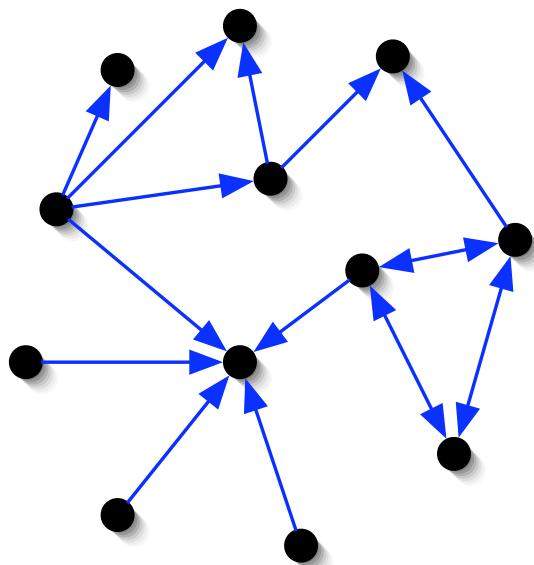


Improvements to 3-way DEDICOM for Applications in Social Network Analysis

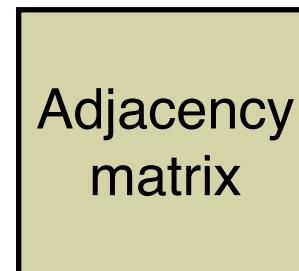
Brett Bader*, Richard Harshman** & Tamara Kolda*

*Sandia National Laboratories


**University of Western Ontario

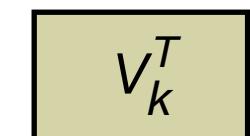
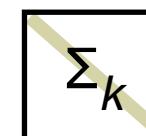
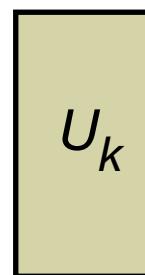
TRICAP
June 5, 2006

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

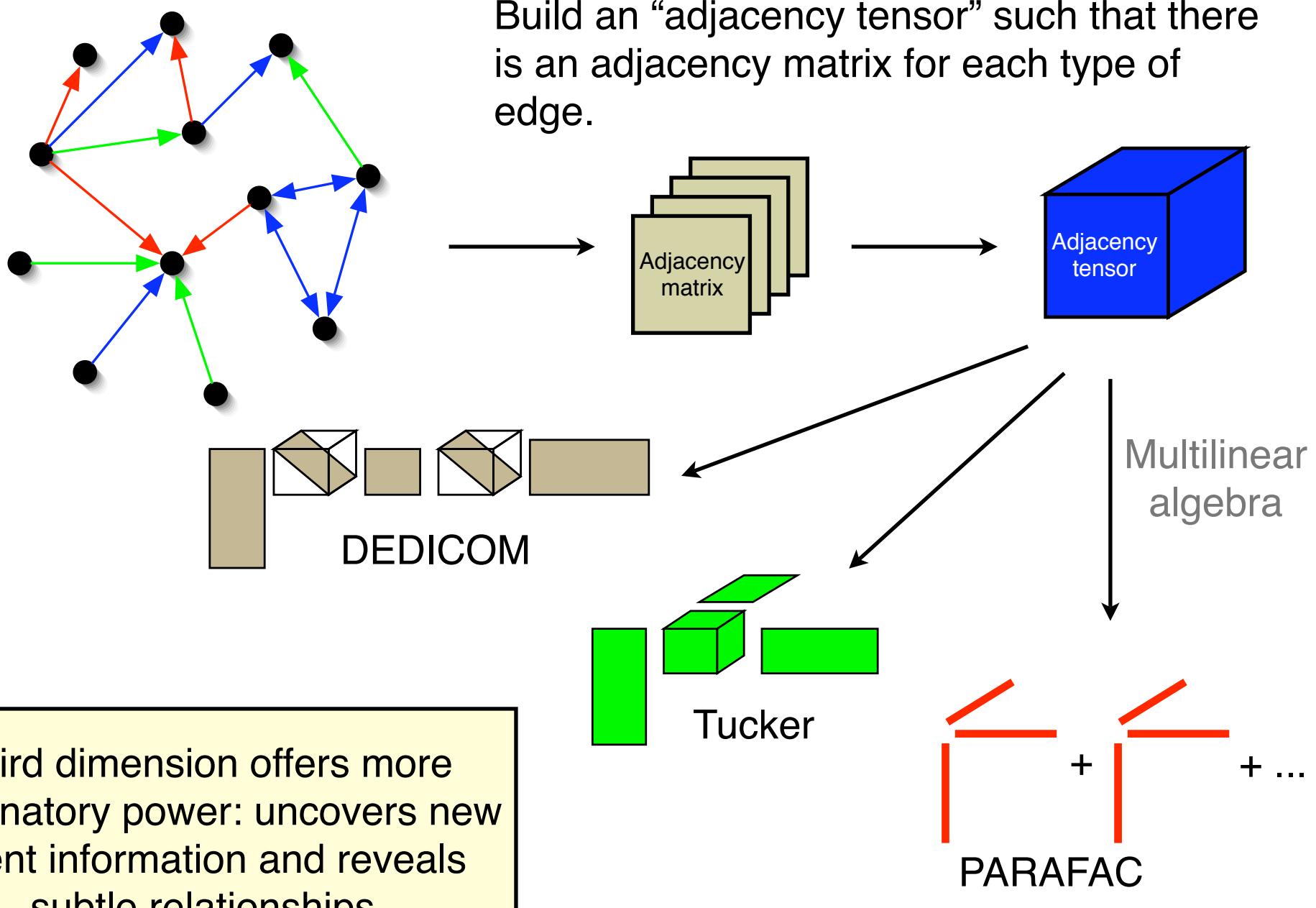

 Sandia
National
Laboratories

Common Graph Analysis Technique

For example:

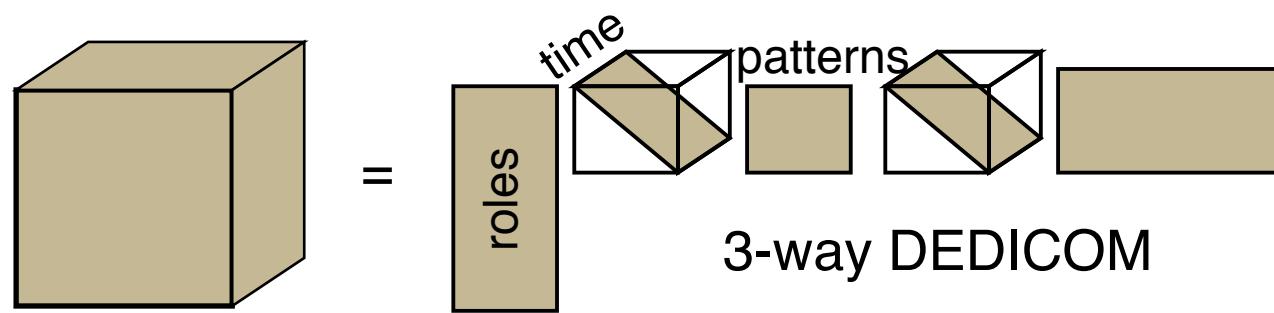
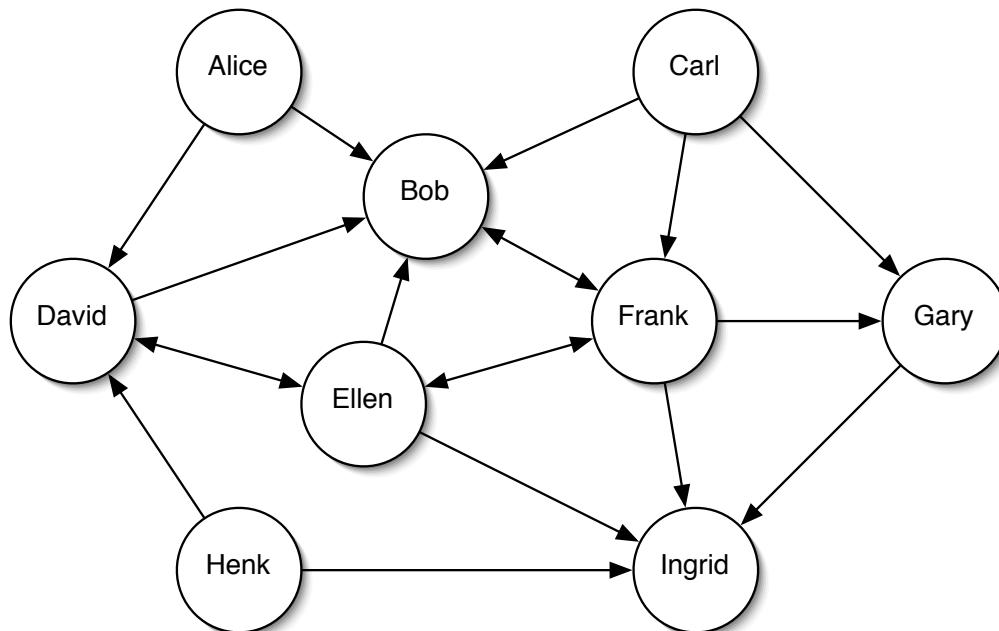



Search on the WWW: HITS (Kleinberg, 1998)

Best rank- k matrix filters out noise and captures “latent” information, which improves certain data mining tasks


Truncated SVD

$$A_k = U_k \Sigma_k V_k^T = \sum_{i=1}^k \sigma_i u_i v_i^T$$

But we may have lost critical information by ignoring edge metadata!



New Paradigm: “Multidimensional Data Mining”

Third dimension offers more explanatory power: uncovers new latent information and reveals subtle relationships

Using Tensors for Graph Analysis

Use 3-way DEDICOM to analyze complex social networks that change over time

- DEcomposition into DIrectional COMponents
- Introduced in 1978 by Harshman
- Part of the family of models called PARATUCK2
- Past applications
 - Study asymmetries in telephone calls among cities
 - Marketing research
 - car “switching” - car owners and what they buy next
 - free associations of words (e.g., shampoo: “body” evokes “fullness”)
 - Asymmetric measures of world trade (import/export)
- Variations
 - Three-way DEDICOM
 - Constrained DEDICOM
 - Skew-symmetric data

DEDICOM Algorithms

$$\mathbf{X} = \mathbf{A} \mathbf{R} \mathbf{A}^T$$

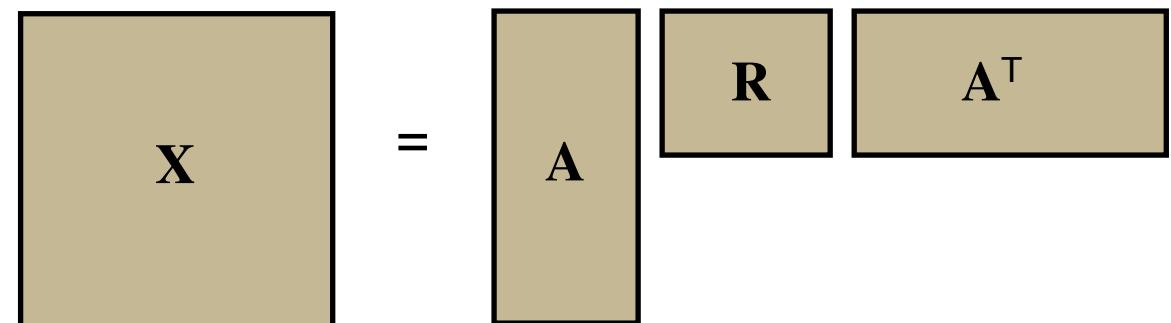
$$\mathbf{X} = \mathbf{A} \mathbf{R} \mathbf{A}^T$$

Solve by Alternating Least Squares

- Generalized Takane method
- Kiers' method
- New algorithm

Mathematical Notation

- Scalars a
- Vectors \mathbf{a}
- Matrices \mathbf{A}
- Tensors (3-way array) $\mathcal{D} \mathcal{X}$
 - frontal slices of \mathcal{X} : \mathbf{X}_i
- Special symbols
 - Kronecker product


$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & \dots & a_{1n}\mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m1}\mathbf{B} & \dots & a_{mn}\mathbf{B} \end{bmatrix}$$

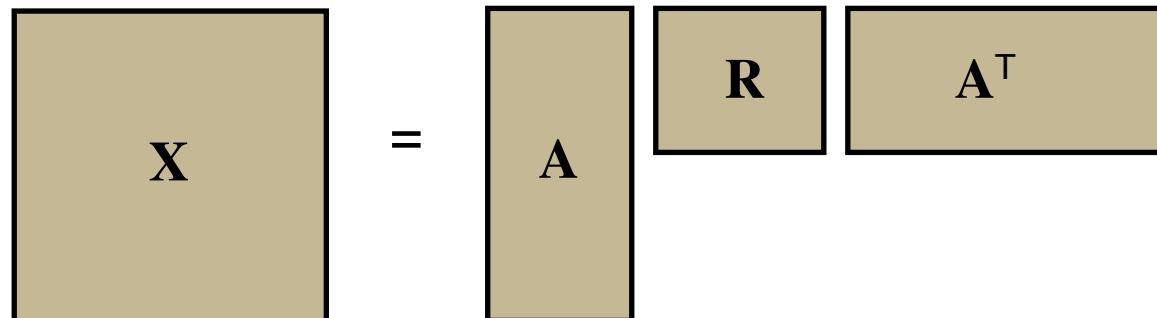
- Hadamard product (elementwise)

$$\mathbf{A} * \mathbf{B} = \begin{bmatrix} a_{11}b_{11} & \dots & a_{1n}b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1}b_{m1} & \dots & a_{mn}b_{mn} \end{bmatrix}$$

$$\mathbf{X} = \mathbf{A}\mathbf{R}\mathbf{A}^T + \mathbf{E}$$

$$\mathbf{X} \approx \mathbf{A}\mathbf{R}\mathbf{A}^T$$

$$\begin{aligned} \min_{\mathbf{A}, \mathbf{R}} & \left\| \mathbf{X} - \mathbf{A}\mathbf{R}\mathbf{A}^T \right\|_F^2 \\ \text{s.t. } & \mathbf{A} \text{ orthogonal} \end{aligned}$$


- \mathbf{A} ($n \times p$) is a matrix of loadings or weights
- \mathbf{R} ($p \times p$) is a matrix that captures asymmetric relationships
- \mathbf{A} is not unique
 - \mathbf{A} can be transformed with no loss of fit to the data
 - Nonsingular transformation \mathbf{Q} :
 - $$\mathbf{A}\mathbf{R}\mathbf{A}^T = (\mathbf{A}\mathbf{Q})(\mathbf{Q}^{-1}\mathbf{R}\mathbf{Q}^{-T})(\mathbf{A}\mathbf{Q})^T$$
 - Usually “fix” \mathbf{A} with some standard rotation (e.g., VARIMAX)

Generalized Takane Method

(Takane, 1985; Kiers et al., 1990)

$$\mathbf{X} \approx \mathbf{A}\mathbf{R}\mathbf{A}^T$$

$$\min_{\mathbf{A}, \mathbf{R}} \left\| \mathbf{X} - \mathbf{A}\mathbf{R}\mathbf{A}^T \right\|_F^2$$

Loss function: $\sigma(\mathbf{A}, \mathbf{R}) = \left\| \mathbf{X} - \mathbf{A}\mathbf{R}\mathbf{A}^T \right\|_F^2$

Minimizing σ wrt \mathbf{A} , for fixed \mathbf{R} ,
is equivalent to maximizing: $f(\mathbf{A}) = \text{tr}(\mathbf{A}^T \mathbf{X} \mathbf{A} \mathbf{A}^T \mathbf{X}^T \mathbf{A})$

Compute \mathbf{A} via Gram-Schmidt

orthonormalization:

$$(\mathbf{X} \mathbf{A} \mathbf{A}^T \mathbf{X}^T \mathbf{A} + \mathbf{X}^T \mathbf{A} \mathbf{A}^T \mathbf{X} \mathbf{A} + 2\alpha \mathbf{A})$$

where α is $>$ largest eigenvalue of
symmetric part of $(-\mathbf{X} \otimes \mathbf{A}^T \mathbf{X} \mathbf{A})$

Practical method:

- Compute an update for \mathbf{A} using $\alpha = 0$
- check if $f(\mathbf{A}_{\text{new}}) > f(\mathbf{A})$
- If not, compute \mathbf{A} using nonzero α

New Algorithm

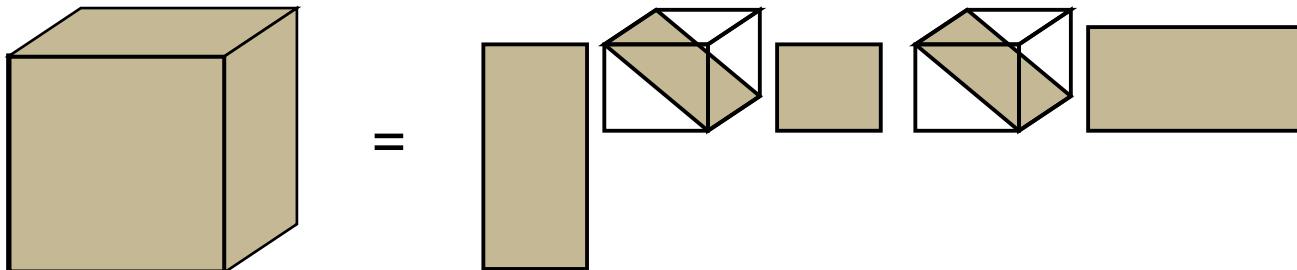
Solving for \mathbf{A} :

Stack data “side by side”

$$\begin{aligned} (\mathbf{X} \quad \mathbf{X}^T) &= (\mathbf{A} \mathbf{R} \mathbf{A}^T \quad \mathbf{A} \mathbf{R}^T \mathbf{A}^T) \\ &= \mathbf{A} \left((\mathbf{R} \quad \mathbf{R}^T) \begin{pmatrix} \mathbf{A}^T & 0 \\ 0 & \mathbf{A}^T \end{pmatrix} \right) \end{aligned}$$

...and solve extended LS problem, i.e., $\min_{\mathbf{A}} \| \mathbf{Y} - \mathbf{AB} \|_F^2$

$$\mathbf{A}_{new} \leftarrow (\mathbf{X} \quad \mathbf{X}^T) \left((\mathbf{R} \quad \mathbf{R}^T) \begin{pmatrix} \mathbf{A}^T & 0 \\ 0 & \mathbf{A}^T \end{pmatrix} \right)^\dagger$$


or

$$\mathbf{A}_{new} = (\mathbf{X} \mathbf{A} \mathbf{R}^T + \mathbf{X}^T \mathbf{A} \mathbf{R}) (\mathbf{R} (\mathbf{A}^T \mathbf{A}) \mathbf{R}^T + \mathbf{R}^T (\mathbf{A}^T \mathbf{A}) \mathbf{R})^{-1}.$$

Solving for \mathbf{R} :

$$\mathbf{R}_{new} = \mathbf{A}^\dagger \mathbf{X} (\mathbf{A}^T)^\dagger. \quad (\text{same as before})$$

Three-way DEDICOM

$$\mathbf{X}_i = \mathbf{AD}_i \mathbf{RD}_i \mathbf{A}^T + \mathbf{E}_i \quad \text{for } i = 1, \dots, m,$$

$$\min_{\mathbf{A}, \mathbf{R}, \mathbf{D}} \sum_{i=1}^m \| \mathbf{X}_i - \mathbf{AD}_i \mathbf{RD}_i \mathbf{A}^T \|_F^2$$

- \mathbf{A} ($n \times p$) is matrix of loadings or weights (not necessarily orthogonal)
- \mathbf{R} ($p \times p$) is a matrix that captures asymmetric relationships
- \mathbf{D} ($p \times p \times m$) gives the weights of the columns of \mathbf{A} for each level in third mode
- Unique solution with enough levels of \mathbf{X}

Kiers' Algorithm

(Kiers, 1993)

$$\min_{\mathbf{A}, \mathbf{R}, \mathbf{D}} \sum_{i=1}^m \| \mathbf{X}_i - \mathbf{A} \mathbf{D}_i \mathbf{R} \mathbf{D}_i \mathbf{A}^T \|_F^2$$

Alternating Least Squares

- 1) Column-wise minimization to find \mathbf{A}
potentially slow convergence
- 2) Least-squares problem for \mathbf{R}

$$\text{minimize: } f(\mathbf{R}) = \left\| \begin{pmatrix} \text{Vec}(\mathbf{X}_1) \\ \vdots \\ \text{Vec}(\mathbf{X}_m) \end{pmatrix} - \begin{pmatrix} \mathbf{A} \mathbf{D}_1 \otimes \mathbf{A} \mathbf{D}_1 \\ \vdots \\ \mathbf{A} \mathbf{D}_m \otimes \mathbf{A} \mathbf{D}_m \end{pmatrix} \text{Vec}(\mathbf{R}) \right\|$$

$$\text{Vec}(\mathbf{R}) = \left(\sum_{i=1}^m (\mathbf{D}_i \mathbf{A}^T \mathbf{A} \mathbf{D}_i) \otimes (\mathbf{D}_i \mathbf{A}^T \mathbf{A} \mathbf{D}_i) \right)^{-1} \sum_{i=1}^m \text{Vec}(\mathbf{D}_i \mathbf{A}^T \mathbf{X}_i \mathbf{A} \mathbf{D}_i)$$

- 3) Element-wise minimization to find \mathbf{D}
potentially slow convergence

New Algorithm - updating A


Solving for A:

$$(\mathbf{X}_1 \quad \mathbf{X}_1^T \quad \cdots \quad \mathbf{X}_m \quad \mathbf{X}_m^T) = \mathbf{A} (\mathbf{D}_1 \mathbf{R} \mathbf{D}_1 \quad \mathbf{D}_1 \mathbf{R}^T \mathbf{D}_1 \quad \cdots \quad \mathbf{D}_m \mathbf{R} \mathbf{D}_m \quad \mathbf{D}_m \mathbf{R}^T \mathbf{D}_m) (\mathbf{I}_{2m} \otimes \mathbf{A}^T)$$

$$\mathbf{A} = \left[\sum_{i=1}^m (\mathbf{X}_i \mathbf{A} \mathbf{D}_i \mathbf{R}^T \mathbf{D}_i + \mathbf{X}_i^T \mathbf{A} \mathbf{D}_i \mathbf{R} \mathbf{D}_i) \right] \left[\sum_{i=1}^m (\mathbf{B}_i + \mathbf{C}_i) \right]^{-1}$$

$$\mathbf{B}_i \equiv \mathbf{D}_i \mathbf{R} \mathbf{D}_i (\mathbf{A}^T \mathbf{A}) \mathbf{D}_i \mathbf{R}^T \mathbf{D}_i,$$

$$\mathbf{C}_i \equiv \mathbf{D}_i \mathbf{R}^T \mathbf{D}_i (\mathbf{A}^T \mathbf{A}) \mathbf{D}_i \mathbf{R} \mathbf{D}_i.$$

New Algorithm - updating D

$$\min_{\mathbf{D}_i} \left\| \mathbf{X}_i - \mathbf{A} \mathbf{D}_i \mathbf{R} \mathbf{D}_i \mathbf{A}^T \right\|_F^2$$

Solving for D:

Use Newton's method to solve the optimization problem

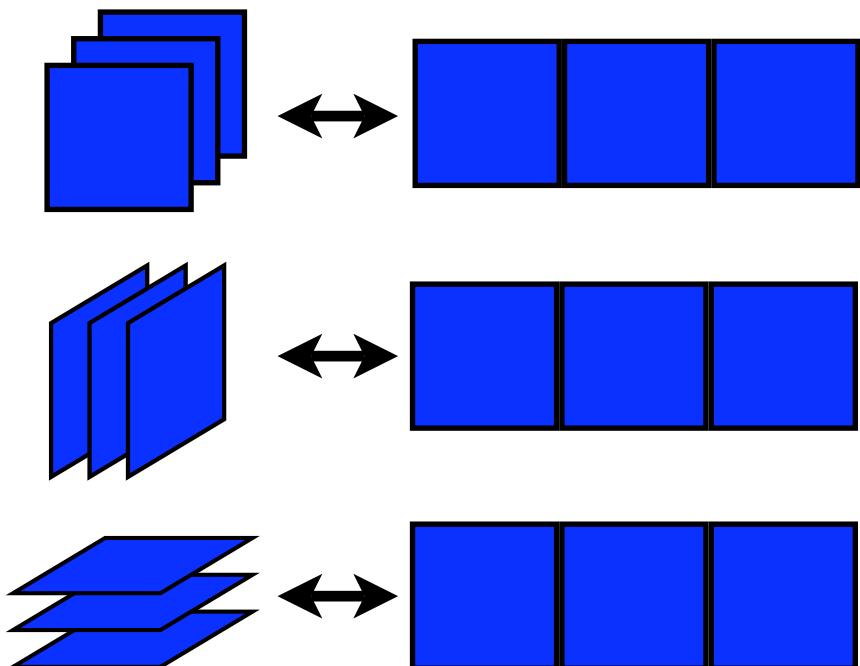
$$d_{new} = d - H^{-1}g$$

$$g_k = - \sum_{i,j} \left[2(\mathbf{X} - \mathbf{A} \mathbf{D} \mathbf{R} \mathbf{D} \mathbf{A}^T) * (\mathbf{A} \mathbf{D} \mathbf{r}_k \mathbf{a}_k^T + \mathbf{a}_k \mathbf{r}_{k,:} \mathbf{D} \mathbf{A}^T) \right]_{i,j}$$

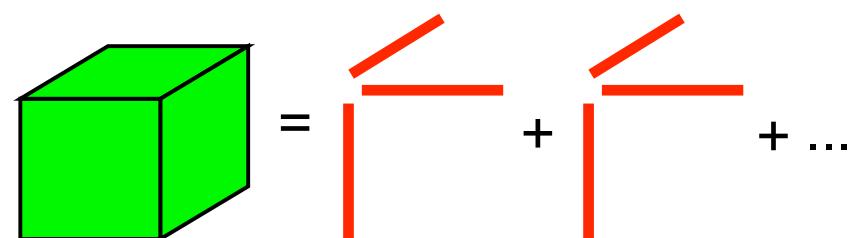
$$h_{st} = -2 \sum_{i,j} \left[(\mathbf{X} - \mathbf{A} \mathbf{D} \mathbf{R} \mathbf{D} \mathbf{A}^T) * (\mathbf{a}_s r_{st} \mathbf{a}_t^T + \mathbf{a}_t r_{ts} \mathbf{a}_s^T) \right. \\ \left. - (\mathbf{A} \mathbf{D} \mathbf{r}_s \mathbf{a}_s^T + \mathbf{a}_s \mathbf{r}_{s,:} \mathbf{D} \mathbf{A}^T) * (\mathbf{A} \mathbf{D} \mathbf{r}_t \mathbf{a}_t^T + \mathbf{a}_t \mathbf{r}_{t,:} \mathbf{D} \mathbf{A}^T) \right]_{i,j}$$

Use compression

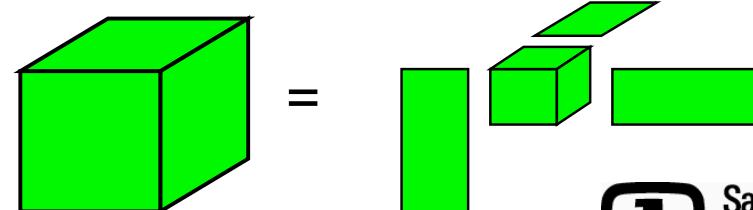
QR factorization: $\mathbf{A} = \mathbf{Q} \tilde{\mathbf{A}}$,


$$\min_{\mathbf{D}_i} \left\| \mathbf{Q}^T \mathbf{X}_i \mathbf{Q} - \tilde{\mathbf{A}} \mathbf{D}_i \mathbf{R} \mathbf{D}_i \tilde{\mathbf{A}}^T \right\|_F^2$$

Smaller problem


MATLAB Tensor Toolbox

(Bader and Kolda)


- Toolbox extends functionality of Matlab's MDA datatype:
 - Basic operations
 - Convert to/from a matrix
 - Multiplication
 - Tensor
 - Matrix
 - Vector
- Facilitates rapid prototyping of algorithms
 - PARAFAC/CANDECOMP
 - Tucker
 - DEDICOM
- Extensions for a sparse tensor format (in development)



$$\mathcal{B} = \mathcal{A} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \cdots \times_N \mathbf{U}^{(N)}$$

Note: not intended to replace
Andersson & Bro's N-way Toolbox

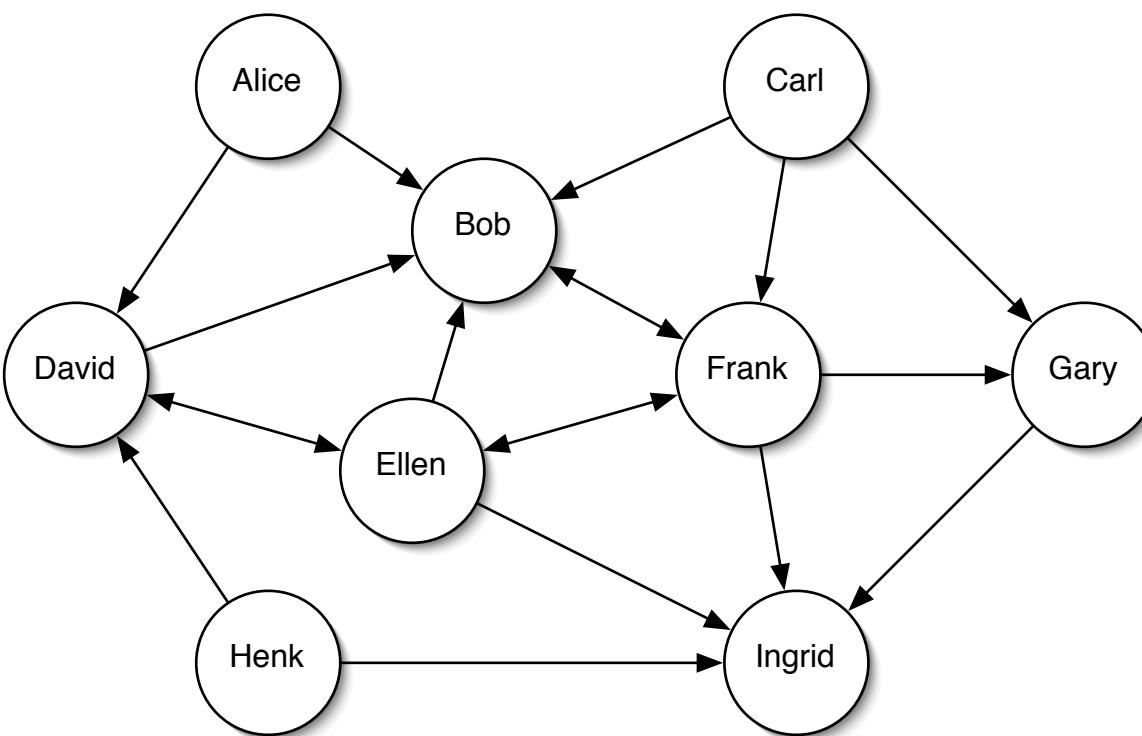
New sparse_tensor Class

`sparse_tensor class`


- Coordinate based storage: (i,j,k) indices & values
 - no maximum order
- Implements many of the same functions as `tensor` class
- Reshape and permute operations handled implicitly with index
- Row / column / slice operations are easy
- Implemented with built-in functions where possible
- Careful to avoid explicit referencing (e.g., `A(i,j,k)`)

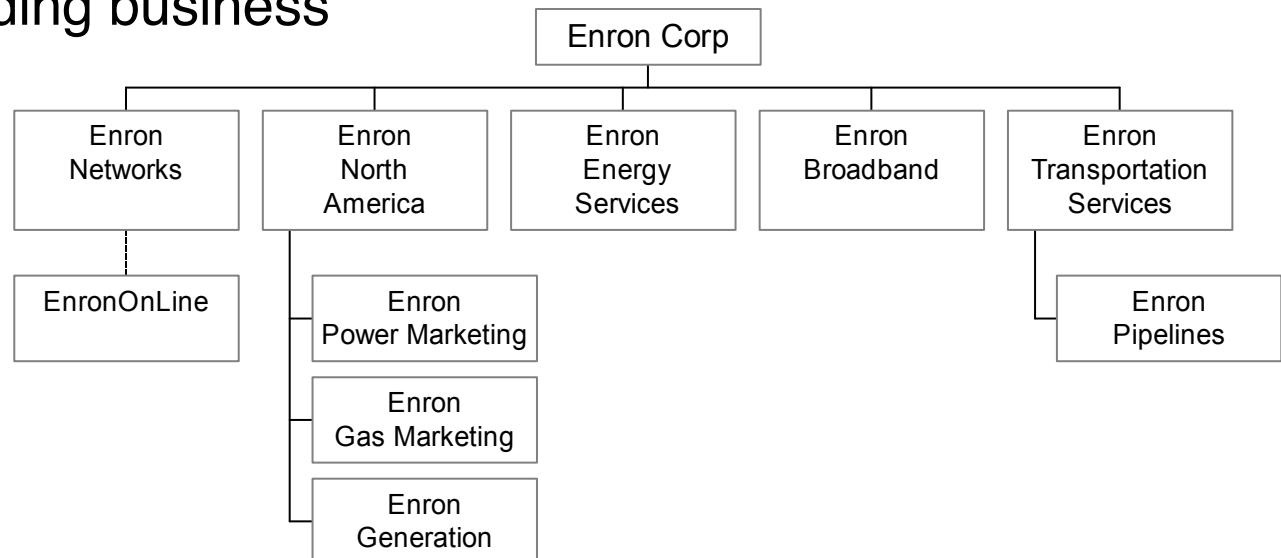
Large-scale Sparse Tensors

- $1000 \times 1000 \times 1000$ tensor is huge (1 billion entries!)
- Even worse for higher order tensors
- Dense tensor implementation not possible
 - Storage!
 - permute becomes prohibitively expensive
 - At the heart of many operations (e.g., n-mode product)
- Need a sparse implementation that is efficient for multiplication over all n modes (i.e., fast permute and reshape)



Example Performance

- 73,000 x 73,000 x 40,000 sparse tensor
- 469,000 nonzeros (out of 200 trillion entries, so *very* sparse)
- Compute approximation to rank-10 PARAFAC model
 - 12 minutes on a laptop
 - 329 power method iterations
 - 987 calls to `ttv`

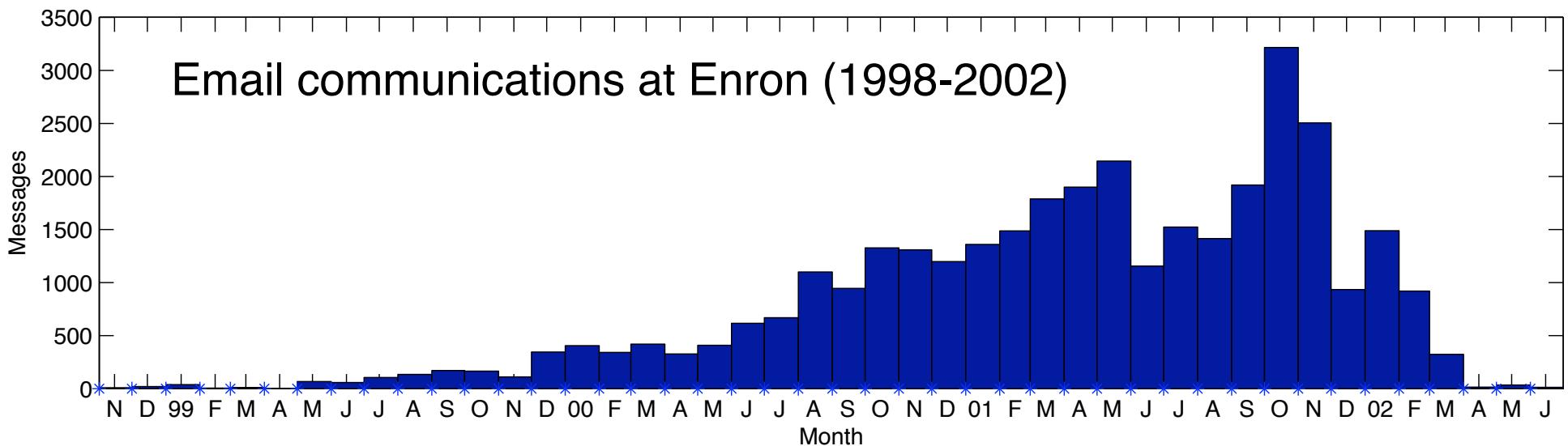

Social Network Analysis

- Links may consist of
 - Relationships (e.g., friends, family, co-workers, co-authors)
 - Communications
- What can we learn about this network strictly from these connections?

Enron Corp.

- U.S. corporation involved with creating energy markets
 - 7th largest by revenue
- EnronOnline: e-trading business
 - natural gas
 - electric power

- Investigations
 - U.S. Federal Energy Regulatory Commission (FERC)
 - energy market manipulation
 - involved energy traders
 - U.S. Securities and Exchange Commission (SEC)
 - accounting fraud
 - insider trading


Enron Email Data

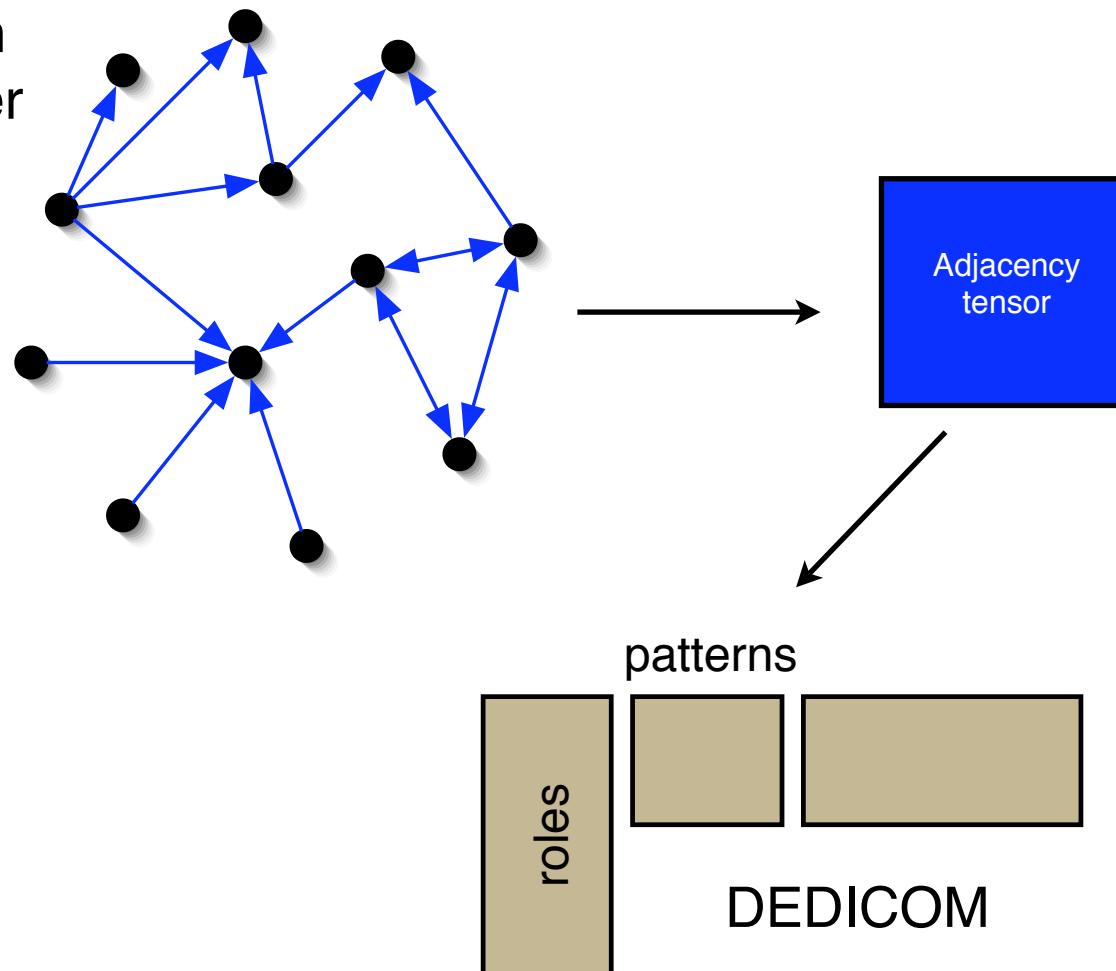
- FERC collected email of ~150 employees
 - Included emails saved in inbox, sent items, deleted items, and all other folders
- Released to the public in 2002 by FERC as part of their investigation
 - To/from, date, subject, body
 - Attachments and some names/emails removed
 - 500,000 messages
- Research uses:
 - Email classification
 - Natural language processing
 - Organizational theory/behavior
 - Social network analysis

Temporal Social Network Analysis

We use smaller dataset prepared by Priebe et al.
34,427 emails among 184 employees over 44 months

- Email folders collected at one point in time.
- Shape of histogram depends on:
 - How far back employees kept emails
 - Employment history of individual

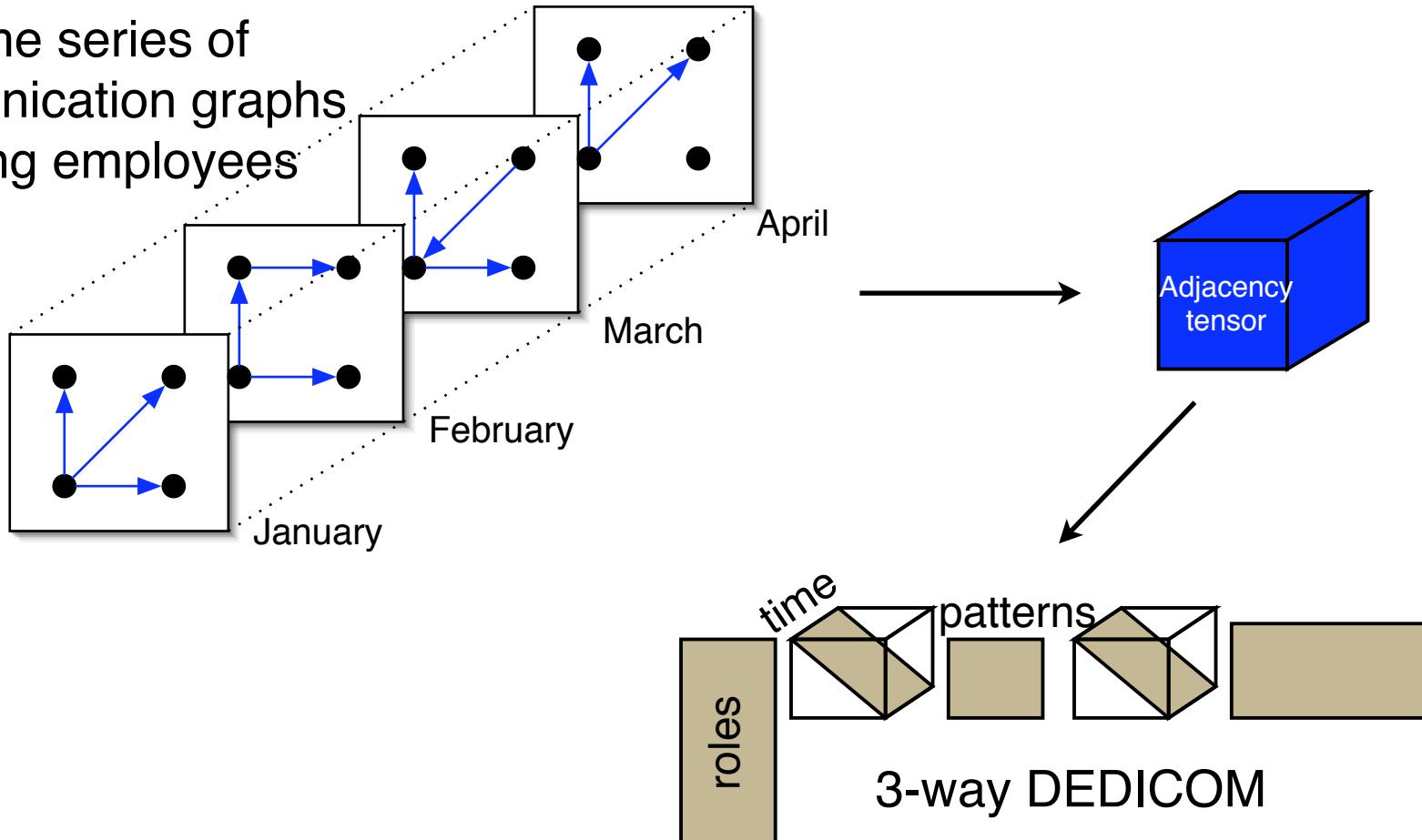
DEDICOM Experiment



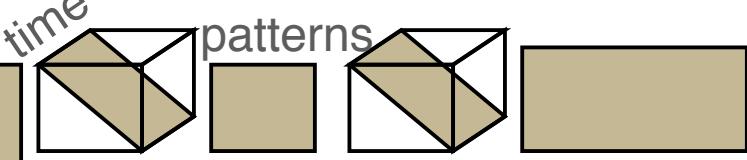
- Time series of communication graphs
- Sparse tensor of size $184 \times 184 \times 44$ (9838 nnz)
- Scaling: x number of messages scaled by $\log(x)+1$
- Models:
 - SVD
 - 2-way DEDICOM
 - 3-way DEDICOM
 - PARAFAC

Plot of convergence history

Social Network Analysis


Communication graph
among employees over
all times

- Description of employees by their roles
- Aggregate communication patterns among roles


Temporal Social Network Analysis

Time series of communication graphs among employees

- Unique description of employees by their roles
- Aggregate communication patterns among roles
- Behavior over time

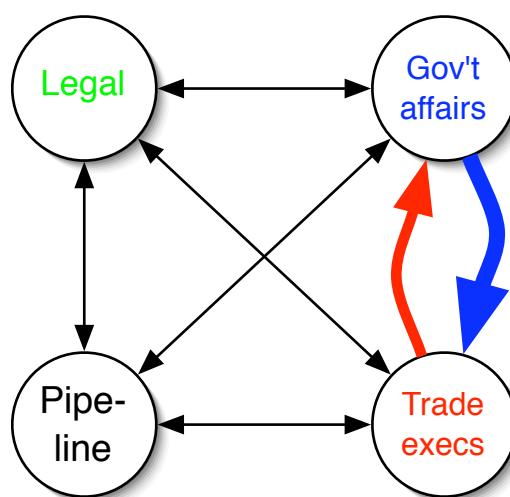
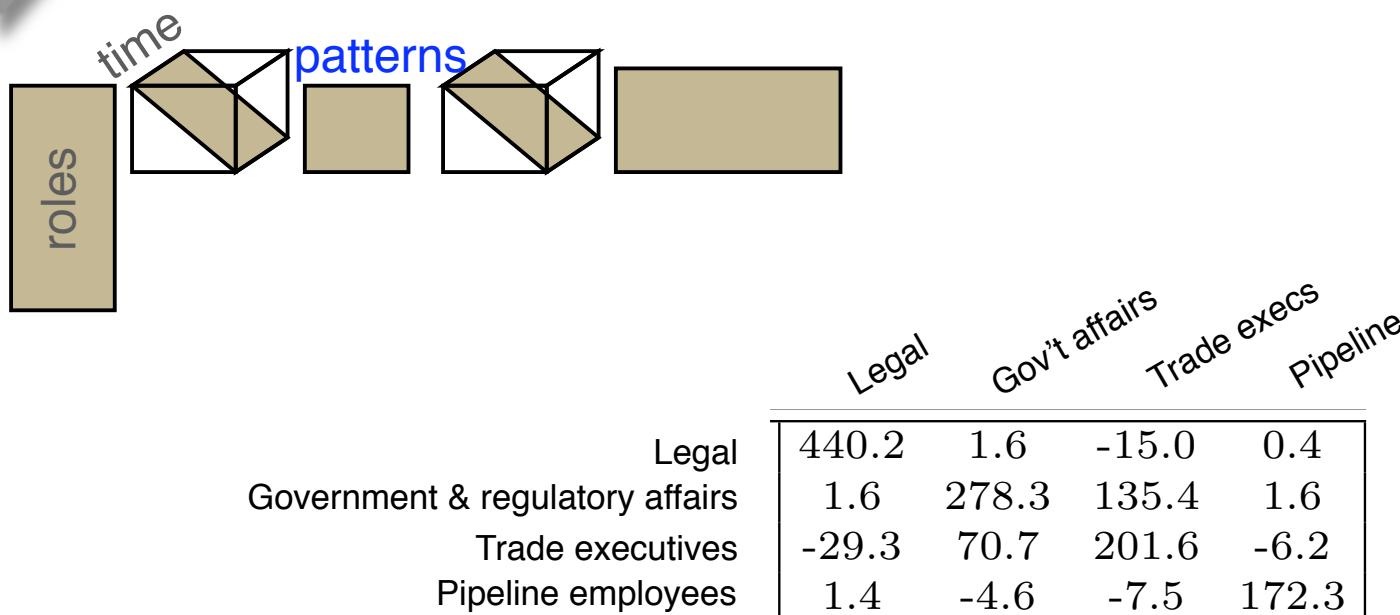
Roles of Employees

time patterns

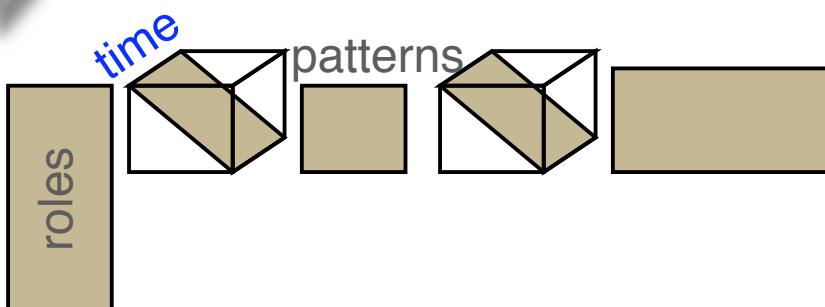
roles

EMPLOYEE	4-Dimensional Solution				
	1	2	3	4	
T. Jones - Employee, Financial Trading Group (ENA Legal)	0.64	-0.01	0.02	-0.00	
S. Shackleton - Employee, ENA Legal	0.45	-0.00	-0.01	-0.00	
M. Taylor - Manager, Financial Trading Group ENA Legal	0.37	0.01	0.02	-0.00	
S. Bailey - Legal Assistant, ENA Legal	0.26	-0.00	-0.01	-0.00	
S. Panus - Senior Legal Specialist, ENA Legal	0.26	-0.00	-0.00	-0.00	
M. Heard - Senior Legal Specialist, ENA Legal	0.23	-0.00	0.00	-0.00	
J. Hodge - Asst General Counsel, ENA Legal	0.13	0.03	0.01	-0.00	
L. Kitchen - President, Enron Online	0.11	-0.09	0.53	0.00	
S. Dickson - Employee, ENA Legal	0.09	-0.00	0.00	-0.00	
E. Sager - VP and Asst Legal Counsel, ENA Legal	0.08	0.02	0.07	-0.00	
Gov't affairs	J. Dasovich - Employee, Government Relationship Executive	-0.01	0.58	0.06	0.01
	J. Steffes - VP, Government Affairs	0.00	0.53	-0.06	-0.01
	R. Shapiro - VP, Regulatory Affairs	-0.00	0.40	0.10	-0.00
	S. Kean - VP, Chief of Staff	-0.00	0.37	-0.04	-0.00
	R. Sanders - VP, Enron Wholesale Services	0.03	0.16	-0.01	-0.00
	D. Delainey - CEO, ENA and Enron Energy Services	0.01	0.09	0.09	-0.00
	S. Corman - VP, Regulatory Affairs	-0.00	0.08	-0.00	0.20
	M. Carson - Employee, Corporate and Environmental Policy	-0.00	0.08	-0.02	-0.00
	S. Scott - Employee, Transwestern Pipeline Company (ETS)	-0.00	0.08	-0.00	0.04
	J. Lavorato - CEO, Enron America	0.02	-0.04	0.49	0.00
Execs - trading	M. Grigsby - Director, West Desk Gas Trading	0.00	-0.03	0.20	-0.00
	G. Whalley - President,	0.01	-0.01	0.19	0.00
	J. Steffes - VP, Government Affairs	0.00	-0.02	0.18	0.00
	K. Presto - VP, East Power Trading	0.01	-0.05	0.18	0.00
	S. Beck - COO,	0.01	-0.03	0.17	0.00
	B. Tycholiz - VP, Marketing	0.01	-0.02	0.16	0.00
	J. Arnold - VP, Financial Enron Online	0.03	-0.04	0.16	-0.00
	J. Williamson - Executive Assistant,	0.00	-0.02	0.14	0.01
	K. Watson - Employee, Transwestern Pipeline Company (ETS)	-0.00	-0.00	0.01	0.59
	M. Lokay - Admin. Asst., Transwestern Pipeline Company (ETS)	-0.00	0.01	0.01	0.42
Pipeline employees	L. Donoho - Employee, Transwestern Pipeline Company (ETS)	-0.00	0.01	0.01	0.35
	M. McConnell - Employee, Transwestern Pipeline Company (ETS)	0.00	-0.00	0.01	0.26
	L. Blair - Employee, Northern Natural Gas Pipeline (ETS)	-0.00	0.00	0.00	0.22
	K. Hyatt - Director, Asset Development TW Pipeline Business (ETS)	-0.00	0.01	0.00	0.20
	D. Schoolcraft - Employee, Gas Control (ETS)	-0.00	0.00	0.00	0.18
	T. Geaccone - Manager, (ETS)	0.00	-0.00	0.01	0.17
	R. Hayslett - VP, Also CFO and Treasurer	0.00	-0.00	0.02	0.16

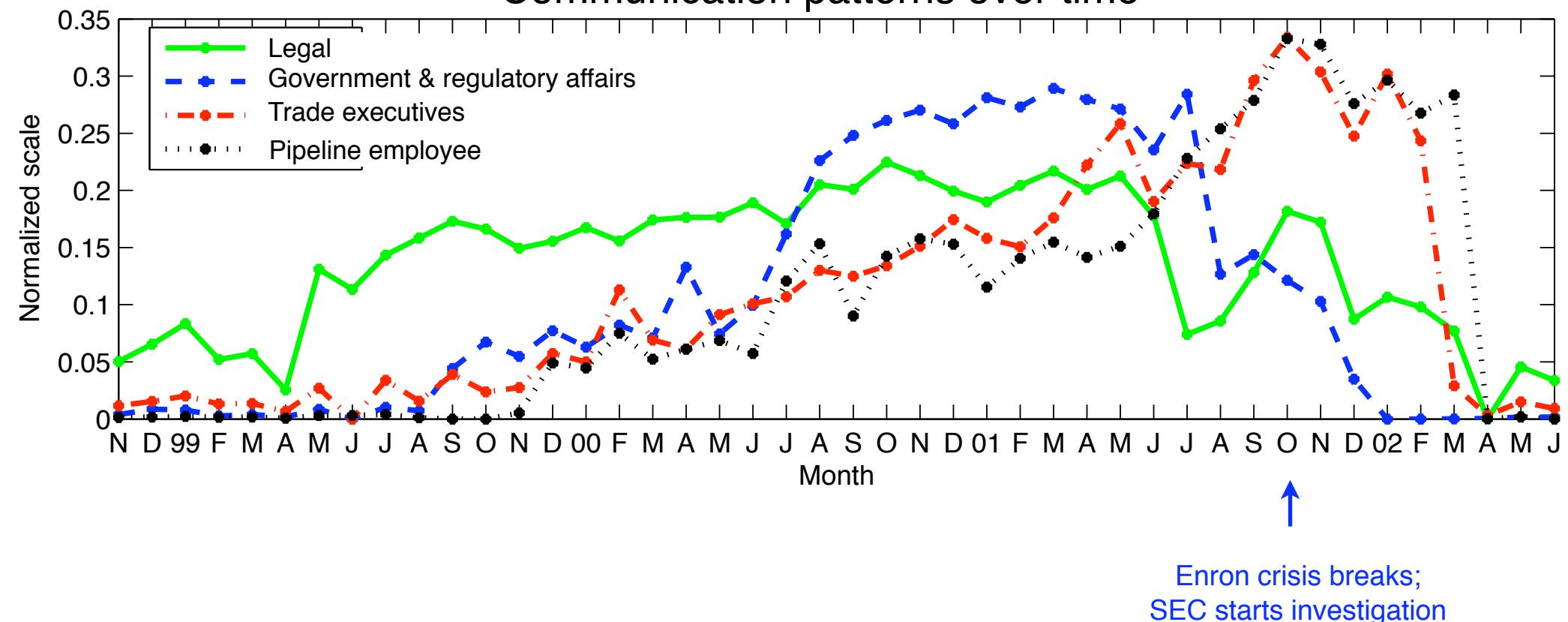
Identify shared characteristics to label group



Legal

Gov't affairs


Execs - trading

Pipeline employees


Communication Patterns

Temporal Patterns

Communication patterns over time

Summary

- Improvements to DEDICOM
 - New procedure for finding A
 - Newton step for finding D
- Modifications to handle sparse data arrays
 - Least squares problem
 - Compression
- Novel approach to social network analysis using DEDICOM
 - Roles of employees
 - Communication patterns among roles and over time
- Many future research directions!
 - Constrained DEDICOM
 - Nonnegative DEDICOM

More Information

bwbader@sandia.gov
<http://www.cs.sandia.gov/~bwbader/>

- Tensor Classes:
 - Tech report SAND2004-5189 available on website
 - Paper to appear in ACM Trans. Math. Softw.
 - (sparse_tensor to be released soon)
- DEDICOM paper:
 - Tech report SAND2006-2161 available on website