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ABSTRACT 

Fatigue failure models, such as Miner’s Method, rely on stress-life models notably S-N curves.  

Usually stress-life models are generated from a series of experiments in which a specimen is 

subjected to single frequency cyclic loading.  This paper describes a two-step method for 

generating stress-life models from random vibration data.  The sensitivity of the stress life model 

to failure type, measurement location, cycle counting methods, and response distribution 

parameters was explored.  The method was developed and demonstrated for functional failure of 

a printed circuit board subjected to random vibration excitation.  Experiments showed that the 

definition of damage inducing cycles depends on the failure mode; that measurement location 

affects the stress life model because of the spatial stress variations in the specimen under test; 

peak-to-peak cycles produced more conservative S-N curves than rainflow cycles; and including 

higher order response characteristics may produce more accurate stress-life models.   

 

I. INTRODUCTION 

Miner’s method [1] is a relatively simple, non-parametric method for estimating fatigue life.  It is 

based on the assumption that every structural component has a specific fatigue life and every 

stress cycle uses up a portion of that fatigue life.  Furthermore, it assumes fatigue damage is 

proportional to the work absorbed by the structure [1].  Miner’s method is specified in almost 

every design code because of its simplicity and because the engineering community has not 

found anything consistently better ([2], pg. 271).   

 

To use Miner’s method, an S-N curve, also called a stress-life model, is required.  A typical S-N 

curve is shown in Figure 1.  S-N curves can be found in handbooks for specific materials and test 

conditions.  For example, MIL-HDBK-5 [3] contains properties, including S-N curves, for many 

steels and alloys.  Usually stress-life models are generated from a series of experiments in which 

a specimen is subjected to single frequency cyclic loading until complete separation of the 

specimen ([3], pg. 9-219).   

 

In this paper, an S-N stress life model of a printed circuit board (PCB) is derived from random 

vibration tests.  The PCB has four signal generator circuits (Figure 2).  Two circuits generate 

sinusoidal signals and two generate square wave signals.  Failure is defined as failure of a circuit, 

which is likely caused by a structural failure of a component on the PCB, or of traces in the PCB 

itself.   
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Figure 1 Example S-N curve for alloy steel from MIL-HDBK-5 

 

 
Figure 2 PCB and the locations of the 4 circuits 

 

Because of the functional failure aspect of this project, no stress-life model was available for the 

PCB.  A previous paper [4] described a RMS stress life model of the PCB derived from the 

random vibration data.  Since stress life models typically relate stress amplitude or maximum 

tensile stress, rather than RMS stress, to fatigue life, a method for generating a damage 

equivalent sinusoidal stress amplitude S-N model was developed and is described in this paper.  

In the RMS stress life model, only the number of cycles to failure is needed.  To derive an S-N 

Circuit 1 Circuit 2 Circuit 3

Circuit 4Connector



3 

curve from random data the stress amplitude distribution is required, not just the number of 

cycles to failure.  The stress amplitude distribution is a function of the response bandwidth and 

the way stress cycles are defined.  The sensitivity of the S-N curve to these parameters is 

discussed.   

 

Section II provides a brief overview of Miner’s method and key features of stress-life models 

applicable to this project are summarized in Section III.  A two-step method for deriving S-N 

curves from random vibration data is described in Section IV.  Section V contains a description 

of the experimental configuration and data collection.  The experimental results from a random 

vibration test of 16 PCBs, as well as analyses of the data to identify the sensitivity of the stress 

life model to failure type, measurement location, cycle counting methods, and response 

distribution are explained in Section VI.  Conclusions are presented in Section VII.   

 

II. MINER’S METHOD 

Miner’s method assumes fatigue damage is accumulated linearly and is proportional to energy 

absorbed by the structure.  The basic model for fractional damage accumulation is: 

 

 𝐷 = ∑
𝑛𝑗

𝑁𝑗

𝑀

𝑗=1

    (1)

 

where  

𝐷 =  fraction of consumed fatigue life; 

𝑛𝑗 =  number of cycles experienced by the structure at stress 𝑆𝑗; 

𝑁𝑗 = number of cycles to failure at stress 𝑆𝑗 determined from S-N curves. 

 

In theory, failure is predicted to occur when 𝐷 = 1; however, standard design practice uses 

𝐷 < 1. For example, 𝐷 = 0.3 for critical life-cycle electronic systems like those on man-rated 

space vehicles and 𝐷 = 0.7 for typical electronic structures ([5], pg. 410).  This design practice 

is used because Miner’s method is not consistently conservative since it does not use any 

parameters of the environment and failure modes explicitly.  For example, since Miner’s method 

does not account for the order of applied stress, it may over predict the fatigue life of a part that 

experiences the majority of large stress cycles early.  A part will be more likely to fail earlier in 

this type of environment than one that experiences a random distribution of stress cycles.  

 

Miner’s Method is widely used with some common assumptions: 

a. Eq. (1) is failure definition specific;   

b. The amount of damage from a cycle only depends on the number of cycles to failure at 

the applied load amplitude for that cycle; 

c. The amount of damage from a load cycle is independent of the total life consumed prior 

to application of the load cycle or the magnitude of previous loading. 

 

Use of Miner’s method requires an S-N curve and knowing the number of cycles the structure 

experiences in its operating environment.   
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III. STRESS LIFE MODELS 

Stress-life models are always derived from sinusoidal, full reversal cyclic loading tests of 

specimens to complete separation.  Four inherent aspects related to the stress side of S-N curves 

are:  

a. the S-N curve is consistent with the operational stress field in the structure;  

b. the S-N curve is failure mode and failure definition specific;  

c. the S-N curve assumes zero mean stress – a non-zero mean tensile stress will reduce 

fatigue life while a non-zero mean compressive stress will increase apparent fatigue life; 

d. the S-N curve is material specific - the specific material at risk of fatigue failure is 

known. 

 

On the fatigue life side, the number of cycles is straightforward to determine for cyclic and 

narrowband response.  It is not so straightforward to define and count stress cycles for wide band 

response.   

 

A simplifying assumption in fatigue analysis is that fatigue strength obeys a power law 

relationship: 

 

 𝑁𝑆𝑏 = 𝑆1
𝑏    (2)

 

where 𝑁 is the number of cycles to failure,  𝑆 is the cyclical stress amplitude,  𝑏 is the fatigue 

strength coefficient (i.e., −1 𝑏⁄  is the slope of the S-N line in log-log space), and 𝑆1  is the single 

cycle ultimate (or flexural) strength.  Both 𝑏 and 𝑆1  are empirically derived constants, whereas 

𝑁 and 𝑆 are measured during test.   

 

The power law model in Eq. (2) originated from fatigue tests on metals.  It is sometimes referred 

to as Basquin’s equation and is based on observations that fatigue failure is fundamentally due to 

microscopic cracks initiated at stress concentration features that eventually reach a critical size 

and affect the structural properties of the material (from loss of stiffness to fracture).  Note that 

Eq. (2) requires 𝑆 > 0 for arbitrary 𝑏.   

 

The fatigue strength relationship in the form of Eq. (2) is used in this paper because the structural 

failure leading to circuit failure is a crack in a circuit trace in the PCB or a crack in an electrical 

component, both of which are metal material failures.  Equation (2) is a linear function in log-log 

space and is often written as:  

 

 𝑆̂ = 𝑆1̂ −
1

𝑏
𝑁̂    (3)

 

where 𝑁̂ = log10 𝑁, 𝑆̂ = log10 𝑆, and 𝑆1̂ = log10 𝑆1.  The number of cycles, 𝑁, and the stress 

amplitude, 𝑆, are measured and 𝑆1̂ and 𝑏 can be readily obtained by least squares estimation.   

 

Because there is a distribution of stresses in a structure experiencing random vibration, consider 

the continuous form of Eq. (1):   
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 𝐷 = ∫
𝑛(𝑆)

𝑁(𝑆)
𝑑𝑆

∞

0

    (4)

 

Let 𝑛(𝑆) = 𝑁𝑇𝑓(𝑆) where 𝑓(𝑆) is the probability density function (PDF) of the stress peak 

amplitude and 𝑁(𝑆) is the number cycles to failure at stress 𝑆, and 𝑁𝑇 is the total number of 

cycles to failure.  Substituting the power law relationship, Eq. (2), for 𝑁(𝑆) into Eq. (4) gives: 

 

 𝐷 =
𝑁𝑇

𝑆1
𝑏 ∫ 𝑆𝑏𝑓(𝑆)𝑑𝑆

∞

0

    (5)

 

The integral term in Eq. (5) is the order 𝑏 moment of the peak stress distribution: 

 

 𝐸[𝑆𝑏] = ∫ 𝑆𝑏𝑓(𝑆)𝑑𝑆
∞

0

    (6)

 

For 𝐷 = 1, Eq. (5) becomes 

 

 𝑁𝑇𝐸[𝑆𝑏] = 𝑆1
𝑏    (7)

 

If the response is narrowband the instantaneous stress has a Gaussian PDF, and the probability 

density function (PDF) of the stress amplitude is a Rayleigh distribution: 

 

 𝑓(𝑆) =
𝑆

𝜎2
𝑒

(
−𝑆2

2𝜎2)
    (8)

 

where 𝜎 is the stress standard deviation (RMS when the stress distribution is zero mean), and: 

 

 𝐸[𝑆𝑏] = (√2𝜎)
𝑏

Γ (
𝑏

2
+ 1), 𝑏 > 0    (9)

 

Substitution of 𝐸[𝑆𝑏] from Eq. (9) into Eq. (7) gives a power law RMS stress life model i.e., a 

𝜎 − 𝑁𝑇 curve, in terms of stress standard deviation and number of cycles to failure for narrow 

band random vibration: 

 

 𝑁𝑇𝜎𝑏 =
𝑆1

𝑏

(√2)
𝑏

Γ (
𝑏
2 + 1)

    (10)

 

Recalling that the relationship between the peak amplitude and the standard deviation of a sine 

wave is 𝑆 = √2𝜎 gives:   

 

 𝑁𝑇𝑆̂𝑒
𝑏 = 𝑆1

𝑏    (11)

 

where  
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 𝑆̂𝑒 = 𝑆𝑒 (Γ (
𝑏

2
+ 1))

1
𝑏⁄

= 𝑆𝑒𝜆    (12)

 

is the equivalent stress amplitude and 𝑆𝑒 = √2𝜎 is the effective sinusoidal amplitude.  Equation 

(12) links stress from narrowband random vibration to sinusoidal S-N curves.  The term 𝜆 =

(Γ (
𝑏

2
+ 1))

1
𝑏⁄

 is a factor that accounts for the distribution of stress amplitude in the narrow 

band random response.  It scales the effective sinusoidal amplitude by a factor ranging from 0.89 

to 1.73 depending on the value of 𝑏, to give an equivalent stress amplitude that has the same 

damage potential as the random stress field.  The implication is that fatigue life in narrow band 

random vibration can be computed very simply with Miner’s rule with existing, handbook S-N 

curves.  For example, for metals, 𝑏 ≅ 6, which suggests using 2 stresses with published S-N 

curves.  Using 3 stresses will be sufficiently conservative even if 𝑏 is quite uncertain.  Note that 

this approach is rather more conservative than Steinberg’s 3-term Miner’s method [5].   

 

For wide band response, the stress amplitude distribution is not Rayleigh.  A measure of the 

bandwidth of a random process is the irregularity factor.  When the stress distribution, 𝑠(𝑡), is 

Gaussian, the irregularity factor, 𝛼, is: 

 

 𝛼 =
(∫ 𝑓2𝑊𝑆𝑆(𝑓)𝑑𝑓

∞

0
)

2

(∫ 𝑊𝑆𝑆(𝑓)𝑑𝑓
∞

0
)(∫ 𝑓4𝑊𝑆𝑆(𝑓)𝑑𝑓

∞

0
)
    (13)

 

where 𝑊𝑆𝑆(𝑓) is the spectral density of the response, i.e., stress measurement.  The distribution 

of amplitude peaks in a general random process is the Rice distribution [2]: 

 

 𝑓(𝑆) =
√1 − 𝛼2

𝜎√2𝜋
𝑒

(
−𝑆2

2𝜎2(1−𝛼2)
)

+ 𝛼Φ (
𝛼

𝜎√1 − 𝛼2
𝑆)

𝑆

𝜎2
𝑒−

1
2

(
𝑆
𝜎

)
2

 

−∞ < 𝑆 < ∞ 

   (14)

 

where Φ is the Gaussian cumulative distribution.  This is a generalization of the Rayleigh 

distribution as a function of the irregularity factor.  The first term has the form of a Gaussian 

distribution, the second has the form of a Rayleigh distribution multiplied by the Gaussian 

cumulative distribution.  Note that unlike a Rayleigh distribution, the second term is not zero for 

𝑆 < 0.  A random process is perfectly narrow-band when 𝛼 = 1 and it is infinitely wide (i.e., 

white) when 𝛼 = 0.  The standard Rice distribution is shown in Figure 3 with 𝜎 = 1.  Note that 

the Rayleigh distribution has a longer, larger tail than a normal distribution.  That is why the 

narrow band assumption leads to a conservative estimate of fatigue damage.   

 

The Rice distribution is not as useful as it might appear.  The assumption that the number of 

stress reversals is one-to-one with the number of stress peaks does not hold for a wide band 

process.  Miner’s method and the power law stress life model require only positive (i.e., tensile) 

stress peaks, 𝑆 > 0, (Eq. (2)) because of the implicit assumption that compression only cycles 

cause no damage.  Note that compression cycles contribute to fatigue damage accumulation only 
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when there is localized tensile stress and this failure location may not be the same as the one 

most sensitive to global tensile stress.  However, the Rice distribution is helpful toward 

understanding stress distribution from random vibration.   

 

 
Figure 3 The Rice distribution, −∞ < 𝑺 < ∞ 

 

For the PCB, assume that the top of the board is instrumented with strain gages.  Assume that the 

neutral axis is at the mid-plane of the board and out-of-plane bending is the dominant deflection 

type, so while the top of the board is in compression the bottom is in tension, and vice versa.  

Assume further that failure could be in the cross-section above or below the neutral axis.  If the 

board failure mode is due to normal stress, then only half of the cycles are damage causing 

cycles.  In this case, the Rice distribution is truncated to only 𝑆 > 0 (Figure 4), which is 

consistent with Eq. (6).  The truncated Rice distribution also applies to component failure on one 

side of the board, under the assumption that the component does not see fatigue damage inducing 

stresses when its side of the board is in compression.   

 

If the failure mode is inter-laminar shear, then both compression and tension cause damage 

equally.  Therefore, Eq. (6) becomes:   

 

 𝐸[𝑆𝑏] = ∫ |𝑆|𝑏𝑓(𝑆)𝑑𝑆
∞

−∞

    (15)

 

This is equivalent to folding the Rice distribution as shown in Figure 5.   

 

The RMS stress amplification factors (√2𝜆, Eq. (12)) for the truncated Rice distribution and the 

folded Rice distribution are shown in Figure 6 and Figure 7, respectively for irregularity factors, 

0 ≤ 𝛼 ≤ 1.   
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In a previous paper [4], a 𝜎 − 𝑁𝑇 stress life model was derived for the PCB from random 

vibration tests of 16 boards.  In the next section, an S-N stress life model in the form of Eq. (11) 

is derived from random vibration test data using Eqs. (6) and (7).  The sensitivity of the resulting 

S-N curve to the cycle counting method is illustrated numerically.   

 

 
Figure 4 The Rice distribution, S > 0  

 

 
Figure 5 The folded Rice distribution S > 0 
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Figure 6 Truncated Rice distribution RMS amplification factor, √𝟐𝝀 

 

 
Figure 7 Folded Rice distribution RMS amplification factor, √𝟐𝝀 
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IV. STRESS LIFE MODELS FROM RANDOM VIBRATION DATA 

This section describes a two–step method of deriving an S-N curve from random vibration data.  

Direct identification of the parameters of the fatigue strength function in Eq. (7) does not lend 

itself to a straightforward least squares approach because the moment order, 𝑏, must be 

estimated.  To that end, assume that the exponent 𝑏, in the 𝜎 − 𝑁𝑇 model: 

 

 𝑁𝑇𝜎𝑏 = 𝐶    (16)

 

is the same as in the S-N model.  The model parameters, 𝐶 and 𝑏, are determined empirically 

from measurements of 𝜎 and 𝑁𝑇 through least squares estimation as:   

 

 {
𝑏
𝐶̂

} =  [Ψ𝑇Ψ]−1Ψ𝑇{𝑁̂𝑇}    (17)

 

where 𝐶̂ = log10 𝐶, 𝜎̂ = log10 𝜎 , 𝑁̂𝑇 = log10 𝑁𝑇  

 

 {𝑁̂𝑇} = [𝑁̂𝑇1 𝑁̂𝑇2 … 𝑁̂𝑇1𝑙]
𝑇    (18)

 

and 

 

 Ψ = [

−𝜎̂1

−𝜎̂2

1
1

⋮
−𝜎̂𝑙

⋮
1

]    (19)

 

Note that the RMS of a random process is not a unique descriptor of the random process.  

Random processes can have the same RMS yet vastly different spectral content and the spectral 

content may affect fatigue life as much as the overall level.  Therefore, another inherent 

assumption herein is that the spectral content of the response from which the fatigue data are 

gathered is consistent with the spectral content the part experiences in its operational 

environment.  When deriving functional fatigue failure models from random vibration data, the 

familiar adage “test as you fly” is sage advice.   

 

Now, with the exponent,  𝑏, known, compute 𝐸[𝑆𝑏] with Eq. (6).  The stress amplitude 

distribution, 𝑓(𝑆), must be determined by counting stress cycles in the response history.  A 

variety of methods for counting the number of cycles in a response history have been proposed 

for fatigue life analyses.  Each defines a cycle differently, but the objective is the same – to 

reduce an irregular time history of a random process into a distribution of stress ranges and 

amplitudes.  The simplest method counts peak-to-peak cycles.  A peak-to-peak cycle is the signal 

between two adjacent extremal points of the same type – a peak or a valley.  The rainflow 

method [6], [7] which counts closed stress/strain hysteresis loops is the industry standard for 

counting the number of stress cycles, determining the stress range and the mean stress for each 

cycle in a realization of a random process.  For narrowband random response dominated by a 

single mode, rainflow cycles and peak-to-peak cycles are the same.  Regardless of the method 

and cycle definition used, the total number of cycles in the response history will be the same, or 

very nearly so; however, the rainflow stress distribution generally has a higher percentage of 
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large amplitude cycles than the peak-to-peak distribution.  The sensitivity of the PCB stress life 

model to the distribution of peak amplitude stresses is compared by computing 𝐸[𝑆𝑏] with peak-

to-peak cycles, and rainflow cycles.   

 

Next, let 𝑆̂𝑒 = 𝐸[𝑆𝑏]
1

𝑏⁄ = 𝜆𝑆𝑒  from Eqs. (7), (11) and (12).  This is the equivalent cyclic stress 

amplitude in the S-N curve.  The last step is to estimate 𝑆1  in Eq. (7).  This is simply the mean 

of 𝑁𝑇
1/𝑏𝑆̂𝑒  over the experiments; in this case the 16 PCB tests.  The coefficient of variation of 

𝑆1  is: 

 

 
𝐶𝑜𝑉(𝑆1) =

 √∑ [𝑆1 − (𝑁𝑇
1/𝑏𝑆̂𝑒 )

𝑖
]

2
𝑀
𝑖=1

𝑆1
 

   (20)

 

In summary, the steps to derive an S-N curve from random data are: 

1) find the least squares estimate of 𝑏 and 𝐶, using measurements of 𝜎 and 𝑁𝑇 and Eqs. (17) 

- (19); 

2) compute 𝐸[𝑆𝑏] with Eq. (6) or Eq. (15) [Note that the choice depends on the expected 

failure mode and the result depends on the cycle counting method]; 

3) Compute the equivalent cyclic stress, 𝑆̂𝑒 ; 

4) estimate 𝑆1  in Eq. (7) – i.e., the mean of 𝑁𝑇
1/𝑏𝑆̂𝑒  over the experiments   

 

The fundamental assumptions in this method are: 

1) the exponent 𝑏, in the 𝜎 − 𝑁𝑇 model, is the same as in the S-N model; 

2) the spectral content of the response from which the fatigue data are gathered is consistent 

with the spectral content the part experiences in its operational environment. 

 

V. THE PCB EXPERIMENTS 

In the PCB fatigue study, 16 boards were available and tests had to provide data for multiple 

purposes so random vibration tests were used exclusively; no sinusoidal environments were 

applied.  The boards were subjected to random vibration imparted through an electrodynamic 

shaker.  The boards were attached to the base at two corners as shown in Figure 8.  The PCB and 

base were mounted on an Unholtz-Dickie T-2000 shaker (Figure 9) and excited in the vertical 

direction over a bandwidth of 40 Hz to 2000 Hz.  One accelerometer was mounted to the 

connector and a second was attached at a free corner.   

 

The PCBs are square; each side is 3.5 in long.  Each PCB has four signal generator circuits.  Two 

circuits generate sinusoidal signals and two generate square wave signals (Figure 10).  Failure is 

defined as failure of a circuit, based on the output signal from the PCB.  Specifically, the per 

circuit failure criterion is that the peak response in three consecutive 20 second segments 

deviates from the peak response in the reference segment by more than 1%.  The second segment 

in the healthy circuit is the reference segment.  Figure 11 illustrates the criteria for Circuit 1.  In 

Figure 11(a) the green dots are segments where the peak amplitude is within 1% of the reference 

segment peak amplitude; the blue dots are segments in which the peak amplitude exceeds the 1% 

threshold but they are not consecutive; the red dots are segments in which Circuit 1 has failed.  
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Figure 11(b) shows the output signal of Circuit 1 in the reference segment and the first failed 

segment.  Even in the failed segment, the circuit output is qualitatively similar to the signal in the 

reference segment indicating that the circuit has not yet failed catastrophically.   

 

The PCB also was instrumented with strain gages.  Three strain gages were mounted along the 

diagonal connecting the mounting points.  One was near the center of the board and the other two 

were near each mounting post. The accelerometer and strain gage output signals were sampled 

throughout the entire test at 8192 Hz.  The stress amplitude distribution, 𝑓(𝑆), and number of 

cycles to failure, 𝑁𝑇, were determined from the time history of the strain response.  Average 

stress, 𝜎𝐴𝑉𝐺,  

 

 𝜎𝐴𝑉𝐺 =
𝐸

2
[
𝜀1 + 𝜀3

1 − 𝜐
]    (1)

 

derived from the strain gages at the corners were the quantities of interest (Figure 12).  They 

were selected because an analysis of the circuit 1 failures indicated that they were caused by 

damage in the FR-4 laminate, not by damage to the electronic components.  The same failure 

mode was assumed for circuit 4.   

 

A quasi-isotropic Young’s modulus and Poisson’s ratio for the PCB were determined through 

static tests and were found to be: 𝐸 = 3.795𝑥106 𝑝𝑠𝑖, 𝜐 = 0.266.  The board to board variation 

in modal properties is shown in the scatter plot of transmissibility peaks (Figure 13) measured by 

the accelerometer attached at a free corner of the PCB.  The divisions in Figure 13 correspond to 

the five divisions of the 2-level fractional factorial design matrix shown in Figure 14.  This 

design was chosen based on the board response to a flat random vibration input of 0.001 𝑔2 𝐻𝑧⁄  

over 20 to 2000 Hz, which revealed four well-separated resonances with transmissibility peaks 

above 1 and a high-frequency band with many resonances having transmissibility peaks 

generally below 1.  Input profiles were designed to excite the test board in these five frequency 

bands with prescribed combinations of high or low modal energy according to the design matrix.  

The high input level was 1 𝑔2 𝐻𝑧⁄  and the low input level was 6dB below this, or 0.25 𝑔2 𝐻𝑧⁄ .  

Figure 14 shows PSD plots of three representative input profiles and the corresponding rows in 

the design matrix.   

 

Each of the sixteen boards was exposed to its unique excitation profile.  The tests were carried 

out in two phases.  The initial tests were performed in 2013 and the results are described in Ref. 

[4].  A second series of tests was carried out in 2014.  In the initial tests, none of the circuits 

failed in two hours in four of the DOE load profiles (DOE trials 2,5,9,10).  Two boards failed 

prematurely in 2 initial trials (DOE trials 1, 8) so these were repeated with different boards.  In 

one trial (DOE trial 14), it appeared that the connector block failed so this profile was rerun with 

a new board.  All tests were performed until circuit 1 and circuit 4 failed.  Only in DOE trial 4 

did circuit 4 not fail.  This test was terminated after 4 hours.   
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Figure 8 PCB attached to its fixture at 2 corners as tested 

 

 

 

 

 
Figure 9 Vibration test instrumentation 
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(a) Circuit 1 

 
(b) Circuit 2 

 
(c) Circuit 3 

 
(d) Circuit 4 

Figure 10 Output voltage signals from the 4 PCB circuits 

 

 

 

 
(a) Circuit 1 Normalized Amplitude 

Variation Time History 

 
(b) Circuit 1 Output Signal in Reference 

Segment and First Failed Segment 

Figure 11 Failure of PCB circuit 1 
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Topside of Board 

 
Circuit 4 Gage 1 

Backside of Board 

 
Circuit 1 Gage 3 

Figure 12: Strain gage locations on the PCB 

 

 
Figure 13 Transmissibility peak distribution 
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Figure 14: Two-level fractional factorial design matrix with three example profiles. The 

plus symbol (+) indicates high-level random vibration input in the frequency band and the 

minus symbol (–) indicates low-level input. 

 

VI. RESULTS 

Table 1 summarizes circuit 1 and circuit 4 times-to-failure (minutes) and the input and output 

RMS levels for each of the cases (G’s and psi, respectively).  Circuits 2 and 3 proved to be very 

robust and did not fail in about 50% of the tests, probably because they are not in high stress 

regions on the PCB.  These circuits are not analyzed in this paper.  Run 17 in Table 1 is a 

variation on Run 07 in which the input level in band E (700 Hz – 2000 Hz) was low (Figure 14).  

This case does not fit into the design of experiments matrix but is valid for the analyses herein.   

 

The gage 3 𝜎 − 𝑁𝑇 stress life models for circuits 1 and 4 are shown in Figure 15.  The number of 

cycles to failure, 𝑁𝑇, was computed from the time histories by counting stress reversals.  The 

stress life exponent is 4.6 and the single cycle failure stress is 10 kpsi for circuit 1.  These are 

well below the flexural strength of FR-4 (70 kpsi).  This is not surprising since the failure 

criterion was functional failure of the circuit, not catastrophic structural failure of the FR-4.  The 

circuit 1 stress life model correlates well with gage 3 (R
2
 = 0.74).  The results for circuit 4 were 

affected by the no failure of Run 04.  This was a high stress case for which circuit 4 should have 

failed.  It may suggest that RMS response is not a sufficient metric for fatigue life prediction.   

Design Matrix

DOE 
Trial

Run A B C D E

1 1 – – – – +

2 6 – – – + –

3 3 – – + – –

4 4 – – + + +

5 15 – + – – –

6 12 – + – + +

7 7 – + + – +

8 16 – + + + –

9 2 + – – – –

10 9 + – – + +

11 8 + – + – +

12 13 + – + + –

13 14 + + – – +

14 5 + + – + –

15 11 + + + – –

16 10 + + + + +

7* 17 – + + – –
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Table 1 Circuit 1 and 4 RMS Fatigue Life 

Test 
Input 

RMS (g) 

Gage 1 Avg 
Stress RMS 

(psi) 

Gage 3 Avg 
Stress RMS 

(psi) 

Circuit 1 
Fail Time 

(min) 

Circuit 4 
Fail Time 

(min) 

Run01 SN012 DOE01 38.26 837.23 385.05 34.96 34.88 

Run02 SN024 DOE09 22.78 778.84 352.80 131.54 131.24 

Run03 SN029 DOE03 25.12 1565.92 597.31 21.86 118.65 

Run04 SN027 DOE04 43.67 1428.14 656.26 25.19 No Failure 

Run05 SN023 DOE14 28.98 945.03 392.74 23.74 17.65 

Run06 SN015 DOE02 28.08 834.53 373.62 149.09 148.96 

Run07 SN011 DOE07 40.34 1349.84 618.50 13.69 13.72 

Run08 SN026 DOE11 40.42 1344.19 605.02 16.90 16.67 

Run09 SN030 DOE10 42.35 Gage Failed 377.15 127.37 127.84 

Run10 SN017 DOE16 44.27 1250.93 584.05 16.32 36.90 

Run11 SN022 DOE15 26.16 1355.01 596.04 22.99 15.99 

Run12 SN013 DOE06 42.25 873.58 382.63 50.98 49.33 

Run13 SN025 DOE12 30.98 1381.35 654.69 24.31 21.03 

Run14 SN018 DOE13 38.93 830.98 397.91 120.55 84.52 

Run15 SN016 DOE05 22.6 696.09 327.90 122.98 123.02 

Run16 SN020 DOE08 30.88 1261.45 596.76 10.66 9.72 

Run17 SN028 DOE07* 25.56 1340.13 672.87 23.97 35.18 

 

The data in Figure 15 are striated.  The RMS responses tend to cluster into two populations, one 

around log10(𝑆𝑅𝑀𝑆) =   2.6 and the other around log10(𝑆𝑅𝑀𝑆) =   2.8 with a large range of 

cycles to failure for similar response levels.  The data points grouped at log10(𝑆𝑅𝑀𝑆) =   2.6 all 

had low excitation in band C, 110 𝐻𝑧 < 𝑓 < 300 𝐻𝑧 (Figure 14).  This further suggests that 

perhaps a richer characterization of the response is needed to model fatigue failure in random 

vibration.   

 

Table 2 summarizes the moments of the response distributions.  Note that the response 

distributions are not the peak amplitude distributions.  The runs that had low excitation in band C 

are identified with an underline in Table 2.  Figure 16 shows an obvious clustering; longer life is 

associated with larger kurtosis.  This suggests that the kurtosis of the response may be a valuable 

parameter to include in a random vibration fatigue life model.   
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Figure 15 Gage 3 Stress-life Models, Circuit 1 and Circuit 4 

 

Table 2 Gage 3 Average Stress Response Distribution Moments 

Test 
Input 

RMS (g) 

Gage 3 Avg 
Stress Mean 

(psi) 

Gage 3 Avg 
Stress RMS 

(psi) 

Gage 3 
Avg Stress 
Skewness 

Gage 3 
Avg Stress 
Kurtosis 

Run01 SN012 DOE01 38.26 0.15 385.05 0.12 2.93 

Run02 SN024 DOE09 22.78 -3.40 352.80 0.13 2.76 

Run03 SN029 DOE03 25.12 -5.54 597.31 0.16 2.47 

Run04 SN027 DOE04 43.67 -3.31 656.26 0.15 2.46 

Run05 SN023 DOE14 28.98 0.12 392.74 0.17 2.70 

Run06 SN015 DOE02 28.08 -5.94 373.62 0.10 2.89 

Run07 SN011 DOE07 40.34 -5.65 618.50 0.23 2.62 

Run08 SN026 DOE11 40.42 -2.80 605.02 0.16 2.50 

Run09 SN030 DOE10 42.35 -2.81 377.15 0.10 2.62 

Run10 SN017 DOE16 44.27 0.75 584.05 0.17 2.57 

Run11 SN022 DOE15 26.16 -11.28 596.04 0.15 2.57 

Run12 SN013 DOE06 42.25 -0.17 382.63 0.13 2.85 

Run13 SN025 DOE12 30.98 -5.15 654.69 0.18 2.56 

Run14 SN018 DOE13 38.93 -0.31 397.91 0.17 2.77 

Run15 SN016 DOE05 22.6 -2.87 327.90 0.12 2.88 

Run16 SN020 DOE08 30.88 8.85 596.76 0.19 2.68 

Run17 SN028 DOE07* 25.56 -1.11 672.87 0.15 2.49 
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Figure 16 Gage 3 Kurtosis vs. Cycles to Failure 

 

The 𝜎 − 𝑁𝑇 stress life models for circuits 1 and 4 using gage 1 are shown in Figure 17.  The 

stress-life model is consistent with that from gage 1; however, the single cycle flexural strength 

𝑆1  is higher, indicative of a higher stress field around gage 1.  Since the stress fields are spatially 

continuous either gage is valid for deriving a stress life model.  The differences in the measured 

stress levels illustrate an important aspect of functional failure fatigue analysis – the 

measurement location matters. 

 

Figure 18 shows the gage 3 PSD for Run 10, in which the entire bandwidth was excited (i.e. 

broad band excitation).  While the response appears to be dominated by one mode, the 

distribution of stress amplitudes is nearly Gaussian and the irregularity factor is very small, 

𝛼 = 0.03.   

 

Figure 19 shows the stress amplitude distributions from DOE Trial 03 for both rainflow cycles 

and peak to peak cycles.  Run 03 had a high input level in the 110-300 Hz band where the 

dominant mode resides so it should excite primarily the mode around 200 Hz.  The Rice 

distribution is overlaid on the histograms.  While the irregularity factor was the largest for this 

trial at 𝛼 = 0.18, it is still indicative of a broad band response.  The rainflow cycle peak stress 

amplitude distribution is skewed, whereas the peak-to-peak distribution is nearly symmetric, 

albeit slightly bi-modal.  As discussed in Section IV, this is typical; a rainflow stress distribution 

generally has a higher percentage of large amplitude cycles than a peak-to-peak distribution.  

The reason for the bi-modality in the peak-to-peak distribution was not investigated.   
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Figure 17 Gage 1 Stress-life Models, Circuit 1 and Circuit 4 

 

 
Figure 18 Gage 3 PSD for DOE Trial 16 – Broadband Excitation 
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(a) Rainflow Cycle Amplitude Distribution 

 
(b) Peak to peak Cycle Amplitude Distribution 

Figure 19 Gage 3 Cycle Amplitude Distributions 

 

Figure 20 shows the distributions of cycle means.  The measured stresses are about 2% of the 

flexural strength of FR-4 (70 kpsi) so no correction for mean stress is made.  The stress 

amplitudes can be considered fully reversed stress amplitudes. 
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(a) Rainflow Cycle Mean Distribution 

 
(b) Peak to peak Cycle Mean Distribution 

Figure 20 Gage 3 Cycle Mean Distributions 

 

A post-test analysis of the circuit 1 failures indicated that they were caused by damage in the FR-

4 laminate, not by damage to the electronic components, in this region of the board.  Therefore 

damage accumulated from compression cycles as well as tension cycles.  Applying the process 

outlined previously, Figure 21 shows the derived S-N curves based on gage 3, and the model 

parameters are displayed in Table 3.  The figure shows that when creating an S-N fatigue life 
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model from random vibration tests, the narrowband assumption is the least conservative.  The S-

N fatigue life model for the PCB generated with the rainflow cycles was less conservative than 

the model generated with peak to peak cycles.  For a constant number of cycles, the failure stress 

is higher when estimated with rain-flow cycles.  For a constant stress, the estimated number of 

cycles to failure is larger using a rain-flow definition than the peak-to-peak definition.  failure 

stress is fo for a The Rice distribution model is comparable to the rainflow distribution model.  

The stress-life model parameters from gage 1 measurements are listed in Table 4.   

 

 
Figure 21 Amplitude Stress-life Model Comparison from Gage 3 

 

Table 3 Circuit 1 Stress-life Model Parameters from Gage 3 

  RMS Rainflow Peak2Peak Rice Rayleigh 

S1 (psi) 10164 15166 13570 14666 18047 

b 4.664 4.664 4.664 4.664 4.664 

 1.0 1.48 1.32 1.43 1.76 

 

Table 4 Circuit 1 Stress-life Model Parameters from Gage 1 

  RMS Rainflow Peak2Peak Rice Rayleigh 

S1 (psi) 27770 42597 37478 39770 47503 

b 4.139 4.139 4.139 4.139 4.139 

 1.0 1.52 1.34 1.42 1.70 
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VII. CONCLUSIONS 

This paper describes a two-step method to generate power law S-N fatigue life models from 

random vibration data.  The first step uses the RMS response to estimate the fatigue life model 

exponent.  The second step estimates the equivalent sinusoidal amplitude that induces the same 

amount of damage as the random environment and relates it to the RMS response through a 

scaling factor, which was shown to have an effective range from 1 to 2.5 depending on the stress 

life model exponent and the distribution of cycle amplitudes.   

 

For a complex structure like the PCB studied in this paper, the failure mode and the location of 

the “weak link” in the structure should be known.  The PCB failure mode was failure in the FR-

4, not failure of a surface mounted component.  The responses in sixteen excitation cases had 

broadband characteristics suggesting that a normal distribution of amplitude peaks maybe more 

often the case than not.  Furthermore, the PCB data suggest that additional parameters beyond 

RMS response, such the kurtosis of the response distribution, should be given consideration 

when deriving random vibration fatigue-life models. 

 

The narrowband assumption is the least conservative when creating an S-N fatigue life model 

from random vibration tests.  The most conservative S-N curve is obtained assuming an RMS 

amplification factor of 1.  Using peak-to-peak cycles led to a more conservative S-N curve than 

using rainflow cycles; however the difference was small.  The Rice distribution yielded a 

comparable scaling factor as the rainflow distribution. 

 

When assessing the fatigue failure risk from random vibration with Miner’s method and 

handbook S-N curves, the RMS response level must be scaled to obtain an equivalent sinusoidal 

amplitude.  The most conservative approach is to assume a narrowband response which yields 

the largest scaling factor, but this might be too conservative because the response may be more 

broadband than narrowband.  The Rice distribution is a reasonable approximation if a problem 

specific distribution is not derived.  
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