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ABSTRACT
In this paper, we present a domain-decomposition precondi-
tioner for the solution of partial differential equations (PDEs)
that is resilient to both soft and hard faults. The algorithm
involves the following main steps: first, the target domain of
the PDE is split into overlapping subdomains; second, the
target PDE is solved on each subdomain for sampled values
of the local current boundary conditions; third, the resulting
subdomain solution samples are fed into a regression step to
build maps between the subdomains’ boundary conditions;
finally, the intersection of these maps yields the updated
state at the subdomain boundaries. This reformulation al-
lows us to recast the problem as a set of independent tasks.
We rely on an asynchronous server-client framework, where
one or more servers, which are assumed to be “safe”, hold
the data, while the clients ask for tasks and execute them.
This framework provides resiliency to hard faults such that
if a client crashes, it stops asking for work, and the server
simply distributes the work among all the other clients that
are still alive. Erroneous subdomain solves (e.g. due to soft
faults) appear as corrupted data, which is either rejected if
that causes a task to fail, or is seamlessly filtered out during
the regression stage through a suitable noise model. Three
different types of faults are modeled: hard faults modeling
nodes (or clients) crashing; soft faults occurring during the
communication of the tasks between server and clients; and
soft faults occurring during task execution. These faults are
modeled using a Poisson process defined by a failure rate
extracted from literature. We demonstrate the resiliency of
the approach for a 2D elliptic PDE, and explore the effect
of the faults at various failure rates.

Categories and Subject Descriptors
∗Corresponding Author

C.2.4 [COMPUTER-COMMUNICATION NETWORKS]:
Distributed Systems—Client/server, Distributed applications;
G.1.8 [NUMERICAL ANALYSIS]: Partial Differential
Equations—Domain decomposition methods, Finite differ-
ence methods, Elliptic equations; G.1.0 [NUMERICAL
ANALYSIS]: General—Numerical algorithms, Parallel al-
gorithms; G.1.3 [NUMERICAL ANALYSIS]: Numer-
ical Linear Algebra—Linear systems (direct and iterative
methods); D.2.3 [SOFTWARE ENGINEERING]: Cod-
ing Tools and Techniques—Object-oriented programming ; B.4.5
[INPUT/OUTPUT AND DATA COMMUNICATIONS]:
Reliability, Testing, and Fault-Tolerance—Hardware relia-
bility ; B.8.1 [PERFORMANCE AND RELIABILITY]:
Reliability, Testing, and Fault-Tolerance; D.4.1 [OPERATING
SYSTEMS]: Process Management—Multiprocessing, mul-
tiprogramming, multitasking, Scheduling, Synchronization;
C.2.0 [COMPUTER-COMMUNICATION NETWORKS]:
General—Data communications

1. INTRODUCTION
As computing platforms evolve towards exascale, several key
challenges are arising related to resiliency, power, memory
access, concurrency and heterogeneous hardware, see [8, 1,
9, 4, 5] and references therein. There is no consensus or clear
idea yet on what a“typical” exascale architecture might look
like [1]. One of the main concerns is understanding how
the hardware will affect future computing systems in terms
of reliability, as well as communication and computational
models, and which ones will emerge to become the main
reference for exascale.

Exascale simulations are expected to rely on millions of
nodes, and also take advantage of local thousand-fold con-
currency through cores or threads per node [4, 5]. This
framework will necessarily lead to systems with a large num-
ber of components, with an associated large communication
cost for data exchange. This will inevitably lead to sim-
ulations that are communication-limited rather than being
limited by CPU-time. The presence of many components
and the increasing complexity of these systems (e.g. more
and smaller transistors, and lower voltages) can become a
liability in terms of system faults. It widely accepted, in
fact, in the scientific and engineering communities that ex-
ascale systems will suffer from errors and faults much more
frequently than the current petascale systems. This will
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likely make the current parallel programming models and
approaches for resiliency to be unsuitable for fault-free sim-
ulations across many cores for reasonable amounts of time.

In general, system faults can be grouped under two main
categories, namely hard and soft (or silent) faults. Hard
faults are usually catastrophic because they cause partial or
full computing nodes to fall, or the network to crash. These
faults, however, have an evident impact on the run and the
system itself. Silent errors, on the other hand, are more
subtle because they never get detected, e.g. in the case of
bit-flips. The reason is that their effect is simply to alter
in some way how the information is stored, transmitted,
or handled. The key feature of silent errors is that, being
undetected, there is no opportunity for an application to
directly recover from the fault when it occurs.

Currently, application checkpoint-restart is the most com-
monly used tool for fault-tolerance. This approach is in fact
straightforward and robust, but it is anticipated that in fu-
ture extreme scale systems it will not work as well because
the time for checkpointing and restarting will exceed the
mean time to failure [4, 13, 5]. Moreover, checkpointing
can lead to substantial overhead depending on the simula-
tion size [2]. Improving reliability and efficiency for future
extreme scale systems is thus becoming increasingly more
important. This objective is crucial to achieve in the con-
text of large-scale scientific problems, ranging, e.g., from cli-
mate predictions, to nano-engineering, medicine and biology,
whose complexity can only be tackled with large computing
power and time.

Beside the hardware-oriented engineering efforts aimed at
improving these systems, key mathematical challenges arise,
involving, e.g., how to make a simulation less sensitive to
communication bottlenecks, how to formulate a scientific
simulation such that it remains well-defined even in the
presence of system faults, and how to rigorously assess the
predictive fidelity of extreme-scale scientific simulations in
this context. Emerging approaches to fault-tolerance in-
clude algorithm-based fault tolerance (ABFT) [2, 7, 10, 6],
process-level redundancy [21], and algorithmic error correc-
tion code [16]. ABFT is labeled as a non masking approach
because algorithms need to integrate ABFT by incorporat-
ing some level of redundancy [4]. If an error or a fault occurs,
data redundancy allows reconstruction of the missing part
of the result. It is increasingly more recognized that new
approaches are needed to be incorporated at the algorithm
level that account for potential faults, so that the algorithms
themselves are made more robust and resilient, without re-
lying exclusively on hardware.

This is the framework in which this paper fits. We present
a domain-decomposition preconditioner for the solution of
2D partial differential equations (PDEs) that is resilient to
both soft and hard faults. The algorithm is the extension
of the 1D version developed in [19] and consists of recasting
the original PDE problem as a sampling problem, followed
by a resilient data manipulation to achieve the final solution
update. One of the main features of the algorithm is that we
do not characterize all types of system faults that can occur,
but focus solely on the information that a simulation pro-
vides. For the implementation, we rely on an asynchronous

server-client framework, where one or more servers, which
are assumed to be “safe”, hold the data, while the clients
ask for tasks and execute them. This framework provides
resiliency to hard faults. Erroneous subdomain solves (e.g.
due to soft faults) appear as corrupted data, which is either
rejected if a task fails, or is seamlessly filtered out during the
regression stage through a suitable noise model. We explore
the effect of three different types of faults: hard faults mod-
eling nodes (or clients) crashing; soft faults occurring during
the communication of the tasks between server and clients;
and soft faults occurring during task execution. These faults
are modeled using a Poisson process defined by a failure rate
extracted from literature. We demonstrate the resiliency of
the approach for a 2D elliptic PDE, and explore the effect
of the faults at various failure rates.

The paper is organized as follows. In § 2 we describe the
mathematical formulation; in § 3, we illustrate the actual
implementation details; § 4 illustrates how we model and
inject faults; § 5 briefly describes the test case adopted; in
§ 6 we discuss the results, and § 7 presents the conclusions.

2. MATHEMATICAL FORMULATION
This work describes a two-dimensional (2D) Partial Differ-
ential Equations (PDEs) solver that is resilient to both soft
and hard faults. The algorithm illustrated below is the 2D
extension of the 1D solver developed in [19]. For the pur-
pose of this work, we revisit the formulation for a generic
2D elliptic PDE of the form

Ly(x) = g(x), (1)

where L is an elliptic differential operator, g(x) is a given
source term, and x = {x1, x2} ∈ Ω ⊂ R2, with Ω being
the target domain region. We focus on Dirichlet boundary
condition y(x)|x∈Γ = yΓ along the boundary Γ of the domain
Ω. This approach is not restricted to elliptic PDEs, but its
extension to other types of PDEs is outside of the scope of
this paper, and will be the subject of a future publication.

Figure 1 shows a high-level schematic of the algorithm’s
work flow. The starting point involves defining a discretiza-
tion of the computational domain. In general, the choice
of the discretization method is arbitrary, potentially hetero-
geneous across the domain, e.g. uniform, or non-uniform
rectangular grid, or a finite-element triangulation, etc.

After discretizing the computational domain, the second
step is the partitioning stage, in which the target 2D do-

main, Ω, is split into a grid of n
(s)
x1 ×n

(s)
x2 overlapping regions

(or subdomains), with n
(s)
xk being the number of subdomains

along the xk-th axis. In general, the size of the overlap
between neighboring subdomains is an arbitrary parameter
that, as shown in [19], can play an important role for non-
linear problems, while having only a minor effect for linear
PDEs. The size of the overlap does not need to be equal
and uniform among all partitions, and can vary across the

domain. The partitioning stage yields a set of n
(s)
x1 × n

(s)
x2

subdomains Ω
(s)
ij , and their corresponding boundaries Γsij ,

for i = 0, . . . , n
(s)
x1 − 1, and j = 0, . . . , n

(s)
x2 − 1, where Γsij

represents the boundary set of the ij-th subdomain Ω
(s)
ij .

The algorithm considers each subdomain to be independent
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Figure 1: Schematic of the workflow of the algo-
rithm. For clarity, starting with stage 2 we only

show the steps for Ω
(s)
01 but the same “operations”

are applied to all subdomains.

of the others. One potential constraint is that, for the
purposes of the algorithm, within each subdomain the dis-
cretization should allow to easily extract the solution at
the locations corresponding to the intersecting boundaries.
This can be easily obtained by using a uniform rectangular
grid, and suitable domain decomposition, such that the grid
points coincide with the boundaries of the intersecting sub-
domains. This is the case illustrated in figure 1, and also
adopted for simplicity in this study. If this was not the case,
one would have to rely on interpolation to extract these data.
Exploring heterogeneous discretization involving more gen-
eral discretization methods and their effect on the algorithm
is outside of the scope of this work and is being addressed
elsewhere.

One of the advantages of the above decomposition for the
elliptic problem in Eq. (1) is that if we knew the true solu-
tion along the subdomain boundaries, then this information
could be used as boundary condition within each subdo-
main, to perform a single local solve that would then yield
the full solution over the full domain, Ω. Consequently, it is
sufficient to define as our object of interest the set of solu-
tion fields along the boundaries, which we denote y(x)|x∈Γsij

for i = 0, . . . , n
(s)
x1 − 1, and j = 0, . . . , n

(s)
x2 − 1. Due to

the overlapping, each subdomain Ω
(s)
ij includes inner bound-

aries, Γinsij , i.e. the parts of the boundaries contained within

Ω
(s)
ij that belong to the intersecting (neighboring) subdo-

mains. The core of the algorithm, as shown in [19], relies on
exploiting the relationship between the solution at the sub-

domain boundaries as follows: within each subdomain Ω
(s)
ij ,

our goal is to find the map relating the solution at the sub-
domain boundaries, y(x)|x∈Γsij

, to the solution along the

inner boundaries, y(x)|x∈Γin
sij

. These maps can be written

compactly as

y(x)|x∈Γin
sij

= f (ij)
(
y(x)|x∈Γsij

)
, (2)

for i = 0, . . . , n
(s)
x1 −1, and j = 0, . . . , n

(s)
x2 −1. The system of

equations assembled from these boundary-to-boundary maps
collected from all subdomains, combined with the boundary
conditions on the full domain y(x)|x∈Γ, yields a fixed-point
problem of the form y(x) = Fy(x), where y represents the
vector of the solution values at all subdomains boundaries.
This problem is only satisfied by the true solution. We re-
mark that these boundary maps f (ij) relate the y-values,
since they are built from the restrictions of the subdomain
solutions at the corresponding boundaries. As outlined in
[19], even though general (non-)linear solvers can solve the
fixed point problem, this approach is not the best because
it involves an overhead due to global communication and
would require on the fly subdomain solutions to evaluate
the maps. The method adopted in [19], which we carry over
to the work presented here, is to construct approximations
(or surrogates) of the boundary-to-boundary maps, which

we call f̃ (ij). One of the main advantages of this approach
is that the computations can be done locally and indepen-
dently within each subdomain without requiring information
from the neighbors. This allows us to satisfy data locality
and avoid the overhead due to communication, which is cru-
cial to achieve scalability on extreme scale machines. To
build these surrogate maps we use a sampling strategy that
involves solving the equation locally on each subdomain for
sampled values of the boundary conditions on that subdo-
main. These samples are used within a regression approach
to “infer” the approximate boundary maps. One can thus
view the construction of these surrogate maps simply as a
step in which we “learn” the coefficients of the boundary
maps. In general, for non-linear problems, the maps are
non-linear and using linear surrogate maps will carry an ad-
ditional source of discrepancy, due to the linear approxima-
tion of a generally non-linear map. For linear PDEs, instead,
as shown in [19], the boundary maps are linear as well.

To build these maps we need a current“state”of the solution
at the subdomains boundaries, and a sampling range that is
used to generate samples within each subdomain, see stage
3 in figure 1. Using the current solution state and the cur-
rent sampling range values, we can generate samples within
each subdomain which are then used in a regression stage to
build the approximate maps. This stage plays a key role for
addressing soft faults. As shown in [19], in fact, when in-
ferring linear maps, using a suitable `1-noise model one can
seamlessly filter out the effects of few corrupted data. The
`1 noise model allows us to find the solution with as few non-
zero residuals as possible. Under the assumption that faults
are rare, the inferred maps will fit the non-corrupted data ex-
actly while effectively ignoring the corrupted data. Follow-
ing the construction of the surrogate boundary-to-boundary
maps, we can then solve the approximate version of the fixed
point system in Eq. (2), which provides us with the new so-
lution state at all the subdomains boundaries and represents
an approximation of the true solution. For the case of linear
PDEs, because the boundary-to-boundary maps are linear
and given that no faults occur, the approximate solution ob-
tained after one iteration coincides with the true solution.
An important measure of the accuracy of the current solu-



tion y(x)|x∈Γsij
is the residual vector, defined as

z(T ) = Fy(T ) − y(T ), (3)

which can be computed by extra subdomain solves using
boundary conditions defined by the current solution y(T ),
and subtracting the corresponding current solutions y(T )

from the resulting values at all boundaries. It follows from
the definition that the residual (3) vanishes if the current

solution y(T ) is the exact solution.

The above outline of the algorithm shows that the orig-
inal PDE problem is reformulated mainly in terms of a
sampling problem, followed by resilient data manipulation
to achieve the final solution update. It is important to
mention that knowing the boundary-to-boundary maps dis-
cussed above gives us the framework to potentially solve the
target PDE over the target domain Ω with any boundary
conditions. This is because once the maps between the sub-
domain boundaries are known, then solving for any bound-
ary condition simply translates into doing one solve of the
fixed point system for the new boundary condition. In the
context of performance analysis, a comparison against exist-
ing solvers should not evaluate the cost of a single run. The
comparison should be seen in a larger context, namely one
involving ensembles of runs for uncertain boundary condi-
tions as well as system faults. This is currently being pur-
sued and will be presented elsewhere.

3. ALGORITHM IMPLEMENTATION
Two separate parallel, C++ implementations of the algo-
rithm have been developed, “distributed” and “task man-
ager” based implementation. The packages are designed us-
ing inheritance, polymorphism and data encapsulation, and
other core properties of object-oriented programming (OOP),
which contribute to well-structured, modular, and portable
implementations. These properties greatly facilitate the ad-
dition of new functionalities, and the modification of existing
capabilities. Both versions rely on the Boost MPI library for
the communication, which itself wraps the Message Passing
Interface (MPI) library.

The first version is based on mapping one subdomain to one
MPI process, such that each MPI process exclusively handles
a specific subdomain and all the local information and com-
putations, thus making the package fully “distributed”. The
alternative is a task manager-based (TM) implementation,
which consists of grouping the available MPI processes into
servers and clients. The servers are assumed to be safe units
holding the data, whereas the clients are designed solely to
accept and perform work. A client can be a full computing
node or, more generally, simply a set of MPI processes.

Both implementations have advantages and disadvantages,
and reveal marked differences. For instance, it is evident
that the distributed version minimizes the amount of com-
munication, while the TM involves substantial data exchange
between servers and clients. From a resilience standpoint,
the distributed version would not be able to tolerate a hard
fault, e.g. an MPI process or a full node crashing, because
part of the data would be indefinitely lost. On the contrary,
the TM is inherently resilient to the scenario of clients crash-
ing, since that translates into only missing tasks as the ac-
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Figure 2: Schematic of our task manager network.

tual data is still safely held by the server. Since the focus of
this work is resilience, we rely on the TM implementation to
generate all the results presented below. Figure 2 shows a
schematic of our TM structure. The starting point is a set of
available MPI ranks, some of which play the role of servers,
while some play the role of clients. We then form separate
clusters each containing a server and, for resource balancing
purposes, the same number of clients. These clusters are de-
signed such that all servers can communicate between each
other, while the clients within any cluster are only visible to
the server within the same cluster. The data is distributed
among the servers, and these are assumed to be highly re-
silient (safe or under a sandbox model implementation). The
sandbox model assumed for the servers can be supported by
either hardware or software. The former assumption is sup-
ported by hardware designer specifications on the variable
levels of resilience that can be allowed within large computer
systems. In the case of software support, a sandbox effect
can be accomplished by a programing model relying on data
redundancy and strategic synchronization [14, 3, 11]. Since
the servers hold the data, they are responsible for generat-
ing work in the form of tasks, dispatching them to their pool
of available clients, as well as receiving and processing com-
pleted tasks. Since each client can comprise multiple MPI
ranks, when it is ready to perform new work, it is its root
process that receives the new task to perform. Once the task
is received by that root process, it is then broadcast to all
the ranks in the client so that the client as a whole can work
in parallel to solve the task. All communications between
server and clients are done with non-blocking operations, al-
lowing us to overlap them on the server side with the compu-
tational operations involved in the creation and processing
of the tasks. Given that our code involves complex C++
objects, e.g. the tasks objects themselves, we leverage the
Boost serialization library to enable object communication
via MPI. For this study, we concentrate on a single cluster,
i.e. a single server with multiple clients, but we anticipate
that this configuration is not suitable for large problems and
for targeting scalability studies. To this end, one should en-
vision having multiple servers, as shown in figure 2. Since
the focus of this work is resilience, we omit scalability stud-



ies and comparison against the distributed version, which
will be reported elsewhere. For all the results below, unless
stated otherwise, we focus on a scenario where we have one
MPI rank that is the server, and 62 clients, each consist-
ing of 2 MPI processes, yielding a total of 125 running MPI
processes.

4. SOFT AND HARD FAULTS
Reliably modeling faults in a computing platform is not an
easy task. Various attempts have been made to find the
statistical distribution that best fits the data extracted for
real systems, see e.g. [12, 15, 17, 22, 18, 20] and references
therein. Faults can be grouped under two main categories,
namely hard and soft (or silent). Hard faults have many
causes, and their effects are usually catastrophic because
they cause partial or full computing nodes or network fail-
ures. These faults, however, can be “seen”, in the sense that
they have an evident impact on the run and the system itself.
Silent errors, on the other hand, are more subtle and can go
undetected. The reason is that their effect is not to break a
particular system component, but simply alter in some way
how the information is stored, transmitted, or handled. The
key feature of silent errors is that, being undetected, there is
no opportunity for an application to recover from the fault
when it occurs. Designing algorithms that are resilient to
silent errors is a very important line of future research [5].
If the algorithm itself is designed to include capabilities to
seamlessly filter out these faults, then there is no need to
detect them.

To test the resiliency of our algorithm to both hard and
soft faults, we synthetically inject faults into the system as
follows. Hards faults are modeled as entire clients crashing.
More specifically, we model this by assuming that if any
one of the MPI ranks defining that client dies, then the
entire client is deemed as dead. This picture is taken to be
consistent with the realistic scenario of a entire node failing.
Since MPI does not yet allow ranks within a communicator
to fail for real, we cannot actually kill the ranks because the
full run would crash, so we simulate that by simply making
those ranks sit idle for the rest of the computation. Dead
clients stop communicating with the server, and, therefore,
do not receive any additional work to do. Silent errors, on
the other hand, are modeled as random bit-flips corrupting
the data at three possible stages: during the transmission of
a task from a server to a client; during the task execution;
and, finally, during the transmission of a completed task
from a client to its server.

4.1 Failure Distribution
So far we have discussed the type of faults that we model,
how we inject them in the algorithm, but we are missing a
model to simulate their occurrence. To this end, we assume
an exponential failure density function, f(t), which describes
the inter-arrival time between events in a Poisson process,
in which events occur continuously and independently at a
constant average rate. Using an exponential distribution
implies that the process is assumed “memoryless”, i.e. each
event is independent of the other. Of course, if more realistic
models were used, the occurrence of the faults would be
different, but this would not affect the results of this study
as we focus on how our approach handles faults, regardless
of how they occur. This justifies our choice of the simplest

Table 1: Failure Rates (nfaults/sec)

Hard Faults
Soft Faults

Computation
Soft Faults

Communication
r1 = 0.00005 0.00004 0.00069
r2 = 0.00009 0.00009 0.00140
r3 = 0.00018 0.00017 0.00270
r4 = 0.00034 0.00035 0.00550
r5 = 0.00072 0.00070 0.01100
r6 = 0.00090 0.00087 0.01400
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Figure 3: Failure distribution F (t) for the commu-
nication soft faults for the six different failure rates
explored in this study.

possible model. The exponential distribution is defined by
a single parameter, rate of failure r, and can be written as

f(t) = r exp−rt . (4)

Knowing the failure density function, f(t), we can define
the failure distribution, F (t), which is simply the cumulative
distribution function

F (t) =

∫ t

0

r exp−rτ dτ = 1− exp−rt . (5)

As previously stated, in this study we model three different
scenarios of faults: hard faults, communication soft faults,
and computation soft faults. In order to define suitable fail-
ure rates for modeling their occurrence, we rely on the data
in [20]. We extract failure rates by scaling up the results
found in [20] assuming future architectures to have a 104-
way local concurrency within nodes (stemming from a com-
bination of cores and threads), and comprising 105 nodes.
Table 1 reports the computed failure rates for each of the
fault category target in this work. From the table it is clear
that the rates for the communication faults are much larger
than the others. This is due to the fact that while the rates
for communication faults have been scaled by considering a
network connecting 105 nodes, the others are based only on
the assumption of a 104-way local concurrency within nodes.
Figure 3 shows a representative example of the failure dis-
tribution F (t) for the communication faults for each of the
six failure rates computed.

From an implementation standpoint, to simulate the occur-



rence of a fault for a target operation we proceed as follows.
For a given failure rate, we draw a sample from a standard
uniform random number, and extract from the correspond-
ing failure density F (t) the amount of time until the next
fault occurs. We then measure the execution time for the
target operation to complete, and if that time exceeds the
next failure time, then a fault is triggered. Once the fault
is triggered, we proceed to simulate the effect of the fault as
previously described.

4.2 Handling Faults
The TM implementation handles two kinds of tasks, namely
sampling and regression tasks. The sampling stage is de-
signed such that we keep generating tasks until a sufficient
number of samples is collected for each subdomain to have
a well-posed regression stage. If enough samples are not col-
lected, the problem is under-determined, and we know in
advance that the regression would not succeed. If this is the
case, then we simply repeat the iteration since running the
regression anyway would be a waste of resources. During
the sampling stage, if a task fails, it is simply discarded by
the server and its data is not used. During the regression,
instead, if a task fails, the server tries to rerun it for a fixed
number of times (up to 5 times in the cases described in
this study), and, eventually, if none of these succeed, the
server simply does not use the corresponding data. During
this stage, the server knows exactly how many regression
tasks need to be executed. Since the regression is a funda-
mental part of the algorithm for the final fixed point solve,
the server keeps track of what tasks come back and, eventu-
ally, when all regression tasks have been run at least once, it
recreates and executes those regression tasks that were lost.
In both cases, if a task is successful, then its data is used,
but there is no guarantee that the data is “right”, since it
could be corrupted data due to the modeling of soft faults.
In the present work, when a task is processed, we verify that
the data stored in that task is “meaningful”, i.e. the data
does not contain NaN or Inf. If that is the case, then the
task is simply discarded.

5. TEST CASE DEFINITION
As a test case for demonstrating the algorithm, we consider
the following 2D steady diffusion equation

∂

∂x1

(
k(x)

∂y(x)

∂x1

)
+

∂

∂x2

(
k(x)

∂y(x)

∂x2

)
= g(x), (6)

where x = {x1, x2}, the field variable is y(x1, x2), k(x1, x2)
is the variable diffusivity, and g(x1, x2) is the source term.
This PDE is solved over a unit square (0, 1)2, with homo-
geneous Dirichlet boundary conditions, and the following
diffusivity and source:

k(x1, x2) = 0.5 ∗ (9.0 + 9.0 ∗ tanh

(
d(x1, x2)

0.01

)
+ 1.0, (7)

g(x1, x2) = 0.5 ∗ (2.0 + 2.0 ∗ tanh

(
d(x1, x2)

0.01

)
− 1.0, (8)

where d(x1, x2) = 0.25 −
√

(x1 − 0.5)2 + (x2 − 0.5)2. This
yields a non-trivial solution due to the steep gradient in the
diffusivity and the source term, which can pose some chal-
lenges in the numerical solution if the spatial discretization
is not sufficiently fine.

Figure 4: Schematic showing the n
(s)
x1 = n

(s)
x2 = 3

subdomains partitioning, as well as the underlying
nx = ny = 101 discretization grid

To test our algorithm, we adopt a n
(s)
x1 = n

(s)
x2 = 3 partition-

ing, with an underlying global mesh of nx = ny = 101 and a
local subdomain grid size of about 372. Hereafter, we refer
to this problem using the label S9gs372, where S9 stands for
9 total subdomains, and 372 is the reference local grid within
each subdomain. The overlap between adjacent subdomains
is set to 7 grid cells along both x1 and x2. A representative
plot of the discretization grid, the resulting decomposition,
the subdomains and their overlapping is shown in figure 4.
Unless stated otherwise, this is the test case used to run
the results below. To numerically solve the PDE within
each subdomain during the sampling stage, we rely on a
second-order finite difference (FD) approximation over the
local rectangular mesh. Due to linearity, the FD approxi-
mation yields a linear system of equations, which is solved
using the AztecOO package in Trilinos which provides paral-
lel solvers for large linear systems. As previously stated, our
algorithm is independent of the type of solver used within
each subdomain. We remark that for the purpose of this
work the overlap size is not a critical parameter because for
linear problems, like the one adopted here as test case, it
does not affect the convergence. It can have a substantial
impact if the target PDE was non-linear, but this analysis
will be the subject of a separate publication.

6. RESULTS
6.1 No Faults
For demonstration purposes we first run the algorithm with-
out any faults. Due to the problem’s linearity, the maps
between the subdomain boundaries are linear, so the solu-
tion is obtained after a single iteration. For our algorithm,
the solution is obtained along all the boundaries of the sub-
domains, but not on the inner grid points. Figure 5 shows
the surface plot of the precomputed solution (grayscale), su-
perimposed to the solution along the boundaries of all sub-
domains. Knowing the state at the boundaries of all the
subdomains fully defines the solution, since we are dealing



Figure 5: Representative solution of the 2D linear
diffusion equation superimposed to solution at the
boundaries of the subdomains obtained for a sample
no-faults run. The colors used to plot the solution
at the boundaries match the ones used in figure 4.

with an elliptic PDE. To find the solution over the inner
grids of the subdomains, we would need an additional step
in which we use the boundaries state as boundary conditions
to perform one more single PDE solve over each subdomain.
This would yield the full solution over all grids points in the
mesh. For brevity, this step is omitted here, because it is
sufficient to know the solution at the subdomains’ bound-
aries.

The first part of the results focuses on exploring the effects
of each type of fault individually, and what is the role of the
failure rate. Given the “randomness” associated to both the
algorithm (i.e. during sampling stage) and the faults occur-
rence, we explore the effects of the different failure rates in
terms of ensembles of runs. To this end, for each value of the
failure rate shown in Table 1, we run N = 40 simulations for
the S9gs372 case. To explore the effects of problem size, on
these results, a smaller ensemble N = 10 was ran for a big-
ger problem. This larger case is referred to as S4gs1032 and
involves an underlying grid of nx = ny = 201, partitioning

of n
(s)
x1 = n

(s)
x2 = 2 subdomains, and a local subdomain grid

size of 1032.

6.2 Hard Faults
The effect of hard faults on the algorithm implementation
are first explored using the S9gs372 test case. We first focus
on the convergence results. Figure 6 shows the dependence
of the root-mean-square (RMS) of the final residual as a
function of the number of faults for all runs in the S9gs372

test case. The data points are color-coded based on the
failure rate they belong to. The errors bars are obtained for
the 0.25 and 0.75 quantiles, and the dashed line connects
the 0.5 quantiles. This figure is significant because it proves
the resiliency of our algorithm with respect to hard faults,
since all the runs converge, with no runs failing, regardless
of the number of hard faults that hit the “system”.

We now explore how the faults affect the run time. Fig-
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Figure 6: Root-mean-square value of the final resid-
ual plotted as a function of the number of hard
faults. The errors bars are obtained for the 0.25
and 0.75 quantiles, and the dashed line connects the
0.5 quantiles. The markers are color-coded based on
the failure rate they belong to.

ure 7 shows two sets of data: in black, we plot the number
of hard faults for all the ensemble runs as a function of the
failure rate, and superimpose the error bars displaying the
0.25 and 0.75 quantiles, as well as the trend for the 0.5 quan-
tile (dashed-line); in blue, we show the fraction of runs that
completed without faults as a function of the failure rate.
The plot reveals that as the failure rate increase, the num-
ber of faults occurring increases, on average, monotonically,
ranging from zero for the smallest rate, r1, to a maximum
value of 17 for r6. We also note that even though we have
an ensemble of 40 runs for any given value of the failure
rate, the actual variance of the number of faults is not large.
This is because several runs have the same number of faults,
even though these faults might affect different clients. For
instance, for the lowest rate r1, we only observe 0, 1 or 2
faults, whereas for the largest rate r6, we observed a min-
imum of 5 and a maximum of 17 faults. Of course, this is
an effect of the finite-time of the simulation, because if we
were to run these cases long enough, eventually all clients
would fail. The other data set plotted in the figure shows
the fraction of runs that complete without encountering a
fault. The data reveals that even for the lowest rate case,
only about 60% of the runs do not have faults. This value
drops to zero for r5 and r6.

For illustration purposes, figure 8 shows a snapshot of the
status of the clients for one representative run for each failure
rate. The plot can be interpreted as follows. The 62 clients
cli, for i = 0, . . . , 61, that we have available are placed along
the angular coordinate; the radial coordinate identifies the
failure rate, and increases as we move outward. It follows
that each marker in the plot represents the status of a client
during a representative run extracted for a given failure rate.
Red markers identify clients that have failed at some point
during the run, while blue markers represent clients that
are alive. For this particular run, we can see that for the
smallest failure rate, r1, all clients remain alive. On the
contrary, for the largest case we can see that 9 clients are
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Figure 7: Number of faults for all ensemble runs
(black circles) plotted as a function of the failure
rate obtained for the hard fault case. The errors
bars are obtained for the 0.25 and 0.75 quantiles,
while the dashed line connects the 0.5 quantiles. The
dataset in blue shows the fraction of runs that com-
plete without faults. All results are obtained for the
S9gs372 case.

Figure 8: Status of all 62 clients (distributed along
the angular direction) for a representative simula-
tion of each of the failure rates ri, i = 1, . . . , 6. A red
marker identifies a client that has died during that
run, while a blue marker identifies a client that is
alive.
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Figure 9: Time per iterations t normalized by t∗,
which is the corresponding time for the no faults
case, plotted as a function of the number of hard
faults. The errors bars are obtained for the 0.25 and
0.75 quantiles, and the dashed line connects the 0.5
quantiles.

dead. This is just a representative picture, and it would
change if a different run was selected.

To investigate what is the effect of the faults on the runtime,
figure 9 shows for each run of each rate, the time per iter-
ation, t, normalized by t∗, which is the corresponding time
for the no faults case, as a function of the failure rate. The
errors bars are obtained for the 0.25 and 0.75 quantiles, and
the dashed line connects the 0.5 quantiles. We remark that
in all these hard fault cases, the solution is obtained after
a single iteration, which means that the time per iteration
reported in figure 9 is also the time to converge. The data
reported in black shows the results obtained for the refer-
ence test case S9gs372. While the data displayed in red,
shows the results obtained for a bigger problem size, test
case S4gs1032. The two data sets reveal different trends:
the data set obtained for the smaller case, S9gs372 (shown
in black) shows a slowly growing trend as the number of
faults increases, but the noise is too large and, thus, the
trend is not clear. Overall, the overhead runtime that we
face for the runs with faults seems to only weakly depend
on the number of faults. Even though at first glance this
result might be surprising, it is the consequence of dealing
with a problem that is too small in terms of computational
load. What the data reveals is that the tasks that are gen-
erated for the current problem are not sufficiently intensive
such that even when we lose 16 clients out of 62, we do not
see much impact on the overall execution time because we
are bounded by the communication cost. This explanation
is supported by the data plotted in red, which was obtained
for the larger problem, S4gs1032 involving finer grid. The
increasing trend is clearly visible for the S4gs1032 case. By
making the problem bigger and, thus, more computation-
ally intensive, the computational cost surfaces, yielding a
net growing trend in the runtime cost when some of the
clients are killed.
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Figure 10: Time per iterations t normalized by t∗,
which is the corresponding time for the no faults
case, plotted as a function of the number of compu-
tation faults. The errors bars are obtained for the
0.25 and 0.75 quantiles, and the dashed line connects
the 0.5 quantiles.

6.3 Soft Faults During Computation
While the effect of a hard fault effectively translates into
missing data, soft faults occurring in the clients during the
task execution can have different consequences. In this case,
if a soft fault occurs it can either cause the task being ex-
ecuted to fail, which would be detected by a convergence
check on the subdomain, or if the fault results in a very
small perturbation, then some iterative solvers or regression
algorithms will reach a solution. We anticipate that in the
present work, we do not observe the latter scenario. Tasks
that are affected by computational soft faults are not lost,
and depending on whether it is a sampling or a regression
task, we have two different scenarios. For a sampling task,
the server receives it back from a client, and if it is a failed
task, it is discarded, if not, it is processed. For a regression
task, instead, if the task failed, then the server tries to re-
run the same task up to 5 times. If the number of attempts
reaches the maximum value, the server simply disregards the
task so the data stored in that task is not used. This implies
that the server does not update the maps coefficients for the
boundary for which that task was constructed.

Figure 10 shows for each run of each rate, the time per iter-
ation, t, normalized by t∗, which is the corresponding time
for the no faults case, as a function of the failure rate. The
data reported in black, once again, shows the results ob-
tained for the reference case S9gs372. The data displayed
in red, shows the results obtained for a bigger problem, case
S4gs1032 which runs for a smaller ensembles (N = 10) for all
failure rates. The errors bars correspond to the 0.25 and 0.75
quantiles, and the dashed line connects the 0.5 quantiles.
The results indicate that the soft faults occurring during
the computational stage of the clients do not strongly affect
the time per iteration. In other words, for the S9gs372 case,
the overhead for completing the runs with respect to the no
fault case due the presence of computation soft faults is very
weakly dependent on the failure rate. The trend does not
change if we consider the larger problem (S4gs1032) with
results shown in red. In this case, even though the tasks
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Figure 11: Average number of faults computed over
the ensemble runs as a function of the failure rate
obtained for the computation faults.

themselves are more expensive to run, the overall trend is
the same and the results do not depart too much from the
S9gs372 case. This suggests that for the current settings,
the combination of number of faults occurring and compu-
tational load is not large enough to have an effect as strong
as we have seen for the hard fault case. We can thus draw
the conclusion that losing computing nodes or clients has a
greater impact on the runtime.

Figure 11 shows the average number of faults computed over
the ensemble runs as a function of the failure rate obtained
for the case with a 3 × 3 subdomains partitioning and an
underlying grid of 1012 (case S9gs372 shown in black), and
for the case with a 2× 2 subdomains and underlying grid of
2012 (case S4gs1032 shown in red). For this type of fault,
we observe limited number of faults occurring, across all
runs. More specifically, for a fixed value of the failure rate,
the number of faults increases with the problem size. The
reason behind these results is that if the task execution is
completed quickly enough, then it is less likely that a fault
occurs. As the problem becomes larger and larger, tasks be-
come more and more expensive to run, and, thus, can be hit
more frequently by faults. In both cases, however, the num-
ber of faults hitting the clients is still too small to have any
substantial impact on the runtime, as shown by figure 10.
Also for this type of faults, all the runs converge success-
fully, and the RMS of the residual for this category of faults
behaves similarly to the one shown for hard faults, further
confirming the resiliency of the algorithm. For brevity, this
plot is omitted.

6.4 Soft Faults During Communication
In this subsection we explore the effects of the fault occur-
ring during the communication operations between server
and clients. This type of fault is the most complex for re-
silience purposes, because it involves undetectable silent er-
rors that corrupt the data in the tasks objects. A suitable
example is one where we have a task object that is being
sent from a server to a client, and there is some memory
corruption due to cosmic rays that corrupts the network.
This would affect the actual data owned by the object, or
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Figure 12: Time per iteration, t, normalized by t∗,
which is the corresponding time for the no faults
case, as a function of failure rate for communication
faults. The errors bars are obtained for the 0.25 and
0.75 quantiles, and the dashed line connects the 0.5
quantiles.

even the object itself being completely corrupted. This ef-
fect is what we are trying to model with this type of fault.
To this end, our approach relies on the fact that if a fault is
triggered, then we synthetically corrupt all the data of that
object. There is an important distinction to make between
messages that are traveling from the server to a client, and
those that are traveling from a client to a server. In the first
case, when the server sends a task to a client and a fault oc-
curs, the client receives that task object carrying corrupted
data. We remark once again that these are silent errors so
there is no way for the client to know that the data is cor-
rupted, unless the data contains NaN or Inf. After receiving
the task, the client proceeds with its execution. If the data
is corrupted, and depending on the size of the corruption,
that task is likely to fail. If that is the case, as mentioned
in the previous section the server will then decide what to
do next, i.e. whether to rerun that task or discard it. The
situation is different if the fault occurs when a task is being
transmitted from a client to a server. In this case, the fault
most likely corrupts the data owned by that task, but the
server will use that data to do the update of the local so-
lution. Again, this is because the server does not have any
way to know that the data coming in is corrupted. Even if
a subset of the samples data is corrupted, the `1 regression
is capable to filter out these effects and find the right solu-
tion. This procedure does not always work as well, because
we might have too many corrupted data, or the magnitude
of the perturbation is so large that the solver cannot over-
come. If this is the case, then it is likely that using these
data will lead to a bad solution, which would imply that the
algorithm launches another iteration since the expected con-
vergence is not achieved. If many faults occur, then this can
cause the run to perform multiple iterations before converg-
ing. Figure 12 shows the time per iteration, t, normalized
by t∗, which is the corresponding time for the no faults case,
as a function of failure rate. The results are shown for all
the runs of the S9gs372 case (black curve). The errors bars
are obtained for the 0.25 and 0.75 quantiles, and the dashed
line connects the 0.5 quantiles. The figure shows that faults
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Figure 13: Number of faults for all ensemble runs
(black circles) plotted as a function of the failure
rate for communication faults. The errors bars are
obtained for the 0.25 and 0.75 quantiles, while the
dashed line connects the 0.5 quantiles. The dataset
in blue shows the fraction of runs that complete
without faults.

occurring during communication play a key role, since they
cause a net increase in the computational cost of a single it-
eration. More specifically, we can see that the cost increases
by 20% for the largest failure rate, which is not a negligi-
ble amount also considering that these results are obtained
for the small problem, S9gs372. The dataset plotted in red
shows results obtained for S4gs1032. In this case, we note
that the runtime overhead per iteration with respect to the
no fault case increases rapidly for smaller rates, to eventu-
ally settling into a plateau. The data also reveals that this
larger problem S4gs1032 is more affected by soft faults than
the smaller case. This is because the number of faults oc-
curring for this problem is larger. This is due to the fact
that task objects for the bigger case are more expensive to
exchange via MPI, implying that these communication op-
erations take longer, and are thus more susceptible to be hit
by a fault. For brevity, we omitted the plot for the con-
vergence, but we remark that in all cases, like shown for
the other types of faults, the runs complete successfully, but
need more than a single iteration. Figure 13 shows two sets
of data: in black, we plot the number of faults for all the en-
semble runs in case S9gs372 as a function of the failure rate,
and superimpose the error bars displaying the 0.25 and 0.75
quantiles, as well as the trend for the 0.5 quantile (dashed-
line); in blue, we show the fraction of runs that completed
without faults as a function of the failure rate. The total
number of faults that hit the run is very large in this case,
ranging from zero for r1, to more than 130 for the r6. This is
because the rates used for this type of fault are quite large,
and, thus, it is more likely that faults occur. It is interesting
to see that only for the smallest rate, r1, we have some runs
that complete without encountering any fault. In all other
cases, all the runs have at least one fault.

6.5 Mixed Faults
The results discussed above explored each fault category in-
dividually. This analysis allowed us to extract some patterns
and highlight what the effects each type of fault has on the
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Figure 14: Time per iteration, t, normalized by t∗,
which is the corresponding time for the no faults
case, as a function of the mixed fault case.

runs. This scenario, however, is not a real one because in a
real system we cannot turn off target faults arbitrarily. It is
thus important to explore how the algorithm behaves when
all faults are activated and can occur concurrently. To this
end, we choose three different scenarios, one involving a case
where all three faults are described by the smallest value of
the failure rate r1; a second case involves all three faults
with rate r4; finally, as last case, we have r6 for all three
types. Figure 14 shows the time per iteration, t, normal-
ized by t∗, which is the corresponding time for the no faults
case, as a function of failure rate. The results are shown for
both the small and large problem (S9gs372 and S4gs1032 re-
spectively), with errors bars obtained for the 0.25 and 0.75
quantiles, and the dashed line connecting the 0.5 quantiles.
As expected, the plot reveals that the overhead cost per it-
eration due to the presence of faults increases monotonically
as a function of the failure rate for both problems consid-
ered. On the one hand, for the small problem (S9gs372), the
overhead cost of one iteration in the presence of faults for
the largest faults rate is on average about 20%. This cost
substantially increases to 100% for the larger case, S4gs1032.
For a fixed problem, the plot reveals that the gap between
the 0.25 and 0.75 quantiles of the data increases propor-
tionally to the failure rate. This is due to the fact that as
the failure rate increases, so does the variability in how the
faults occur during the runs. From a different viewpoint, for
a fixed value of the failure rate, we can see that variability
in the data increases with the size of the problem.

We finalize this section showing the resiliency results. To
this end, figure 15 shows the RMS of the residual as a func-
tion of the mixed fault cases. The plot reveals that all the
runs converge. Due to the presence of faults, we observe high
variability in data especially at higher values of the rates.

7. CONCLUSIONS
In this study, we presented a PDE preconditioner that is
resilient to hard and soft faults, and showed its applica-
tion to a 2D elliptic problem involving a steady diffusion
equation with variable coefficients. The algorithm exploits
a novel reformulation of the problem that allows us to cast it
into a sampling problem over a set of subdomains such that
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Figure 15: RMS of the residual as a function of the
mixed fault case.

“data” is generated, and then suitably manipulated to yield
the final updating of the solution state. We rely on an asyn-
chronous server-client framework, where one or more servers,
which are assumed to be “safe”, hold the data, while the
clients ask for tasks and execute them. This framework pro-
vides resiliency to hard faults since clients that have crashed
are ignored and the remaining clients handle all the tasks.
Faults occurrence is modeled using a Poisson process defined
by a failure rate, and fault types are grouped under three
main categories: hard faults, which mimic clients (or nodes)
crashing; soft faults during computation, which mimic silent
errors affecting the system during the computational work;
and soft faults affecting the MPI communication, mimicing
the silent errors that can occur within the network when
data is being transmitted. Each fault is first explored indi-
vidually to extract patterns and understand more deeply its
impact on the algorithm execution. First, we remark that in
all cases, the algoritm always reaches convergence, demon-
strating its resiliency. The effect of the faults is to increase
the time per iteration and/or the number of iterations that
the algorithm needs to run to complete. We showed that
hard faults have a substantial impact on the runtime for
the larger problem investigated, while only having a minor
impact for the small problem. We explained this appar-
ent discrepancy in terms of communcation and compuation
cost. For computational faults, we saw that both problems
are sufficiently small so that the tasks executions proceed
rapidly, and only few faults occur. For the nextwork faults,
we saw the effect of the faults to be quite substantial due to
the large number of faults happening, as well as the abrubt
and undetectable consequences that these faults have. Fi-
nally, we showed the result for a more realistic case where
all faults can be triggered together. As intutively expected,
this scenario is the most dramatic one, leading to runtimes
up to four times as big with respect to the no fault case.
The analysis presented above is built using a small part of
the data available from the simulations explored. A lot of
information can be extracted from these runs. Interesting
questions concerns the behavior of the algorithm for much
larger problems, the scalability of the algorithm, and poten-
tial approaches for dimensionality reduction in 2D. These
are currently the subject of parallel studies.
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