

Data Architectures and Scientific Computing

Bruce Hendrickson

Director of Computing Research

Sandia National Laboratories, Albuquerque, NM

University of New Mexico, Computer Science Dept.

Why We Should Care About Data Machines

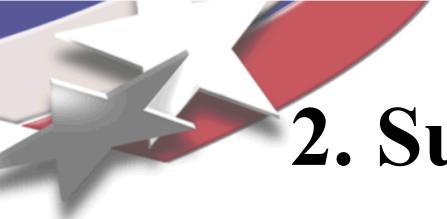
4. Politics

3. Mission

2. Supply Chain

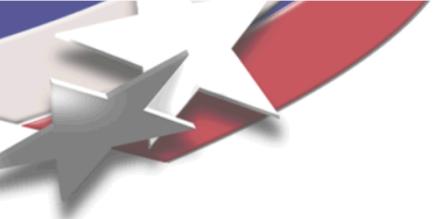
1. Technology synergy

4. Politics: “*Alignment*” is All the Rage



- **SEAB Report of the Task Force on HPC (exascale report):**
 - *Computational problems & data centric problems are coming together*
 - *We recognize and recommend a “new” alignment between classical and data centric computing*
- **ASCAC report on Data-Intensive Science & Exascale Computing**
 - *Should give high priority to investments that can benefit both data-intensive science and exascale computing*
- **NSCI plan is rumored to have similar language**
- **By embracing this vision of synergy, we connect to inter-agency efforts and gain broader advocacy for our program and our work**

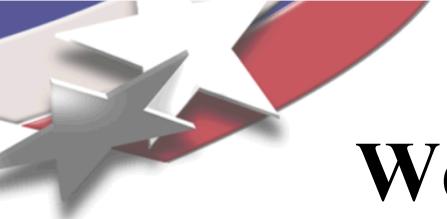
3. Mission: Data Analytics is Important to Us


- **Goal of ASC is to build tools to help inform critical decisions**
- **Key capabilities include anomaly detection, UQ, QMU, etc.**
 - These are complex data-analytic challenges involving computational ensembles and experimental data
- **We have additional complexities from need for in-transit & in-situ analysis, check-pointing, memory & storage hierarchies, etc.**
- **Data community doing more computing, e.g. deep learning**
 - Our workloads increasingly look like theirs
- **Need to leverage ideas and capabilities from larger data-science community wherever possible**

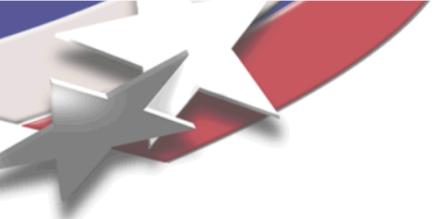
2. Supply Chain: We're Bottom Feeders

- **Data opportunities are driving computing industry**
 - Commodity hardware will be designed for them
 - Our HPC machines will use these commodity parts
- **We need to understand the trends and consequences**
 - Optimize our NRE investments
 - Optimize our procurements
 - Leverage software stack investments where possible

Trends in Our Workloads


- **Higher fidelity simulations increasingly use:**
 - Unstructured and adaptive meshes
 - Multi-physics and multi-scale simulations
- **We're using simulation in more sophisticated ways**
 - Design optimization
 - Uncertainty quantification
 - In situ analysis and computational steering
- **These trends stress our memories and networks**
 - Computing is free
 - Data movement dominates performance and power consumption

Different ..., But Not so Much


- **Data community emphasizes out-of-core computation**
 - Yes, but High Performance Data Analytics is an important subfield, and often in-memory
 - We're both interested in deep memory hierarchies
 - We can benefit from their expertise as we think about burst buffers and other uses of non-volatile memory technologies
- **Data community more focused on productivity than performance**
 - Yes, but we are increasingly emphasizing sophisticated runtimes and higher level programming models
 - Both communities feel need to hide architectural complexity from application programmers
 - We can learn from each other

1. Technology Synergy: We're More Similar Than we Admit

- Trends in workloads:
 - For scientific computing:
 - Data management and analysis is of growing importance (and difficulty)
 - Increasingly unstructured and dynamic
 - Data movement dominates runtime and energy consumption
 - For data computing:
 - Very large scale so scalability & resilience matter
 - Growth in computationally intensive applications like deep learning
 - Data movement dominates runtime and energy consumption

Common Technology Needs

- Faster and more energy efficient memory
- Better memory and storage hierarchies
- Memory-centric programming models
- Enhanced resilience
- Low-latency, low-power networking
- Improved programming models for heterogeneous architectures
- Improved packaging and administration for very large systems

- Most of the things we care about are also important to them.
And they've got deeper pockets to help solve these problems!

Conclusions

- **Machines for data science intersect with us in multiple ways**

4. Politics

- Alignment with broader agendas might help us

3. Mission

- Data analytics is a growing component of our workflows

2. Supply Chain

- Our machines will be built from data-computing components

1. Technology synergy

- Our applications have a lot in common with data analytics

- **By understanding data science challenges, we can leverage and sometimes influence large investments towards our needs**