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Repair material development
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Nanocomposites - addition of small

amounts of nano-scale materials can
dramatically alter properties of materials
such as polymers, composites, and
cements.

« Strength

* Ductility

* Reduce shrinkage
« Thermal stability
« Resistance to degradation 2-25 nm




AUNM Materials Li
Material Nano- Nano
Abbreviation Base material material content
Reference Microfine cement None -—-
PCNCI1 Microfine cement + 5%SBR latex None -—-
PCNC2 Microfine cement + 15%SBR latex None -—-
PCNC3 Microfine cement + 5%SBR latex MWCNTs 0.5%
PCNC4 Polysulfide siloxane epoxy None -—-
PCNCS5 Polysulfide siloxane epoxy MWCNTs 0.5%
PCNC6 Polysulfide siloxane epoxy MWCNTs 1.0%
PCNC7 Polysulfide siloxane epoxy MWCNTs 1.5%
PCNC8 Polysulfide siloxane epoxy Nanoclay 4%
PCNC9 Polysulfide siloxane epoxy Nanosilica 1%
PCNCI10 Polysulfide siloxane epoxy Nanoalumina 2%
PCNC11 Novolac epoxy None ---
PCNC12 Novolac epoxy MWCNTs 0.5%
PCNCI13 Novolac epoxy Nanosilica 1%
PCNC14 Novolac epoxy Nanoalumina 2%
PCNC15 Polysulfide siloxane epoxy NF-MWCNTs 0.5%
PCNC16 Novolac epoxy MWCNTs 1.0%
PCNC17 Novolac epoxy MWCNTs 1.5%
PCNC18 Novolac epoxy Nanoclay 4%
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Slant shear test @ Sandia
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temperature and pressure K

Reactor

Scaled
specimens

o

Polymer
overlay

Temp: 80 °C
Pressure: 1500 psi
Conditions similar to 1000 m in oil well
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Numerical simulation of slant shear
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Flow through damaged and
repaired wellbore systems

14



Pore fluid

Casing

Perforation

Pressure cell

Casing fluid
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Cement sheath
Confining fluid

Membrane
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Independent control of
confining pressure to
30 MPa and casing
pressure to 20 MPa.
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AU Gas Permeameter ) .

Gas pressures to 14 MPa.
Permeability range >10-12 to <10-2" m?
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* Microannulus

— Large

— Small
 Cement fracture
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Analysis of non-linear flow
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Gas-slip (Klinkenberg) effects

Conventional method — vary gas pressure
k= ki (1+-)

m

Alternative method — vary gas type

d
k = ki(1+\/7“
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unload

¢ Vary internal
pressure
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¢ Vary internal
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Large microannulus
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AUNM  Vary casing pressure — ;
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AUNM  Vary casing pressure -
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Small microannulus
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Fit response to hyperbolic function

Radial fracture (loading)
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Repair of damaged wellbores
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Repair of damaged wellbores
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Large microannulus repair

1.E+01

1.E+00 -

1.E-01 -

1.E-02 -

1.E-03 -

Flow rate (SLM)

1.E-04 -

LE05 .

Before repair After repair

Confining pressure = 200 psig
Internal pressure = 200 psig
Pore pressure = 100 psig 36



Effective system
permeability (m~2)
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Cement fracture repair
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In development for evaluating repair

« Change casing
temperatures to
induce casing
expansion and
contraction
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Numerical modeling
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AUNM Numerical simulations () s
Model of pressure vessel system

Estimate stress and strains repair material will be subject to

Correlate stress conditions to permeability values
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Wellbore Seal Repair Project

DOE NETL funded in collaboration with UNM

Novel Materials Development Test Matrix

Polymers Nanomaterials

Neat CNTs Nanoclay Nanosilica Nanoalumina Graphene NP
Polysulfide siloxane epoxy C C C C C U
Novolac epoxy C C U C C U
Siloxane epoxy P P P P P P
SBR latex/cement P P P P P P
Reference repair material P (without nanomaterials)
(Microfine| cement)
C: Completed testing U: Undergoing testing P: Planned testing in coming quarter

Wellbore Mock-up Bench-scale Testing

Repair material access

Pore fluid

Cement sheath

Confining fluid

Membrane

Casing fluid



eomechanical Wellbore
Modelling

Individual sections that
could be cement, epoxy, or
void space

Shear
displacement
< along rock layer
interface

Rock 1

Inward toward Casing

Boundary condif on (no displacement, swelling/shrinkage due to resevair, etc.)
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Stress at
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Plastic deformation
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compressive
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~1000 M .[

Intregrating Wellbore Modeling
with Field Scale Modeling

~ 5000 M
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Nicot et al., IJGGC, 18, 2013



Developments with
nanocomposites for wellbore
applications
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Electrical conductivity
increased with MWCNTSs

Conductivety [S/m]
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Self-healing composites

b vascular C Intrinsic

Blaiszik et al. 2010, Annual Review of Materials Research



Self-healing and monitoring AUNM

Damage
and
cracking

Electrical conductivity
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Thank you!
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An Appreciable Reduction in Carbon
Emissions is a "Heavy Lift"

Billions of tons Toward

14 carbon emitted v trg:g:g
per year
S
8
=
O 7 Historical
G emissions Avoid
o o doubling
N 2 COz
<
= :

1955 2005 2055

S. Pacala and R. Socolow. Science, 305(5686), p.968-972, 2004

14

T
2005 2055

7 Wedges = 1.3 Tt CO2
1 wedge ~ 186 GtCO2
= 4X Increase in 3d
natural gas



Anatomy of an Abandoned Wellbore

Interfaces between well cement / caprock and well cement/wellbore have high
potential as leakage pathways

Well Casing

Well
Cement

(outer
annulus)

Caprock -7 '_

Formation

-

Well Casing is filled w/ meters of well cement

Well cement [ wellbore
interface

Well cement caprock
interface

Gasda et al., 2008



Typically, there are thousands of (known) abandoned
wells in a field

Re-completion 1s prohibitively expensive

E Carson St

E Wardlow Rd

Lakewood Blvd

Willow St

v
Katella Ave

/,
006\

*

*Wesiminster A

* actvecilwels Long Beach Area OQil Fields . GeoAssurance

% Abandoned Oil Wells ANnette Kephart (562) 843-2682 e et gy whats beiay

Natural Hazard and Environmental Reports

http://en.wikipedia.org/wiki/Long_Beach_Oil_Field http://en.wikipedia.org/wiki/Long_Beach_Oil_Field
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Verticality Matters!

T, P will effect cement curing
— Permeability, porosity

Solubility of CO2 varies w.r.t. T, P, and brine
concentration

Phase of CO2 varies with T, P
Also can affecting mineral wetting properties
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Simulations imply possible kinetic
slow-down due to self-sealing

-2
Z 25w 30 mM CO, (1 bar CO, )
E H"I--.‘¢
g -3 "
t : 0.01 mM CO,
e : ~
] "3 i 10mMCO, e -4
= ; -
2 4 =. l "
I : i
¥ 45 L
-5
0 1 2 3 4 5

pCO2 = -log ([ CO, 1)

Data courtesy of Dr. Bruno Huet, Lafarge



Pore-Plugging Experiments

Corrosion Depth ( mm )
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