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Abstract 

CO2 sequestration in deep saline formations is increasingly being considered as a viable strategy for the 

mitigation of greenhouse gas emissions from anthropogenic sources. In this context, detailed numerical 

simulation based models are routinely used to understand key processes and parameters affecting pressure 

propagation and buoyant plume migration following CO2 injection into the subsurface.  As these models 

are data and computation intensive, the development of computationally-efficient alternatives to 

conventional numerical simulators has become an active area of research.  Such simplified models can be 

valuable assets during preliminary CO2 injection project screening, serve as a key element of probabilistic 

system assessment modeling tools, and assist regulators in quickly evaluating geological storage projects. 

We present three strategies for the development and validation of simplified modeling approaches for 

CO2 sequestration in deep saline formations: (1) simplified physics-based modeling, (2) statistical-

learning based modeling, and (3) reduced-order method based modeling. 

 

In the first category, a set of full-physics compositional simulations is used to develop correlations for 

dimensionless injectivity as a function of the slope of the CO2 fractional-flow curve, variance of layer 

permeability values, and the nature of vertical permeability arrangement.  The same variables, along with 

a modified gravity number, can be used to develop a correlation for the total storage efficiency within the 

CO2 plume footprint.  Furthermore, the dimensionless average pressure buildup after the onset of 

boundary effects can be correlated to dimensionless time, CO2 plume footprint, and storativity contrast 

between the reservoir and caprock.  

 

In the second category, statistical “proxy models” are developed using the simulation domain described 

previously with two approaches: (a) classical Box-Behnken experimental design with a quadratic 

response surface, and (b) maximin Latin Hypercube sampling (LHS) based design with a multi-

dimensional kriging metamodel fit.  For roughly the same number of simulations, the LHS-based 

metamodel yields a more robust predictive model, as verified by a k-fold cross-validation approach (with 

data split into training and test sets) as well by validation with an independent dataset. 

     

In the third category, a reduced-order modeling procedure is utilized that combines proper orthogonal 

decomposition (POD) for reducing problem dimensionality with trajectory-piecewise linearization 

(TPWL) in order to represent system response at new control settings from a limited number of training 

runs. Significant savings in computational time are observed with reasonable accuracy from the POD-

TPWL reduced-order model for both vertical and horizontal well problems – which could be important in 

the context of history matching, uncertainty quantification and optimization problems. 

 

The simplified physics and statistical learning based models are also validated using an uncertainty 

analysis framework.  Reference cumulative distribution functions of key model outcomes (i.e., plume 

radius and reservoir pressure buildup) generated using a 97-run full-physics simulation are successfully 

validated against the CDF from 10,000 sample probabilistic simulations using the simplified models. 

 

The main contribution of this research project is the development and validation of a portfolio of 

simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 

sequestration in deep saline formations. 
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Executive Summary 

The objective of this research project is to develop and validate a portfolio of simplified modeling 

approaches for CO2 sequestration in deep saline formations – based on simplified physics, statistical 

learning, and/or mathematical approximations – for predicting: (a) injection well and formation pressure 

buildup, (b) lateral and vertical CO2 plume migration, and (c) brine displacement to overlying formations 

and the far-field.  Such computationally-efficient alternatives to conventional numerical simulators can be 

valuable assets during preliminary CO2 injection project screening, serve as a key element of probabilistic 

system assessment modeling tools, and assist regulators in quickly evaluating geological storage projects.  

The project team includes Battelle and Stanford University.  Support for the project is provided by U.S. 

DOE National Energy Technology Laboratory and the Ohio Development Service Agency Office of Coal 

Development (ODSA). 

Over the last decade, the development and demonstration of geologic sequestration technologies to 

mitigate greenhouse gas emissions has been an area of active research. Geologic sequestration of CO2 in 

deep saline formations has been recognized for its immense potential for long-term storage of captured 

CO2.  To ensure safe and effective deployment of this technology, it is crucial for us to understand the 

nature of pressure and plume propagation as injected CO2 displaces the native reservoir fluids. Detailed 

numerical simulation of such processes generally requires extensive reservoir characterization data and 

computational burden.  In this context, validated simplified models can be valuable as they have minimal 

data and computational requirements in comparison. Simplified models that are based on the most 

relevant physical processes and validated against full-physics simulators are thus being sought after as 

efficient and useful alternatives for rapid screening and evaluation of CO2 sequestration projects.  The 

research carried out under this project utilizes three broad approaches: (a) simplified physics-based 

modeling, (b) statistical-learning based modeling, and (c) reduced-order method based modeling.  Finally, 

an uncertainty and sensitivity analysis based validation framework is used to compare the results of full-

physics and simplified models from probabilistic simulations.   

In the simplified-physics based approach, only the most important physical processes are modeled to 

develop and validate simplified predictive models of CO2 sequestration in deep saline formation.  The 

system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock 

system with variable layer permeabilities.  A set of well-designed full-physics compositional simulations 

is used to understand key processes and parameters affecting pressure propagation and buoyant plume 

migration.  Based on these simulations, correlations have been developed for dimensionless injectivity as 

a function of the slope of CO2-water fractional-flow curve, variance of layer permeability values, and the 

nature of vertical permeability arrangement.  The same variables, along with a modified gravity number, 

can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint.  

Correlations are also developed to predict the average pressure buildup within the injection reservoir, as 

well as the pressure buildup within the caprock.  These correlations are generally found to have good 

predictive ability. 

In statistical-learning based modeling, two approaches are compared for building a statistical proxy model 

(metamodel) for CO2 geologic sequestration from the results of full-physics compositional simulations. 

The first approach involves a classical Box-Behnken or Augmented Pairs experimental design with a 
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quadratic polynomial response surface. The second approach uses a space-filling maximin Latin 

Hypercube sampling (LHS) or maximum entropy design with the choice of five different meta-modeling 

techniques: quadratic polynomial, kriging with constant and quadratic trend terms, multivariate adaptive 

regression spline (MARS) and additivity and variance stabilization (AVAS). Simulations results for CO2 

injection into a reservoir-caprock system with 9 design variables (and 97 samples) were used to generate 

the data for developing the proxy models. The fitted models were validated with using an independent 

data set and a cross-validation approach for three different performance metrics: total storage efficiency, 

CO2 plume radius and average reservoir pressure. The Box-Behnken–quadratic polynomial metamodel 

and the maximin LHS–kriging metamodel performed almost the same. 

Reduced-order models provide a means for greatly accelerating the detailed simulations that will be 

required to manage CO2 storage operations. This work investigates one such method, POD-TPWL, which 

has previously been shown to be effective in oil reservoir simulation problems.  The method combines 

trajectory piecewise linearization (TPWL), in which the solution to a new (test) problem is represented 

through a linearization around the solution to a previously-simulated (training) problem, with proper 

orthogonal decomposition (POD), which enables solution states to be expressed in terms of a relatively 

small number of parameters. The application of POD-TPWL for CO2-water systems is simulated using a 

compositional procedure. Stanford's Automatic Differentiation-based General Purpose Research 

Simulator (AD-GPRS) performs the full-order training simulations and provides the output (derivative 

matrices and system states) required by the POD-TPWL method. A new POD-TPWL capability 

introduced in this work is the use of horizontal injection wells that operate under rate (rather than bottom-

hole pressure) control. Simulation results are presented for CO2 injection into a synthetic aquifer and into 

a simplified model of the Mount Simon formation. Test cases involve the use of time-varying well 

controls that differ from those used in training runs. Results of reasonable accuracy are consistently 

achieved for relevant well quantities. Runtime speedups of around a factor of 370 relative to full-order 

AD-GPRS simulations are achieved, though the preprocessing needed for POD-TPWL model 

construction corresponds to the computational requirements for about 2.3 full-order simulation runs. A 

preliminary treatment for POD-TPWL modeling in which test cases differ from training runs in terms of 

geological parameters (rather than well controls) is also presented.  

One of the intended applications of simplified models is for performance assessment calculations, where 

the analyses are typically carried out in a probabilistic framework to deal with model and parameter 

uncertainty.  It is therefore important to ensure that the simplified models are also capable of reproducing 

the full spectrum of uncertainty and sensitivity analysis results from detailed numerical simulators.  A 97-

run LHS design with the full-physics model is used to generate the reference cumulative distribution 

function (CDF) of two key outcomes: plume radius and average pressure buildup in the reservoir.  This is 

compared against CDFs from 10,000-run LHS designs with three different models: (a) response surface 

from a Box-Behnken design and quadratic metamodel, (b) response surface from a maximin LHS design 

and kriging metamodel, and (c) simplified physics based methodology.  The statistical learning-based 

simplified models are found to provide a more robust representation of the reference CDF, particularly 

with respect to outliers. 
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1. Introduction 

1.1 Project Objectives 

The objective of this research project is to develop and validate a portfolio of simplified modeling 

approaches for CO2 sequestration in deep saline formations – based on simplified physics, statistical 

learning, and/or mathematical approximations – for predicting: (a) injection well and formation pressure 

buildup, (b) lateral and vertical CO2 plume migration, and (c) brine displacement to overlying formations 

and the far-field.  Such computationally-efficient alternatives to conventional numerical simulators can be 

valuable assets during preliminary CO2 injection project screening, serve as a key element of probabilistic 

system assessment modeling tools, and assist regulators in quickly evaluating geological storage projects.  

The project team includes Battelle and Stanford University.  Support for the project is provided by U.S. 

DOE National Energy Technology Laboratory and the Ohio Development Service Agency Office of Coal 

Development (ODSA). 

Over the last decade, the development and demonstration of geologic sequestration technologies to 

mitigate greenhouse gas emissions has been an area of active research. Geologic sequestration of CO2 in 

deep saline formations has been recognized for its immense potential for long-term storage of captured 

CO2.  To ensure safe and effective deployment of this technology, it is crucial for us to understand the 

nature of pressure and plume propagation as injected CO2 displaces the native reservoir fluids. Detailed 

numerical simulation of such processes generally requires extensive reservoir characterization data and 

computational burden.  In this context, validated simplified models can be valuable as they have minimal 

data and computational requirements in comparison. Simplified models that are based on the most 

relevant physical processes and validated against full-physics simulators are thus being sought after as 

efficient and useful alternatives for rapid screening and evaluation of CO2 sequestration projects. 

The project is organized around four main technical tasks:    

Task 2 – simplified physics-based modeling, where only the most relevant physical processes are 

modeled, 

Task 3 – statistical-learning based modeling, where the simulator is replaced with a “response surface”,  

Task 4 – reduced-order method based modeling, where mathematical approximations reduce the 

computational burden. 

Task 5 – uncertainty and sensitivity analysis based validation, where probabilistic simulations are used to 

compare the results of full-physics and simplified models.   

1.2 Summary of Topical Reports 

Results of research activities related to Tasks 2-4 have been described in detail in a series of topical 

reports (Ravi Ganesh and Mishra, 2014 [1]; Schuetter and Mishra, 2014 [2]; Jin et al, 2015 [3]).  The 

abstracts of these reports are presented below. 
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Simplified physics-based modeling (Ravi Ganesh and Mishra, 2014):  We present a simplified-physics 

based approach, where only the most important physical processes are modeled, to develop and validate 

simplified predictive models of CO2 sequestration in deep saline formation.  The system of interest is a 

single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable 

layer permeabilities.  We use a set of well-designed full-physics compositional simulations to understand 

key processes and parameters affecting pressure propagation and buoyant plume migration.  Based on 

these simulations, we have developed correlations for dimensionless injectivity as a function of the slope 

of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability 

arrangement.  The same variables, along with a modified gravity number, can be used to develop a 

correlation for the total storage efficiency within the CO2 plume footprint.  Similar correlations are also 

developed to predict the average pressure within the injection reservoir, as well as the pressure buildup 

within the caprock. 

Statistical-learning based modeling (Schuetter and Mishra, 2014): We compare two approaches for 

building a statistical proxy model (metamodel) for CO2 geologic sequestration from the results of full-

physics compositional simulations. The first approach involves a classical Box-Behnken or Augmented 

Pairs experimental design with a quadratic polynomial response surface. The second approach used a 

space-filling maximin Latin Hypercube sampling or maximum entropy design with the choice of five 

different meta-modeling techniques: quadratic polynomial, kriging with constant and quadratic trend 

terms, multivariate adaptive regression spline (MARS) and additivity and variance stabilization (AVAS). 

Simulations results for CO2 injection into a reservoir-caprock system with 9 design variables (and 97 

samples) were used to generate the data for developing the proxy models. The fitted models were 

validated with using an independent data set and a cross-validation approach for three different 

performance metrics: total storage efficiency, CO2 plume radius and average reservoir pressure. The Box-

Behnken–quadratic polynomial metamodel performed the best, followed closely by the maximin LHS–

kriging metamodel. 

Reduced-order method based modeling (Jin et al., 2015):  Reduced-order models provide a means for 

greatly accelerating the detailed simulations that will be required to manage CO2 storage operations. In 

this work, we investigate the use of one such method, POD-TPWL, which has previously been shown to 

be effective in oil reservoir simulation problems.  This method combines trajectory piecewise 

linearization (TPWL), in which the solution to a new (test) problem is represented through a linearization 

around the solution to a previously-simulated (training) problem, with proper orthogonal decomposition 

(POD), which enables solution states to be expressed in terms of a relatively small number of parameters. 

We describe the application of POD-TPWL for CO2-water systems simulated using a compositional 

procedure. Stanford's Automatic Differentiation-based General Purpose Research Simulator (AD-GPRS) 

performs the full-order training simulations and provides the output (derivative matrices and system 

states) required by the POD-TPWL method. A new POD-TPWL capability introduced in this work is the 

use of horizontal injection wells that operate under rate (rather than bottom-hole pressure) control. 

Simulation results are presented for CO2 injection into a synthetic aquifer and into a simplified model of 

the Mount Simon formation. Test cases involve the use of time-varying well controls that differ from 

those used in training runs. Results of reasonable accuracy are consistently achieved for relevant well 

quantities. Runtime speedups of around a factor of 370 relative to full-order AD-GPRS simulations are 

achieved, though the preprocessing needed for POD-TPWL model construction corresponds to the 

computational requirements for about 2.3 full-order simulation runs. A preliminary treatment for POD-
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TPWL modeling in which test cases differ from training runs in terms of geological parameters (rather 

than well controls) is also presented. Results in this case involve only small differences between training 

and test runs, though they do demonstrate that the approach is able to capture basic solution trends.  

1.3 Organization of Report 

The report is divided into two main parts.  Chapter 2 provides a summary of the topical reports for Tasks 

2-4 in the form of a paper that was prepared for presentation at the 2015 Annual Technical Conference 

and Exhibition of the Society of Petroleum Engineers (Mishra et al., 2015 [4]).  Chapter 3 presents the 

results of Task 5, i.e., validation of simplified modeling approaches using uncertainty and sensitivity 

analysis.  Finally, Chapter 4 presents conclusions from this study, and recommendations for future work.  

Also, excerpts from the Topical Reports (i.e., abstract, table of contents, list of tables, list of figures and 

executive summary) are included in the Appendix. 
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 Developing and Validating Simplified Predictive Models of  

CO2 Geologic Sequestration 

2.1   Introduction 

CO2 injection into the sub-surface is emerging as a viable technology for reducing anthropogenic CO2 

emissions into the atmosphere [1]. Deep saline formations provide a particularly attractive target for this 

purpose, with potential storage capacity in such systems in North America estimated to be of the order of 

3400 billion tons of CO2, or the equivalent of emissions from hundreds of years [2]. Over the last decade, 

the development and demonstration of geologic sequestration technologies to mitigate greenhouse gas 

emissions has been a field of active study. The U.S. Department of Energy’s (DOE’s) Carbon Storage 

Program has provided the primary impetus for R&D activities in the U.S. to develop and advance 

technologies that will significantly improve the efficacy of the geologic carbon storage technology, 

reduce the cost of implementation, and be ready for widespread commercial deployment between 2020 

and 2030.  

When large amounts of CO2 are sequestered underground, excess pressure buildup in the storage 

formations and cap rock is an associated risk in terms of endangering integrity of underground formation 

and wellbores, along with the risk of potential plume movement beyond the injected domain. Multiple 

technologies related to the evaluation of capacity and injectivity, monitoring of CO2 plume movement, 

and risk assessment are needed to ensure safe and effective deployment of geologic storage. One key 

technology in this regard is the simulation of CO2 injection and migration over very large areas and over 

long periods of time [3]. Detailed numerical models of CO2 geological storage are, however, data and 

computation intensive. In this context, validated simplified analytical or semi-analytical modeling tools 

can be valuable assets in preliminary CO2 injection project screening and implementation phases [4]. 

Such tools have minimal data and computational requirements compared to detailed-physics numerical 

simulators. Simplified models are therefore being sought after as alternatives for rapid feasibility and risk 

assessment of CO2 sequestration projects [5].  

The primary motivation for this study is to provide simplified modeling tools that will enable rapid 

feasibility and risk assessment of CO2 sequestration projects in deep saline formations. These tools will: 

(a) provide project developers with quick and simple tools to screen sites and estimate monitoring needs, 

(b) provide regulators with tools to evaluate geological storage projects quickly without running full-scale 

detailed numerical simulations, (c) enable integrated system risk assessments to be carried out with 

robust, yet simple to implement, reservoir performance models, and (d) allow modelers to efficiently 

analyze the impact of variable CO2 injection rates on plume migration and trapping for optimal well 

placement and rate allocation. 

In this chapter, three strategies are described for the development and validation of simplified modeling 

approaches for CO2 sequestration in deep saline formations: (1) simplified physics-based modeling, 

where only the most relevant physical processes are modeled, (2) statistical-learning based modeling, 

where the simulator is replaced with a “response surface”, and (3) reduced-order method based modeling, 

where mathematical approximations reduce the computational burden.   



Simplified Predictive Models 

for CO2 Sequestration 

DOE Award No. DE-FE0009051, Final Report 5 

The chapter is organized as follows. There are three main sections dealing with each of three strategies 

noted earlier.  For each section, we provide a summary of the relevant literature, discuss the full-physics 

model that forms the basis for deriving the reduced-order models, and describe the methodology for 

simplified model formulation and validation. The chapter concludes with a discussion of the practical 

aspects for each modeling strategy and concluding remarks based on the study.    

2.2 Simplified Physics Based Models 

2.2.1 Background 

Simplified models based on first principles can be extremely useful for rapid integrated system 

assessment of CO2 sequestration projects. One common modeling approach builds upon a Buckley-

Leverett type radial displacement formulation first presented for gas storage in aquifers [6], and 

subsequently adapted for the problem of CO2 plume migration in deep saline aquifers [7, 8]. Others have 

developed corresponding expressions for injection well pressure buildup using various assumptions 

regarding the mobility of the two-phase region [9-11]. 

A second approach uses an elegant sharp interface approximation to front propagation that leads to 

closed-form expressions for plume radius [12, 13] and pressure propagation [14, 15]. As is the case with 

the Buckley-Leverett type models discussed earlier, this approach also assumes that the reservoir is 

homogeneous in both radial and vertical directions, bounded above and below by impermeable layers, and 

is infinite-acting in the radial direction. 

Ref. [16] presented simple expressions for computing pressure buildup in reservoirs that were semi-

confined (i.e., with permeable over and/or underlying layers) and closed (i.e., with finite lateral 

boundaries). Their solution is strictly valid for single-phase flow conditions, although they show 

reasonable agreement with two-phase simulations if the injected volumes are balanced. Similar 

relationships based on single-phase pseudo-steady state flow equations have also been presented [17].  

Based on this literature review, we conclude that there is need for simplified models that account for 

pressure buildup and CO2 plume migration in saline formations while taking into account two-phase flow 

conditions, vertical variations in permeability (which can affect plume stratification), semi-confined 

conditions (presence of a cap rock) and finite lateral extent (well injecting into a closed volume). 

2.2.2 Modeling and Analysis Methodology 

The computational model consists of a single vertical well radially injecting supercritical CO2 in the 

middle of a 2D layered reservoir overlain by a cap rock. We add an overlying cap rock and vertically 

layered heterogeneity to previously considered simplified model geometries, thus introducing buoyancy 

and heterogeneity effects on plume migration. Our approach is based on a combination of first-principles 

and inspectional analysis from detailed numerical experiments using following workflow: 

 Well-defined compositional simulations of CO2 injection into a semi-confined cylindrical saline 

aquifer system are carried out for a broad range of reservoir and cap rock properties.  
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 Data from this sensitivity analysis exercise are used to develop insights into the relationship 

between the performance metrics of interest and fundamental reservoir/ cap rock properties. 

Inspectional analysis yields dimensionless groups for correlating the data. 

 Regression analysis is used to represent dimensionless pressure buildup and total storage 

efficiency (defined below) as a function of the underlying independent variable groups identified 

from sensitivity analysis.  

 The resulting predictive relationships are tested to validate the predictive models using “blind” 

runs with simulations not part of the “training set” (i.e., not used in the model formulation).  

2.2.3 Model Description 

The basic model is that of a single-well injecting supercritical CO2 into a bounded 2D radial-cylindrical 

aquifer initially filled with brine. The model domain consists of a porous and permeable heterogeneous 

reservoir, overlain by a low-permeability cap rock. The top of the cap rock, the bottom of the reservoir 

and the lateral boundary are all assumed to be no-flow boundaries. Fig. 2-1 illustrates the system of 

interest and the grid defined. The simulations are executed in the numerical simulator GEM® developed 

by the Computer Modeling Group (CMG). The following simulation elements are considered for our 

system: 

 A semi-confining system similar to the Mt Simon sandstone (reservoir) – Eau Claire shale (cap 

rock) configuration in the Illinois basic [20] 

 Reservoir and cap rock thickness (and variants) similar to that used for the Arches project [18,19]  

 Reservoir permeability and porosity (and variants) similar to that used for the Arches project 

[18,19]  

 Cap rock permeability and air entry pressure from the Illinois basin project [20] 

 Permeability variation and anisotropy ratio assumed over a realistic range 

Fig. 2-1. Model geometry and gridding for the system of interest. 
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(A) Simulation Scenarios 

 
Simulations are run to observe CO2 displacement characteristics for an injection period of 30 years in a 

closed system – as would be the case in a network of injection wells. The independent variables of 

interest are thickness and porosity of reservoir and cap rock, reservoir permeability heterogeneity, 

permeability and capillary pressure of the cap rock, and CO2 injection rate. Reservoir heterogeneity is 

varied by controlling the mean reservoir permeability, permeability anisotropy ratio (ratio of vertical to 

horizontal permeability) in the reservoir, spatial arrangement of the heterogeneous reservoir permeability 

layers, and relative permeability curves for the reservoir. We investigate the sensitivity of system 

behavior for high and low variants from a reference case for each of these variables and seek to quantify 

their effect on the dimensionless pressure buildup in the reservoir.  

There are 10 independent variables identified in Table 2-1. A set of one-off simulations are carried out to 

develop a library of results from which insights related to the development of simplified-physics based 

model will be extracted. For each of these simulations, all other independent variables are kept fixed at 

their reference values. This simulation matrix is run with each of the three different relative permeability 

models described next. 

Relative permeability curves for the reservoir are taken from [21]. Relative permeability curves are 

assumed to be the same for the caprock in all cases. These curves are shown in Fig. 2-2 (a). As far as 

variations from the reference case, the gas relative permeability curve for the reservoir is assumed to be 

linear for one of the variants (case A), whereas the other variant (case B) lies somewhere in between. The 

three separate curves provide a range of permeability characteristics for the reservoir model. Fig. 2-2 (b) 

shows the characterization of these relative permeability models using the slopes of the tangents to their 

gas fractional flow curves, i.e. dfg/dSg. A total of 60 simulations cover all one-off parameter variations.  

Table 2-1. Summary of test cases explored with parameter values for the reference case and the two variants. 

 

Paramet

er Description Units 

Referen

ce 

Value 

Low  

Value 

High  

Value Comments 

1 hR Thickness of 

reservoir 

m 150 50 250  

2 hCR Thickness of 

caprock 

m 150 100 200  

3 kR Average horizontal 

permeability of 

reservoir 

mD 46 12 220  

 VDP Dykstra-Parsons 

coefficient 

– 0.55 0.35 0.75 Correlated 

with kR 
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4 kCR Average horizontal 

permeability of 

caprock 

mD 0.02 0.002 0.2  

5 kV/kH Anisotropy ratio – 0.1 0.01 1  

6 q CO2 injection rate MMT/yr 0.83 0.33 1.33  

   bbl/day ~17074 ~7238 ~25855 Averages 

from the 

reference 

case 

 L Outer radius of 

reservoir 

m 10000 5000 7000 Correlated 

with q 

7 ϕR Porosity of 

reservoir 

– 0.12 0.08 0.18  

8 ϕCR Porosity of caprock – 0.07 0.05 0.1  

9 PC,CR Capillary pressure 

model of caprock 

– referenc

e 

decreased 

Pc by ×3 

increased Pc 

by ×3 

 

10 Ik Permeability 

layering 

– random  increasing 

from bottom 

 

 

  

  

Fig. 2-2. (a) Relative permeability model variations, with different gas-water relative 

permeability curves (left panel); (b) Fractional flow curves for the three relative permeability 

models characterized in terms of their slopes (right panel). 
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(B)  Predicting dimensionless pressure buildup and injectivity 

Our objective here is to develop a simplified model for dimensionless pressure buildup at the injection 

well as a function of key reservoir and fluid properties. This model can be used to predict the injectivity 

(i.e., ratio of injection rate to pressure buildup) in similar layered aquifer systems, given their respective 

system parameters. We describe the process of formulating and validating the predictive model for CO2 

injectivity below. 

From our sensitivity analysis simulations, we consistently observe that CO2 begins displacing brine in the 

reservoir with an initial pressure jump followed by a transient period of quasi-steady injection well 

pressure. Once the pressure front reaches the lateral boundary of our system, further CO2 injection causes 

additional pressure buildup in the reservoir as expected. The pressure jump at the well can be converted 

into a dimensionless quantity (PD) using Eq. 2-1.  

jump

w

RR
D P

q

hk
P 



2

  (2-1) 

where kR is reservoir permeability, hR is reservoir thickness, q is volumetric injection rate, µw is brine 

viscosity, and ΔPjump is the observed value of the pressure jump.  

Based on inspectional analysis, we find that the dimensionless pressure buildup can be characterized as a 

function of the following variable groups: 

 Relative permeability model characterized by the slope of the tangent to the CO2 fractional flow 

curve, dfg/dSg  

 Dykstra-Parsons coefficient, defined as 

𝑉𝐷𝑃 =
 (𝑘50 −  𝑘84.1) 

𝑘50 
 

where k50 is median (i.e., 50th percentile) reservoir permeability, and k84.1 is the reservoir permeability at 

the median + one standard deviation (i.e., 84.1th percentile), assuming a log-normal distribution. 

Fig. 2-3 shows a plot of the dimensionless pressure jump, PD, versus the slope of the fractional flow 

curve, dfg/dSg, which characterizes the relative permeability relationship. From the minimal scatter in the 

data, we conclude that the relative permeability model has a strong impact on PD and hence injectivity, 

while permeability heterogeneity as characterized by VDP has only a second-order effect.  

 



Simplified Predictive Models 

for CO2 Sequestration 

DOE Award No. DE-FE0009051, Final Report 10 

 

Fig. 2-3. Scatter plot of PD values for varying dfg/dSg and VDP. 

 

The simulated data in Fig. 2-3 were fit to a multivariate quadratic regression model with interaction terms 

to yield the following relationship for PD:  

 2

2

89.8342.023.141.359.03.10 DP

g

g

DP
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g

D V
dS

df
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dS
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dS

df
P 
















 (2-2) 

Fig. 2-4 shows a comparison between the simulated values of PD and those predicted with Eq. (2-2), 

indicating very good agreement.  The coefficient of determination for this fit is R2 = 0.93. 

Injectivity index (q/ΔPjump) of the well is calculated from the dimensionless pressure buildup using Eq. 2-

1. Fig. 2-5 compares the predicted injectivity indexes from our model with those calculated directly from 

the simulation dataset. The general equivalence between the model predictions and the simulations for the 

injectivity thus demonstrates the validity of our model. 

  

Fig. 2-4. Comparison plot between regression model    Fig. 2-5. Comparison plot between regression       

Predictions and simulator output values for PD.                  model predictions and simulator output   
          values for q/P. 
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The simplified predictive model obtained for dimensionless pressure buildup (and hence for CO2 

injectivity) is also validated successfully for its robustness with two ‘blind’ simulation cases that were not 

part of the regression analysis, shown as yellow diamonds in Fig. 2-5. We find that the injectivity index 

predicted by our model for the first validation case is 10.5 bbl/day/psi compared to the simulation result 

of 9.6 bbl/day/psi. For the second validation case, the injectivity index predicted by our model is 27.5 

bbl/day/psi compared to the simulation result of 28.7 bbl/day/psi. Thus, our simplified model (Eq. 2-2), 

together with Eq. 2-1, can be used to determine the CO2 injection rate for a given target pressure 

differential, or alternatively, the pressure differential that would result from injecting CO2 at a target rate.  

2.2.4 Predicting average pressure buildup 

For single-phase flow in closed systems, the dimensionless form of average reservoir pressure buildup 

can be written as [22]: 

𝑃𝐷 = 2π𝑡𝐷𝐴 =
𝑘ℎ(𝑃̅−𝑃𝑖)

𝑞Bμ
  ;  𝑡𝐷𝐴 =

𝑘𝑡

∅μ𝑐𝑡A
 (2-3) 

where PD is dimensionless pressure and tDA is dimensionless time based on the drainage area, A. First, 

using simulated CO2-brine displacement data with no-flow upper and lower boundaries (i.e., for a 

confined system), we investigate how this relationship changes for each of the three different relative 

permeability models shown in Fig. 2-2. In each of these cases, we notice a linear relationship between PD 

and tDA, as would be expected in the case of single-phase flow. However, the slope is always found to be 

lower than the single-phase value of (2π), which can be attributed to the effects of two-phase flow and the 

variability in the relative permeability models. The factor that quantifies the deviation from (2π), denoted 

by ‘f’, is postulated to be a function of the effectiveness of two-phase flow in the reservoir. This is 

dependent on the relative permeability model as well as the two-phase displacement dynamics. A proxy 

for the effectiveness of this displacement is the plume extent. Hence we determine ‘f’’ to be directly 

related to the ratio of the system size to the plume extent, as shown in Fig. 2-6.   

 

Fig. 2-6. The ‘f’ factor for closed reservoirs is correlated to the square of the ratio of the reservoir radius to 

the plume radius at the end of injection. 
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The next step is to determine the effect of reservoir and cap rock properties on ‘f’’ in semi-confined 

systems. We can express this in terms of a modified form of Eq. (2-3), viz. 

𝑃𝐷 = 𝑓𝑆𝐶 . 𝑓. 2π𝑡𝐷𝐴 (2-4) 

We expect that ‘fSC’ changes with varying storage capacity of the rock for each relative permeability 

model. All the simulation cases for all three relative permeability models have been analyzed to study the 

effect of rock properties on the slope factor. The ‘fSC’ factor was found to be essentially equivalent to the 

storativity ratio, i.e., ratio of the porosity-thickness of the reservoir to the total porosity-thickness of the 

system: 

𝑓𝑆𝐶 =
∅𝑅ℎ𝑅

∅𝑅ℎ𝑅+ ∅𝐶𝑅ℎ𝐶𝑅
 (2-5) 

We summarize the results for each relative permeability model in Fig. 2-7, which compares fSC calculated 

from the simulation results to that predicted by Eq. 2-5, thus indicating the robustness of this simple 

analytical proxy.  

   

Fig. 2-7. Plot illustrating equivalence of fSC and ratio of porosity-thickness of the reservoir to the 

total porosity-thickness of the system (cap rock + reservoir) for all three relative permeability 

models. 

2.2.5 Predicting total storage efficiency and plume radius 

Our objective here is to develop a simplified model to estimate the outer extent of the CO2-brine interface 

at the end of CO2 injection in the reservoir. It is useful to define a few concepts using a schematic of the 

plume as shown in Fig. 2-8. Within the plume footprint, the fraction of the total pore volume in the 

reservoir contacted by CO2 is given by the volumetric sweep efficiency (Ev). This is the ratio of the 

volume swept (contacted) by CO2 to the total volume within the footprint of the CO2 plume. Within this 

swept volume, the efficiency of displacement of the native brine by the CO2 is given by the displacement 

efficiency. Because the initial gas saturation in the reservoir is zero, the average CO2 saturation behind the 

front, Sg,av, gives this displacement efficiency [24]. The total storage efficiency Es, defined as the product 

of Ev and Sg,av, thus signifies the efficiency of CO2-brine displacement process or the ability to effectively 

sequester CO2 in that reservoir. The lesser the value of total storage efficiency, the farther the areal 

footprint of the plume would be from the injection well.  
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ES is related to the maximum radial extent of the CO2 plume at the end of injection, R, as given in Eq. 6 

below: 

𝑅2 =
𝑄

𝜋𝜙𝑅ℎ𝑅𝑆𝑔,𝑎𝑣𝐸𝑣
=

𝑄

𝜋𝜙𝑅ℎ𝑅𝐸𝑠
     (2-6) 

R can be calculated for a given injection volume and reservoir storativity (porosity-thickness product), if 

we can compute ES as a function of fundamental inputs using Eq. 6. For our heterogeneous system, we 

can draw comparison of ES terms with the volumetric sweep and displacement efficiencies from other 

simplified models in literature. The classic Buckley-Leverett theory gives the average gas saturation 

(Sg,av) to be the reciprocal of the shock velocity, i.e., slope to the tangent of the gas fractional flow curve, 

dfg/dSg [6]. In ideal homogeneous storage formations, perfect sweep efficiency (EV = 1) is achieved such 

as that considered in [7-8]. 

Based on first principles and the sensitivity analysis exercise described earlier, we characterize total 

storage efficiency as a function of the following variable groups: 

 Gravity number is a ratio of gravity and viscous effects. We define the dimensionless gravity 

number while accounting for the reservoir permeability anisotropy as: 

                                     𝑁𝑔 =
 (∆𝜌𝑔ℎ𝑅)𝑘𝑅ℎ𝑅(

ℎ𝑅
𝐿

) 

𝑞𝜇𝑔 (
𝑘𝑉
𝑘𝐻

) 
                             (2-7) 

The definition for gravity number in surveyed literature varies from source to source [23]. However the 

fundamental behavior of this number remains the same through all definitions as to when the gravity 

effects are more pronounced compared to the viscous flow effects (such as in thicker reservoirs) and vice-

versa.  

 The heterogeneity of the reservoir, in terms of its spatial variation in permeability, is 

characterized by the Dykstra-Parsons coefficient, VDP 

Average Gas Saturation in Swept Volume

CO2- Brine

Brine

Injector

Sg,av

R
CO2

Swept Volume

Unswept Volume

Reservoir

Fig. 2-8. System schematic showing graphical definition of plume 

extent, volumetric sweep and displacement efficiency. 
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 The heterogeneity of the reservoir can also be characterized in terms of the Lorenz coefficient 

which is related to the Dykstra-Parsons coefficient. It is defined as [24]: 

LC = 2 {∫ FndCn − 
1

0

1

2
} (2-8) 

where Fn = cumulative flow capacity =  
∑ 𝑘𝑅𝑖ℎ𝑅𝑖

𝑛
𝑖=1

∑ 𝑘𝑅𝑖ℎ𝑅𝑖
𝑁
𝑖=1

 ;  

and Cn = cumulative storage capacity = 
∑ 𝜙𝑅𝑖ℎ𝑅𝑖

𝑛
𝑖=1

∑ 𝜙𝑅𝑖ℎ𝑅𝑖
𝑁
𝑖=1

  

The Lorenz coefficient also ranges from 0 to 1 with LC being null for homogeneous reservoirs and closer 

to one for extremely heterogeneous ones. We calculate the Lorenz coefficient by honoring the 

permeability layering from the bottom-most to the top-most layer of the reservoir. 

 Relative permeability model characterized by the slope of the tangent to CO2 fractional flow 

curve, dfg/dSg.  

Fig. 2-9 shows ES plotted as a function of all four independent variables defined above. As in 

waterflooding, we see the dependence of the total efficiency on relative permeability, i.e., higher dfg/dSg 

values tend to have lesser scatter. The effect of reservoir heterogeneity is captured from the dependency 

of ES on both the Dykstra-Parsons coefficient and the Lorenz coefficient. Buoyant CO2 displacing brine is 

also affected by gravity segregation which is shown from Fig. 2-9(c).  
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(c) (d) 

Fig. 2-9. Scatter plots of ES values as a function of all four independent variables: (a) dfg/dSg, (b) 

VDP, (c) Ng, and (d) LC. 

 

The simulated data in Fig. 2-9 were fit to a multivariate quadratic regression model with interaction terms 

to yield the following relationship for ES (in percent):  

𝐸𝑆 = 30.7 + 0.435
𝑑𝑓𝑔

𝑑𝑆𝑔
+ 29.24𝐿𝐶 − 22.02𝑉𝐷𝑃 − 11.2𝑁𝑔 + 4.59

𝑑𝑓𝑔

𝑑𝑆𝑔
𝑉𝐷𝑃

− 25.21𝐿𝐶𝑉𝐷𝑃 − 0.692 (
𝑑𝑓𝑔

𝑑𝑆𝑔
)

2

+ 6.11(𝑁𝑔)2 

(2-9) 

Fig. 2-10 shows the agreement between simulated and predicted values of ES using our model, indicating 

very good agreement. The predicted total storage efficiency from Eq. 2-9 can be used to calculate the CO2 

plume extent for a given amount of CO2 injected into the reservoir. Fig. 2-11 compares the predicted CO2 

plume extents (using predicted ES in Eq. 2-6) for our simulations with the plume extents resulting from 

the respective simulations.  

     

Fig. 2-10. Comparison plot between regression            Fig. 2-11. Comparison plot between regression    

model predictions and simulator output values             model predictions and simulator output values 

for ES.              for RCO2. 
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The simplified predictive model obtained for total storage efficiency and hence plume radius, is also 

validated for its robustness with two ‘blind’ simulation cases (shown as yellow diamonds in Fig. 2-11) 

that were not part of the regression analysis. We find that the plume radius predicted by our model for the 

first validation case is 1648 m compared to the simulation result of 1557 m. For the second validation 

case, the plume radius predicted by our model is 1794 m compared to the simulation result of 1670 m. 

Thus, our simplified model (equation 9) can be used to reasonably predict the total storage efficiency and 

hence determine the ultimate plume extent at the end of CO2 injection from Eq. 2-6. 

2.3 Statistical Learning Based Models 

2.3.1 Background 

The routine use of full-physics models for such tasks as uncertainty quantification, optimization and 

sensitivity analysis is often hindered by the computational burden of running repetitive simulations. 

Statistical-learning based modeling, also called proxy modeling, metamodeling or response surface 

modeling, is one common strategy for ameliorating this situation [25]. In this approach, an affordable 

sample of input settings is chosen, and the full physics model is run at those settings to obtain responses 

of interest. A proxy model or response surface is then fit to these data using statistical techniques. The 

proxy model is a functional approximation of the full-physics model for a given set of input values, albeit 

at a fraction of the computational cost of the full model. When the response in the full-physics model is 

well behaved and does not change erratically with respect to the input settings, proxy models can be quite 

accurate. When the response is less well behaved, the approximation could be poorer, at least in certain 

parts of the input space. However, even in these cases the proxy model can be useful for discovering the 

general parts of the input space that produce the most desirable response, at which time a more detailed 

study could be performed with the full physics model using only a small set of runs. 

In the reservoir modeling literature, metamodels are often used as proxies for the underlying simulation 

models, especially for optimization and uncertainty quantification studies. Several studies have addressed 

sampling and metamodeling strategy for reservoir simulations. In particular, [26] examines Latin 

hypercube sampling (LHS) designs and compares polynomial and kriging metamodels, [27] focuses 

specifically on LHS designs, [28] compares polynomial, kriging, thin plate spline, and artificial neural 

network metamodels. In [29], the authors compared a second order polynomial model and kriging model 

using an orthogonal array (OA) sample design in a gas coning case study. In this case, the second order 

polynomial outperformed kriging with a 36-run design in 14 variables. Ref. [30] settled on first order 

polynomial models for fitting outputs of a CMG STARS simulation for CO2 sequestration in deep saline 

carbonate aquifers. The models were fit using LHS designs of size 100 over 16 variables. Finally, [31] 

used a Box-Behnken design and a stepwise quadratic regression model to develop probability 

distributions for responses related to CO2 injection into deep saline formations. 

The goal of this study was to compare two different approaches to sampling and proxy modeling for CO2 

sequestration where a compositional simulator, CMG-GEM, is used as the full-physics model. Running a 

simulation requires the specification of nine input parameters, and results in a host of responses over a 30-

year period. Of these responses, three were chosen for the proxy model comparison. The first is average 

pressure in the reservoir, the second is radius of the CO2 plume, and the third is total storage efficiency of 

the reservoir. All responses were selected at the end of the 30-year period. 
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2.3.2 Methodology 

One of the standard proxy modeling approaches used in the reservoir modeling literature is quadratic 

polynomial modeling with a classical experimental design. A popular design for this purpose is the Box-

Behnken design [25], which assigns a “Low” (-1), “Medium” (0), and “High” (+1) level to each input 

variable. Levels of the inputs are judiciously chosen in such a way that linear and quadratic terms of the 

polynomial surface can be estimated with the smallest number of runs possible. This corresponds to a 

selection of uniquely located sampling points along the edges of a hypercube in the input space (see Fig. 

2-12).  

X1 X2 X3 

 

-1 -1 0 

-1 0 -1 

-1 0 +1 

-1 +1 0 

0 -1 -1 

0 -1 +1 

0 0 0 

0 +1 -1 

0 +1 +1 

+1 -1 0 

+1 0 -1 

+1 0 +1 

+1 +1 0 

    

Fig. 2-12. A Box-Behnken Design for three inputs (left) and its representation 

in the input space (right). 

The quadratic polynomial model fits a model to the response that is the analogue of the parabola in p 

dimensions, where p is the number of inputs. It is defined as a sum of all linear, quadratic, and pair-wise 

cross-product terms between the predictors. That is, the approximating function 𝑓(𝐱) is given by the 

equation below. 

𝑓(𝒙) = 𝑏0 + ∑ 𝑏𝑖𝑥𝑖
𝑝
𝑖=1 + ∑ 𝑏𝑖𝑖(𝑥𝑖)2 + ∑ ∑ 𝑏𝑖𝑗𝑥𝑖𝑥𝑗𝑗>𝑖

𝑝
𝑖=1

𝑝
𝑖=1   (2-10) 
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For responses that have smooth, well-defined behavior over the input space, a quadratic polynomial 

model based on a classical experimental design like the Box-Behnken design would be appropriate. 

However, in some cases this may not be a valid assumption. Additionally, interesting behavior in the 

response could be occurring somewhere between the “Low” and “Medium” input settings, or between the 

“Medium” and “High” settings. A design which only considers those three input levels may be 

oversimplifying and not provide an appropriate level of granularity. 

An alternate approach is to use a sampling-based design, which is not restricted to three input levels. Such 

a design generates a sample that is intended to satisfy a particular criterion. In some cases, these designs 

are even determined through numerical optimization of that criterion. Typically, the criteria capture 

information about the “space-filling” nature of the design. That is, they measure how well dispersed the 

sample points are across the input space. Intuitively, the better spaced the points are throughout the space, 

the fewer “gaps” or “holes” there will be for which no sampled observations were collected at a similar 

set of input values. 

These designs come in many flavors, but the one discussed in the context of this study is a maximin Latin 

Hypercube sample (LHS) [25]. A LHS is a design that is intended to fill the input space by randomly 

selecting observations in equal probability bins across the range of the inputs. These designs sample 

values in [0, 1] for each of the inputs at each design point. The sampling is done in such a way that for a 

sample of size n, there will be exactly one observation in each of the intervals [0, 1/n), [1/n, 2/n), …, [(n-

1)/n, 1] for each of the inputs. A maximin LHS is created by generating a large number (e.g., thousands) 

of LHS designs and selecting the design that has the largest value of the function  

𝑀(𝒙1, 𝒙2, … , 𝒙𝑛) = 𝑚𝑖𝑛𝑖,𝑗 ‖𝒙𝑖 − 𝒙𝑗‖,  (2-11) 

where 𝐱1, 𝐱2, … , 𝐱𝑛 are the n sampled observations and ‖𝐱𝑖 − 𝐱𝑗‖ is the Euclidean distance between 

observations i and j. In other words, the maximin LHS design is the one that maximizes the minimum 

distance between any pair of observations in the sample. Examples of LHS and maximin LHS designs are 

shown in Fig. 2-13, that highlight the superior space-filling nature of the latter scheme. 

 

 

Fig. 2-13. Examples of LHS designs (red) and maximin LHS designs (green) using 20 observations  

for two inputs. 
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In addition to sampling designs, there are also alternative proxy models that can be used in place of a 

quadratic polynomial [32]. A common alternative used for oil and gas applications is the kriging model 

[32-35], which has an approximation function 𝑓(𝐱) that is composed of a trend term and an 

autocorrelation term: 

𝑓(𝐱) = 𝜇(𝐱) + 𝑍(𝐱), (2-12) 

where 𝜇(𝐱) is the overall trend and Z(𝐱) is the autocorrelation term. Z(𝐱) is treated as the realization of a 

mean zero stochastic process with a covariance structure given by 𝐶𝑜𝑣(𝑍(𝐱)) = 𝜎2𝐑, where R is an nn 

matrix whose (𝑖, 𝑗)th element is the correlation function 𝑅(𝐱𝑖, 𝐱𝑗) between any two of the sampled 

observations 𝐱𝑖 and 𝐱𝑗. One choice is the Matérn (5/2, ) correlation, which is given by the equation 

below, where 

𝑑𝑘 = (𝑥𝑘
𝑖 − 𝑥𝑘

𝑗
). 

𝑅(𝒙𝑖 , 𝒙𝑗) = ∏ [1 +
𝑑𝑘√5

𝜃𝑘
+

5𝑑𝑘
2

𝜃𝑘
2 ] 𝑒𝑥𝑝 (−

𝑑𝑘√5

𝜃𝑘
)

𝑝
𝑘=1  (2-13) 

In this study, we have used ordinary kriging which assumes a scalar trend (𝐱) = 𝜇0,  

2.3.3 Study Description 

As described previously for the simplified-physics based modeling case, the system being studied 

represents a single-well injecting supercritical CO2 into a bounded 2-D radial-cylindrical formation 

(storage reservoir) initially filled with brine. The model domain consists of a porous and permeable 

heterogeneous reservoir, overlain by a low-permeability cap rock. The top of the cap rock, the bottom of 

the reservoir and the lateral boundary are all assumed to be no-flow boundaries. The simulations are 

executed in the numerical simulator CMG-GEM. Table 2-1 shows the nine independent variables, and the 

reference (0), low (-1) and high (+1) values used to set up the Box-Behnken designs. Table 2-2 shows the 

distributions used to sample these variables for the maximin LHS design. Here, T denotes a triangular 

distribution, and lnT denotes a log-triangular distribution. 

Proxy models were trained for each of three responses (total storage efficiency, plume radius and average 

reservoir pressure) generated by the GEM reservoir simulator. Both sampling designs contained n = 97 

runs with different values for the nine input variables. The selection of 97 runs was made because the 

Box-Behnken design for p = 9 input variables has n = 97 unique observations. To avoid any bias that 

could be attributed to unequal sample sizes, all of the maximin LHS designs were restricted to the same 

number of runs as the Box-Behnken design.  

Table 2-2. Input Distributions used with LHS Sampling 

Input Description Distribution 

hR Thickness of the reservoir, m T(50,150,250) 

hCR Thickness of the caprock, m T(100,150,200) 
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lnk_R 

 

VDP 

Log-mean reservoir permeability 

(mD),  

Dykstra-Parson’s coefficient 

(perfectly correlated) 

lnK_R ~ T(2.45, 3.56, 4.67) 

 

VDP ~ T(0.35, 0.55, 0.75) 

kCR Average horizontal permeability of 

the caprock, mD 

lnT(0.002,0.02,0.2) 

kV/kH Anisotropy ratio lnT(0.01,0.1,1) 

q CO2 injection rate, MMT/yr discrete with equal probability – {0.33, 0.83, 1.33} 

R Porosity of the reservoir T(0.08,0.12,0.18) 

CR Porosity of the caprock T(0.05,0.07,0.10) 

Ik Order of permeability layering Discrete w/equal probability, 

Ik  {“random”, ” increasing”, ”decreasing”} 

 

To compare different models, the common approach of characterizing the goodness-of-fit based on the 

training data set was used as a starting point. Note that in this case, the statistics will be biased 

optimistically, since the metamodel first and foremost is designed to fit those particular observations well. 

An overtrained model will fit the training data very well, but perform poorly on independent test data. 

Therefore, an independent ordinary LHS design with m = 97 independent observations was generated as a 

“validation” data set. Finally, a k-fold cross-validation approach was applied [36].  

Under this paradigm, the dataset is randomly partitioned into k folds, which are mutually exclusive and 

exhaustive subsets of the observations. Each fold is then systematically held out and the metamodel is fit 

to a dataset consisting of only the remaining k – 1 folds. This model is then used to make a prediction on 

the fold that was left out. After repeating this process on all k folds, there are a total of k models that are 

constructed, each of which are used to predict the value of the single fold that was left out of the training 

set. While the cross-validation approach does not specifically test the unique model that is created by 

using all n training observations together, it does test the algorithm that is used to construct the model. 

When each fold is held out of the training set, it will behave like independent test data as far as that 

particular model is concerned. Therefore, the errors from the cross-validation more accurately reflect error 

rates in the model fit over parts of the response surface that have not been sampled. The rule of thumb is 

to use somewhere between k = 5 and k = 10 [36]. 

The accuracy of each model (using the training data set, independent validation data set, or k-fold cross-

validation) was then captured using three different related measures. The first is the root mean squared 

error (RMSE), which is defined as the square root of the average squared difference between predictions 

𝑦̂𝑖 = 𝑓(𝐱𝑖) and true response values 𝑦𝑖 = 𝑓(𝐱𝑖) over the set of validation observations {𝐱1, 𝐱2, … , 𝐱𝑛}. 

The RMSE may also be divided by the median response to produce a scaled RMSE (SRMSE) that 
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facilitates easier comparison between responses. The final statistic used in model evaluation was a 

pseudo-R2 value, which measures the amount of variation in the response that can be attributed to the 

predictors. Note that in this definition of the R2 value, negative values are possible and indicate a model 

that is less useful in prediction than simply using the mean response.  

2.3.4 Results 

The performance of the two design-model combinations studied, i.e., Box Behnken (BB)-quadratic and 

maximin (MM)-kriging, are shown in Fig. 2-14. The bar charts show the pseudo-R2 statistic indicating 

goodness-of-fit for the full training data, independent validation data and k-fold cross-validation exercise. 

Taller bars indicate better performance. Beginning with the left panel, which shows model performance 

for the training data only, it is clear that the bars represent a biased view of model performance, since the 

models are being evaluated over the same dataset used to train them. For example, since kriging models 

are perfect interpolators (i.e., they pass through each observation by design), they always achieve zero 

error over the training set. However, one obviously could not expect them to perfectly model the response 

at other points in the input space. The middle panel shows results for validation using the independent 

LHS sample set.  Here, the performance of BB and MM designs are essentially equivalent when 

considered across all three metrics. 

The right panel shows the results for the cross validation exercise.  The question of interest here is: had 

validation data not been available, would cross-validation have given similar results in terms of which 

metamodels had the best performance on each of the responses? To investigate this question, a 5-fold 

cross-validation procedure was implemented 100 times for each of the metamodels. For each response, 

this produced 100 cross-validated predictions at every set of sampled predictor inputs. The metamodels 

were compared using the average R2 over the 100 sets of predictions. There are several interesting things 

to note in comparing these results to the validation results. First of all, the cross-validation error rates 

seem higher than the validation error rates, especially for the Box-Behnken design. This is likely because 

predictions by cross-validated models can only be made at sampled locations in the response surface. In 

the case of the BB designs, the only samples points were on the boundaries of the predictor space, where 

models are not as likely to fit well, especially when those points are left out of the training process. These 

considerations do not apply to space filling designs, because of which the MM LHS appears to be 

superior to the BB design. 
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Fig. 2-14. Comparison of R2 for BB-quadratic and MM-kriging proxy models for the three different 

performance metrics of interest. 

These results are further substantiated via the scatterplots between the simulated and predicted values of 

the three performance metrics of interest, shown in Fig. 2-15 through 2-17.  These scatterplots show a 

comparison of the actual response (horizontal axis) to the predicted response (vertical axis), with perfect 

prediction represented by the dashed diagonal gray line.  In the case of the full training evaluation, the 

dots represent the design used to train the model, with predictions being made on those same design 

points.  In the case of the validation approach, the dots represent the validation LHS design over which 

the models were evaluated.  Finally, in the case of cross-validation, the dots represent the median cross-

validated predictions over the training design.  The bars show the spread of the predictions over the 100 

replications of the cross-validation procedure, with the black line showing the middle 50% of predictions, 

the dark gray extending out to the 5th and 95th percentile predictions, and the light gray lines extending to 

the minimum and maximum predicted value.  In some cases, the light gray lines are truncated to avoid 
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distorting the vertical axis.  Note also both models tended to underestimate the magnitude of the largest 

average pressures for the validation set as well as for the cross-validation case.  

 

 

Fig. 2-15. Scatterplots showing actual (horizontal axis) vs. predicted response (vertical axis)  

for Total Storage Efficiency. 
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Fig. 2-16. Scatterplots showing actual (horizontal axis) vs. predicted response (vertical axis)  

for Plume Radius. 

 

Fig. 2-17. Scatterplots showing actual (horizontal axis) vs. predicted response (vertical axis)  

for Average Pressure. 
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2.4 Reduced-Order Method Based Models 

2.4.1 Background 

Our goal in this work was to develop and test a reduced-order modeling framework for CO2 storage 

problems. The method we are pursuing is based on trajectory piecewise linearization (TPWL) and uses 

proper orthogonal decomposition (POD) to project the linearized representation into a low-dimensional 

space. We thus refer to the overall method as POD-TPWL. Reduced-order modeling techniques that rely 

on POD alone have been developed for subsurface flow simulation [37-39], though these methods are 

limited in terms of the amount of speedup achievable for general (nonlinear) problems such as those 

associated with CO2 storage. The TPWL method, originally presented in [40], is more approximate but it 

can achieve much greater speedups for such cases. Implementations of POD-TPWL for subsurface flow 

have been reported for oil-water problems [41-42], idealized thermal simulation systems [43], and oil-gas 

compositional problems [44].  

2.4.2 Methodology 

The reduced-order model (ROM) developed in this work can be classified as a reduced numerical 

procedure. As such, it is based on the underlying (discretized) equations describing the flow process of 

interest. This is in contrast to surrogate models that apply statistical or data-fitting procedures such as 

those described in previous sections, which are not based directly on the underlying equations. 

The governing equations for two-phase or compositional flow in porous formations are derived by 

combining expressions for mass conservation with Darcy’s law. These equations are solved numerically 

in this work using a fully-implicit finite-volume technique. We apply the usual discretization procedures 

(two-point flux approximation, first-order implicit time-discretization method, standard well 

representation), in order to arrive at the discretized flow equations. We then write the nonlinear set of 

discretized equations (for either black-oil or compositional systems) as: 

   𝐠(𝐱𝑛+1, 𝐱𝑛, 𝐮𝑛+1) = 𝟎 ,      (2-14) 

where g designates the vector of discretized residual equations we wish to solve, x denotes the system 

states (e.g., pressure and saturation in every grid block in a two-phase flow problem), u designates the 

specified controls (well bottomhole pressures or injection/production rates), and n and n+1 indicate time 

levels. The goal is to compute xn+1, the states at the next time level. Previous states xn and controls un+1 are 

known or specified. This nonlinear system of equations is typically solved iteratively, using Newton’s 

method, which can be very time consuming for large models. For a two-component model containing nb 

grid blocks, Eq. 2-14 represents a system of 2nb equations and 2nb unknowns. 

In TPWL procedures, the nonlinear set of equations is linearized around “points” (vectors of states and 

controls) that have been simulated in previous full-order “training” simulations. Given the current state 

xn, we designate the closest saved state encountered during the training run as xi (the specific definition 

of “distance,” used to determine “closeness,” is problem dependent; see, e.g., He and Durlofsky [44] for 

detailed discussion). To determine xn+1, we linearize Eq. 2-14 around the saved states and controls 

(𝐱𝑖+1, 𝐱𝑖, 𝐮𝑖+1), and then represent new solutions using the linear expansion 
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            𝐠𝑛+1 = 𝐠𝑖+1 +
𝜕𝐠𝑖+1

𝜕𝐱𝑖+1 (𝐱𝑛+1 − 𝐱𝑖+1) +
𝜕𝐠𝑖+1

𝜕𝐱𝑖 (𝐱𝑛 − 𝐱𝑖)+
𝜕𝐠𝑖+1

𝜕𝐮𝑖+1 (𝐮𝑛+1 − 𝐮𝑖+1), (2-15) 

where 𝐠𝑛+1 = 𝐠(𝐱𝑛+1, 𝐱𝑛, 𝐮𝑛+1) = 𝟎 and 𝐠𝑖+1 = 𝐠(𝐱𝑖+1, 𝐱𝑖, 𝐮𝑖+1) = 𝟎. Note that the Jacobian matrix, 

which is the derivative of the residual vector with respect to the state vector, for time step i+1 in the 

training run, is given by 𝐉𝑖+1 = 𝜕𝐠𝑖+1 𝜕𝐱𝑖+1⁄ . In all of our expressions, this matrix is always evaluated at 

the converged states 𝐱𝑖+1. 

Application of POD enables us to represent the states x in terms of a small number of parameters. This is 

accomplished using the relationship  𝐱 = 𝚽𝝃, where 𝚽 is the so-called basis matrix (constructed from 

“snapshots”; i.e., the solution states computed in training runs) and 𝝃 is the reduced-variable vector. The 

matrix 𝚽 is “tall and skinny,” of dimensions 2nbl, where l << 2nb. This means that the states x (of 

dimension 2nb) can be expressed efficiently in terms of the “short” vector 𝝃 (of dimension l). After 

manipulating Eq. 2-15, and inserting  𝐱 = 𝚽𝝃, we have an over-determined system of 2nb equations (for 

a two-component problem) in l unknowns. This can be written concisely as: 

   𝐉𝑖+1𝚽𝝃𝑛+1 = 𝐛 .       (2-16) 

Eq. 2-16 must be solved for 𝝃𝑛+1. Information in the right-hand side vector b is known (it is either 

prescribed or involves information at time step n). See He and Durlofsky [44] and Jin [45] for details. 

In order to render Eq. 2-16 directly solvable, it must be projected into a subspace of dimension l. This is 

accomplished by premultiplying Eq. 16 by a matrix (𝚿𝑖+1)
𝑇

, where 𝚿𝑖+1 is of the same dimensions 

(2nbl) as 𝚽. Then, at each time step, the POD-TPWL equation to be solved for 𝝃𝑛+1 is as follows:  

              ((𝚿𝑖+1)
𝑇

𝐉𝑖+1𝚽) 𝝃𝑛+1 = (𝚿𝑖+1)
𝑇

𝐛 .   (2-17) 

This equation can be written as 𝐀𝑟𝝃𝑛+1 = 𝐛𝑟, where 𝐀𝑟 = (𝚿𝑖+1)
𝑇

𝐉𝑖+1𝚽 and 𝐛𝑟 = (𝚿𝑖+1)
𝑇

𝐛. Note that 

the dimension of the reduced matrix 𝐀𝑟 is ll, which is much smaller than that of the full-order Jacobian 

matrix 𝐉. This reduction, combined with the fact that we now solve a linear equation, gives POD-TPWL 

its high degree of efficiency. 

The choice for the premultiplication matrix (which is referred to here as the constraint reduction matrix) 

can have a significant impact on POD-TPWL stability and accuracy for many problems, including CO2 

sequestration. The schemes considered in this study include: (a) Galerkin projection, where we set 

𝚿𝑖+1 =  𝚽, (b) Petrov-Galerkin projection (used within the context of reduced-order modeling by, e.g., 

Carlberg et al. [46]), where we take 𝚿𝑖+1 =  𝐉𝑖+1𝚽, (c) inverse projection (IP), where 𝚿𝑖+1 =

 (𝐉𝑖+1)
−𝑇

𝚽 , and (d) weighted inverse projection, which is similar to IP but additionally includes a 

weighting matrix W to give  𝚿𝑖+1 =  (𝐉𝑖+1)
−𝑇

𝐖𝑇𝐖𝚽.  

Stanford’s Automatic Differentiation-based General Purpose Research Simulator, AD-GPRS [47], is used 

for the full-order simulations and to provide all of the state and derivative matrix information required by 

our POD-TPWL model. 
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(A)  Application of POD-TPWL for 2D Cross-Sectional Model with Vertical Well 

The problem we first consider is a cross-sectional (x-z) version of the radial axisymmetric (r-z) model 

described earlier. Most of the reservoir properties, component properties, fluid properties and rock-fluid 

properties are consistent between the AD-GPRS model used here and the GEM base case model 

described previously. There are, however, some discrepancies, e.g., (a) AD-GPRS uses an equation of 

state to compute gas dissolution into water, rather than Henry’s law, as is used in GEM, and (b) the AD-

GPRS model does not include salinity, which results in slightly different liquid density and viscosity 

compared to GEM.  The AD-GPRS model does not include capillary pressure effects, and it uses the 

same relative permeability curve for both the reservoir and cap rock. We inject CO2 at the same rate as in 

the GEM base case. The simulation period is 30 years.  

As discussed above, the POD-TPWL procedure transforms the high-dimensional nonlinear compositional 

problem into a linear model with a small number of variables. Once the POD-TPWL model is built using 

information from training simulations, it is capable of providing fast forecasts for new sets of controls 

(such as well BHPs). To this end, two training simulations are used; one to provide the linearization 

points, and the other to provide additional snapshots, which are required to construct the basis matrix. The 

2000 full-order pressure variables are reduced to 90 low-dimensional variables, and the 4000 mole 

fraction variables are reduced to 120 low-dimensional variables. The POD-TPWL model is then used to 

predict the injection rate and well-block pressure for a new (test) case in which the time-varying injection-

well BHP differs from that used in the training run.  

Fig. 2-18 shows the time-varying BHPs for the training and test simulations. Both BHPs increase 

monotonically, but they start at different points and have different slopes. Fig. 2-19 shows the injection-

block pressure (left) and CO2 injection rate (right) results for the various simulations. The black dotted 

curves represent the solution for the training case, around which we linearize. The red curves represent 

the true (full-order) solution for the test case, computed using AD-GPRS. The test-case solution clearly 

differs from the training solution. We run POD-TPWL with three of the constraint reduction methods 

discussed above. POD-TPWL with Galerkin projection is not stable for this case and the results are not 

presented here. For injection-block pressure, both the Petrov-Galerkin (PG) method and the inverse 

projection (IP) method match the true solution closely (both POD-TPWL solutions overlay the AD-GPRS 

solution), though the IP method provides slightly better accuracy than the PG method.  

The improvement in accuracy using the IP method is more apparent in the prediction of the CO2 injection 

rate. Here the POD-TPWL-IP results (purple curve) essentially overlay the true AD-GPRS results (red 

curve). In this case, because of the very high well index, the injection rate is particularly sensitive to small 

errors in the injection-block pressure, which is why the POD-TPWL-PG results (blue curve) display some 

inaccuracy. It is significant that the POD-TPWL-IP method is able to provide a high level of accuracy for 

this important quantity.  
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Fig. 2-18. Time-varying BHPs for the training and test cases. 

 

 

 

 

Fig. 2-19. Injection-block pressure (left) and CO2 injection rate (right) for test case. 
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2.4.3 Application of POD-TPWL for 3D Model with Horizontal Wells 

We now describe the application of our POD-TPWL reduced-order modeling framework for an idealized 

model of CO2 storage in the Mount Simon Sandstone in Illinois. This formation was the target for the 

CO2 storage associated with FutureGen 2.0 [48]. The model and permeability field, shown in Figs. 2-20 

and 2-21, are intended to be conceptual and lack many of the complexities of the simulation model 

developed and applied at Pacific Northwest National Laboratory. The simplified model used here is 

nonetheless quite useful for POD-TPWL testing. It represents the storage aquifer on a 303030 grid 

(total of 27,000 grid blocks), and the full regional system on a 464630 grid (total of 63,480 grid 

blocks). The storage aquifer is of physical dimensions 3.1 mi (5 km)  3.1 mi (5 km)  1346 ft (410 m), 

and the full model is of dimensions 100 mi  100 mi  1346 ft. CO2 injection is accomplished using four 

horizontal wells, as shown in Fig. 20 (right). 

 

 

  

Fig. 2-20. Areal grid and well locations for conceptual Mount Simon model. 
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Fig. 2-21. Log horizontal permeability (mD) for conceptual Mount Simon model. 

 

(A)   Wells with BHP Control 

As explained earlier, in order to apply the POD-TPWL model, we first perform one or more full-order 

AD-GPRS training runs. Results and data from these runs are used to construct the POD-TPWL model. 

For test runs, the degree of perturbation from the training run can be quantified using the parameter , 

with =0 indicating the training run and =1 the case with the largest perturbation, referred to as the 

target case. For values of  between 0 and 1, the test-case BHP for a particular well at time t (designated 

𝑢𝑡𝑒𝑠𝑡
𝑡 ) used in the simulation is computed using: 

   𝑢𝑡𝑒𝑠𝑡
𝑡 = (1 − 𝛼)𝑢𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑡 + 𝛼𝑢𝑡𝑎𝑟𝑔𝑒𝑡
𝑡  ,    (2-18) 

where 𝑢𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑡  and  𝑢𝑡𝑎𝑟𝑔𝑒𝑡

𝑡  are the training and target BHPs for the well at time t.  

Fig. 2-22 shows the time-varying BHPs for the training (=0) and target (=1) runs. In the training run, 

wells I1 and I3 display a decrease in BHP at 4000 days, while wells I2 and I4 display (stepwise-linearly) 

increasing BHPs. In the target case the trends are the opposite – wells I1 and I3 have increasing BHPs, 

and wells I2 and I4 have BHPs that decrease at 4000 days. This represents a challenging case for the 

POD-TPWL model. 

Test results for =0.5 are shown in Fig. 2-23. The red line and points denote the reference (full-order) 

AD-GPRS simulation results. The blue lines and points are the POD-TPWL results, which are labeled 

PG_PS_90_120 (“PG” indicates Petrov-Galerkin, which is the constraint reduction procedure used, and 

“PS_90_120” indicates the number of reduced pressure and mole fraction variables), and the black dotted 

curves represent training results. The POD-TPWL results are seen to be quite accurate over much of the 

simulation period, but for times up to about 1000 days, errors relative to AD-GPRS are evident. These 

errors are most noticeable for wells I2 and I4. In general, we observe these errors to decrease with 

decreasing values of . 
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(B)  Wells with Rate Control 

 
A new feature in the current POD-TPWL implementation is the ability to use well rates, rather than 

BHPs, as the control parameters. See Jin [45] for the implementation details associated with this 

capability. We now consider results using this type of specification. The rate profiles for the training and 

test runs are shown in Fig. 2-24. In both cases, all wells are specified to inject the same volume of CO2, 

though this is not a requirement of the implementation.  Test-case results for injection well BHPs for the 

four wells are presented in Fig. 2-25. The various curves are as described earlier. The POD-TPWL results 

in Fig. 2-25 display reasonable accuracy relative to the reference full-order simulation for this challenging 

problem. There is, however, some inaccuracy at late time (after ~6500 days). We believe this is due to 

limitations in the current POD-TPWL point selection scheme, and we plan to generalize this procedure in 

future work. Runtime speedups of about a factor of 370 are achieved using POD-TPWL (relative to the 

full-order simulation) for this 3D case.  

  

Training case ( = 0) Target case ( = 1) 

Fig. 2-22. Training and target BHPs for the four injection wells. 
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Well I1 Well I2 

  

Well I3 Well I4 

Fig. 2-23. CO2 injection rates for test case with α = 0.5. 

 

 

 

 

Training case Test case 

Fig. 2-24. Time-varying rate specifications for training and test simulations. 
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Well I1 Well I2 

 

 

Well I3 Well I4 

Fig. 2-25. CO2 injection well BHPs for test case. 

 
(C)   Prediction for Cases Involving Geological Perturbation 

 
We now develop POD-TPWL models in which the perturbed “control” variable is a geological parameter. 

Our discussion here, and the general development, follows that in He et al. [49] and Jin [45], where full 

details can be found. We define γ = log 𝑇, where T is the usual block-to-block transmissibility. The new 

term appearing in the TPWL representation is now: 

𝜕𝐠𝑖+1

𝜕𝜸𝜔
(𝜸 −  𝜸𝝎) =  

𝜕𝐠𝑖+1

𝜕𝐓𝜔
𝐃𝑇𝜔

(𝜸 −  𝜸𝜔),     (2-19) 

where 𝐠𝑖+1 denotes the residual vector for the training run, 𝐓𝜔 designates the vector of transmissibilities 

for the training simulation, and 𝐃𝑇𝜔
 is a diagonal matrix whose elements coincide with 𝐓𝜔. The POD-

TPWL model now becomes 
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𝝃𝑛+1 =  𝝃𝑖+1 −  (𝐉𝑟
𝑖+1)

−1
[𝐀𝑟

𝑖+1(𝝃𝑛 − 𝝃𝑖) + 𝑩̃𝑟
𝑖+1(𝜸 −  𝜸𝜔)] .  (2-20) 

Here 𝐁̃𝑟
𝑖+1 is given by  

𝐁̃𝑟
𝑖+1 =  𝚿𝑇 𝜕𝐠𝑖+1

𝜕𝐓𝜔
𝐃𝑇𝜔

 ,       (2-21) 

where all variables are as defined previously. 

We test this procedure on a vertical slice of the Mount Simon model where the storage aquifer is 

represented by 3030 grid blocks and the full regional system by 4630 blocks. CO2 injection is from two 

horizontal wells near the bottom of the model, with the injection schedule for both wells given in Fig. 2-

26. The training run corresponds to the geological model in Fig. 2-21. The test case involves a model in 

which all permeabilities (and thus all 

transmissibilities) are multiplied by a factor of 2.0 

relative to the training case. 

The POD-TPWL results for the test case are presented 

in Fig. 2-27. It is apparent that there are only small 

differences between the (full-order) training and test-

case results, though the test-case results are captured 

by the POD-TPWL model. These results are 

preliminary, though they do suggest that the POD-

TPWL implementation for geological perturbation is 

essentially correct. Further testing and development of 

this capability will be the subject of future work. 

 

  

Well I1 Well I2 

Fig. 2-27. CO2 injection well BHPs for test case (geological perturbation example). 

 

Fig. 2-26. Injection rates for training and  

test cases. 

 

Fig. 2-26. Injection rates for training and 
test cases. 
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2.5 Summary and Concluding Remarks 

Here, we summarize the findings of the main component of our research project whose objective was to 

develop and validate a portfolio of simplified modeling approaches for CO2 sequestration in deep saline 

formations – based on simplified physics, statistical learning, and/or mathematical approximations – for 

predicting: (a) injection well and formation pressure buildup, and (b) lateral and vertical CO2 plume 

migration.  Such computationally-efficient alternatives to conventional numerical simulators can be 

valuable assets during preliminary CO2 injection project screening, serve as a key element of probabilistic 

system assessment modeling tools, and assist regulators in quickly evaluating geological storage projects.   

2.5.1 Simplified-physics based models 

For the simplified-physics based approach, we have used a set of well-designed full-physics 

compositional simulations to understand key processes and parameters affecting pressure propagation and 

buoyant plume migration.  Based on these insights, we have developed correlations for dimensionless 

pressure buildup (injectivity) as a function of the slope of fractional-flow curve, variance of layer 

permeability values, and the nature of vertical permeability arrangement.  The same variables, along with 

a modified gravity number, can be used to develop a correlation for the total storage efficiency within the 

CO2 plume footprint.  Similar correlations are also developed to predict the average pressure within the 

injection reservoir, and the pressure buildup within the caprock.  These relationships are thus a hybrid of: 

(a) first principles and (b) response surface type modeling.  The simplification of physics occurs through 

the sensitivity analysis of full-physics simulations, which helps in isolating the key variables and 

dimensionless groups affecting the performance metrics of interest.  Also, such an approach is useful only 

when the “macro” behavior of the system is being required, rather than point to point variations in the 

state variables.  

In order to use the predictive models for well injectivity or plume extent, we need to determine the input 

sources for each of the independent variables involved. The most important terms in the simplified model 

for total storage efficiency involve the relative permeability model followed by the reservoir 

heterogeneity. Of the four independent variables, the porosity, thickness (from logs) and permeability are 

assumed to be known for any given reservoir. Dykstra-Parsons coefficient can be calculated with the 

knowledge of the permeability distribution in the reservoir obtained from well logs. Typical values of the 

Dykstra-Parsons coefficient found in literature lie between 0.5 and 0.7. The Lorenz coefficient is related 

to VDP and can be obtained from knowledge of the spatial arrangement of permeability in the vertical 

layers. Brine viscosity can be calculated using reservoir salinity, pressure and temperature data. The slope 

of the tangent to the fractional flow curve is one of the hardest inputs to obtain for a given reservoir. In 

the absence of core data to test with, we encourage the user to use a lower and upper bound for the dfg/dSg 

values from our study. This would yield an expected range of values for the injectivity. 

Regarding the average pressure behavior in the reservoir for a given amount of CO2 injected, we 

determine that the effectiveness of two-phase flow in a given reservoir depends on an ‘f’ factor. For 

closed reservoirs, this ‘f’ factor (which is a function of the relative permeability) is correlated to the 

square of the ratio of the reservoir radius to the plume radius at the end of injection. When an overlying 

cap rock is present, this ‘f’ factor is modified to account for the relative storage capacity of the rock, i.e., 
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ratio of reservoir storativity to the total system storativity.  These parameters are readily obtainable from 

geologic considerations, and by applying our predictive model for plume radius.  

2.5.2 Statistical-learning based models 

In this strategy, we use statistical learning based methods to build “proxy” or surrogate models that serve 

as functional equivalents of full-physics simulation results.  We have compared two approaches for 

building a statistical proxy model for CO2 geologic sequestration from the results of detailed 

compositional simulations. The first approach involves a classical Box-Behnken experimental design with 

a quadratic polynomial response surface. The second approach used a space-filling maximin Latin 

Hypercube sampling combined with an ordinary kriging meta-modeling techniques. Simulations results 

for CO2 injection into a reservoir-caprock system with 9 design variables (and 97 samples) were used to 

generate the data for developing the proxy models. The fitted models were validated with using an 

independent data set and a cross-validation approach for three different performance metrics: total storage 

efficiency, CO2 plume radius and average reservoir pressure. 

The performance of the Box-Behnken – quadratic polynomial and the maximin LHS – kriging 

metamodels are roughly equivalent for the independent validation data set, with the latter clearly 

performing better for the cross-validation data exercise across all three responses. Thus, the maximin – 

kriging metamodel can be considered to be a better overall choice for building robust predictive models. 

The space-filling maximin LHS design provides a higher level of granularity than the 3-point Box-

Behnken design, and thus can provide a better understanding of input-output sensitivities at different 

points in the parameter space. The kriging metamodel is a robust interpolator with many positive 

qualities, but is computationally expensive to train and predict. Elsewhere, we describe how a quadratic 

polynomial, combined with a LASSO variable selection scheme, can be an effective alternative to kriging 

for metamodeling purposes in conjunction with a maximin LHS design [32].   

Also note that a single proxy modeling strategy may not necessarily perform in a similar manner for 

different performance metrics, as indicated by the results for average pressure. This aspect of proxy 

modeling was also pointed out elsewhere [28].  From a practical standpoint, this may require building 

different proxy models for each performance metric and evaluating them based on a cross-validation 

criteria.  

2.5.3 Reduced-order method based models 

Reduced-order models provide a means for greatly accelerating the detailed simulations that will be 

required to manage CO2 storage operations. In this work, we investigated the use of one such method, 

POD-TPWL, which has previously been shown to be effective in oil reservoir simulation problems. This 

method combines trajectory piecewise linearization (TPWL), in which the solution to a new (test) 

problem is represented through a linearization around the solution to a previously simulated (training) 

problem, with proper orthogonal decomposition (POD), which enables solution states to be expressed in 

terms of a relatively small number of parameters. In this study, we have applied POD-TPWL for CO2-

water systems simulated using a compositional procedure. Stanford's Automatic Differentiation-based 

General Purpose Research Simulator (AD-GPRS) performs the full-order training simulations and 

provides the output (derivative matrices and system states) required by the POD-TPWL method. A new 
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POD-TPWL capability introduced in this work is the use of horizontal injection wells that operate under 

rate (rather than bottom-hole pressure) control.  

Simulation results were presented for CO2 injection into a simplified model of the Mount Simon 

formation. Test cases involved the use of time-varying well controls that differed from those used in 

training runs. Results of reasonable accuracy were consistently achieved for relevant well quantities. 

Speedups of around a factor of 370 relative to full-order AD-GPRS simulations were observed for the 3D 

example. The preprocessing needed for POD-TPWL model construction corresponds to the computational 

requirements for about 2.3 full-order simulation runs (most of this time is used in performing the two full-

order training runs). A preliminary treatment for POD-TPWL modeling in which test cases differ from 

training runs in terms of geological parameters (rather than well controls) was also presented. Results in 

this case involved only small differences between training and test runs, though they do demonstrate that 

the approach is able to capture basic solution trends. 
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 Uncertainty and Sensitivity Analysis Based Validation  

of Simplified Models 

3.1 Introduction 

The previous chapter described the development and validation of simplified physics based, statistical 

learning based and reduced order method based models for CO2 geologic sequestration in stratified 

aquifer-caprock systems.  One of the intended applications of such models is in the integrated system 

performance assessment of geologic CO2 sequestration operations – especially if the analyses are carried 

out in a probabilistic framework to deal with model and parameter uncertainty.  Therefore, another 

research goal of this project is ensure that these simplified models are also capable of reproducing the full 

spectrum of uncertainty and sensitivity analysis results from detailed numerical simulators.  Specifically, 

it is important to verify that the cumulative distribution function (CDF) of outcomes from the detailed and 

simplified models are in reasonable agreement, and the importance ranking of key uncertain variables 

from both sources is similar.  Such a “validation” step (in addition to the standard benchmarking using 

deterministic test cases as described in the previous chapter) would add to the credibility of systems 

model from a decision-maker’s perspective.   

In this chapter, an evaluation of the uncertainty and sensitivity analysis performance of the various types 

of simplified models developed in Sections 2.2 and 2.3 will be carried out in a Monte Carlo simulation 

framework.  In what follows, the simulation cases and input parameters are described first, followed by 

the methodology for carrying out the validation.  Next, the results of the analyses are presented, along 

with some concluding remarks. 

3.2 Description of simulation cases and parameters 

As described previously in Section 2.2.3, the basic model to be utilized is that of a single-well injecting 

supercritical CO2 for 30 years into a 2-D radial-cylindrical bounded domain initially filled with brine.  

The model domain consists of a porous and permeable reservoir, overlain by a low-permeability caprock.  

The top of the caprock, the bottom of the reservoir and the lateral boundary are all assumed to be no-flow 

boundaries.  The relevant model parameters are defined below in Table 3-1 for a reference case, as well as 

for “high” and “low” variants.  In addition, the parameter ranges in Table 3-1 have also been transformed 

into probability distributions for Latin Hypercube Sampling, as shown in Table 3-2.   

Table 3-1.  Parameter values for the reference case and the two variants. 

 Parameter Description Units 
Reference 

value 

Low  

Value 

High  

Value 
Comments 

1 hR 
Thickness of 

reservoir 
m 150 50 250  

2 hCR 
Thickness of 

caprock 
m 150 100 200  

3 kavg,R Average 

horizontal 
mD 46 12 220  
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permeability of 

reservoir 

 VDP 
Dykstra-Parson’s 

coefficient 
-- 0.55 0.35 0.75 

perfectly 

correlated 

with kavg,R 

4 kavg,CR 

Average 

horizontal 

permeability of 

caprock 

mD 0.02 0.002 0.2  

5 kV/kH Anisotropy ratio -- 0.1 0.01 1  

6 q 
CO2 Injection 

rate 

MMT/

yr 
0.83 0.33 1.33  

 L 
Outer radius of 

reservoir 
km 10 5 7 

perfectly 

correlated 

with q 

7 R 
Porosity of 

reservoir 
-- 0.12 0.08 0.18  

8 CR 
Porosity of 

caprock 
-- 0.07 0.05 0.1  

9 Ik 

Indicator for 

permeability 

layering 

-- random 
Increasing 

from top 

Increasing 

from 

bottom 

 

 

Table 3-2.  Input Distributions used with LHS Sampling 

Input Description Distribution 

hR Thickness of the reservoir T(50,150,250) 

hCR Thickness of the caprock T(100,150,200) 

lnk_R 

VDP 

Log-mean reservoir permeability, Dykstra-

Parson’s coefficient (perfectly correlated) 

lnk_R ~ T(2.45, 3.56, 4.67) 

VDP ~ T(0.35, 0.55, 0.75) 

kCR Average caprock horizontal permeability  lnT(0.002,0.02,0.2) 

kV/kH Anisotropy ratio lnT(0.01,0.1,1) 
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q CO2 injection rate discrete with equal probability -  

{0.33, 0.83, 1.33} 

R Porosity of the reservoir T(0.08,0.12,0.18) 

CR Porosity of the caprock T(0.05,0.07,0.10) 

Ik Order of permeability layering Discrete w/equal probability, Ik  

{“random”, ” increasing”, ”decreasing”} 

 

The following approach will be used for the uncertainty and sensitivity analysis. 

 The performance metrics of choice are: (1) total storage efficiency, and (2) average reservoir 

pressure. 

 Start with the 97-run Box-Behnken design simulations, fitted with a quadratic polynomial model.  

Consider this to be the “Model A”.  Also, utilize the 97-run maximin LHS design simulations, 

fitted with a kriging metamodel.  Consider this to be the “Model B”.  See section 2.3.4 for details 

on these models. 

 Next, utilize the simplified physics based models reported previously in Sections 2.2.5-2.2.7.  

Consider this to be “Model C”.  

 Create an LHS design with 10,000 samples based on Table 3-2. 

 Compute the two performance metrics (step 1 above) at each of these sample points using Models 

A, B and C.  Calculate the empirical CDF. 

 Compare the 10,000 sample empirical CDF to the 97-sample empirical CDF. 

3.3 Analysis Methodology 

3.3.1 Statistical learning based models (Models A and B) 

The initial assessment described in Section 2.3 provided information about which design/model 

combinations performed the best across three different responses from the GEM simulation.  Of these, 

two were selected for the uncertainty analysis, based on both accuracy and robustness across the 

responses.  These are the Box-Behnken design with quadratic regression (denoted Model ‘A’) and the 

maximin LHS design with kriging (denoted Model ‘B’).  Both of these designs were of size n = 97. 

One measure of the quality of an approximation model is how well the range and distributions of 

estimated responses across the input space match the true distribution of responses.  In this case, the true 

distribution of responses cannot be feasibly known, but a proxy for it is the empirical distribution 

produced by responses from the GEM simulation run over a small space-filling design.  For this purpose, 

a 97-run LHS design was used to gather responses from the simulator that were evaluated at points in the 

input space that were completely independent of those used to fit Models ‘A’ and ‘B’.  Those responses 

were then used to construct an empirical CDF for the true response over the problem domain. 

In order to generate the range and distribution of estimated responses over the input space, the Models ‘A’ 

and ‘B’ were evaluated at all locations in a 10,000-run LHS design.  With such a large sample size, the 
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modeled responses across this design provide a good representation of the responses one might expect 

across all combinations of input parameter values. 

The “closeness” of the true and estimated empirical distributions was measured using two different 

techniques.  A common procedure for determining whether distributions match is the Kolmogorov-

Smirnov (KS) test [1]. In this test, the null hypothesis H0 is that the distributions are the same, and the 

alternative is that they are different.  The KS statistic is the largest gap between the CDFs.  For this 

analysis, the p-value of the KS test was used to describe the closeness of the distributions.  Larger p-

values (up to a maximum of 1) indicate more similar distributions. 

The second measure used to capture the closeness of the distributions is called “earthmover’s distance”[2] 

(EMD).  The concept here is that the two empirical distributions, represented as probability density 

functions (in, e.g., histogram form) can be thought of as mounds of earth.  The earthmover’s distance 

measures the least amount of work required to redistribute the earth in one distribution such that it 

matches the profile of the other distribution.  In this case, a low value indicates similar distributions, 

while a large value indicates dissimilar distributions. 

3.3.2 Simplified physics-based models (Model C) 

Simplified physics based modeling runs use the simulation results from the LHS design runs (97 nos.) as 

the reference case for the Uncertainty Analysis task. A separate 10000 run sample LHS dataset is our test 

dataset. Model ‘C’ calculations estimate the final pressure using the predictive model for injectivity. CO2 

properties at evaluated at this final pressure and temperature which is then used to predict the plume 

extent followed by the average pressure buildup in the reservoir at the end of the CO2 injection period. 

Inputs consist of the following known system parameters: 

 Slope of CO2 fractional flow curve, dfg/dSg 

 Initial pressure i.e. Pinit (psi) 

 Temperature, T (degree F)  

 Formation brine salinity, Sal (fraction) 

 CO2 injection rate, q (tonnes per year) 

 Time of injection, t (yr) 

 Reservoir thickness, hR (m) 

 Reservoir average porosity, φR (fraction) 

 Radial extent of reservoir, L (m) 

 Reservoir permeability anisotropy ratio, (kv/kh)R 

 Total compressibility (pore + brine compressibility), Ct = Cf + Cw (1/psi) 

 Caprock thickness, hCR (m) 

 Caprock porosity, φCR (fraction) 

 Array of values corresponding to layer permeability values in the system, [kRlayers] arranged from 

the top through the bottom layers. 

Refer Section 2 for the discussion of the input sources of the above-mentioned parameters for use in the 

simplified predictive models. 

The calculations steps in our MATLAB code for model “C’ are as follows: 
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1. Calculate measures of heterogeneity from the permeability array input, thickness and porosity of 

each of the reservoir layers. 

1(a) Mean reservoir permeability, kR – calculated from the arithmetic mean of [kRlayers] in mD. 

This assumes all layers have equal thickness which is the case for our simulation runs. 

1(b) Dykstra-Parsons co-efficient, VDP – calculated from the mean of the log permeabilities 

i.e. lnk_R. VDP and lnk_R are taken to be perfectly correlated inputs and we have lnk_R = 

[2.45,3.56,4.67] corresponding to VDP = [0.35,0.55,0.75]. 

1(c) Lorenz co-efficient, LC – calculated while honoring the permeability layering/ 

arrangement from the bottom to top permeability layer in the reservoir. 

𝐿𝐶 = 2 {∫ 𝐹𝑛d𝐶𝑛 − 
1

0

1

2
}         … (3.1) 

where cumulative flow capacity, 𝐹𝑛 =  
∑ 𝑘𝑅𝑖ℎ𝑅𝑖

𝑛
𝑖=1

∑ 𝑘𝑅𝑖ℎ𝑅𝑖
𝑁
𝑖=1

 

and cumulative storage capacity, 𝐶𝑛 =  
∑ 𝜙𝑅𝑖ℎ𝑅𝑖

𝑛
𝑖=1

∑ 𝜙𝑅𝑖ℎ𝑅𝑖
𝑁
𝑖=1

 

 

2. Determining final reservoir pressure Pf to calculate CO2 properties more accurately 

2(a) Calculate PD  using dfg/dSg and VDP in our simplified predictive model for dimensionless 

CO2 injectivity. 

𝑃𝐷  = 10.3 + 0.59
𝑑𝑓𝑔

𝑑𝑆𝑔
+ 3.41𝑉𝐷𝑃 + 1.23

𝑑𝑓𝑔

𝑑𝑆𝑔
𝑉𝐷𝑃 − 0.342 (

𝑑𝑓𝑔

𝑑𝑆𝑔
)

2

− 8.89(𝑉𝐷𝑃)2         … (3.2) 

2(b) Use this PD to estimate the initial guess of the final pressure Pf at time t in field units. 

𝐽𝑐𝑎𝑙𝑐 =  
𝑞 (

bbl
day

)

(𝑃𝑓 − 𝑃𝑖𝑛𝑖𝑡)(psi)
=  

𝑘𝑅ℎ𝑅  (mD. ft)

141.2𝜇𝑤(cP)𝑃𝐷
        … (3.3) 

With this initial guess value, solve for Pf such that  

q/(Pf)/[Pf-Pinit] matches {q/[Pf-Pinit] = (2.pi.kR.hR)/(PD.µw)} 

 

3. Get q in bbl/day at time t using CO2 properties at Pf and T. 

 

4. Calculate Gravity number, Ng using CO2 properties at Pf and T in SI units 
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𝑁𝑔 =  
𝑘𝑅ℎ𝑅(m3)(𝜌𝑤 − 𝜌𝐶𝑂2)(kg/m3)𝑔ℎ𝑅(m2/s2)(

ℎ𝑅
𝐿⁄ )

𝑞 (
m3

s
) 𝜇𝐶𝑂2(kg/ms)(

𝑘𝑉
𝑘𝐻

⁄ )
        … (3.4) 

where, kV = (kv/kh)R*kR 

 

5. Maximum plume extent, RCO2 calculation using ES: 

5(a) Calculate total storage efficiency, ES (%) from dfg/dSg, VDP, LC and Ng using the 

simplified predictive model: 

𝐸𝑆 =  30.6862 + 0.4348
𝑑𝑓𝑔

𝑑𝑆𝑔
+ 29.2359𝐿𝐶 − 22.018𝑉𝐷𝑃 − 11.2445𝑁𝑔 + 4.5962

𝑑𝑓𝑔

𝑑𝑆𝑔
𝑉𝐷𝑃

− 25.2141𝐿𝐶 𝑉𝐷𝑃 − 0.6917 (
𝑑𝑓𝑔

𝑑𝑆𝑔
)

2

+ 6.1074(𝑁𝑔)
2

        … (3.5) 

5(b) Calculate m3 free phase CO2 present in reservoir at time t i.e. Qcum using an average 

factor of 0.8 used to account for the free phase CO2 from the total CO2 present. This 

factor is determined for our calculations as the representative average value for the 

uncertainty analysis exercise from simulation runs (that use Henry’s law). 

5(c) Calculate CO2 plume extent in meters at time, t, in SI units 

𝑅𝐶𝑂2 =  √
100𝑄𝑐𝑢𝑚(m3)

𝜋𝜙𝑅(fraction)ℎ𝑅(m)𝐸𝑆(%)
        … (3.6) 

6. Average reservoir pressure buildup, ∆PR,avg calculation using simplified model for dimensionless 

average reservoir pressure buildup PD1 

6(a) Calculate f 

𝑓 = 0.003(
𝐿

𝑅𝐶𝑂2
)2 + 0.774        … (3.7) 

6(b) Calculate fsc 

𝑓𝑆𝐶 =  
𝜙𝑅ℎ𝑅

(𝜙𝑅ℎ𝑅 + 𝜙𝑅ℎ𝑅)
        … (3.8) 

6(c) Calculate combined factor, ft 

𝑓𝑡 = 𝑓𝑓𝑆𝐶         … (3.9) 

6(d) Calculate dimensionless time, tDA1, in field units 
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𝑡𝐷𝐴1 =
0.0002637𝑘𝑅(mD)𝑡(hr)

𝜙𝑅(fraction)𝜇𝑤(cP)𝐶𝑡(
1

psi
)𝜋𝐿2(ft2)

        … (3.10) 

6(e) Calculate dimensionless average reservoir pressure buildup, PD1 

𝑃𝐷1 = 2𝜋𝑓𝑡𝑡𝐷𝐴1         … (3.11) 

6(f) Calculate average reservoir pressure buildup, ΔPR,avg, in psi 

∆𝑃𝑅𝑎𝑣𝑔 =  
141.2𝑞𝑓(

bbl
day

)𝜇𝑤(cP)𝑃𝐷1

𝑘𝑅(mD)ℎ𝑅(ft)
        … (3.12) 

 

7. Treatment of outliers to eliminate nonphysical predictions: Outliers are those that satisfy the 

following criteria: 

 Gravity number greater than the threshold value of 2 i.e. Ng> Ng threshold of 2 

 hR/hCR cases that have higher injection in thin reservoirs i.e.  hR/hCR <=0.5 and q>=1.33 MT/yr 

8. Generate the empirical Cumulative Distribution Functions (CDFs) for RCO2 and ΔPR,avg from both 

the reference and test datasets. 

9. Compare CDFs of both LHS datasets with the KS-test statistic and the EMD statistic. 

3.4 Results – Simplified Physics Based Models 

We consider the plume radius and the average reservoir pressure buildup at the end of CO2 injection 

period to be our performance metrics of interest for the uncertainty analysis exercise.  In the case of 

Models ‘A’ and ‘B’, the response is average reservoir pressure after 30 years, which is identical to the 

pressure buildup with a shift of a constant, and does not affect the shape of the distribution. For each of 

our three chosen models, the cumulative distribution function (CDF) generated from the simulation 

responses for the 97-run reference LHS design is compared with the cumulative distribution function 

generated from the model prediction across the 10,000-run LHS design. The performance of each of the 

models is sequentially discussed and compared. 

Model ‘C’ is successfully validated by testing the code for both the Task 2 training dataset followed by 

the 97-run reference LHS dataset. Fig. 3-1 gives the resulting cross-plots of the model predictions for the 

LHS reference dataset versus the corresponding detailed simulator results for the plume radius and the 

average reservoir pressure buildup. 
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Fig. 3-1. Scatter plot showing the model ‘C’ predictions versus the detailed numerical simulator results for 

plume radius and average reservoir pressure buildup with the 97-run reference LHS dataset 

 

The CDF generated from the simulation results for the 97-run reference LHS dataset represent the 

simulation ‘reference curve’ for our uncertainty analysis. The black CDF curve in the following figures is 

this reference CDF curve.  The red CDF curve in each plot is the cumulative distribution function 

generated from the model prediction across the 10,000 run LHS ‘test’ design for the performance metric 

indicated in the title of each plot. The CDF comparison plot for plume extent and average reservoir 

pressure buildup from Model ‘C’ is shown in Fig. 3-2.  
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Fig. 3-2. Comparison plot of CDF of 97-sample ‘reference’ LHS simulation results and 10,000 sample ‘test’ 

model predictions. (a) plume radius (m); (b) average reservoir pressure buildup (psi). 
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We observe 7% of the ‘test’ dataset produce outliers with nonphysical predictions of the total storage 

efficiency or erroneous pressure buildup when computed using the simplified physics-based models. 

Certain combinations of input parameter values sampled using the LHS design sometimes leads to such 

outlier cases cause the tail effect in the model test curves (red curves) in Fig. 3-2. Cases such as large 

injection in thin reservoirs result in big difference between the simulation and prediction results. 

We analyze the input parameters in each of our datasets to determine the relationship between 

nonphysical model predictions of total storage efficiency and input parameter limits. Fig. 3-3 is a 

scatterplot representation illustrating the effect of LC, VDP and Ng values on ES predictions. 

 

 

Fig. 3-3. Scatter plots showing Es model predictions getting to nonphysical values with increasing gravity 

number cases for the ‘test’ LHS design. 

 

Fig. 3-3 shows how increasing Gravity number cases lead to nonphysical predictions of total storage 

efficiency (i.e. ES > 100%). The range of Gravity numbers is much higher in the LHS datasets compared 

to the range of Gravity numbers sampled in our Task 2 training dataset as shown in Fig. 3-4. Hence 

predictions using model ‘C’ for these higher Gravity number cases in the LHS datasets result in much 

higher ES values and consequently much lower plume extents compared to the detailed simulation results. 

A threshold gravity number of 2 honors the range of our output performance metrics effectively and has 

been used to eliminate outlier cases in our analysis. 
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Fig. 3-4. Comparison of histograms of log(Gravity number) showing the increasing range of values  

as we move from the Task 2 training dataset to the 97-run LHS reference dataset  

and the 10000-run LHS test dataset. 

 

 

10,000-run LHS test dataset 

97-run LHS reference dataset 

Task 2 training dataset for model ‘C’
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Hence, we treat the model results from our LHS datasets to conform to the below-mentioned parameter 

limits and hence eliminate outlier cases:  

 Applying threshold gravity number of 2 as the cut-off (i.e., Ng,max = 2) to treat nonphysical 

predictions of total storage efficiency. 

 Applying cut-offs hR/hCR<0.5 and q >=1.33 MT/yr cases to eliminate average reservoir pressure 

buildup outliers. 

The elimination of outliers from the predictions of the total storage efficiency and dimensionless average 

reservoir pressure buildup models result in the empirical CDFs shown in Fig. 3-5. 

The consequent model ‘C’ predictions of maximum plume extent and the average reservoir pressure 

buildup result in the modified empirical CDFs shown in Fig. 3-6. 

Hence we verify that the CDF of outcomes from the simplified physics based models generated after 

treatment for outliers are in reasonable agreement to the simulation results for the full spectrum of 

sensitivity analysis results. 
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Fig. 3-5. Comparison plot of CDF of 97-sample ‘reference’ LHS simulation results and 10,000 sample ‘test’ 

model predictions after treatment of outliers. Performance metrics in the panels consist of: top – total storage 

efficiency (%) and bottom – dimensionless average reservoir pressure buildup. 
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Fig. 3-6. Comparison plot of CDF of 97-sample ‘reference’ LHS simulation results and 10,000 sample ‘test’ 

model predictions after treatment of outliers. Performance metrics in the panels consist of: top – maximum 

plume extent (m) and bottom – average reservoir pressure buildup (psi). Plot titles also indicate the 

corresponding KS-test and EMD statistics. 
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3.5 Results – statistical learning based models 

To perform the comparison between the true and estimated response distributions for the statistical 

learning based models, both models were evaluated at each of the 10,000 runs in the LHS test design.  

The CDF of those responses was then compared to the true CDF, which was taken to be the GEM 

simulation response over the independent 97-run LHS design.  Fig. 3-7 shows the comparisons for Model 

‘A’ (Box-Behnken design with quadratic metamodel), and Fig. 3-8 shows the comparisons for Model ‘B’ 

(Maximin LHS design with Kriging metamodel).  Both models show general agreement with the response 

for the reference model for both responses. 
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Fig. 3-7. Comparison plots of CDFs for the 97-sample ‘reference’ LHS simulation results vs. the 10,000 

sample ‘test’ model predictions for Model ‘A’ (Box-Behnken design with quadratic metamodel).  

Performance metrics in the panels consist of: top – maximum plume extent (m) and bottom – average 

reservoir pressure (psi). Plot titles also indicate the corresponding KS-test and EMD statistics. 
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Fig. 3-8. Comparison plots of CDFs for the 97-sample ‘reference’ LHS simulation results vs. the 10,000 

sample ‘test’ model predictions for Model ‘B’ (Maximin LHS design with kriging metamodel).  Performance 

metrics in the panels consist of: top – maximum plume extent (m) and bottom – average reservoir pressure 

(psi). Plot titles also indicate the corresponding KS-test and EMD statistics. 
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3.6 Comparison of Models  

Our objective in this phase of the research was to validate our simplified physics and statistical learning 

based models for plume and pressure propagation in semi-confined aquifer systems in a probabilistic 

setting.  Additionally, our goal was to establish confidence-levels on their credibility and rank their 

performance against each other. We generated and verified that the CDF of outcomes from the simplified 

physics models are in reasonable agreement to the simulation results for the full spectrum of sensitivity 

analysis results.  

The three chosen modeling approaches (i.e., the two statistical learning based models, Model A and 

Model B, and the simplified-physics based model, Model C) can be compared using the KS-test statistic 

and the EMD statistic to rank their relative performance. 

Table 3-3: Model Performance Comparison 

Performance metric Model ‘A’ Model ‘B’ Model ‘C’ 

Plume extent    

Earth Mover’s distance (EMD) statistic 0.035 0.085 0.081 

KS-test statistic 0.522 0.155 0.021 

Average reservoir pressure buildup    

Earth Mover’s distance (EMD) statistic 0.060 0.068 0.053 

KS-test statistic 0.020 0.409 0.057 

 

We observe that while all models agree reasonably with the simulation results, the best model fits for our 

performance metrics turn out to be the statistical learning based models. Model ‘A’ performs best for the 

plume extent while model ‘B’ performance best for the average reservoir pressure buildup. The simplified 

physics based models have been trained using a smaller subset of the input parameter values which do not 

possibly cover the entire input parameter space compared to the statistical models developed using space-

filling designs. This could possibly explain the tail seen in the Model ‘C’ predictions in Fig. 3-2. 
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 Conclusions and Recommendations 

4.1 Conclusions 

Key conclusions from this research project can be summarized as follows: 

 We developed and validated simplified predictive models for dimensionless pressure buildup 

(i.e., well injectivity and average reservoir pressure) and total storage efficiency (i.e., plume 

radius), in terms of key underlying parameters combined into dimensionless groups, based on 

insights from full-physics simulations, 

 We compared the performance of a traditional experimental design based surrogate modeling 

strategy (i.e., Box-Behnken design combined with quadratic model) to a sampling-based design 

and metamodeling strategy (i.e., maximin Latin Hypercube sampling combined with 

multidimensional kriging) using a k-fold cross-validation strategy, 

 We demonstrated the applicability of the POD-TPWL approach to reduced-order modeling for 

CO2-brine systems – with vertical and horizontal wells, under BHP and rate control, as well for 

geologic perturbations – as a computationally-efficient alternative to full-order simulations 

showing speedups upto a factor of ~370, and 

 We validated the simplified physics and statistical learning based approaches using an uncertainty 

analysis framework wherein CDF of outcomes from the simplified models were found to be in 

reasonable agreement with detailed numerical simulation results after eliminating non-physical 

outliers.   

4.2 Recommendations for Future Work 

4.2.1 Simplified physics based models 

 The range of conditions used to develop the simplified-physics based models (e.g., Table 2-1) 

should be expanded, particularly with respect to the relative permeability variants. 

 Alternatives to dfg/dSg (slope of gas fractional flow curve) – as a “bulk” representation of relative 

permeability relationships – should be explored in greater detail. 

 The impact of time-dependence on CO2 plume extent models should be studied. 

4.2.2 Statistical learning based models 

 The issue of appropriate sample size of LHS simulations should be further studied. 

 Applicability and efficacy of metamodels to capture time-dependent output behavior (as opposed 

to fitting the output at only selected points in time) should be studied. 

 Better screening-level designs should be investigated. 
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 Robust variable importance ranking methods that do not require additional simulations beyond 

the primary experimental design should be explored. 

4.2.3 Reduced-order method based models 

 Improved formulations for constraint reduction (see section 2.4.2) should be studied. 

 Further testing and assessment of the approach for handling geological perturbations (section 

2.4.4c) in POD-TPWL should be investigated. 

 Late-time deviations between full-order simulations and POD-TPWL for rate-control wells 

(section 2.4.4b) should be further studied. 

 The applicability of POD-TPWL in a multi-well setting (i.e., network of injection wells) should 

be explored. 

4.2.4 Uncertainty and sensitivity analysis based validation 

 Automated methods of ensuring consistency between the sample space of the original simplified 

models and that used for probabilistic applications (and the elimination of non-physical parameter 

combinations) should be investigated. 

 Additional schemes of comparing two different CDFs should be applied. 

 Importance ranking from simplified and detailed models should be compared, in additional to 

comparing the similarity of CDFs.  

 The uncertainty and sensitivity analysis based validation framework should also be applied for 

reduced-order method based models. 
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