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Abstract

The variational nodal method is formulated such that the angular and spatial approximations may be
examined separately. Spherical harmonic, simplified spherical harmonic, and discrete ordinate
approximations are coupled to the primal hybrid finite element treatment of the spatial variables.
Within this framework, two classes of spatial trial functions are presented: (1) orthogonal
polynomials for the treatment of homogeneous nodes and (2) bilinear finite subelement trial
functions for the treatment of fuel assembly sized nodes in which fuel-pin cell cross sections are
represented explicitly. Polynomial and subelement trial functions are applied to benchmark water-
reactor problems containing MOX fuel using spherical harmonic and simplified spherical harmonic
approximations. The resulting accuracy and computing costs are compared.

1. Introduction

The variational nodal method (VNM) is cast within the standard multigroup treatment of the energy
variables. It is based on a primal hybrid finite element formulation of the even—parity form of the
Boltzmann equation with odd-parity Lagrange multipliers coupling the subdomains which in the
nuclear literature are referred to as nodes. Since first implemented in the VARIANT code (Carrico,
1995; Palmiotti, 1995; Lewis, 1996), the method has been generalized to allow additional classes of
angular and spatial trial functions to be used combined to meet a wider variety of computational
cost and physical modeling objectives. Thus, at present, simplified spherical harmonics (SPn)
approximations can substituted for full spherical harmonics (Pn) expansions to achieve substantial
cost savings often without a commensurate loss of accuracy (Lewis, 1997). Likewise, the
orthogonal trial functions describing spatial distribution of the even-parity flux within a node may
be replaced by an array of rectangular subelements with bilinear trial functions (Lewis, 1998). The
subelement formulation, thus far implemented only in x-y geometry, eliminates the need to
homogenize cross sections at the fuel assembly level or of performing fine-mesh calculations with
one node per fuel pin cell. Pin powers to be extracted directly from full core VNM calculations
utilizing one node per assembly, and for which homogenizing has been applied only at the fuel-pin
cell level.




In what follows, we first review the variational basis for VNM. In section 3, we perform the Pn
expansions to show that the reduced hybrid element formulations consists of coupled sets of second
order equations and their Lagrange multipliers. The angular approximation is contained entirely
within coupling matrices. Thus other angular approximations, even some that may not be deduced
directly from the variational principle, can be incorporated simply by changing these matrices.
This, in particular, allows the spatial variables of SPn and discrete ordinate (Sn) methods to be
treated within the hybrid finite element framework of the variational nodal method. In section 4, we
present a unified treatment of the discretization of the spatial variables, using both orthogonal
polynomials and bilinear subelements to represent the spatial distribution within the node. In
section 5, we present a series of calculations for MOX fuel assemblies in a light-water reactor core.
With Pn and SPn approximations in angle, accuracy and computational cost comparisons are made
between orthogonal polynomial and subelement trial functions is space.

2. Variational Principle

The variational nodal method is a primal hybrid finite element representation of the even-parity
form of the transport equation. In the hybrid formulation, the problem domain ¥ is decomposed
into subdomains 7, (also called elements or nodes):

V=Y 7,. 6}

Within each node, the even-parity form of the transport equation is solved in space (¥) and angle
(€2): A A
~OVo OV .0+ o v B =0, [dy* F.Q)+s(), FeV, 2)

where y*is the even parity flux component, o and o, the total and scattering cross sections and s
the group source. The odd-parity flux ™, which is related to y* by

Q-Vy* ¢ +oy 7, =0, Fel 3
is defined only along the node interfaces as a Lagrange multiplier.

The functional for the variational nodal method is given as a superpositon of nodal contributions
My .y 1=) F v v, C)
where ’
F v )= [ [io" @ Ty +oy 10,8 <22 [ [dodv iy ©

This functional must be stationary with respect to arbitrary variations " and %~ about the true

solutions w*and y~. Thus, we make the replacements y* —y* +6%" and y~ >y~ + &/~ where
5 and &are small positive constants, and require the linear terms in § and & to vanish. Setting the
linear term in & to zero yields the weak form of Eq.(2)

[av [ao™ ©- Vg ) Q- Ty ) + 7 0y ~o, 9=+ [T [d0a- iy =0, ©




and applying the divergence theorem yields

[av [aQp* -0V Q- Vy* +oy* —o,p-5)+ [ar [dos- g (p~ +07'C- V™) =0. (7)

Clearly, Eq. (2) must be satisfied if the volume integral is to vanish for arbitrary #*, and Eq. (3)
must be met at the interface for the surface integral to vanish. The continuity conditions across

nodal interfaces may be stated as follows. Since the Lagrange multiplier y~ and its variation "
are uniquely defined at the interface, two conditions are imposed. First, the surface integral in Eq. (7)

imposes continuity on o™'Q-Vy*. Second, requiring the linear term in £ to vanish yields for each
nodal interface, say between nodes ¥, and ¥,,, a condition of the form

[dr [dos- 2@ —y'™)=0, ®)
since 7, =—#,. Thus w* must be continuous across the interface.
3. Angular Approximations

To discretize the angular variable, we write the A/ and N terms in the even- and odd-order spherical
harmonics as the vectors g(fl) and k(Q), respectively. These then obey the orthonormal conditions

[dee" ©=1,,, [dx@K" =1, and [doe@i" ©=0
The spherical harmonics approximations is then

v 7. =g" Qv ) Fev, )
and
v 7.0 =K" Qv @), Fel, (10)

wherey* (7) and y~ () are vectors of the spatially dependent coefficients of the even- and odd-
parity spherical harmonics. Inserting these approximations into Eqs.(4) and (5) yields the reduced
functional

Fy*y1=) F,[w*,y7] (11)
with

Ry 1= [V - BTy (V- BNy +y (ol-oww W —2y*s}+2 [y - By

(12)
and [w], =8, » E= [@0e@K @), s= [€a@sF).

We require this functional to be stationary by making the substitutions y* —y* +5y* and

Yy~ >y~ +&p"in Eqgs. (11) and (12), where {f*are variations about the true solutionsy*. We
require the linear terms in § and ¢ to vanish. Parallel to the exact case we obtain the Euler-
Lagrange equations within the node to be



~V-67'EE" -Vy* (F)+oy* F) =, ww' y* (F)+s(F), Fev, (13)
with
-y (F)=—0"'V-E'y* (7), Fel (14)
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where the orthonomal properties of g(€) may be used to show that
EE” = [d00sO)g’ O (15)

Continuity conditions on w®across nodal interfaces are met because y~ and {~ are uniquely
defined at the interface. The requirement that the linear term in & vanish thus leads to the condition
between neighboring nodes 7, and V,,:

[dra, - B —y)=0, (16)
vy

where y* and y'* are on opposite sides of the interface, showing that y”*(¥) is continuous across
rel,.

Careful examination of Egs. (13) and (14) indicates that by varying the forms of the coupling
matrices E other approximations may be written in terms of the variational principle. In particular,
we let g(x) and k(x) be vectors of the M and N components of the orthonormal Legendre
polynomials. Then we define -

E, =% | dug(ok" (1) a7

" If we then take the components of the vector matrix E as E, =[5,,,5,,,5,;|®E,, where ® indicates

Kronecker tensor multiplication, then the foregoing equations reduce to the simplified spherical
harmonics approximation. Moreover, analogous to Eq. (15) we may show that

EET = [ dure(ug (). (18)

Finally, if we view Egs. (11) and (12) simply as the variational principle for a coupled set of partial
differential equations in space, we combine discrete ordinate collocation with the hybrid finite
element approach by defining, ‘

lv* @), =@, v 7.8, (19)

where  and w,refer to the discrete directions and weights, and letting k], =G, 25

[w], =4/w, and [s(?)]m =@s(?) . Thus, the reduced functional, Eq. (12) may serve as a basis for
applying primal hybrid finite element methods to Pn, SPn, and Sn approximations.




4. Spatial Discretization

Two different classes of trial functions are used currently to describe the spatial distribution of the
even-parity flux within the node. We first review the orthogonal polynomials used in earlier work,
and then present a new finite subelement formulation. In both cases, orthogonal polynomials are
used to represent the odd-parity distributions at the node interfaces.

To examine the orthogonal polynomial trial functions, we begin by using the Kronecker tensor
product to expand the even-parity flux coefficients within the node as

-yt (F)=L, ®f (P, , Fev, @0
where the [ spatial trial functions obey the orthogonality condition
fars” =71, . @1)
Along the node interface, we make th; expansion
v ()=1, OW (), e, @)

where the J spatial trial functions obey the orthogonality condition

farnh =1,. 23)
Inserting these approximations into Egs. (11) and (12) reduces the functional to algebraic form
F=)F,[5,x] @29
and
F,[6,%,]=C,A L, —2,s, +25,M .. (25)
Here,
A, =0 EE,” ® [anV £\V,47 )+(0,1,, 0, W OV 1, (26)

where repeated subscripts k or £ indicates summation, and

M, =E, ® [dln, " 27

with the source
s, = jst@f. (28)

With orthogonal trial functions, we have assumed that the cross sections are uniform over the entire
node. If they are not, it is difficult to accurately represent the spatial distribution of the flux using
smooth polynomial (Fanning, 1997); an alternative is to employ fine-grid nodes in a two-level

iteration scheme (Ruggieri, 1996). We approached the problem by subdividing the node V, into a

" number of subelements.
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v,=37.. 29)
In particular, we divide square nodes into an array of square subelements. Within each subelement,
‘we represent the spatial distribution by four bilinear trial functions, designated by the vector n(7),
and a vector of unknown magnitudes &_. The even-parity flux moments become

vt (7)=1,,®n" F)E,. Fev, (30)

e

If we retain Eq. (22) to represent the interface term, the nodal functional given by Eq. (12) reduce to
a superposition of subelement contributions:

F 16,122, EEAE ~2) Eis, +2) EMY,,, €3
where the coefficient matrices are again given in terms of the known trial functions
-1 T T T
A, =0]EE," ® [aV(V,n)V,n" }+(o,1-c,ww")® [aran , (32)
and
M, =E, ® [dln,nl’, (33)
with source term
s, = jst@n. (34)

With piecewise bilinear trial functions for the subelements, the components of &, are just the

approximate values of y* at the subelement vertices. Since these trial functions must be
continuous across subelement interfaces, the components of &, corresponding to the same physical
location on either side of a subelement must have the same value. This continuity condition is
enforced by creating a Boolean matrix B, for each subelement that maps the £ onto C,, a node
wide vector of coefficients:

€. =EC, - (33

This transformation allows "us to write the discretized functional in the form of Eq. (25). Now,

however, the known matrices and source terms are each a superposition of subelemental
contributions: A, =) EAE,, M, =Y &M, and s, => =s, .
[ € e

e™¢ ?

We may now obtain a set of algebraic equations by requiring the discretized functional to be
stationary. To examine arbitrary variations about the true solutions, we make the replacements
g, ¢, +&:v and x, =%, +5%, inEgs. (24) and (25). Requiring the linear term in § to vanish
yields

AL, +Mx, =S,. (36)

Requiring the linear term in & to vanish imposes continuity across nodal interfaces of the moments
defined by

HY AT P EO AN SO IWPIRE A W AIER S SR PN 3 P A AT LAy




v, =M3§v. (37
We may solve Eq. (36) for €,

cv = A;lsv —A;lexv (3 8)
and combine with Eq. (37) to obtain
v, =M, AJ's, -MAM,,. (39)

At this point, we have written the even-parity flux moments v, at the node interface in terms of the

source and the odd-parity interface moments 7, while imposing the continuity of both of these

moments between neighboring elements. The final step is to transform variables such that Eq. (39)
may be written in terms of a response matrix. Introducing the partial current like variables

=3V, £5%, (40)
into Eq. (39) and (40) then yields response matrix equation for each node:

i, =R,j, +B.,s,, (41)

where R, =(\MZAZM, +1) (L M7A;'M, —1) and B, =( MZA;M, +1) 1 MZA;.

v

5. Results

Comparisons of polynomial and subelement trial functions and of Pn and SPn angular
approximations have been performed for configurations consisting of the pressurized water reactor
(PWR), MOX, and UO; assemblies. Two-group cross sections and detailed geometric descriptions
are published elsewhere (Cavarec, 1994). For each of the problems considered two spatial
approximations are compared. In the first, each assembly constitutes one node with quadratic
interface conditions. Each node, however, is not homogenized but contains an internal 17x17 array
of bilinear subelements, each representing the unique cross sections for one homogenized fuel-pin
cell with a uniform group source. In the second, reference fine-grid method, each fuel pin cell is
represented by one homogeneous node with the internal flux distribution expanded as a fourth order
polynomial, and the interface conditions taken to be quadratic polynomials.

The first configuration considered is the quarter-core benchmark problem, designated as case C5
(Cavarec, 1994). With quarter-core symmetry, the problem contains only two MOX and two UO,
assemblies, surrounded by a reflector. Nevertheless, steep global flux gradients across the
assemblies provide a computational challenge. Results are tabulated in Table 1. Good agreement
between eigenvalues, maximum and average pin powers is indicated. The effects of increasing the
angular approximation to P5 or of going to cubic interface conditions were found to be small and
therefore, are not included in the tables. The P1, SP3, and P3 approximations with quadratic
interface conditions are employed for larger problems.

We have applied the fine-grid and subelement methods to rodded and unrodded full-core reflected
configurations consisting of 157 fueled assemblies. The rodded layout is shown in Fig. 1; unrodded




replace rodded UO, assemblies in the unrodded configuration. The rodded configuration in
particular, presents quite severe power distributions, and Table 2 and Figs. 2 through 4 indicate that
it is the most error prone. Figures 2 and 3 indicate that the largest pin power errors occur not in the
high power density MOX assemblies, but rather adjacent to inserted control rods in the UO,
assemblies. Figure 4 also shows the largest assembly power differences to be in the rodded UO,
assemblies.

The errors introduced by the quadratic approximations between assemblies appear to be small. We
have refined the interface LaGrange multipliers to cubic and quartic polynomials, and no significant
changes result. More likely, the errors for the rodded case may be reduced substantially by
replacing bilinear with quadratic subelement trial functions in the rodded assemblies.

Table 3 compares the computational effort required for the full-core problems using P3
approximations subelement and fine-grid approaches. The subelement method shifts computational
effort from the solution of the response matrix equations during the outer iterations to the formation
of the response matrices. With subelements, the detailed power distribution within the assemblies is
determined before the outer iterations are initiated, while the relatively few assembly-sized nodes
cause the response matrix solution algorithm to run faster and converge in fewer iterations. The
response matrix formation CPU time increases linearly with the number of unique fuel assembly
types, but these calculations are totally independent of one another, offering a strong computational
advantage if calculations were to be performed on parallel machines.

6. Conclusions

Within the framework of the variational nodal method, polynomial and finite subelement
approaches used in combination with Pn or SPn angular approximations provide substantial
flexibility in cost-accuracy tradeoffs for doing whole-core transport calculations. The subelement
method, in particular, offers an alternative to the conventional strategy of performing infinite lattice
calculations to obtain homogenized assembly cross sections before global diffusion or transport
calculations are undertaken. Moreover, the subelement approach reduces CPU times from those
required for full-core fine-grid transport calculations. For rodded assemblies, further accuracy may
be pursued through refinement of the subelement trial functions. Extensions to include axial power
distributions (i.e., three-dimensional calculations) within the subelement formulation appear to be
feasible.
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Table 1. Subelement/Fine-Grid Comparisons

for Benchmark Case C5
Approximation: P1 | SP3 | P3
% Difference : k-eff 0.01 | 0.07 | 0.07
% Difference: 0.48 | -0.07 | 0.12

Max. pin fission rate
% Ave. absolute difference: | 1.20 | 0.78 | 0.75
pin fission rate

Table 2. Subelement/Fine-Grid Comparisons for Whole-Core Case

Unrodded Core Rodded Core
Approximation: P1 | SP3 | P3 P1 | SP3 | P3
% Difference: k-eff 0.12 | 0.08 | 0.08 | -0.34 | -0.19 | -.021
% Difference: 292 | 1.86 | 2.17 | 0.19 | 0.38 | 0.55
Max pin fission rate
% Ave. absolute difference: | 0.81 | 0.51 | 0.51 | 4.10 | 2.86 | 3.06
pin fission rate

Table 3. CPU Times for Subelement and Fine-Grid
‘Whole-Core Calculations (P3 Rodded Core)

Subelement Fine-Grid
R-Matrix Formation, s 73.5 0.2
Outer Iterations, s 38.3 910.0
Total, s 111.8 910.2
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Fig. 2. Radial Pin Power Distribution for the Southeast Quadrant for the Rodded Case.




Fig. 3. Differences (%) between Subelement and Fine-Grid Calculated Pin Powers for the

Rodded Case.
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Fig. 4. Differences (%) between Subelement and Fine-Grid Calculated Assembly Powers for
Unrodded and Rodded Configurations.
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