network: Comparing Average Degree and Expected Degree
from Model I.

1.3 O(|Edges|) Chung-Lu Model

One of the issues with the Bernoulli Chung-Lu model and its implementation using Alogirthm 1 is that
Algorithm 1 requires O(n2) operations. We must visit every edge and decide with probability pij if the
edge should be included in the graph. This algorithm can become prohibitively expensive as the size of
the graphs we consider grows. However, we can devise an algorithm where the probability that an edge
will appear in the graph is approximately the same as under the previous model and that requires only
O(m) operations where m = 1

2

∑
i ki. Suppose we place all the elements of the adjacency matrix aij ,

i, j = 1, . . . , n in a bag. We are no longer treating the elements as random variables so we write the
elements as aij instead of Aij . For now we will assume that the elements representing self-edges, aii,
i = 1, . . . , n, are in the bag. We create our graph by drawing m elements of the adjacency matrix from
the bag. After each draw we return the elements to the bag so that we allow elements to be drawn more
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Table 1.1: Average Number of Edges for l Instances of the Bernoulli Chung-Lu Model

Number of Instances (l) 10 100 1000 5000 10000

Average Number of Edges 13442.5 13420.31 13421.65 13421.21 13421.12

than once. If the element aij is drawn, aij and aji are both set equal to 1. If an element has already been
drawn the values of aij and aji remain equal to 1. If the element aii is drawn then aii = 2 and this value
doesn’t change if aii is drawn subsequently. We begin by considering the case where i 6= j. We want to
know what the probability of an edge between vertices i and j is after m draws. In other words, we want
to know the probability of having an edge between vertices i and j is in our graph. This is not simply
equal to the probability of drawing aij or aji on a single draw. To calculate the probability of having
an edge between vertices i and j in the graph we note that an edge between nodes i and j appears in
the graph because either aij or aji is drawn at least once. More formally, let us define three mutually
exclusive and exhaustive events that can occur on a single draw, E1 = {aij is drawn}, E2 = {aji is drawn},
and E3 = {Another element of the adjacency matrix is drawn}. Let pij be the probability that event E1

happens, pji be the probability that event E2 happens and 1− pij − pji be the probability that event E3

happens. On m independent draws let Xi be the number of occurrences of event Ei, i = 1, 2, 3. Then the
vector X = (X1,X2) has a multinomial distribution with joint pdf given by

f(x1, x2) =
m!

x1!x2!x3!
px1
1 p

x2
2 p

x3
3 =

m!

x1!x2!x3!
px1
ij p

x2
ji (1− pij − pji)x3 , (1.19)

where x3 = m−x1−x2 and p3 = 1−p1−p2. In fact, we could define the vector X̂ = (X11,X12, . . . ,Xij , . . . ,Xn(n−1))
where Xij is the number of occurrences of event Eij = {aij is drawn}, i, j = 1, . . . , n, on m independent

draws. Then X̂ has a multinomial distribution with joint pdf given by

f(x11, x12, . . . , xij , . . . , xn(n−1)) =
m!

x11!x12! · · ·xij ! · · ·xn(n−1)!xnn!
px11
11 p

x12
12 · · · p

xij

ij · · · p
xn(n−1)

n(n−1) p
xnn
nn (1.20)

where
∑
i

∑
j pij = 1. The vector X is simply a condensed version of X̂ where we have simply condensed

the n2−2 events where we draw an adjacency matrix element that is not aij or aji into one event. As noted∑
i

∑
j pij = 1. On a single draw, drawing one element of the adjacency matrix precludes the drawing of

any other element. In this sense, there is some dependence amongst the edges in the graph. Returning to
our original goal of calculating the probability of an edge between nodes i and j in the graph, we can use
the joint pdf in (1.19) to calculate this value. We want to know the probability that either X1 or X2 is at
least 1. This is equivalent to one minus the probability that both are zero. Written formally we have

pij(m) := P (There is an edge between nodes i and j in the graph after m draws)

= 1− f(X1 = 0,X2 = 0)

= 1− (1− pij − pji)m, i 6= j.

(1.21)

If we assume that pij = pji we can use the binomial theorem to simplify the formula for pij(m):

(1− 2pij)
m =

m∑

k=0

(
m

k

)
(−1)k(2pij)

k. (1.22)



CHAPTER 1. AN IN-DEPTH ANALYSIS OF THE CHUNG-LU MODEL 9

This give us

pij(m) = 1− (1− 2pij)
m

= 1−
m∑

k=0

(
m

k

)
(−1)k(2pij)

k

=

m∑

k=1

(
m

k

)
(−1)k+1(2pij)

k

= 2mpij +O(p2ij), i 6= j.

(1.23)

Returning to the case where i = j, we note that a self-edge appears in the graph at node i if Aii is drawn
at least once. So to calculate the probability of a self-edge appearing in the graph, we define two mutually
exclusive and exhaustive events that can occur on a single draw, E = {aii is drawn}, and E = {Another
element of the adjacency matrix is drawn}. Let pii be the probability that event E happens, and 1 − pii
be the probability that event E happens. On m independent draws let X be the number of occurrences of
event E. Then the vector X has a binomial distribution with probability distribution function given by

f(x) =

(
m

x

)
pxii(1− pii)m−x (1.24)

We want to know the probability that the value of X is greater than or equal to 1. This is equal to
1− P (X = 0). Using the binomial distribution in Equation (1.24) we get

pii(m) := P (There is a self-edge at node i in the graph after m draws)

= 1− f(X = 0)

= 1− (1− pii)m.
(1.25)

Using the binomial theorem to simplify we get

pii(m) = 1− (1− pii)m

= 1−
m∑

k=0

(
m

k

)
(−1)k(pii)

k

=

m∑

k=1

(
m

k

)
(−1)k+1(pii)

k

= mpii +O(p2ii).

(1.26)

We can combine the two cases to get the probability of edge (i, j) being in the graph after m draws as

pij(m) =





1− (1− 2pij)
m ≈ 2mpij i 6= j,

1− (1− pij)m ≈ mpii i = j,
(1.27)

where we have assumed that pij = pji. Suppose we assume that pij =
kikj
(2m)2 ∀ i, j so that

∑
i

∑
j pij = 1

then

pij(m) =





1− (1− 2
kikj
(2m)2 )m =

kikj
2m +O(p2ij) i 6= j,

1− (1− k2i
(2m)2 )m =

k2i
4m +O(p2ii) i = j.

(1.28)
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If we ignore the higher order terms then we get

pij(m) ≈





kikj
2m i 6= j,

k2i
4m i = j.

(1.29)

Thus, the probability of having an edge between nodes i and j in the graph is approximately equal to the
value given by Equation (1.3), the probability in our original O(n2) algorithm. The following algorithm
outlines the above graph generator.

Algorithm 2: Approximate Chung-Lu Algorithm

for k = 1 to m do

Draw element aij with probability
kikj
(2m)2 ;

/* Add edge (i, j) to the graph */

if i 6= j then
aij = aji = 1;

else
aii = 2;

end

end

The way that Algorithm 2 is written requires us to perform O(n2) calculations to determine the
probabilities of drawing each edge on a single draw (i.e. the probability of drawing aij), so in fact this
algorithm is still O(n2). However, suppose on each draw, instead of drawing the edges themselves we
independently draw the nodes of each edge. So, on a single draw, we draw node i with probability ki

2m and

we draw node j with probability
kj
2m . Since the two events are independent, the probability of drawing the

pair of nodes (i, j), or edge (i, j), is equal to
kikj
(2m)2 . This only requires us to calculate n probabilities and

since m ≥ n − 1 in any connected graph, our algorithm is now O(m). This algorithm is described below
and is the O(m) algorithm we use to generate instances of the O(m) Chung-Lu model. It is the algorithm
referred to in [12, 6] known as the Fast Chung-Lu algorithm. Note, we refer to the model described by
Algorithm 3 as the O(m) or O(|Edges|) Chung-Lu model and as Model II.

Algorithm 3: O(|Edges|) Chung-Lu Algorithm

for k = 1 to m do

Draw node i with probability ki
2m ;

Draw node j with probability
kj
2m ;

/* Add edge (i, j) to the graph */

if i 6= j then
aij = aji = 1;

else
aii = 2;

end

end

Note that we have defined pij(m) in the O(m) Chung-Lu model as the probability of edge (i, j) being
in the graph. Equivalently, pij(m) can be defined as the probability of choosing edge (i, j) to be in the
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graph. Given this interpretation, we can then represent each edge as a random variable like we did in the
Bernoulli Chung-Lu model. Edges can again be represented as elements of the adjacency matrix where
edges between distinct nodes follow a Bernoulli distribution as in (1.1) and self-edges are random variables
with the probability mass function given by (1.2). The difference between the Bernoulli Chung-Lu model
and the O(m) Chung-Lu algorithm is in the probability pij . In the Bernoulli Chung-Lu model pij is defined
in Equation (1.3) and in the O(m) Chung-Lu algorithm pij is defined as pij(m), Equation (1.28). In other
words, we could use Algorithm 1 with pij(m) given by the exact values in Equation (1.28) in place of pij
and this would be equivalent to Algorithm 3 (i.e. the underlying model is the same). We can use this
equivalence to calculate the expected degree of each node in the O(m) Chung-Lu model. As noted in the
discussion of the Bernoulli Chung-Lu model, since the adjacency matrix elements are random variables so
too is the degree of each node and the expected degree of each node is given by

E(Di) = E


∑

j

Aij


 =

∑

j

E(Aij). (1.30)

For the O(m) Chung-Lu model, E(Aij) = pij(m) if i 6= j and E(Aii) = 2pii(m). If we use the approxi-
mation in Equation (1.29) for pij(m) then E(Di) = ki. However if we include the higher order terms in
pij(m) we get the following

E(Di) = E


∑

j

Aij


 =

∑

j

E(Aij)

=
∑

j 6=i
pij(m) + 2pii(m)

=
∑

j 6=i
1− (1− 2pij)

m + 2(1− (1− pii)m)

= n+ 1−
∑

j 6=i
(1− kikj

2m2
)m − 2(1− k2i

4m2
)m,

(1.31)

which should be approximately equal to ki. We should note however that the expected degree in Equation
(1.31) will always be less than ki. To see this, we examine the probabilities in Equation (1.28):

pij(m) =





1− (1− 2
kikj
(2m)2 )m =

kikj
2m +

∑m
l=2

(
m
l

)
(−1)l+1(

kikj
2m2 )l i 6= j,

1− (1− k2i
(2m)2 )m =

k2i
4m +

∑m
l=2

(
m
l

)
(−1)l+1(

k2i
4m2 )l i = j.

(1.32)

Since
kikj
2m2 < 1 this implies that alternating series,

∑m
l=2

(
m
l

)
(−1)l+1(

kikj
2m2 )l is monotonically decreasing

and since the initial term is negative, this implies that the series will be negative. This implies that the

maximum value for pij(m) is strictly less than
kikj
2m for i 6= j. For self-edges, since

k2i
4m2 < 1 this implies

that alternating series,
∑m
l=2

(
m
l

)
(−1)l+1(

k2i
4m2 )l is monotonically decreasing and since the initial term is

negative, this implies that the series will be negative. This implies that the maximum value for pii(m) is

strictly less than
k2i
4m for i 6= j. Given that E(Aij) = pij(m) for i 6= j and E(Aii) = 2pii(m) this implies

that E(Di) < ki.
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We can once again explore the performance of our model using the general relativity collaboration
network. Using Algorithm 3 to generate l = 10000 instances of the graph we can examine the difference
between the average degree for each node and the expected degree. Figure 1.2 plots the difference between
the average degree and the expected degree, given by Equation (1.31), for l = 10, 100, 1000 and 10000. We
can see from the figures that as the number of instances of the graph increase the difference between the
average and the expected degree decreases. We can once again bound this difference using Chebyshev’s
inequality. To do this we need the variance of Di which is given by

Var(Di) =
∑

j

Var(Aij) =
∑

j 6=i
Var(Aij) + Var(Aii)

=
∑

j 6=i
pij(m) (1− pij(m)) + 4pii(m) (1− pii(m)) .

(1.33)

where pij(m) and pii(m) are defined in Equation (1.32). There is no guarantee that this value will
be less than or greater than the variance of Di given by Equation (1.12). To see this, we note that

Var(Aij) = pij(m) (1− pij(m)). We know that pij(m) <
kikj
2m , however,in some cases this will imply

that pij(m)left(1 − pij(m) >
kikj
2m

(
1− kikj

2m

)
and in other cases it implies that pij(m)left(1 − pij(m) <

kikj
2m

(
1− kikj

2m

)
since f(x) = x(1− x), x ∈ [0, 1] is an upside-down parabola centered at 0.5. In the case of

the general relativity graph, for the largest degree node we have

P (|Di − ki| < 0.2) ≥ 1− σ2

lε2
= 1− 1921.24

l
, (1.34)

and if l = 10000 this probability is approximately 0.811 which is slightly higher than in the Bernoulli
Chung-Lu model case.

We can also use the general relativity collaboration network to explore the difference between the
expected degree given by Equation (1.31) and the the expected degree under the Bernoulli Chung-Lu
model, which is ki, ∀ i. Figure 1.3 plots the difference between the expected degree and the actual degree.

1.4 Excluding Self-Edges

1.4.1 Bernoulli Chung-Lu

Most of the real-world networks we are interested in studying do not have self-edges. So we would like
to build models that do not include self-edges. This often involves taking existing models and modifying
them to exclude self-edges. To do this in the Bernoulli Chung-Lu model is fairly straight forward. We
still represent each edge as a random variable, where distinct node edges have a Bernoulli distribution and
self-edges have the probability mass function given in (1.2). However, to remove the possibility of self-edges
we simply set the probability of choosing a self-edge to 0. More formally, we re-define the probabilities in
(1.3) as

pij =





ki,kj
2m i 6= j,

0 i = j,
(1.35)
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(b) l = 100
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(c) l = 1000

0 1000 2000 3000 4000 5000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Difference betweeen Average Degree and Expected Degree

Node

d
(l
)

i
−
E
(D

i)

(d) l = 10000

Figure 1.2: General Relativity Collaboration Network: Comparing Average Degree and Expected Degree
from Model II.

where we still assume k2i ≤ 2m ∀ i to ensure pij ≤ 1 ∀ i, j. This is, of course, a sufficient but not necessary
condition to ensure that the probabilities are well defined. Note that by removing self-edges from the
graph we no longer have the nice property that E(Di) = ki. The expected degree is now given by the
following

E(Di) = E


∑

j

Aij


 =

∑

j

E(Aij) =
∑

j 6=i

kikj
2m

=
∑

j 6=i

kikj
2m

=
ki
2m

∑

j 6=i
kj = ki

2m− ki
2m

= ki −
k2i
2m

,

(1.36)
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Figure 1.3: General Relativity Collaboration Network: Comparing Expected Degree from Model II and
Actual Degree.

where E(Aii) = 0 · 1 + 2 · 0 = 0, i = 1, . . . , n. We have assumed that
k2i
2m ≤ 1 which means that in most

cases E(Di) ≈ ki. We use the general relativity collaboration network to illustrate the difference between
the original Bernoulli Chung-Lu model and the version of the model with no self-edges which we label
Model III. Figure 1.4 plots the difference between the expected degree, Equation (1.36) and the degree in

the original graph. Note that the difference is equal to E(Di) − ki = − k2i
2m . From Figure 1.4 we can see

that all the values are less than one in magnitude as expected.
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Figure 1.4: General Relativity Collaboration Network: Comparing Expected Degree from Model III and
Actual Degree.

1.4.2 O(m) Chung-Lu

As we previously mentioned, the Bernoulli Chung-Lu algorithm is computationally expensive. Even if
we remove self-edges from the model the algorithm is still O(n2). In the case with self-edges, the O(m)
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Chung-Lu algorithm proved an attractive alternative since it is an approximation to the Bernoulli Chung-
Lu model but it is much less computationally expensive. We would like to find a similar algorithm for
the case without self-edges, this involves modifying Algorithm 3. We could write an algorithm based on
drawing elements of the adjacency matrix from a bag that doesn’t include the self-edges (i.e. We remove
the aii elements to begin with and only draw the aij elements). This would modify pij , the probability of
drawing edge (i, j) on a single draw, since

∑
i,j pij must equal 1 and now pii = 0 ∀ i. This would of course

modify pij(m), the probability of edge (i, j) being in the graph after m draws. However, what makes the
O(m) algorithm so attractive is the ability to draw the nodes of an edge independently as opposed to
drawing the edge itself. This is what makes the algorithm O(m) as opposed to O(n2). Once we require
that self-edges not be included in the graph then we can no longer draw edge nodes independently since
once we draw the first node the probability of the second node changes (i.e. the probability of drawing node
i if it has already been drawn is 0). So this rules out the idea of building a O(m) algorithm by drawing
edges from a bag where the self-edges are simply not included. However, a much simpler alternative exists.
Returning to Algorithm 3, we can exclude self-edges by simply doing nothing if i = j (i.e. aii remains
equal to 0). This new algorithm is given by Algorithm 4.

Algorithm 4: O(|Edges|) Chung-Lu Algorithm without Self-Edges.

for k = 1 to m do

Draw node i with probability ki
2m ;

Draw node j with probability
kj
2m ;

/* Add edge (i, j) to the graph */

if i 6= j then
aij = aji = 1;

end

end

In this case, the probability on a single draw of drawing edge (i, j) is still given by the following

pij =





kikj
4m2 i 6= j,

k2i
4m2 i = j,

(1.37)

but the probability of having edge (i, j) in the graph after m draws is now given by

pij(m) =





kikj
2m +O(p2ij) i 6= j,

0 i = j.
(1.38)

So pij(m) remains the same for i 6= j, while by design pii(m) now equals 0 for all i. This model is equivalent
to the Bernoulli Chung-Lu model with the probabilities in Equation (1.3) replaced with the probabilities
given in Equation (1.38) and we refer to this model as Model IV. Of course, by not including self-edges in
the model we have also changed the expected degree for all nodes. If we ignore the higher order terms in
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Equation (1.38) then the expected degree is given by

E(Di) = E(
∑

j

Aij) =
∑

j

E(Aij) =
∑

j 6=i
E(Aij)

=
∑

j 6=i
pij(m) =

∑

j 6=i

kikj
2m

= ki −
k2i
2m

,

(1.39)

which is the same as in Model III, the Bernoulli Chung-Lu model with no self-edges. However, if we don’t
ignore the higher order terms in pij(m) then the expected degree is calculated as follows

E(Di) =
∑

j 6=i
pij(m) =

∑

j 6=i
(1− (1− 2

kikj
(2m)2

)m)

=
∑

j 6=i
(1− (1− kikj

2m2
)m),

(1.40)

where E(Di) < ki − k2i
2m since we showed in Section 1.3 that 1− (1− 2

kikj
(2m)2 )m <

kikj
2m . We return to the

general relativity collaboration network to examine how these model properties differ in a real network.
We note that there are no self-edges in the original network. Figure 1.5 plots the difference between the
expected degree in Model IV and the upper bound on the expected degree, Equation (1.39), which is also
the expected degree in Model III. We also note that the expected number of edges in Model IV for the
general relativity network is 13333.55 which is approximately 100 edges fewer than in the actual graph,
which is 13422, and where the expected number of edges in Model III is 13413.01.
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Figure 1.5: General Relativity Collaboration Network: Comparing Expected Degree from Model IV and
Expected Degree Upper Bound, the Expected Degree from Model III.



CHAPTER 1. AN IN-DEPTH ANALYSIS OF THE CHUNG-LU MODEL 17

Probability Probability Expected Degree

of Edge (i, j) of Edge (i, i) E(Di)

Bernoulli
Chung-Lu

Self-Edges:
kikj
2m

k2i
4m

ki

Model I

No Self-Edges:
kikj
2m

0 ki − k2i
2m

Model III

O(m) Chung-Lu

Self-Edges: 1− (1− 2
kikj
4m2 )m 1− (1− k2i

4m2 )m
∑
j 6=i 1− (1− 2

kikj
4m2 )m

Model II <
kikj
2m <

k2i
4m +1− (1− k2i

4m2 )m < ki

No Self-Edges: 1− (1− 2
kikj
4m2 )m

0

∑
j 6=i 1− (1− 2

kikj
4m2 )m

Model IV <
kikj
2m < ki − k2i

2m

Table 1.2: Model Summary

1.4.3 Summary

We have looked at two different models, the Bernoulli Chung-Lu model and the O(m) Chung-Lu model
and modified both to exclude self-edges. The following table summarizes the models presented where we
refer to the probability of edge (i, j) as the probability of edge (i, j) being in the graph after the algorithm
has been executed. We next look at what happens to these models when the constraint k2i ≤ 2m ∀ i is
violated.

1.5 Constraint Violation

1.5.1 Bernoulli Chung-Lu Model

Suppose we use as an input into either the Bernoulli Chung-Lu model or the O(m) Chung-Lu model a
degree sequence k = (ki, . . . , kn) where the constraint k2i ≤ 2m ∀ i is violated. To see why this constraint
is important we revisit the edge probability formulas from the Bernoulli Chung-Lu model which are given
as follows

pij =





kikj
2m i 6= j,

k2i
4m i = j.

(1.41)

The constraint is important because it provides a sufficient condition to guarantee that these probabilities
are well-defined (i.e. 0 ≤ pij ≤ 1 ∀ i, j). Consider the case where ki > 2m for only one node. Then as
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long as k2i ≤ 4m, all the probabilities in Equation (1.41) are still well-defined. However, if k2i > 4m then
pii > 1 and the probability of this self-edge is not well-defined. However, the larger issue is when k2i > 2m
for two or more nodes. Suppose we have two nodes i and j where k2i > 2m and k2j > 2m. This implies that

kikj > 2m and pij > 1. In fact, for all pairs of nodes i and j with k2i > 2m, and k2j > 2m the probability
of edge (i, j) being in the graph, pij , is greater than 1. In order for the probabilities to be well-defined we
need to redefine them. In the case where the constraint k2i ≤ 2m ∀ i is violated the probability of choosing
and edge between nodes i and j is given by

pij =





min
{
kikj
2m , 1

}
i 6= j,

min
{
k2i
4m , 1

}
i = j.

(1.42)

If the probabilities are defined as above then 0 ≤ pij ≤ 1 ∀ i, j. If the constraint k2i ≤ 2m ∀ i holds then
the probabilities reduce to those in Equation (1.41). Thus, Model I is imbedded in this model, which we
refer to as Model V. We can calculate the expected degree for Model V as

E(Di) = E


∑

j

Aij


 =

∑

j

E(Aij) =
∑

j 6=i
min{kikj

2m
, 1}+ 2 min{ k

2
i

4m
, 1}

=
∑

j 6=i
min{kikj

2m
, 1}+ min{ k

2
i

2m
, 2},

(1.43)

where E(Di) ≤ ki and if the constraint k2i ≤ 2m ∀ i holds then E(Di) = ki. The difference between ki
and E(Di) can be written as

ki − E(Di) =
k2i
2m
−min

{
k2i
2m

, 2

}
+
∑

j 6=i

(
kikj
2m
−min

{
kikj
2m

, 1

})
(1.44)

where we use the following to rewrite ki,

ki =
∑

j

kikj
2m

=
∑

j 6=i

kikj
2m

+
k2i
2m

. (1.45)

From this equation we can see that for i 6= j, it is the difference between
kikj
2m and 1, when

kikj
2m > 1, that

contributes to the difference between ki and E(Di). For self-edges, it is the difference between
k2i
2m and 2,

when
k2i
2m > 2, that contributes to the difference between ki and E(Di).

To explore this difference empirically we now consider a network that violates the constraint k2i ≤
2m ∀ i. The network we will examine is an autonomous system graph which maps the traffic flow across
the internet. It has 6474 nodes and 12572 edges. The largest degree node has 1458 neighbors, thus k2i > 2m
for at least 1 node and in fact, for this network, k2i is greater than 2m for 491 nodes. This implies that
there are 120295 probabilities, pij , i 6= j, that need to be redefined and set equal to 1. This amounts to
less than 1% of all probabilities, pij , i 6= j. However, these violations can have a noticeable impact on the
model and its expected degree. Figures 1.6 and 1.7 compare the expected degree to ki.
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Figure 1.6: Autonomous System Network: Comparing Expected Degree from Model V and Actual
Degree.
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Figure 1.7: Autonomous System Network: Relative difference between Expected Degree Bound from
Model V and Actual Degree.

1.5.2 (O(|Edges|) Chung-Lu Model

In the O(m) Chung-Lu model all the probabilities are still well-defined even if the constraint k2i ≤ 2m ∀ i
is violated. To see this, we use Equation (1.28), which defines the probability of choosing edge (i, j) and
which we include here for ease of exposition:

pij(m) =





1− (1− kikj
2m2 )m i 6= j,

1− (1− k2i
4m2 )m i = j.

(1.46)

Even if k2i > 2m for more than one node i, it is still true that both 0 ≤ 1− kikj
2m2 ≤ 1 and 0 ≤ 1− k2i

4m2 ≤ 1
which implies that 0 ≤ pij(m) ≤ 1, ∀ i, j. This implies that our model does not change and that the
expected degree for each node is still well defined and is given by Equation (1.31). However, as noted in
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Section 1.3, the expected degree in the O(m) Chung-Lu model can be much different from ki, the expected
degree in the original Bernoulli Chung-Lu model, and this difference is exacerbated when the constraint

is violated. As we noted previously, the maximum value of pij(m) is
kikj
2m for i 6= j and

k2i
4m for self-edges.

However, when the constraint k2i ≤ 2m ∀ i is violated, and
kikj
2m > 1 for some i 6= j, since pij is still a

well-defined probability, we know that 1 is in fact a lower upper bound. The same is true if
k2i
4m > 1 for

some node i; pii still has an upper bound of 1. Using this knowledge we can actually calculate a tighter
upper bound on the expected degree for Model II when the degree constraint is violated. Recall from
Section 1.3 that the upper bound on E(Di) was ki when k2i ≤ 2m ∀ i. To calculate our new upper bound,

we note that for nodes i and j where
kikj
2m ≤ 1, the upper bound on pij(m) is still

kikj
2m , and if

kikj
2m > 1

then the upper bound on pij(m) is 1. For self-edges, if
k2i
4m ≤ 1, then upper bound on pii(m) is still

k2i
4m ,

and if
k2i
4m > 1 then the upper bound on pii(m) is 1. Combining this information we get the upper bound

on the expected degree of node i as

Ê(Di) = min

{
k2i
2m

, 2

}
+
∑

j 6=i
min

{
kikj
2m

, 1

}
(1.47)

which is equal to the expected degree, Equation (1.43), from Model V. So when the constraint k2i ≤ 2m ∀ i
is violated, the expected degree of node i in the O(m) Chung-Lu model, Model II, is further from ki
than if the constraint held. Empirically, we can study this model using a real-world network to generate
instances of the model. We use the degree sequence from the same autonomous system graph that was
used with Model V. Figure 1.8 plots the difference between the expected degree and the degree, which is
the expected degree in the original Chung-Lu model, Model I. Figures 1.9 and 1.10 break this difference
down by plotting the difference between the expected degree and the upper bound on the expected degree
and the difference between the upper bound on the expected degree and the degree, respectively. We can
see for some large degree nodes this difference can be quite large. This is also reflected in the number of
edges. The expected number of edges for this graph can be calculated from the expected degree of each
node and is equal to 11445.185225. The upper bound on the expected number of edges can be calculated
as

Ê(M) =
1

2

∑

i

Ê(Di), (1.48)

where Ê(Di) is given by Equation (1.47). For the autonomous system graph, Ê(M) = 11836.836939.
Note that the total number of edges in the original autonomous system graph is 12572. Thus there are
approximately 1000 fewer edges expected in the graph than are in the original graph which is approximately
9% of the total number of edges.

1.5.3 Removing Self-Edges

Sections 1.5.1 and 1.5.2 analyze what happens to Models I and II when the constraint k2i ≤ 2m ∀ i is
violated, respectively. We are still left to analyze Models III and IV in the case of the degree constraint
violation. Model III is simply Model I without self-edges, thus our analysis of what happens to Model III
when the degree constraint is violated will be similar to our analysis in Section 1.5.1. Similarly, Model IV
is simply Model II without self-edges and thus our analysis of what happens to Model IV when the degree
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Figure 1.8: Autonomous System Network: Comparing Expected Degree from Model II and Actual
Degree.
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Figure 1.9: Autonomous System Network: Comparing Expected Degree and Expected Degree Bound
from Model II.

constraint is violated will be similar to our analysis from Section 1.5.2. In Model III, the probability of
choosing edge (i, j) is given by

pij =





kikj
2m i 6= j,

0 i = j.
(1.49)

If the degree constraint is violated, then not all the probabilities are necessarily well-defined. Note, as
we have previously mentioned, k2i ≤ 2m ∀ i, is a sufficient but not necessary condition to guarantee that
all the probabilities in Equation (1.49) are well-defined. For our analysis of Model III we are assuming
that k2i > 2m for at least 2 nodes, otherwise pij as defined in Equation (1.49) remains well-defined. So
if we suppose that not all the probabilities in Equation (1.49) are well-defined we need to redefine the
probabilities. In the case where the degree constraint is violated we define the probability of choosing edge
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Figure 1.10: Autonomous System Network: Comparing Expected Degree Bound from Model II and
Actual Degree

(i, j) as follows

pij =





min
{
kikj
2m , 1

}
i 6= j,

0 i = j,
(1.50)

and where we refer to the model defined by the probabilities in Equation (1.50) as Model VI. We can
calculate the expected degree for Model VI as

E(Di) = E


∑

j

Aij


 =

∑

j

E(Aij)

=
∑

j 6=i
min

{
kikj
2m

, 1

} (1.51)

where E(Di) ≤ ki − k2i
2m and if the constraint k2i ≤ 2m ∀ i holds then E(Di) = ki − k2i

2m . The difference
between ki and E(Di) can be written as

ki − E(Di) =
k2i
2m

+
∑

j 6=i

(
kikj
2m
−min

{
kikj
2m

, 1

})
(1.52)

We once again use the autonomous system graph to explore this model numerically. The expected degree
is given by Equation (1.51) and in Figure 1.11 we plot the difference between the expected degree and

the expected degree bound, which is given by Ê(Di) = ki − k2i
2m . Figure 1.12 plots the difference between

E(Di) and ki, where ki is the expected degree value in Model I. Note that E(Di) ≤ Ê(Di) < ki and the

difference between Ê(Di) and ki can be quite large, as can be seen in Figure 1.13. Contrast this to the

case where k2i ≤ 2m ∀ i, where the maximum difference between ki and ki − k2i
2m is 1 since

k2i
2m ≤ 1 ∀ i.

However, the majority of the difference between E(Di) and ki is in the difference between E(Di) and

Ê(Di) as can be seen in Figure 1.11.
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Figure 1.11: Autonomous System Network: Comparing Expected Degree and Expected Degree Bound
from Model VI.
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Figure 1.12: Autonomous System Network: Comparing Expected Degree from Model VI and Actual
Degree.

Finally, we consider Model IV, under the assumption that the constraint k2i ≤ 2m ∀ i is violated. The
probability of choosing edge (i, j) in this model is given by

pij(m) =





1− (1− kikj
2m2 )m i 6= j,

0 i = j.
(1.53)

When the constraint k2i ≤ 2m ∀ i is violated, from Section 1.5.2 we know that pij(m) is still well-defined
for i 6= j and since pii(m) = 0 ∀ i, pij is still well-defined for all i, j. Thus, our model does not change and
the expected degree is still given by Equation (1.40). As in Section 1.5.2, we can put an upper bound on
the expected degree and compare this to the expected degree from Model I. As we noted in Section 1.5.2
the maximum value for pij(m) is min{1, kikj2m } for i 6= j. Thus, the upper bound on the expected degree of
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Figure 1.13: Autonomous System Network: Comparing Expected Degree Bound from Model VI and
Actual Degree.

node i is

Ê(Di) =
∑

j 6=i
min

{
kikj
2m

, 1

}
, (1.54)

which is equivalent to E(Di) from Model VI. This upper bound will be strict and thus the expected degree
from Model VI will always be greater than the expected degree from Model IV. To see this we note that
for nodes i 6= j where

kikj
2m > 1, the probability of edge (i, j) being in Model VI is 1 and in Model IV is

1 − (1 − kikj
2m2 )m < 1. For nodes i 6= j where

kikj
2m ≤ 1, the probability of edge (i, j) being in Model VI is

kikj
2m and in Model IV is 1 − (1 − kikj

2m2 )m <
kikj
2m . Note that we have the following relationship for Model

IV,

E(Di) < Ê(Di) ≤ ki −
k2i
2m

< ki (1.55)

where ki − k2i
2m is the expected degree from Model III and ki is the expected degree from Model I. To see

how large these differences can be empirically we again use the autonomous system graph. Figure 1.14
plots the difference between the expected degree and the expected degree bound, while Figure 1.15 plots
the difference between the expected degree bound and the degree. Figure 1.16 summarizes these differences
by plotting the difference between the expected degree and the degree in the original graph which is quite
large for some large degree nodes.

1.5.4 Summary

We have examined both the Bernoulli and O(m) Chung-Lu models with and without self-edges when the
constraint k2i ≤ 2m ∀ i is violated. When the constraint is violated in the Bernoulli Chung-Lu model,
both with and without self-edges, we actually need to define new models. However, when the constraint is
violated in the O(m) Chung-Lu model, both with and without self-edges, the models do not change. The
following table summarizes the models presented when the constraint k2i ≤ 2m ∀ i is violated and note
that for all four models, when the constraint is violated, the degree of certain nodes, particularly large
degree nodes, in any given instance of the model can be much less than the degree in the original graph.
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Figure 1.14: Autonomous System Network: Comparing Expected Degree and Expected Degree Bound
from Model IV.
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Figure 1.15: Autonomous System Network: Comparing Expected Degree Bound from Model IV and
Actual Degree.

1.6 Triangle Counts and Clustering Coefficients

One of the nice properties of the Chung-Lu model, as originally proposed, is the fact that E(Di) = ki ∀ i.
This makes it an attractive model, since it can be used to model networks with any degree sequence.
However, researchers are often interested in building models that match other network properties, including
the network community structure. The network community structure is often measured by the clustering
coefficient which can be defined for each node i as follows

Ci =
Number of pairs of neighbors of i that are connected

Number of pairs of neighbors of i
(1.56)

or

Ci =
Number of unique triangles node i belongs to

Number of pairs of neighbors of i
. (1.57)
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Figure 1.16: Autonomous System Network: Comparing Expected Degree from Model IV and Actual
Degree.

The clustering coefficient can be written as a random variable, Ci, where Ci is a function of the random
variables Aij , j = 1, . . . , n. We can then compare the realizations of this random variable from our model
instances and its expected value with the clustering coefficients from the real network. Unfortunately, the
number of triangles node i belongs to is not independent of the number of pairs of neighbors of node i and
thus the expected value of the clustering coefficient, E(Ci), is not easily determined. If these two variables
where independent then we could write the following

E(Ci) =
E(Number of unique triangles node i belongs to)

E(Number of pairs of neighbors of i)
. (1.58)

Despite the fact that E(Ci) cannot be written as above we note that in the Bernoulli Chung-Lu model,
Model I, E(Di) = ki, and thus on average the number of pairs of neighbors of node i is the same in
any instance of Model I as in the real network. It has been noted empirically that the Chung-Lu model
generates instances that under-estimate the clustering coefficient. Thus, if Ci = ci is much less on average
in the model instances then it is due to the lack of triangles for node i. In all the other models we have
introduced, E(Di) < ki, so the number of pairs of neighbors of node i is on average less in a given model
instance than in the real network. Thus, for Ci = ci to be less on average for a given model instance
relative to the real-network, the number of triangles for node i must be less on average in the model instance
relative to the real network by a greater proportion than the number of pairs of neighbors. Not only does
the number of triangles for each node play an important role in determining the clustering coefficient but
it can also be used as a measure of community structure independent of the clustering coefficient. Hence,
we focus on determining its value in our models as a way to look at community structure and to examine
the difference between our models and real networks. We begin by noting that the number of triangles for
a given node i in the original Chung-Lu model, Model I, is a random variable that can be defined as

Ti =
∑

j 6=i

∑

k 6=i,k 6=j
AijAikAjk, ∀ i, (1.59)

where a triangle occurs at node i if there is an edge between nodes i and j, between nodes i and k and
between nodes k and j where the nodes i, j and k are all unique nodes. Note that every triangle is counted
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twice in the above sum since Ajk and Akj both appear. Since Ti is a random variable we can compute
the expected value of Ti as

E(Ti) =
∑

j 6=i

∑

k 6=i,j
AijAikAjk

=
∑

j 6=i

∑

k 6=i,j
E(AijAikAjk)

=
∑

j 6=i

∑

k 6=i,j
E(Aij)E(Aik)E(Ajk)

=
∑

j 6=i

∑

k 6=i,j
pijpikpjk,

(1.60)

where E(AijAikAjk) = E(Aij)E(Aik)E(Ajk) because each edge is drawn independently. Equation (1.3)
defines pij , i, j = 1, . . . , n, in Model I which allows us to simplify E(Ti) as follows

E(Ti) =
∑

j 6=i

∑

k 6=i,j
pijpikpjk

=
∑

j 6=i

∑

k 6=i,j

(
kikj
2m

)(
kikk
2m

)(
kjkk
2m

)

=
k2i

(2m)3

∑

j 6=i
k2j
∑

k 6=i,j
k2k

=
k2i

(2m)3

∑

j 6=i
k2j
(
K2 − k2i − k2j

)

=
k2i

(2m)3

∑

j 6=i
K2k

2
j − k2i k2j − k4j

=
k2i

(2m)3
(
K2(K2 − k2i )− k2i (K2 − k2i )− (K4 − k4i )

)

E(Ti) =
k2i

(2m)3
(
(K2 − k2i )2 − (K4 − k4i )

)
, (1.61)

where we define K2 =
∑n
i=1 k

2
i and K4 =

∑n
i=1 k

4
i . It is interesting to note that the expected value of the

number of triangles at node i is a function of the degrees and is not related to the number of triangles
in the network. If we were interested in better matching the expected number of triangles at node i to
the actual number of triangles at node i, ti, then a possible strategy would be to make pij a function of
ti and tj . However, E(Di) would then be a function of ti and would no longer be equal to ki. Also note
that random variable Ti is not a function of any self-edges which means that neither is E(Ti) and thus
for Model III, E(Ti) is also given by Equation (1.61). For Models II and IV, we can determine E(Ti) if
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we replace pij in Equation (1.60) with pij , i 6= j from Equation (1.28) as follows

E(Ti) =
∑

j 6=i

∑

k 6=i,j
pijpikpjk

=
∑

j 6=i

∑

k 6=i,j
pij(m)pik(m)pjk(m)

=
∑

j 6=i

∑

k 6=i,j

(
1−

(
1− 2

kikj
(2m)2

)

)m)(
1−

(
1− 2

kikk
(2m)2

)m)(
1−

(
1− 2

kjkk
(2m)2

)m)
,

(1.62)

which can not be easily simplified. However, as we have noted before the probability of an edge between
distinct nodes in Models II and IV is lower than in Models I and IV. This implies that E(Ti) will be
lower in Models II and IV than in Models I and III. To better quantify the differences between E(Ti) in
our models and in a real network we revisit the general relativity collaboration network. Figure 1.17 plots
the difference between the expected number of triangles in Models I and III and the actual number of
triangles. This difference is quite large for some nodes. Figure 1.18 plots the relative difference between
the expected number of triangles in Models I and III and the actual number of triangles for each node
with at least one triangle in the real network. For Models II and IV, Figure 1.19 plots the difference
between the expected number of triangles and the actual number of triangles and Figure 1.20 plots the
relative difference between the expected number of triangles and the actual number of triangles. From
these figures it is hard to determine if the expected number of triangles in Models I and III is closer to
the actual triangle count or if the expected number of triangles in Models II and IV is closer to the actual
triangle count. Figure 1.21 plots the difference between the expected number of triangles in Models II and
IV and the upper bound which is the expected number of triangles in Models I and III. From the figure we
can see that the expected number of triangles in Models I and III is higher than in Models II and IV and
thus the expected number of triangles in Models I and III is closer to the true triangle count. In general,
since E(Ti) is not a function of Ti we can not draw any conclusions about whether E(Ti) will be closer
to Ti in Models I and III or in Models II and IV.

In the above analysis we have assumed that the constraint, k2i ≤ 2m ∀ i, holds. If this constraint no
longer holds, then our above analysis needs to be revised to account for the constraint violation. As we
mentioned in Section 1.5, if the constraint, k2i ≤ 2m ∀ i, is violated then instead of using Models I and
III we use Models V and VI, respectively. For both Model V and VI, E(Ti) is the same, and can be
determined by using Equation (1.42) to define pij , i 6= j, and substituting this into Equation (1.60). This
gives us the following

E(Ti) =
∑

j 6=i

∑

k 6=i,j
pijpikpjk

=
∑

j 6=i

∑

k 6=i,j
min

{
kikj
2m

, 1

}
min

{
kikk
2m

, 1

}
min

{
kjkk
2m

, 1

}
.

(1.63)

Equation (1.63) will be less than Equation (1.61). However, this does not imply that when the constraint
is violated E(Ti) will be further from the true triangle count since E(Ti) is not a function of the number
of the triangles in the original network. Equation (1.61) only provides an upper bound on Equation (1.63).

For the O(m) Chung-Lu models, Models II and IV when the constraint, k2i ≤ 2m ∀ i, is violated the
models do not change and hence E(Ti) is still given by Equation (1.62). However, if the constraint is
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Figure 1.17: General Relativity Collaboration Network: Comparing Expected Number of Triangles from
Models I and III and Actual Number of Triangles.
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Figure 1.18: General Relativity Collaboration Network: Relative difference between Expected Number of
Triangles from Models I and III and Actual Number of Triangles.

violated then the upper bound on pij , i 6= j, is given by

pij < min

{
1,
kikj
2m

}
(1.64)

This implies that upper bound on E(Ti) is given by Equation (1.63) a tighter upper bound than Equation
(1.61). Note that if the constraint, k2i ≤ 2m ∀ i, holds then Equations (1.63) and (1.61) are the same.
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Figure 1.19: General Relativity Collaboration Network: Comparing Expected Number of Triangles from
Models II and IV and Actual Number of Triangles.
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Figure 1.20: General Relativity Collaboration Network: Relative difference between Expected Number of
Triangles from Models II and IV and Actual Number of Triangles.

Numerically, we can examine the affect of the constraint violation on the number of triangles using
the autonomous system network we have examined previously. Figures 1.22 and 1.23 plot the difference
between E(Ti) and Ti, the actual number of triangles node i belongs to, for Models V and VI. Notice how for
this network E(Ti) > Ti for a number of nodes whereas for the general relativity network, E(Ti) < Ti for
all node i. Note that for the general relativity network, which does not violate the constraint, k2i ≤ 2m, ∀ i,
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Figure 1.21: General Relativity Collaboration Network: Comparing Expected Number of Triangles from
Models II and IV and the Upper Bound.

Models I and III are equivalent to Models V and VI, respectively. In general, since E(Ti) is not a function
of Ti we can not draw any conclusions about whether E(Ti) will be greater or less than Ti. Figures 1.24
and 1.25 plot the difference between between E(Ti) and Ti for Models II and IV. Note from the figures
that Models II and IV are actually better able to match the number of triangles than Models V and VI
although no conclusion can be drawn in general about which set of models will better match the triangle
count data.

1.7 Conclusion

The original Chung-Lu model is a simple model that has the nice property that the expected degree is
given by the input degree sequence. However, we have shown that when changes are made to the original
model (i.e. excluding self-edges) and the constraints of the model do not hold then this property no longer
holds. In the case where we exclude self-edges this difference can be quite small. However, when the degree
sequence violates the constraint this difference can be quite large. We have also examined in-depth an
algorithm that approximates the original Chung-Lu model and shown how this approximation performs
both under ideal circumstances and less than ideal circumstances. It is important to know how much this
approximation can effect any instance created using either Model II or Model IV. In particular, we must
be aware that when the degree constraint is violated then the expected degree can in fact be quite different
than the original degree sequence. We also looked at another important network property, triangle counts,
and noted that the Chung-Lu model is not designed to match this property and typically underestimates
the number of triangles in networks we are interested in. In the next Chapter we will look at some ways
to try and improve the O(m) Chung-Lu model and decrease the approximation error.
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Figure 1.22: Autonomous System Network: Comparing Expected Number of Triangles from Models V
and VI and Actual Number of Triangles.
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Figure 1.23: Autonomous System Network: Relative difference between Expected Number of Triangles
from Models V and VI and Actual Number of Triangles.
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Figure 1.24: Autonomous System Network: Comparing Expected Number of Triangles from Models II
and IV and Actual Number of Triangles.
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Figure 1.25: Autonomous System Network: Relative difference between Expected Number of Triangles
from Models II and IV and Actual Number of Triangles.



Chapter 2

Improving the O(m) Chung-Lu model

2.1 Introduction

Consider the O(m) Chung-Lu model without self-edges, Model IV, as described in Section 1.4.2. Algorithm
4 is used to generate instances of this model and often these instances are referred to as instances of the
original Chung-Lu model, Model I. As we have mentioned previously, in the original Chung-Lu model,
the expected degree of node i is equal to the input degree, ki, and the expected number of of edges is
equal to m, the edge count in the original network. However, as we saw in the previous Chapter, the
expected degree of node i and the expected edge count can be much different under Model IV than in
Model I, and thus the instances that are referred to as representations of the original Chung-Lu model
can have fairly different properties than what is assumed. Given this, the next step in our analysis is to
look at simple ways of modifying Model IV to better approximate the original Chung-Lu model, Model I.
In our discussion we only consider Model IV since this is the model most used in practice (i.e. Algorithm
4 is most often used to generate instances of the “Chung-Lu” model). In Section 2.2, we examine how
increasing the number of draws can change the model. In Section 2.3 we create an algorithm that first
uses Algorithm 4 and then looks at the resulting instance to determine any additional edges needed. In
Section 2.4 we examine what happens if we let the probabilities in Equation (1.40) have a more general

form (i.e. pij 6= kikj
(2m)2 ). This results in a constrained optimization problem that is difficult to solve and we

turn to fixed point methods for an approximate solution. In Sections 2.2, 2.3 and 2.4, we assume that the
degree constraint is not violated. In Section 2.5 we look at the improvements introduced in the previous
sections when the constraint k2i < 2m ∀ i is violated.

35
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2.2 Drawing Additional Edges

As we mentioned previously, we are interested in modifying Model IV to improve the approximation error.
For Model IV, the probability of edge (i, j) being in the graph after m draws is given by

pij(m) =





1− (1− kikj
4m2 )m i 6= j,

0 i = j,
(2.1)

where pij(m) ≈ kikj
2m but pij(m) is strictly less than

kikj
2m . For now let us assume that the input degree

sequence does not violate the constraint, k2i < 2m ∀ i, and thus
kikj
2m ≤ 1. If we could increase the

probability, pij(m) such that it was closer to
kikj
2m then E(Di) would be be closer to ki and E(M) would

better approximate m. One way to increase this probability is to draw more edges. So instead of drawing
m edges we draw ω edges and Algorithm 4 becomes the following:

Algorithm 5: O(ω) Chung-Lu Algorithm without Self-Edges.

for k = 1 to ω do

Draw node i with probability ki
2m ;

Draw node j with probability
kj
2m ;

/* Add edge (i, j) to the graph */

if i 6= j then
aij = aji = 1;

end

end

The probability of edge (i, j) being in the graph after ω draws is given by

pij(ω) =





1−
(

1− kikj
2m2

)ω
i 6= j,

0 i = j.
(2.2)

If we replace m with ω in Equation (1.23) and substitute in pij =
kikj
(2m)2 , then we get that pij(ω) ≈ w

m ·
kikj
2m

with pij(ω) strictly less than w
m ·

kikj
2m . Since ω > m this implies that pij(ω) can equal

kikj
2m if we choose the

correct ω; however, we have only one parameter, ω, and we want to match n(n−1)
2 probabilities. In fact,

for certain values of ω, pij(ω) may be larger than
kikj
2m which implies that E(Di) may be greater than ki.

So, how many edges do we draw? One solution is to draw as many edges as necessary to get m edges in
the resulting instance of the graph. This process is described in Algorithm 6.
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Algorithm 6: A Matching Edge Count Chung-Lu Algorithm (No Self-Edges).

δ ← 1;
while δ ≤ m do

Draw node i with probability ki
2m ;

Draw node j with probability
kj
2m ;

/* Add edge (i, j) to the graph */

if i 6= j and aij = aji = 0 then
aij = aji = 1;
δ ← δ + 1;

end

end

Note that if we use Algorithm 6 to generate an instance of our network and it requires γ draws (γ
iterations of the while loop) to get m edges then the underlying model can be described by Equation
(2.2) with ω = γ and this instance could have been created using Algorithm 5 with ω = γ . Thus, if
we use Algorithm 6 to generate a series of instances of the network each instance may actually represent
a different model since each instance may be generated with different values of ω and each value of ω
represents a different model. Although, if ω is approximately the same for all instances then we can
assume each instance is drawn from approximately the same model. Although the underlying model may
not be exactly the same for all instances if we use Algorithm 6 to generate our synthetic graphs these
instance do have the nice property that they all have the same number of edges as in the original graph.
Given this we use the general relativity network and Algorithm 6 to generate l = 10000 synthetic graphs.
The average value of ω is 13 502.5 and the standard deviation is 9.01. Figure 2.1 plots the difference
and the relative difference between the average node degree and the actual degree. Figure 2.2 plots the
difference between the average node degree and the expected node degree from Model IV. We can see from
these figures that for large degree nodes adding edges moves the average degree closer to the actual degree
relative to Model IV; however, the average degree still remains below the actual degree. To better capture
these differences we assume that these instances were all generated using Algorithm 5 with ω equal to the
average across all 10000 instances (i.e. ω = 13502.5). For this model, we plot the difference between the
expected degree and the actual degree and the difference between the expected degree and the expected
degree from Model IV in Figures 2.3 and 2.4, respectively. The same general pattern is seen in these
Figures as in Figures 2.1a and 2.2. We should note that for approximately 90% of the nodes the expected
degree under this model is actually higher than the actual degree.

Algorithm 6 has the nice property that ensures that every instance has exactly m edges but every
instance can potentially be generated from a different model. As an alternative, we could use Algorithm
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Figure 2.1: General Relativity Collaboration Network: Difference and Relative difference between
Average Degree from Algorithm 6 and Actual Degree.
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Figure 2.2: General Relativity Collaboration Network: Comparing Average Degree from Algorithm 6 and
Expected Degree from Model IV.

5 with ω chosen so that E(M) = m. The formula for E(M) is given by the following

E(M) =
1

2

∑

i

E(Di)

=
1

2

∑

i

∑

j 6=i
E(Aij)

=
1

2

∑

i

∑

j 6=i
pij(ω)

=
1

2

∑

i

∑

j 6=i
1−

(
1− kikj

22

)ω

(2.3)
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Figure 2.3: General Relativity Collaboration Network: Comparing Expected Degree from Algorithm 5
with ω = 13502.5 and Actual Degree.

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Difference betweeen Approximate Expected Degree and Model IV Expected Deg

Node

E
(D

i)
ω̄
−
E
(D

i)
m

Figure 2.4: General Relativity Collaboration Network: Comparing Expected Degree from Algorithm 5
with ω = 13502.5 and Expected Degree from Model IV.

We can set E(M) equal to m and solve for ω numerically. This gives ω = 13511.56 ≈ 13512. As an
alternative, we could choose ω to match the degree of the highest degree node. The formula for E(Di) is
given by

E(Di) =
∑

j 6=i
E(Aij)

=
∑

j 6=i
pij(ω)

=
∑

j 6=i
1−

(
1− kikj

2m2

)ω
(2.4)

We can set E(Di) equal to ki where i is chosen to be the largest degree node and solve for ω numerically.
For the general relativity network this gives ω = 13832.54 ≈ 13833. Finally, we consider matching all
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n(n−1)
2 probabilities (i.e. Find ω such that pij(ω) =

kikj
2m , i = 1, . . . , n, j = i, . . . , n.) In this case we

have n(n−1)
2 equations and only one unknown. So the resulting ω is the least-squares solution to this

overdetermined system. Since probabilities are given by

pij(ω) = 1−
(

1− kikj
2m2

)ω
, (2.5)

where i = 1, . . . , n, j = i . . . , n, our system of equations is described by

kikj
2m

= 1−
(

1− kikj
2m2

)ω

(
1− kikj

2m2

)ω
= 1− kikj

2m

ω ln

(
1− kikj

2m2

)
= ln

(
1− kikj

2m

)
,

(2.6)

for i = 1, . . . , n, j = i . . . , n where the following must hold:
kikj
2m < 1 ∀ i, j 6= i. If we place all n(n−1)

2 ,

ln
(

1− kikj
4m2

)
terms in the vector a and all n(n−1)

2 , ln
(

1− kikj
2m

)
terms in the vector b we can write

the system as aω = b and the least squares solution is ω = aTb
aT a

. The least squares solution for the
general relativity network is ω = 13720.66 ≈ 13721. For the three different ω outlined above, we use the
general relativity network to plot the difference between the expected degree and the actual degree and
the difference between the expected degree and the expected degree from Model IV in Figures 2.5 to 2.10.
We can see from these figures that as we increase ω in order to match the node degree for the higher degree
nodes we overshoot on the node degrees for the smaller degree nodes.
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Figure 2.5: General Relativity Collaboration Network: Comparing Expected Degree from Algorithm 5
with ω = 13511.56 and Actual Degree.
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Figure 2.6: General Relativity Collaboration Network: Comparing Expected Degree from Algorithm 5
with ω = 13511.56 and Expected Degree from Model IV.
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Figure 2.7: General Relativity Collaboration Network: Comparing Expected Degree from Algorithm 5
with ω = 13832.54 and Actual Degree.

2.3 Two Distributions Algorithm

As the above analysis indicates, simply drawing more edges to add to our graph doesn’t necessarily get
us any closer to matching the degree distribution. Given this, we consider an alternative approach. We
begin by using Algorithm 4 to build an initial instance of the graph. Then using this instance we create a
“remaining degree” distribution for each node based on the remaining number of edges needed to match
the degree of each node. So, for each node we calculate the following

ri = ki − di, (2.7)

where ki is the degree of node i in the original graph and di is the degree of node i after running Algorithm
4. For the nodes where ri < 0, we set those values equal to zero, so in fact the formula for ri is given by

ri = max{ki − di, 0}, (2.8)
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Figure 2.8: General Relativity Collaboration Network: Comparing Expected Degree from Algorithm 5
with ω = 13832.54 and Expected Degree from Model IV.
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Figure 2.9: General Relativity Collaboration Network: Comparing Expected Degree from Algorithm 5
with ω = 13720.66 and Actual Degree.

and we define mr = 1
2

∑
i ri. We then run Algorithm 4 again but this time with node i drawn with

probability ri
2mr

and node j drawn with probability
rj

2mr
and the number of draws equal to mr. For this

model, we have

pij(mr) = 1− (1− rirj
2m2

r

)mr ≈ rirj
2mr

(2.9)

If we assume that pij(mr) =
rirj
2mr

then the expected degree of node i in this model, the remaining degree
model, is given by

E(Dr
i ) = ri −

r2i
2mr

≈ ri = ki − di. (2.10)

If these two graphs were independent then the expected degree of node i in the combined graph would
just be the sum of the expected degrees however these graphs are not independent. An edge in Model
IV can appear in the remaining degree model and vice versa. Thus the expected degree is not simply the
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Figure 2.10: General Relativity Collaboration Network: Comparing Expected Degree from Algorithm 5
with ω = 13720.66 and Expected Degree from Model IV.

sum of expected degrees in the two models and cannot be easily determined. However, given this lack of
independence, we do know that the expected degree in the combined graph will be less than the sum of the
expected degrees from the two models and thus is still strictly less than ki. Thus, unlike the case of just
adding edges the expected degree can not overshoot the actual degree. We should note that the remaining
degree distribution is based on the particular instance of the graph created using Algorithm 4 and thus
will be different every time Algorithm 4 is run. The entire algorithm is summarized in Algorithm 7. Given
the lack of independence of the two graph models in Algorithm 7 and the dependence of the remaining
degree distribution on the realization of the first graph model this makes it difficult to analyze the actual
model underlying any instance created using Algorithm 7 (i.e. finding the probability of edge (i, j) being
in the graph after running the algorithm) thus we analyze Algorithm 7 by using instances created from real
networks. Again, we use the general relativity network and generate l = 10000 instances of the graph using
Algorithm 7. Figure 2.11 plots the difference between the average degree from l = 10000 instances created
using Algorithm 7 and the actual degree, while 2.12 plots the difference between the average degree from
l = 10000 instances created using Algorithm 7 and the expected degree under Model IV. From 2.12 we can
see that Algorithm 7 improves upon Model IV however it does not do as good as just simply adding edges.
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Algorithm 7: Two Distributions Chung-Lu Algorithm without Self-Edges.

for k = 1 to m do

Draw node i with probability ki
2m ;

Draw node j with probability
kj
2m ;

/* Add edge (i, j) to the graph */

if i 6= j then
aij = aji = 1;

end

end
for i = 1 to n do

Calculate di =
∑
i aij ;

Calculate ri = max{ki − di, 0};
end

Calculate mr = 1
2

∑
i ri;

for k = 1 to mr do
Draw node i with probability ri

2mr
;

Draw node j with probability
rj

2mr
;

/* Add edge (i, j) to the graph */

if i 6= j then
aij = aji = 1;

end

end
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Figure 2.11: General Relativity Collaboration Network: Comparing Average Degree from Algorithm 7
and Actual Degree.

2.4 Optimal Probabilities

In Model IV, networks are generated by independently drawing m edges. The probability of drawing edge
(i, j) on a single draw is denoted pij where

∑
i

∑
j pij = 1. The probability of an edge occurring between
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Figure 2.12: General Relativity Collaboration Network: Comparing Average Degree from Algorithm 7
and Expected Degree from Model IV.

nodes i and j where i 6= j in the resulting graph is given by

pij(m) := P (There is an edge between nodes i and j in the graph after m draws)

= 1− (1− pij − pji)m, i 6= j,
(2.11)

and the probability of a self-edge is given by

pii(m) := P (There is a self-edge at node i in the graph after m draws)

= 0,
(2.12)

by design. The expected degree of each node is computed as follows,

E(Di) = E


∑

j

Aij


 =

∑

j

E(Aij), (2.13)

where E(Aij) = pij(m) if i 6= j and E(Aii) = 2pii(m). This gives us

E(Di) = E


∑

j

Aij


 =

∑

j

E(Aij)

=
∑

j 6=i
pij(m)

=
∑

j 6=i
1− (1− pij − pji)m.

(2.14)

In Model IV, we assume that on each edge draw, the probability of choosing edge (i, j) is equal to
kikj
4m2

and pij = pji. However, what if we assumed a more general form for this probability (i.e we no longer
assume it is a function of node degrees). In order for the algorithm to remain O(m) we need the nodes to
be drawn independently so we assume a general form for the probability of choosing edge (i, j) where this
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assumption holds. Let λi be the probability of choosing node i and let λj be the probability of drawing
node j where

∑
i λi = 1 then pij = λiλj and the expected degree can be written as

E(Di) =
∑

j 6=i
1− (1− 2λiλj)

m. (2.15)

How do we determine λi, i = 1, . . . , n? One way is to match the expected degree of each node to the
degree in the actual network where ki is the degree of node i in the actual network. Thus we want to find
λi, i = 1, . . . , n such that

ki =
∑

j 6=i
1− (1− 2λiλj)

m, i = 1, . . . , n

∑

i

λi = 1, 0 ≤ λi ≤ 1 ∀ i
(2.16)

where n is the number of nodes in the network. If we ignore the constraint,
∑
i λi = 1, the we can write

the above as a system of n nonlinear equations and n unknowns:

F (λ) = 0, (2.17)

where
Fi(λ) = ki −

∑

j 6=i
1− (1− 2λiλj)

m, i = 1, . . . , n (2.18)

Note that we can include the constraint in the nonlinear system by defining λ1 = 1 − ∑n
i=2 λi and

then substituting out λ1. Then we have a nonlinear system of n equations and n − 1 unknowns, an
overdetermined system.

We can also set this up as a constrained optimization problem:

min
λ
‖F (λ)‖ s.t.

∑

i

λi = 1, 0 ≤ λi ≤ 1 ∀ i (2.19)

where ‖F (λ)‖2 =
∑n
i=1 |Fi(λ)|2.

Unfortunately, the optimization problem in 2.19 can be difficult to solve. So our goal is not to find the
solution to the optimization problem. Instead, we develop an iterative method to find λi such that ‖F (λ)‖
is lower than ‖F (λ)‖ with λi = ki

2m ∀ i. We begin by developing a fixed point method to solve F (λ) = 0.
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Consider the equation for a single node, Fi(λ) = 0, which can be re-written as follows,

Fi(λ) = 0

ki −
∑

j 6=i
1− (1− 2λiλj)

m = 0

ki −
∑

j 6=i

[
1−

m∑

p=0

(
m

p

)
(1)p(−2λiλj)

m−p
]

= 0

ki −
∑

j 6=i

[
1−

(
1 +m(−2λiλj) +

m∑

p=2

(
m

p

)
(1)p(−2λiλj)

m−p
)]

= 0

ki −
∑

j 6=i

[
2mλiλj −

m∑

p=2

(
m

p

)
(1)p(−2λiλj)

m−p
]

= 0

ki − 2mλi
∑

j 6=i
λj −

∑

j 6=i

m∑

p=2

(
m

p

)
(1)p(−2λiλj)

m−p = 0

2mλi
∑

j 6=i
λj = ki −

∑

j 6=i

m∑

p=2

(
m

p

)
(1)p(−2λiλj)

m−p

λi =
ki −

∑
j 6=i
∑m
p=2

(
m
p

)
(1)p(−2λiλj)

m−p

2m
∑
j 6=i λj

,

(2.20)

and from which we can get the following fixed point method

λ
(q+1)
i =

ki −
∑
j<i

∑m
p=2

(
m
p

)
(1)p(−2λ

(q)
i λ

(q+1)
j )m−p −∑j>i

∑m
p=2

(
m
p

)
(1)p(−2λ

(q)
i λ

(q)
j )m−p

2m
(∑

j<i λ
(q+1)
j +

∑
j>i λ

(q)
j

) , (2.21)

where we can force λ
(q+1)
i = λ

(q)
i if the λ

(q+1)
i given by Equation (2.21) violates the constraint 0 ≤ λ(q+1)

i ≤
1. Using Equation (2.21) along with the constraints on λi, we propose the method outlined in Algorithm

8 to find an improved solution for λ. If the constraints on λ
(q+1)
i are never violated then Algorithm 8 will

find a solution to F (λ) = 0, however, we have no guarantee that
∑
i λi = 1 and by normalizing at the

end we no longer have F (λ) = 0; however, the idea is that we should get a better solution (i.e. smaller
|‖F (λ)‖) than if λi = ki

2m .
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Algorithm 8: Algorithm For Finding Optimal λ

Input: λ(0)

q = 0;

Evaluate ‖F (λ(0))‖;
while ‖F (λ(q))‖ > ε do

for i = 1 to n do

λ
(q+1)
i =

ki−
∑

j<i

∑m
p=2 (m

p )(1)p(−2λ(q)
i λ

(q+1)
j )m−p−∑j>i

∑m
p=2 (m

p )(1)p(−2λ(q)
i λ

(q)
j )m−p

2m
(∑

j<i λ
(q+1)
j +

∑
j>i λ

(q)
j

) ;

if λ
(q+1)
i < 0 or λ

(q+1)
i > 1 then

λ
(q+1)
i = λ

(q)
i ;

end

end
q = q + 1;

end

σλ =
∑
i λ

(q)
i ;

for i = 1 to n do

λi =
λ
(q)
i

σλ
;

end

To test our algorithm we once again use the general relativity graph. We set λ
(0)
i = ki

2m ∀ i and
ε = 10−7. The algorithm requires 12 iterations to reach the desired accuracy and the constraints on λi are
never violated. However, before we normalize at the end of the algorithm we find

∑
i λi = 1.0034. Let λ

denote the optimal solution. We find that ‖F (λ)‖ = 4.656 and ‖F (λ(0))‖ = 9.876. The maximum value
of Fi, which is the difference between the actual degree of node i and the expected degree of node i goes
from 2.342 to 0.534. However, the minimum value of Fi actually increases from 3.72e4 to 6.78e−3 and if
we examine the expected number of edges then we find that with λ = λ(0) the expected number of edges
is 13333.55 but with λ = λ the expected number of edges is 13331.57 where the actual number of edges
in the graph is 13422. It appears that choosing a different λ is better able to match the expected degree
to the actual degree for higher degree nodes but at the cost of matching the expected degree to the actual
degree for lower degree nodes. Figure 2.13 plots the difference between the expected degree using λ and
the actual degree while Figure 2.14 plots the difference between the expected degree with λi = ki

2m ∀ i and
the actual degree.

2.5 Constraint Violation

We now turn to the case where the constraint, k2i ≤ 2m, ∀i, is violated and look at how the different
methods to improve the O(m) Chung-Lu model perform in this case. We begin by revisiting Algorithm
6. Using Algorithm 6 we generate l = 10000 instances of the autonomous system network. Note that
this network has several nodes that violate the degree constraint. Figure 2.15 plots the difference and
the relative difference between the average node degree and the actual degree. Figure 2.16 plots the
difference between the average node degree and the expected node degree from Model IV. As with the
general relativity network, where all the degree constraints hold, increasing the number of draws to match
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Figure 2.13: General Relativity Network: Comparing Expected Degree with λ and Actual Degree.
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Figure 2.14: General Relativity Collaboration Network: Comparing Expected Degree from Model IV(
λi = ki

2m ∀ i
)

and Actual Degree.

the edge count in the original network improves the degree distribution relative to Model IV, however,
in this case the difference between the average degree distribution and the actual degree distribution is
still quite large. To discuss why this may be the case we revisit Algorithm 5, since each instance of the
network generated by Algorithm 6 could be generated from Algorithm 5 with the appropriate ω. Note
that in the model described by Algorithm 5, the probability of edge (i, j) being in the graph after ω draws
is given by Equation (2.2) even if the degree constraint is violated. We mentioned previously that pij(ω)

is strictly less than ω
m
kikj
2m . In networks where the degree constraint is violated, we can refine this as

pij(ω) = min{1, ωm
kikj
2m }. For each node the expected degree is just the sum of these probabilities (i.e.

E(Di) =
∑
j 6=i pij(ω)). Ideally, we want pij(ω) to contribute

kikj
2m to the expected degree (Note that in

the case where self-edges are not allowed, we actually want this contribution to be larger). However, if
kikj
2m > 1 then the contribution from pij(ω) is 1 and the other pij(ω) must make up this difference. If this

difference is large this may require ω to be large however we don’t want to increase ω too much as that
will increase the total number of edges in the graph. In the autonomous system graph, the largest degree
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node has degree 1458. For this node, if we look at all the nodes j where
kikj
2m > 1 and look at the sum of

the difference between
kikj
2m and 1 we get

∑

j∈J

(
kikj
2m
− 1

)
= 641.83 (2.22)

where J is the set of all nodes where
kikj
2m > 1. This sum is over a third of the total node degree for this

node and thus the remaining pij(ω) have to contribute this amount to E(Di) which explains why even
increasing the number of draws may not be enough to match the degree distribution. Also note that by
increasing pij(ω) to match the expected degree for some nodes will increase the expected degree above the
actual degree for other nodes.

Returning to the autonomous system network we note that the instances generated using Algorithm 6
had an average ω of 13890.12 and a standard deviation of 41.875. Compare this with the actual number
of edges in the network which is 12572. So for this network, on average we have to draw over 1000 more
edges to match the total number of edges. Figures 2.17 and 2.18 plot the results from Algorithm 5 with
ω = 13890.12 and highlight the patterns found in Figures 2.15 and 2.16.
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Figure 2.15: Autonomous System Network: Difference and Relative difference between Average Degree
from Algorithm 6 and Actual Degree.

Our next step is to analyze the autonomous system network and Algorithm 5 with ω chosen to match
certain expected values. We begin by finding ω to match the expected number of edges with the actual
number of edges in the network (E(M) = m). For the autonomous system network, we use the formula
for E(M) given by Equation (2.3) and set it equal to m. We then solve this equation numerically to find
ω = 13889.77 ≈ 13890. This is approximately the same ω as the average ω calculated from the instances
generated by Algorithm 6. Thus, Figures 2.17 and 2.18 can be used to show the difference between the
expected degree and the real network and the expected degree and the expected degree from Model IV.
We do note that under this model, the expected degree of the highest degree node is approximately 879,
well under the actually degree of 1458. Given this we could also choose ω to match the expected degree of
the largest degree node. In this case, for the autonomous system network, we find ω = 23937.66 ≈ 23938.
This is almost double the number of edges in the original graph and the expected number of edges under
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Figure 2.16: Autonomous System Network: Comparing Average Degree from Algorithm 6 and Expected
Degree from Model IV.
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Figure 2.17: Autonomous System Network: Comparing Expected Degree from Algorithm 5 with
ω = 13890.12 and Actual Degree.

this model is 21085.51. Figures 2.19 and 2.20 plot the difference between the expected degree and the
actual degree and the difference between the expected degree and the expected degree from Model IV,
respectively. With ω = 23937.66, the expected degree for a large number of nodes is much greater than the
actual degree. This makes it an unattractive choice for ω in practice. The remaining case for ω that we
previously examined is the case where ω is chosen to match the probabilities. The ω we found was the least
squares solution to a system of equations. However, when the degree constraint is violated, ln(1− kikj

2m ) is

not defined for some nodes i and j since 1− kikj
2m < 1 for some nodes i and j. Thus we can not calculate

this ω for the autonomous system network or any network where the degree constraint is violated.

Next, we use the autonomous system network to examine the two distributions model described by
Algorithm 7. Using Algorithm 7, we generate l = 10000 instances of the network. Since we don’t know
the underlying model (i.e. we don’t know the probability of edge (i, j) begin in the graph after running
Algorithm 7), we can’t analyze the model analytically. However, we can look at the average values for
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Figure 2.18: Autonomous System Network: Comparing Expected Degree from Algorithm 5 with
ω = 13890.12 and Expected Degree from Model IV.
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Figure 2.19: Autonomous System Network: Comparing Expected Degree from Algorithm 5 with
ω = 23937.66 and Actual Degree.

different properties calculated from the l = 10000 instances. Figure 2.21 plots the difference between the
average degree and the actual degree and Figure 2.22 plots the difference between the average degree and
the expected degree from Model IV. While, the average degree is still much lower than the actual degree
for the larger degree nodes Algorithm 7 performs better than Algorithm 6 which can be seen by comparing
Figures 2.22 and 2.18. Also note that the average number of edges calculate from the l = 10000 instances
is 12412 which implies that unlike under Algorithm 6 we can still add edges after running Algorithm 7.

Finally, we use Algorithm 8 on the autonomous system network to find probabilities λi which will

better match the expected degree to the actual degree. We set λ
(0)
i = ki

2m ∀ i and ε = 10−7. For the
autonomous system network, the algorithm requires 58 iterations to reach the desired accuracy; however,
once again the constraints on λi are never violated. Before we normalize at the end of the algorithm we
find

∑
i λi = 1.12. For this network, ‖F (λ(0))‖ = 694.25 and ‖F (λ)‖ = 342.42. The maximum value

of Fi is given by the largest degree node and goes from 578.84 to 233.35 but the minimum value of Fi
actually increases from 0.00327 to 0.2035. As well, we see the same pattern with the expected number
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Figure 2.20: Autonomous System Network: Comparing Expected Degree from Algorithm 5 with
ω = 23937.66 and Expected Degree from Model IV.

0 1000 2000 3000 4000 5000 6000 7000
−450

−400

−350

−300

−250

−200

−150

−100

−50

0

50
Difference betweeen Average Degree and Degree

Node

d
(l
)

i
−
k
i

Figure 2.21: Autonomous System Network: Comparing Average Degree from Algorithm 7 and Actual
Degree.

of edges as we saw with the general relativity network. The expected number of edges with λ = λ(0) is
11429.50 but with λ = λ the expected number of edges is 10166.16 where the actual number of edges in
the graph is 12572. Again, it appears that choosing a different λ is better able to match the expected
degree to the actual degree for higher degree nodes comes at the cost of matching the expected degree
to the actual degree for lower degree nodes. Figure 2.23 plots the difference between the expected degree
using λ and the actual degree while Figure 2.24 plots the difference between the expected degree with
λi = ki

2m ∀ i and the actual degree. Figure 2.25 plots the difference between the expected degree using

λ and the expected degree with λi = ki
2m which is the expected degree from Model IV. From this figure

we can see that Algorithm 8 performs better than both Algorithm 7 and 6; however there is still a large
difference between the expected degree and the actual degree for some nodes.
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Figure 2.22: Autonomous System Network: Comparing Average Degree from Algorithm 7 and Expected
Degree from Model IV.
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Figure 2.23: Autonomous System Network: Comparing Expected Degree with λ and Actual Degree.

2.6 Conclusion

We examined some simple ways of improving the O(m) Chung-Lu model. In the case where the degree
constraint is not violated, the O(m) Chung-Lu model, Model IV, may not be a bad approximation to begin
with but by drawing more edges we can improve the degree distribution for some nodes although this comes
at the expense of overestimating the degree distribution for other nodes. Using the two distributions
algorithm, Algorithm 7, also improves the distribution, albeit by less than by simply adding edges for
the network we examined, but does not overestimate the distribution of other nodes. When the degree
constraint is violated drawing more edges again improves the degree distribution but is still well under
the desired value for large degree nodes. Using Algorithm 7 in this case does a better job of matching the
distribution and still underestimates the number of edges which allows for the possibility of adding more
edges. Algorithm 8 underestimates the number of edges and performs better Algorithm 7 in both the base
where the degree constraints hold and when they are violated. However, in the case where the constraint
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Figure 2.24: Autonomous System Network: Comparing Expected Degree from Model IV
(
λi = ki

2m ∀ i
)

and Actual Degree.

0 1000 2000 3000 4000 5000 6000 7000
−50

0

50

100

150

200

250

300

350
Difference between Expected Degree and Model IV Degree

Node

E
(D

i)
λ
−
E
(D

i)
λ
(
0
)

Figure 2.25: Autonomous System Network: Comparing Expected Degree with λ and Expected Degree
from Model IV.

on the input degree sequence is violated the modifications to the O(m) Chung-Lu model still leave large
differences between the expected degree and the actual degree for some nodes. This suggests along with
all our previous analysis that the Chung-Lu model, either the approximate model or the exact, either with
or without self-edges, is not a good choice for a null model.
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