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Why Finite-Difference?
• We have developed a high quality algorithm for 3D finite-

difference wave propagation in moving-media (wind)
• Finite-difference advantages

– Can use arbitrary gridded models
• Point by point variation of material parameters is allowed

– Directly solve the governing equations—generate all physical arrival 
types

– Domain decompositions can be used to efficiently solve FD problems on 
parallel computers

– Atmospheric and source dynamics are easily incorporated 

• Disadvantages
– Computationally intensive, large (realistic) models require 

supercomputers
– Complicated stability and dispersion relations must be understood to 

run models correctly



Physical and Mathematical 
Assumptions

• Linearize equations with respect to small-amplitude acoustic 
wavefield fluctuations
– Fundamental equations of continuum mechanics 

• Balance of mass, momentum, entropy
– Constitutive relations (ideal fluid) 
– Equation of state (pressure)

• Ambient medium 
– Adiabatic (no energy sources or heat transfer between fluid parcels)

• Details of derivation in 4pPA4 from Nashville meeting and paper in 
preparation

– Divergence-free motion (incompressible fluid)
• Must be enforced by model builder

• Gravity and pressure gradients ignored in acoustic equations
– Uncouples p and w from fluctuations in mass density ρ



Acoustic Velocity-Pressure System for 
Moving-Media

A system of four, coupled, linear, first-
order, partial differential equations.
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Acoustic model parameters:
b(x,t)  - mass buoyancy
κ(x,t)  - bulk modulus
v(x,t)  - fluid velocity vector

Wavefield variables:
w(x,t) - particle velocity vector
p(x,t)  - acoustic pressure

Body sources:
f(x,t)  - force density vector
e(x,t) - energy density scalar
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O(2,4) Staggered-Grid Finite-
Differences
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Dispersion and Stability
• 5 nodes/propagating wavelength is the normal rule of 

thumb with 4th order spatial finite-difference 
algorithms
– Determine the highest frequency in the far field (may be 1 

or more differentiations of the source waveform)
– Determine the slowest velocity in the model and pick a grid 

spacing such that λ/dx is ~5
• Slowest velocity is the apparent velocity V(1-Mach)
• Can be much smaller than lowest velocity for high wind speeds
• Can get excessive dispersion for upwind propagation if this is 

ignored

• CFL (~[dt ×Vmax ]/dx) must be less than 1 for stability
– Must use the highest apparent velocity V(1+Mach)
– Algorithm will “blow up” if this ignored



Comparison to Analytic Solution (1)
• Black lines are the 

theoretical 
pressure verses 
azimuth at a 
variety of Mach #

• Colored lines are 
the results of this 
algorithm
– Needed to grid up 

a very fine model 
to get good results 
at the higher 
Mach numbers

• These are 
wholespace results
– At 50m from the 

source



Quasi-Wavelet Turbulence

Quasi-wavelets: Technique that mimics the conceptual picture of 
turbulence consisting of discrete eddies of different sizes.

Like wavelets, they…
• Are based on a self-similar, 

localized function
Unlike wavelets, they…

• Have random orientations and 
positions

• Are not required to be zero-
mean functions

• Do not form a complete basis

Parallel implementation:
1. Generate a “master list” of QW positions, sizes, and orientations.
2. Each processing element searches the list for the QWs within its domain. Fields 

associated only with local QWs are calculated.



Test of the QW Implementation
Receivers at 

two fixed 
distances 
from the 
source
– This is the 

upper half 
of a band 
around a 
sphere

– Total of 
8400 
receivers

• Model is 1801×601×1051 (~1.1G) nodes
– Whole space
– 590000 QW

• Kinetic Energy Dissipation Rate 10
• Size range from 1-10m
• Maximum Velocity ~10m/s



QW Results
• Fairly good fit to the analytic 

solution
– Coherence

• 200m -11%
• 400m -15%

– Extinction
• 200m 26%
• 400m 7%

• Over the propagation distances of 
this test, for a dissipation rate of 10
– The extinction is very high
– The signal phase has essentially 

zero mean
– This makes it very difficult to 

estimate meaningful phase 
statistics from a small number of 
samples 

– Results for this scenario probably 
reflect limitations due to the 
random nature of the test



Test of Topography
• 2 ½ D Hill

– 3D propagation
– Cylindrical 2D Hill

• Receivers at 1m 
intervals (along the 
surface)

• 2 m above the surface



Topography Test Results

• Analytic solution
– Not expected to reproduce the near-source complications
– M. Berengier, G.A. Daigle, Diffraction of sound above a 

curved surface having an impedance discontinuity, Journal 
of the Acoustical Society of America, 84, September 1988, 
pp 1055-1060

• Another difficult test
– The only energy that reaches the 

more distant receivers has 
refracted over the hill

– We get slightly higher amplitude 
than predicted

• Possibly energy that propagates 
through the hill

• Possibly energy reflected from 
boundaries



Effect Comparison
• Compare the contribution of turbulence and topography

– Two effects that are hard to seperate in the real world



Comparison
• These results 

clearly show that 
for this particular 
geometry and 
frequency range 
the effect on the 
sound due to the 
topography is 
much larger than 
the effect from the 
turbulence

• In the topographic 
model the direct 
arrival and the 
scattered energy 
trailing is of a 
similar magnitude

• The signal energy scattered by the turbulence, even for the unrealistically 
intense turbulence used here, is much lower and is barely visible at this plot 
scale



Conclusions

• We have successfully implemented FDTD calculations of 
sound propagation through moving media 

• Accuracy of the algorithm has been demonstrated for 
propagation over topography and through turbulence 

• A highly realistic atmospheric turbulence representation 
based on quasi-wavelets has been incorporated directly into 
the algorithm

• Demonstrated the utility of modeling to investigate where the 
complications in our data come from
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