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Abstract

Solute segregation to grain boundaries is considered by modeling solute atoms as misfit-
ting inclusions within a disclination structural unit model describing the grain boundary
structure and its intrinsic stress field. The solute distribution around grain boundaries is
described through Fermi-Dirac statistics of site occupancy. The susceptibility of hydrogen
segregation to symmetric tilt grain boundaries is discussed in terms of the misorientation
angle, the defect type characteristics at the grain boundary, temperature, and the prescribed
bulk hydrogen fraction of occupied sites. Through this formalism, it is found that hydro-
gen trapping on grain boundaries clearly correlates with the grain boundary structure (i.e.
type of structural unit composing the grain boundary), and the associated grain boundary
misorientation. Specifically, for symmetric tilt grain boundaries about the [001] axis, grain
boundaries composed of both B and C structural units show a lower segregation susceptibil-
ity than other grain boundaries. A direct correlation between the segregation susceptibility
and the intrinsic net defect density is provided through the Frank-Bilby formalism. Overall,
the present formulation could prove to be a simple and useful model to identify classes of
grain boundaries relevant to grain boundary engineering.
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1. Introduction

Solute-atom segregation to grain boundaries (GBs) and other microstructural line defects
such as dislocations substantially affects their fundamental physico-chemical properties, e.g.
grain boundary energy [1–3], grain boundary mobility [4–7], and grain boundary cohesion [8–
10], which in turn impacts a wide range of material behaviors including strain aging [11–13],5

intergranular fracture [14, 15], recrystallization [16, 17], and creep [18, 19]. The chemical
equilibrium distribution of solutes in a solid determines the interaction between these solutes
and defects already existing in a material system and plays a key role in the nature of the
subsequent mechanisms governing the behaviors listed above.
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Preprint submitted to Acta Materialia November 9, 2015

SAND2015-10306J



It has been established, both experimentally [8, 20–22] and theoretically [11, 23–27],10

that solute equilibrium depends on the intrinsic character of the defect considered and its
associated pre-existing stress field. Of particular theoretical interest, Cai et al. [27] recently
clarified the formalism of how the equilibrium configuration of solutes should depend on the
stress field in an isotropic elastic solid. This formulation models the chemical equilibrium
distribution of point defects as non-overlapping spherical inclusions with purely positive di-15

latational eigenstrain. This formulation excludes the self-stress of the inclusions (hydrostatic
stress found inside the inclusion), but accounts for the image stresses introduced to satisfy
the boundary conditions in a finite solid. The solute distribution around a given defect d
follows Fermi-Dirac statistics on the hydrostatic stress field produced by the defect consid-
ered, the stress fields generated by other defects, and stress field generated by external loads.20

This non-uniform distribution of solutes around a defect d is accompanied by a coherency
stress preserving the coherency of the crystal lattice. In an infinite isotropic elastic medium
it has been shown [24, 27] that the coherency stress is directly proportional to the local
concentration of solutes and the solute distribution throughout the entire solid.

Most of the theoretical treatments concerning the interaction between solute atoms and25

defects focus on dislocation-type defects [11, 24, 27–32]. For example, Cottrell and Bilby [11,
28, 29] and later work extended by others [24, 27, 31, 32] have examined the equilibrium
solute distribution around a single infinitely long straight dislocation. In the case of an
edge dislocation, the total depletion of solutes shows a logarithmic dependence beneath the
glide plane. Webb [30] extended this theory to the case of dislocation walls or small angle30

grain boundaries by summing the contributions of an array of individual lattice dislocations
as classically defined in dislocation theory [33]. However, dislocation-type analyses are
limited to simple representations of low-angle boundaries and are not adequate for large-
angle boundaries, low symmetry crystals, very short boundaries of any angle and other types
of more complex defects like triple junctions.35

Another paradigm which can be used to model more complicated grain boundary struc-
tures in terms of linear defects instead constructs grain boundaries using disclinations [34–
41]. Disclination-based models are fully equivalent to dislocation models in terms of their
stress and strain fields, and are also particularly advantageous for obtaining the mechanical
field of a general grain boundary where dislocation cores would overlap as is the case for large40

angle GBs. Similarly, models of other complex defects such as triple junctions [40] or the
structure of zigzag tilt GBs [38] can be constructed using disclinations. Such defects are of
particular interest since they constitute stress concentrators within any given microstructure
potentially providing additional driving force for solute segregation.

The present analysis, which is based on the formalism suggested by Cai et al. [27], treats45

solute atoms as misfitting spherical inclusions and considers their interactions with (tilt)
grain boundaries (about the [001] axis). The adopted model accounts for the complex struc-
ture of grain boundaries through disclination-based models and considers the material as
linear, elastic, and isotropic. Hydrogen segregation to grain boundaries is explored for a
wide variety of grain boundaries. Of particular interest, correlations between grain bound-50

aries’ segregation susceptibility, the grain boundary misorientation and the grain boundary
structural character is investigated. The susceptibility to hydrogen segregation of symmetric
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tilt grain boundaries is discussed in terms of the misorientation angle and the intrinsic grain
boundary defect type characteristics.

The manuscript is thus organized as follows. Section 2 details the construction of grain55

boundaries using disclination theory and the resulting solute distribution. Section 3 discusses
the correlation between solute concentration and the grain boundary defect characteristics.
Conclusions are drawn concerning the application of this model in Section 4.

2. Solute distribution around grain boundaries

As mentioned in Section 1, so-called superatomic (mesoscopic) disclination-based models60

provide a convenient way of representing grain boundary behavior under various loading
conditions using linear theory of defects. Wedge disclination dipoles are the basic ingredients
of such models [39]. As illustrated in Fig. 1(a), disclinations are linear rotational defects [42]
for which, similar to the way dislocations are characterized in continuum mechanics using
the Burgers vector, the strength of a disclination is related to an axial pseudo vector −→ω65

(Frank’s vector) defining the rotation between two cut surfaces. The elastic fields of straight
disclinations in an elastic infinite isotropic medium can be found in analytical form based
on the general linear elastic theory of defects [43, 44]. Following deWit [43], the stress field
σ.
ij (x, y) of a pure wedge disclination located at the origin with a Frank’s (pseudo) vector

magnitude (or strength) ω (see Fig. 1) is given in a Cartesian coordinate system by:70

σ.
xx (x, y, ω) = D0ω

(
ln
√
x2 + y2 +

y2

x2 + y2

)
= D0ω

(
ln r +

y2

r2

)
, (1)

σ.
yy (x, y, ω) = D0ω

(
ln
√
x2 + y2 +

x2

x2 + y2

)
= D0ω

(
ln r +

x2

r2

)
, (2)

σ.
xy (x, y, ω) = −D0ω

xy

x2 + y2
= −D0ω

xy

r2
, (3)

σ.
zz (x, y, ω) = ν

[
σ.
xx (x, y) + σ.

yy (x, y)
]
, (4)

where r2 = x2 + y2, µ is the shear modulus, ν is the Poisson’s ratio and D0 =
µ

2π (1− ν)
.

Note that the logarithmic divergence of the long-range stress fields of a wedge disclination
implies that disclinations can exist only in a screened state by configuring straight disclina-
tions in dipoles or other multipole configurations. The stress field of such arrangements can
be found by superposition of the contributions from individual straight disclinations. As
such, the stress field σ./

ij (x, y) of a disclination dipole (ω, L) centered at y = 0 with positive
disclination +ω at (0, L) and negative disclination −ω at (0,−L) (see Fig. 1(b)) is given by:

σ./
ij (x, y, ω, L) = σ.

ij (x, y − L, ω)− σ.
ij (x, y + L, ω) . (5)

2.1. Construction of grain boundaries using the disclination structural unit model (DSUM)

Originally proposed by Shih and Li [34, 35] and later improved by Gertsman et al. [36],
the disclination structural unit model (DSUM) constructs a (non-favored) grain boundary
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(a) (b)

Figure 1: (a) Volterra process in an elastic cylinder for a wedge disclination with Frank vector (rotation
pseudo-vector) ω parallel to the line of the defect L. (b) Disclination dipole with a positive disclination +ω
located at (0, L) and a negative disclination −ω located at (0,−L).

with a misorientation angle θ by decomposing it into a contiguous and alternating sequence75

of special (favored) m majority and n minority structural units with associated misorien-
tation angles θm and θn respectively such that θm < θ < θn. Favored boundaries are grain
boundaries that have a structure characterized by a repeating sequence of only one type
of structural units. As a result the boundary is represented in the form of a complex wall
of disclinations combined into dipoles associated with the minority structural units (see80

Fig. 2(a)). The strength of the disclination dipoles associated with the minority structural
unit is equal to ±ω = ± (θn − θm), the arm of the dipoles is fixed and set to L′n, and the
period of the grain boundary is given by H = (md′m + nd′n) = 2 (mL′m + nL′n).

As illustrated in Table 1 [45–47], all symmetric tilt grain boundaries about the [001] axis
can be decomposed into primary structural units that are consistent with the four favored
[001] symmetric tilt grain boundaries: the A structural unit Σ1 (1 1 0) / θ = 0◦ perfect
lattice, the B structural unit Σ5 (2 1 0) / θ = 36.87◦ grain boundary, the C structural unit Σ5
(3 1 0) / θ = 53.13◦ grain boundary, and the D structural unit Σ1 (1 0 0) / θ = 90◦ perfect
lattice. Thus, all symmetric tilt grain boundaries about the [001] axis with a misorientation
0◦ ≤ θ < 36.87◦ are composed of only A and B structural units, all boundaries with a
misorientation 36.87◦ ≤ θ < 53.13◦ are composed of only B and C structural units, and all
boundaries with a misorientation 53.11◦ ≤ θ < 90◦ are composed of only C and D structural
units. Additionally due to the geometric distortions of the (favored) elementary structural
units composing a given (non-favored) grain boundary (see Fig. 2(b)), the dimensions L′m
and L′n can be evaluated from the rest length of the structural units Lm and Ln through the
geometric relation [48],

L′m = Lm cos

(
θ − θm

2

)
, L′n = Ln cos

(
θn − θ

2

)
, (6)
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(a)

(b)

Figure 2: (a) Disclination Structural Unit Model (DSUM) representation of the [001] Σ = 149/20.02◦

symmetric tilt grain boundary. The filled triangle symbol (I) corresponds to a “positive” disclination, the
voided triangle symbol (C) corresponds to a “negative” disclination. All together they form the disclination
dipole associated with the minority structural unit composing the grain boundary. (b) Geometric construct
of a symmetric general tilt grain boundary defining the dimensions of the majority and minority structural
units. Only the upper part of the grain boundary is shown.

while the average misorientation angle θ is given by,

sin (θ/2) =
[2mLm sin (θm) + 2nLn sin (θn)]

H
. (7)

Table 1 and Table 2 summarize the characteristics of the symmetric tilt grain boundaries
investigated in this study in the case of nickel (fcc metal).85
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Following Hurtado et al. [37], the stress field σ‡,mn
ij (x, y) of a grain boundary composed

of m majority and n minority structural units can be mechanistically constructed with an
infinite wall of minority disclination dipoles (L′n, ω) spaced by a distance H such that:

σ‡,mn
ij =

∞∑
k=−∞

σ./
ij (x, y, ω, L′n + kH) . (8)

Using series identity formulas [49], equation (8) further reduces to:

1

2

(
σ‡,mn
xx + σ‡,mn

yy

)
=

1

2
D0ω ln

coshα− cos (β − λn)

coshα− cos (β + λn)
, (9)

1

2

(
σ‡,mn
xx − σ‡,mn

yy

)
=

1

2
D0ωα

[
sinhα

coshα− cos (β + λn)
− sinhα

coshα− cos (β − λn)

]
, (10)

σ‡,mn
xy =

1

2
D0ωα

[
sin (β + λn)

coshα− cos (β + λn)
− sin (β − λn)

coshα− cos (β − λn)

]
, (11)

with α = 2πx/H, β = 2πy/H, and λn = 2πL′n/H.
For example, consider the Σ149 (10 7 0) / θ = 20.02◦ symmetric tilt grain boundary. Its

structural decomposition is |AABABAB.AABABAB|, with B being the minority structural
unit. The stress field of this grain boundary can be constructed as the superposition of90

three offsetted infinite walls of disclination dipoles B with an arm length L′B = 0.1949 nm,
a strength ±ω = θB − θA = 36.87◦ and a periodicity H = 2 (4L′A + 3L′B) = 2.1508 nm.
The first wall is centered at y = 0, the second wall is centered at y = 2 (L′A + L′B), and
the third wall is centered at y = 4 (L′A + L′B). Figures 3 (c)–(f) show contour plots of the
Σ149/20.02◦ and Σ181/6.03◦ grain boundaries. It should be noted that the (σ‡xx + σ‡yy)95

contours are characterized by alternate bands of positive and negative stresses delimited
by null contours. Additionally, in the case of the Σ149/20.02◦ grain boundary, the three
superimposed infinite walls of disclination dipoles composing the grain boundary can be
clearly identified from the presence of alternating stress peaks in the stress contours. Note
that for both Σ5 grain boundaries (θ = 36.87◦ and θ = 53.13◦), the parameter λn = π such100

that the DSUM construct predicts that σΣ5
ij = 0.

It is interesting to note that the stress field of a disclination dipole (ω, L) is equivalent to
that of a uniform linear distribution of N edge dislocations (see Fig. 4) such that N = 2Lω/b,
with b being the Burgers vector [37]. Thus, for low angle tilt grain boundaries (θ ≤ 15◦) an
equivalence to that of equations (9)–(11) can also be represented using an infinite wall of105

edge dislocations spaced by a distance H with an effective Burgers vector beq = Nb = 2Lω.
The stress field σ⊥ij (x, y) of such grain boundaries is classically [33] given by,

1

2

(
σ⊥xx + σ⊥yy

)
= −σ0 sin 2π

y

H

[
cosh 2π

x

H
− cos 2π

y

H

]
, (12)

1

2

(
σ⊥xx − σ⊥yy

)
= −2πσ0

x

H
sin 2π

y

H
sinh 2π

x

H
, (13)

σ⊥xy = 2πσ0
x

H

[
cosh 2π

x

H
cos 2π

y

H
− 1
]
, (14)
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(a) Σ181/6.03◦ Dislocation wall
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(b) Σ181/6.03◦ Dislocation wall
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(c) Σ181/6.03◦
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(d) Σ181/6.03◦
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(e) Σ149/20.02◦
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(f) Σ149/20.02◦

Figure 3: Contours of the stress field components: (a), (c) and (e) pressure ((σxx + σyy) /D0); (b), (d) and

(f) stress magnitude (

√[
σ2
xy + (σxx − σyy)

2
/4
]
/D0) for the Σ181/6.03◦ and Σ149/20.02◦ grain boundaries

respectively. Contours (a) and (b) correspond to the Σ181 tilt grain boundary represented using an infinite
edge dislocation wall. Contours (c)–(f) use the DSUM model. Only the contour values for the positive
stresses are plotted.

where

σ0 = πD0
beq
H

1[
cosh 2π

x

H
− cos 2π

y

H

]2 . (15)
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(a) (b) (c)

Figure 4: (a) Infinite wall of disclination dipoles (ω,L) spaced by a distance H. (b) Equivalent infinite
wall of edge dislocations (⊥ symbols) composed of N = bω/2L dislocations spaced by a distance H. (c)
Equivalent infinite wall of edge dislocations with an effective Burgers vector beq = Nb = 2Lω.

Figures 3 (a)–(b) show contour plots of the Σ = 181/6.03◦ grain boundary using the dis-
location representation. These contours are in agreement with their counterparts using the
disclination representation. It should be noted however that the stress magnitude close to110

the cores of the dislocations are higher and more localized when represented using edge
dislocations than in the case of the disclination representation for which core effects are
smeared out.

2.2. Solute trapping at grain boundaries

As detailed in Cai et al. [27], the chemo-mechanical equilibrium of interstitial solutes115

in a homogeneous isotropic elastic medium can be modeled by considering solutes as non-
overlapping spherical misfitting inclusions with purely positive dilatational eigenstrain. The
derivations consider the energetic contribution and the work done against pre-existing stresses
upon the introduction of solutes in the medium of interest.

The solute distribution around a given defect d follows Fermi-Dirac statistics such that
the equilibrium fraction of occupied sites χ (x) in an infinite medium1 with no pre-existing
internal stress sources other than that of the defect considered is given by,

χ (x) =
1

1 +
1− χ0

χ0

exp

(
− 1

kBT

1

3
σd
ii (x) ∆V

) , (16)

where χ0 is the fraction of occupied sites under zero pre-existing stress, kB is the Boltzmann
constant, T is the absolute temperature, σd

ii (x) is the hydrostatic stress field produced by

1Note that in the case of a finite volume the tensile image stress field must be included to satisfy the
boundary conditions. Through the image stress, existing inclusions promote the introduction of additional
inclusions [27].
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the defect considered including the stress fields generated by other defects as well as by
external loads, and ∆V is the extra (dilatational) volume of the solute. The volume density
c of solutes at equilibrium around d is then given by c (x) = χ (x) cmax, where cmax is the
maximum possible volume density of the solutes in the solvent medium. The dependence
on the chemical potential µi of the solutes in the host medium free of pre-existing defects is
implicitly accounted for through the fraction of occupied sites under zero pre-existing stress
χ0 such that,

χ0 =
1

1 + exp

(
1

kBT
(Ef − ξχ0 − µi)

) , with ξ =
4µ (1 + ν)

9 (1− ν)
∆V 2cmax , (17)

where Ef is the energy necessary to insert one solute in an infinite medium and the constant120

ξ has the dimension of an energy. It should be noted that for high fractions of occupied sites
χ0, the material may undergo a phase transformation (in the case of hydrogen the formation
of hydrides for example) that are not accounted for through this model. In the rest of this
manuscript, high values of χ0 are for illustration purposes only.

Let us now consider the equilibrium solute distribution around an infinitely long grain125

boundary constructed using the disclination structural unit model presented in Section 2.1.
When a grain boundary is present in the solid, it produces an internal hydrostatic stress
field σ‡,mn

ii (x) and the solute fraction of occupied sites χ‡,mn (x) becomes nonuniform, i.e.
χ‡,mn (x) = χ0 +∆χ (x). The field of solute fraction of occupied sites χ‡,mn (x) in the vicinity
of a grain boundary composed of m majority and n minority structural units is given by130

equation (16) by substituting the defect hydrostatic stress field σd
ii (x) by the grain boundary

stress field σ‡,mn
ii (x). The material parameters used in this study corresponding to hydrogen

interstitials occupying interstitial sites of FCC Ni are summarized in Table 3.
Figure 5 gives an example of the χ-fields distributed around several grain boundaries for

a bulk hydrogen fraction of occupied sites χ0 = 0.1 and at a temperature T = 300K. It can135

be seen that upon the introduction of the grain boundary in the infinite medium, hydrogen
segregates along the grain boundary alternating between hydrogen-free and hydrogen-rich
regions corresponding to regions of compressive and tensile hydrostatic pressure respectively.
The extent of the segregation along the grain boundary varies depending on the character
of the grain boundary and the size of its associated intrinsic elastic fields. For example, as140

illustrated in the Figs. 5 (c), (d) and for the Σ29/43.60◦, Σ29/46.40◦, and Σ101/78.58◦ grain
boundaries respectively, differences can be observed in the spacing between the hydrogen-
rich regions and how far these regions extend away from the grain boundaries. Far away
from the grain boundary, the equilibrium fraction field χ‡,mn (x) approaches that of the bulk
hydrogen fraction χ0.145
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(b) Σ85/64.94◦
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(e) Σ149/20.02◦
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(f) Σ101/78.58◦

Figure 5: χ-field of solute fraction of occupied sites in the vicinity several grain boundaries: (a) Σ85/25.06◦,
(b) Σ85/64.94◦, (c) Σ29/43.60◦, (d) Σ29/46.40◦, (e) Σ149/20.02◦, and (f) Σ101/78.58◦ (χ0 = 0.1 and
T = 300K).

3. Discussion

3.1. Segregation susceptibility

Through the evaluation of equation (16) giving the field of solute fraction of occupied
sites χ‡,mn (x), the average equilibrium fraction of occupied sites χ trapped in the vicinity S

10



of a grain boundary (S being a fixed surface running along the grain boundary spanning a
length L and going a distance ±h/2 away from the grain boundary line such that S = hL.
Note that h/2 is chosen to be sufficiently large compared to the Burgers vector) is given by,

χ =
1

S

∫ h/2

−h/2

∫ L/2

−L/2

χ‡,mn (x) dxdy . (18)

This integral has been carried out numerically for h = 20b, L = 100b with a resolution of
0.01b. The segregation susceptibility can be defined (χ− χ0)/χ0 = ∆χ/χ0 in the vicinity of
the grain boundary, with χ0 being the prescribed bulk hydrogen fraction of occupied sites.150

In the rest of the discussion, numerical results are presented for symmetric tilt GBs about
the [001] axis.

3.2. On the influence of the grain boundary misorientation

First, the segregation susceptibility can be discussed in terms of the grain boundary mis-
orientation θ. Figure 6 illustrates the dependence of the segregation susceptibility ∆χ/χ0155

and the solute fraction of occupied sites trapped at the grain boundary as a function of
the misorientation θ for a prescribed bulk hydrogen fraction of occupied sites χ0 = 0.01 at
a temperature T = 300K. Similar to trends observed for the grain boundary energy as a
function of misorientation angles, the grain boundary’s solute susceptibility varies smoothly
with the misorientation angle, except for cusps corresponding to specific grain boundaries for160

which the structure changes from one minority structural unit to another. Grain boundaries
in the range of 36.87◦ ≤ θ < 53.13◦ show the smallest (∆χ/χ0 ≤ 0.13) segregation suscep-
tibility while the low angle Σ41 (5 4 0) / θ = 12.68◦ and the high angle Σ101 (10 1 0) /
θ = 78.58◦ grain boundaries are predicted to be the most susceptible to hydrogen segregation
(∆χ/χ0 = 0.57 and ∆χ/χ0 = 0.79 for the Σ41 and Σ101 respectively). Additionally, favored165

grain boundaries associated with local minima (cusps) are predicted to be less susceptible to
segregation than neighboring grain boundaries. Thus, the three branches observed in Fig. 6
correspond to misorientation angles of 0◦ ≤ θ < 36.87◦ composed of only A and B structural
units, to misorientation angles 36.87◦ ≤ θ < 53.13◦ composed of only B and C structural
units, and to misorientation angles 53.13◦ ≤ θ < 90◦ composed of only C and D structural170

units respectively.

3.3. On the effect of the grain boundary structure

As illustrated by the three branches observed in Fig. 6, segregation susceptibility can
also be discussed in terms of the structural units composing the grain boundaries. As
highlighted by the symbols, Fig. 6 illustrates the correlation between the grain boundary175

structure, its misorientation and the amount of solute fraction trapped at the grain boundary
(i.e. segregation susceptibility). Figure 7 represents the same data as Fig. 6 but expressed
in terms of the characteristic length d′n of the minority structural unit composing the grain
boundary according to the DSUM construct. It is interesting to note that the segregation
susceptibility variability is impacted by both the minority structural unit and the associated180

misorientation angle. For example all the grain boundaries composed of the D structural
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Figure 6: Segregation susceptibility of hydrogen in nickel around symmetric tilt GBs about the [001] axis
for a bulk hydrogen fraction χ0 = 0.01 at T = 300K.
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Figure 7: Segregation susceptibility of hydrogen in nickel around symmetric tilt GBs about the [001] axis
as a function of the characteristic length d′n of the minority structural unit composing the GB (χ0 = 0.01
and T = 300K).

unit (54.95◦ ≤ θ ≤ 61.93◦) show little variation in the segregation susceptibility (0.1 ≤
∆χ/χ0 ≤ 0.25) as opposed to grain boundaries composed of the C structural unit (64.94◦ ≤
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Figure 8: Segregation susceptibility of hydrogen in nickel around symmetric tilt GBs about the [001] axis:
(a) as a function of the temperature for a bulk hydrogen fraction χ0 = 0.01 and, (b) as a function of the
bulk hydrogen fraction χ0 at T = 300K.

θ ≤ 82.37◦) which show a much larger variation (0.1 ≤ ∆χ/χ0 ≤ 0.8). The variability in
grain boundaries’ segregation susceptibility is clearly correlated to the characteristic length185

(and therefore type) of the minority structural unit. Grain boundaries with the smallest
characteristic length (D structural unit) shows the smallest variability (with a variance
of 0.003), while grain boundaries with the biggest characteristic length (C structural unit)
experience the largest variability (with a variance of 0.082). This is related to the free volume
(effectively) available for hydrogen segregation at the grain boundary. These observations are190

consistent with experimental characterizations [51] which identified a category of “special”
grain boundaries as preferential areas for hydrogen segregation.

3.4. On the effect of the temperature and bulk hydrogen fraction

In equation (16), the amount of hydrogen trapped at grain boundary shows a non-linear
dependence on the prescribed bulk hydrogen content and an Arrhenius-type dependence on195

the temperature. Figure 8(a) shows the effect of temperature on the segregation suscep-
tibility as a function of GB misorientation for temperatures ranging from 250K to 400K,
while Fig. 8(b) shows the effect of the prescribed bulk hydrogen fraction χ0 on the segre-
gation susceptibility as a function of GB misorientation for χ0 ranging from 0.0001 to 0.1
(as mentioned earlier in Section 2.2 high values of χ0 are for illustration purposes). For all200

misorientations, the larger χ0, the lower the segregation susceptibility, while the opposite
trend is observed in terms of the temperature. These sensitivities on the grain boundaries’
segregation susceptibility remain less pronounced for grain boundaries with misorientations
in the range of 36.87◦ ≤ θ < 53.13◦ corresponding to symmetric tilt grain boundaries of only
B and C structural units. These observations correlate with the points made in the previous205

subsections.
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(a) Σ13/22.62◦ (B structural unit)
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(b) Σ13/67.38◦ (C structural unit)
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(c) Σ17/28.07◦ (A structural unit)
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Figure 9: Segregation susceptibility of hydrogen in nickel around for the (a) Σ13/22.62◦ (b) Σ13/67.38◦ (c)
Σ17/28.07◦ and (d) Σ17/61.93◦.

Based on these observations, the segregation susceptibility of particular grain boundaries,
namely Σ13 / θ = 22.62◦ (B structural unit), Σ13 / θ = 67.38◦ (C structural unit), Σ17 /
θ = 28.07◦ (A structural unit) and Σ17 / θ = 61.93◦ respectively, are compared in Fig. 9.
This figure emphasizes the non-linear evolution of the grain boundary segregation suscep-210

tibility as a function of the bulk hydrogen fraction of occupied sites χ0 for temperatures
ranging from 250K to 400K. As observed previously, the C structural unit grain boundary
(see Fig. 9(b)) is the most sensitive to a modification of χ0. In contrast, the D structural
unit grain boundary (see Fig. 9(d)) is much less sensitive to χ0 than the other structural
unit grain boundaries. The general trends shown in Fig. 8 and Fig. 9 are consistent with215

the observations made by Wolfer and Baskes [24] (see Fig. 2 and Fig. 4 in [24]) who used a
model based on bulk dislocation densities. In the present model, for a given material, the
segregation susceptibility is not only dependent on the prescribed bulk hydrogen fraction
and temperature but also on the grain boundary character. Thus, for polycrystalline ma-
terials, the present model sheds light on the complexity and variability in the segregation220

susceptibility.
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Figure 10: Illustration of the Frank-Bilby formalism for a symmetric tilt grain boundary.

3.5. Correlations with the Frank-Bilby formalism

The results presented in subsections 3.2–3.4 can be put into perspective with respect to
the intrinsic net defects density in the sense of the Frank-Bilby formalism. The Frank-Bilby
equation [29, 52] is a widely used approach to determine the intrinsic dislocation content
of a general boundary (as opposed to extrinsic dislocations which are lattice dislocations
interacting with GBs). Within this formalism, based on a Burgers circuit construction, the
net Burgers vector Bp of all interfacial dislocations crossing any vector p in the interface
(i.e. closure failure in the perfect reference lattice) is given by:

Bp =
(
S−1
A − S−1

B

)
· p , (19)

where p is the grain boundary period vector, and SA and SB are lattice deformations (in-
cluding both rotation and elastic deformation) converting the reference lattice, from which
the bicrystal is created, into reference lattices A and B [45]. In other words, Bp is the225

resultant Burgers vector of the primary dislocations pierced by the boundary period vector
p. In the case of a grain boundary where the two adjoining lattices are related by a misori-
entation angle only, and taking the median (perfect crystal) lattice as the reference lattice
(for primary dislocations), this equation reduces to Frank’s formula [45, 53].

For the [001] symmetric tilt grain boundaries considered in this study, the misorientation
angle θ is defined in the range 0◦ < θ < 90◦ due to the four-fold symmetry around the tilt
axis. Following other recent studies on [001] symmetric tilt grain boundaries [54–57], two
main Frank-Bilby Burgers vectors (corresponding to two mappings for the Burgers circuit
with the “FS (Finish-Start)” right-handed convention) are considered among the multiplicity
of solutions of the Frank-Bilby equation. The first possibility (hereafter denoted as “mode
I”) leads to a net Burgers vector Bp being parallel to the [100] direction of the reference
lattice and the second possibility (hereafter denoted as “mode II”) lies in Bp being parallel to
[1̄1̄0] in the reference lattice. Both are dictated by primary Burgers vectors of the resolved
discrete distribution of single lattice dislocations for [001] symmetric tilt low-angle grain
boundaries close to θ = 0◦, i.e. for a Burgers vector b =a[100], and θ = 90◦, i.e. for a
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Figure 11: Equivalence with the Frank-Bilby formalism: (a) Intrinsic net defect density ρ as a function of
the misorientation angle θ and, (b) and (c) dependence of 1/ρ∆χ/χ0 as a function of the intrinsic net defect
density for various structural units (χ0 = 0.01 and T = 300K) for “mode I” and “mode II” respectively.

Burgers vector b =a/2[1̄1̄0] (with a being the lattice constant). As reported elsewhere [57],
the transition in the interfacial Burgers vector direction (i.e. the transition from Bp along
[100] to Bp along [1̄1̄0]) between “mode I” and “mode II” takes place for the Σ5 (θ = 36.87◦)
grain boundary (i.e. the one with a single B structural unit). This particular grain boundary
corresponds to a cusp in the grain boundary energy vs. misorientation profile. For both net
Burgers vector directions, the intrinsic net grain boundary dislocation density ρ (i.e. net
defect representing the initial boundary structure) is given for each boundary in the whole
misorientation range around a certain rotation axis by [33, 53, 57]:

ρ =
|Bp|
|p|

= 2 sin

(
θ

2

)
. (20)

Figure 11 details the equivalence between the DSUM-based model and the Frank-Bilby
formalism for the two possible Burgers circuits (“mode I” and “mode II”) for χ0 = 0.01 at
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Figure 12: Segregation susceptibility of hydrogen in nickel around symmetric tilt GBs about the [001]
axis for a bulk hydrogen fraction χ0 = 0.01 at T = 300K with the susceptibility profile obtained through
equation (22).

T = 300K. Figures 11 (b) and (c) illustrate the nonlinear dependence of the segregation
susceptibility as a function of the intrinsic net defect ρ corresponding to an exponential
decay function Φ (ρ) such that,

∆χ

χ0

= ρΦi (ρ) = ρNi exp (−λi [ρ− ρi]) , (21)

where the parameters (NI = 6.74, λI = 5.29, ρI = 0.05) for “mode I” (i = I) and (NII =230

6.47, λII = 5.97, ρII = 0.12) for “mode II” (i = II) have been fitted through a nonlinear
least-squares (NLLS) Marquardt-Levenberg algorithm for both modes. The grain boundary
segregation susceptibility follows the same nonlinear trend ρΦ (ρ) in equation (21) for both
modes as a function of the net defect density for all minority structural units.

Thus, through the Frank-Bilby formalism, grain boundary segregation susceptibility in
equation (21) can be explicitly described as a function of the grain boundary misorientation
for the two selected modes:

∆χ

χ0

(θ) =


2 sin

(
θ

2

)
ΦI

(
2 sin

(
θ

2

))
for θ < 36.87◦ (“mode I”) ,

2 sin

(
90◦ − θ

2

)
ΦII

(
2 sin

(
90◦ − θ

2

))
for θ > 36.87◦ (“mode II”) .

(22)
As seen in Fig. 12, the relation between the grain boundary segregation susceptibility and235

the misorientation is adequately represented by equation (22) (red line). Finally the choice of
the transition between the Burgers circuit was motivated by atomistic simulation performed
at 0K [57] but it should be noted that this transition may be temperature dependent.
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4. Conclusion

In this work, a continuum linear defect mechanics model is used to study solute seg-240

regation to grain boundaries and the associated segregation susceptibility as a function of
the grain boundary character. The two ingredients composing this analysis are based on
modeling (i) solute atoms as misfitting inclusions with purely positive dilatational eigen-
strain and (ii) grain boundaries using a mesoscopic disclination-based model (e.g. DSUM).
Upon the construction of the grain boundary through the DSUM, hydrogen segregation is245

predicted along the grain boundary by alternating hydrogen-free and hydrogen-rich regions
corresponding to compressive and tensile hydrostatic pressure fields, respectively. The ex-
tent of the segregation domain along the grain boundary varies depending on the character
of the grain boundary and the size of its associated intrinsic elastic fields.

Through this model, a direct correlation between the segregation susceptibility, the grain250

boundary structural character and the associated misorientation is established. Specifically,
in the case of symmetric tilt grain boundaries about the [001] axis, the present model predicts
that grain boundaries composed of both B and C structural units (i.e. for a misorientation
angle ranging from 36.87◦ ≤ θ < 53.13◦ ) show a lower segregation susceptibility than
other grain boundaries. Through an analogy with the Frank-Bilby formalism the nonlinear255

dependence of the segregation susceptibility as a function of the intrinsic net defect ρ is
obtained and an explicit expression of the grain boundary susceptibility as a function of the
misorientation is derived.

Obviously, the significance of this model extends beyond the calculations of segregation
profiles for a specific class of grain boundaries. It provides a simple methodology capable260

of ascertaining segregation susceptibility over a wide range of grain boundary characters
typical of those observed in polycrystalline materials and identifies classes of grain boundaries
relevant to grain boundary engineering. Such simplistic continuum theoretical tool can be
used to orient specific experiments or corresponding atomistic simulations. The results
highlighted in this manuscript will be put in perspective with complementary atomistic265

simulations in a follow-up study by the authors.
Finally, while the focus of this manuscript was on segregation of hydrogen at grain

boundaries, the non-uniform distribution χ‡,mn (x) of solutes around grain boundaries in
equation (16) is accompanied by a coherency stress σc preserving the coherency of the
crystal lattice. An extension of the present formulation to study the change in elastic fields270

is beyond the scope of this manuscript but will be presented in detail in a subsequent study
by the authors.
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Table 1: Structural unit decomposition of symmetric tilt GBs about the [001] axis [45, 46]. a is the lattice
parameter. In the decomposition bars denote one period of the boundary and the dot signifies that equivalent

atoms in each half period are relatively displaced by
1

2
[0 0 1] along the tilt axis.

θ [◦] GB plane Σ Structural decomposition of the period Period vector p

0.00 (1 1 0) 1 |A| a

2
[1 1 0]

3.95 (15 14 0) 421 |AAAAAAAAAAAAAB.AAAAAAAAAAAAAB| a[14 15 0]
6.03 (10 9 0) 181 |AAAAAAAAB.AAAAAAAAB| a[9 10 0]
12.68 (5 4 0) 41 |AAAB.AAAB| a[4 5 0]
16.26 (4 3 0) 25 |AAB.AAB| a[3 4 0]

18.92 (7 5 0) 37 |AABAB| a

2
[5 7 0]

20.02 (10 7 0) 149 |AABABAB.AABABAB| a[7 10 0]
22.62 (3 2 0) 13 |AB.AB| a[2 3 0]

25.06 (11 7 0) 85 |ABABABB| a

2
[7 11 0]

28.07 (5 3 0) 17 |ABB| a

2
[5 5 0]

30.51 (7 4 0) 65 |ABBB.ABBB| a[4 7 0]

33.40 (13 7 0) 109 |ABBBBBB| a

2
[7 13 0]

35.30 (29 15 0) 533 |ABBBBBBBBBBBBBB| a

2
[15 29 0]

36.87 (2 1 0) 5 |B.B| a[1 2 0]
39.60 (17 8 0) 353 |BBBBBBBC.BBBBBBBC| a[8 17 0]
42.08 (9 4 0) 97 |BBBC.BBBC| a[4 9 0]

43.60 (7 3 0) 29 |BBC| a

2
[3 7 0]

46.40 (5 2 0) 29 |BC.BC| a[2 5 0]
48.89 (8 3 0) 73 |BCC.BCC| a[3 8 0]
51.11 (17 6 0) 325 |BCCCCC.BCCCCC| a[6 17 0]

53.13 (3 1 0) 5 |C| a

2
[1 3 0]

54.95 (19 6 0) 397 |CCCCCCD.CCCCCCD| a[6 19 0]
56.60 (10 3 0) 109 |CCCD.CCCD| a[3 10 0]
58.11 (7 2 0) 53 |CCD.CCD| a[2 7 0]
61.93 (4 1 0) 17 |CD.CD| a[1 4 0]
64.94 (9 2 0) 85 |CDCDD.CDCDD| a[2 9 0]

67.38 (5 1 0) 13 |CDD| a

2
[1 5 0]

71.08 (6 1 0) 37 |CDDD.CDDD| a[1 6 0]

73.74 (7 1 0) 25 |CDDDD| a

2
[1 7 0]

78.58 (10 1 0) 101 |CDDDDDDD.CDDDDDDD| a[1 10 0]

82.37 (15 1 0) 113 |CDDDDDDDDDDDD| a

2
[1 15 0]

90 (1 0 0) 1 |D| a[0 1 0]
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Table 2: Symmetric tilt GBs about the [001] axis disclination characteristics in Ni (lattice constant aNi =
0.3524 nm)

θ [◦] Majority unit
[Structural
unit type]

Minority unit
[Structural
unit type]

Characteristic
length d′m of
majority unit
[nm]

Characteristic
length d′n of
minority unit
[nm]

Frank’s vector
magnitude
(||−→ω || = ω) [◦]

3.95 13 [A] 1 [B] 0.2490 0.3778 ±36.87
6.03 8 [A] 1 [B] 0.2488 0.3798 ±36.87
12.68 3 [A] 1 [B] 0.2477 0.3852 ±36.87
16.26 2 [A] 1 [B] 0.2467 0.3876 ±36.87
18.92 3 [A] 2 [B] 0.2458 0.3892 ±36.87
20.02 4 [A] 3 [B] 0.2454 0.3897 ±36.87
22.62 1 [A] 1 [B] 0.2443 0.3909 ±36.87
25.06 4 [B] 3 [A] 0.3919 0.2432 ±36.87
28.07 2 [B] 1 [A] 0.3928 0.2417 ±36.87
30.51 3 [B] 1 [A] 0.3933 0.2404 ±36.87
33.40 6 [B] 1 [A] 0.3938 0.2387 ±36.87
35.30 14 [B] 1 [A] 0.3949 0.2375 ±36.87
36.87 1 [B] 0 [A] - - ±36.87
39.60 7 [B] 1 [C] 0.3939 0.5533 ±16.26
42.08 3 [B] 1 [C] 0.3936 0.5546 ±16.26
43.60 2 [B] 1 [C] 0.3933 0.5553 ±16.26
46.40 1 [B] 1 [C] 0.3926 0.5562 ±16.26
48.89 2 [C] 1 [B] 0.5568 0.3918 ±16.26
51.11 5 [C] 1 [B] 0.5571 0.3910 ±16.26
53.13 1 [C] 0 [B] - - ±16.26
54.95 6 [C] 1 [D] 0.5571 0.1680 ±36.87
56.60 3 [C] 1 [D] 0.5569 0.1688 ±36.87
58.11 2 [C] 1 [D] 0.5567 0.1694 ±36.87
61.93 1 [C] 1 [D] 0.5556 0.1709 ±36.87
64.94 3 [D] 2 [C] 0.1720 0.5542 ±36.87
67.38 2 [D] 1 [C] 0.1728 0.5529 ±36.87
71.08 3 [D] 1 [C] 0.1738 0.5504 ±36.87
73.74 4 [D] 1 [C] 0.1744 0.5482 ±36.87
78.58 7 [D] 1 [C] 0.1753 0.5435 ±36.87
82.37 12 [D] 1 [C] 0.1758 0.5391 ±36.87

24



Table 3: Materials parameters for H in nickel.

Property Symbol Value Unit Ref.
Shear modulus µ 76 GPa
Poisson’s ratio ν 0.31
Lattice constant a 0.3524 nm
Atomic volume Ω 10.94 Å3

Solute relaxation volume ∆V 0.13Ω Å3 [50]
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