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Abstract

CO, sequestration in deep saline formations is increasingly being considered as a viable strategy for the
mitigation of greenhouse gas emissions from anthropogenic sources. In this context, detailed numerical
simulation based models are routinely used to understand key processes and parameters affecting pressure
propagation and buoyant plume migration following CO- injection into the subsurface. As these models
are data and computation intensive, the development of computationally-efficient alternatives to
conventional numerical simulators has become an active area of research. Such simplified models can be
valuable assets during preliminary CO; injection project screening, serve as a key element of probabilistic
system assessment modeling tools, and assist regulators in quickly evaluating geological storage projects.
We present three strategies for the development and validation of simplified modeling approaches for
CO;sequestration in deep saline formations: (1) simplified physics-based modeling, (2) statistical-
learning based modeling, and (3) reduced-order method based modeling.

In the first category, a set of full-physics compositional simulations is used to develop correlations for
dimensionless injectivity as a function of the slope of the CO; fractional-flow curve, variance of layer
permeability values, and the nature of vertical permeability arrangement. The same variables, along with
a modified gravity number, can be used to develop a correlation for the total storage efficiency within the
CO; plume footprint. Furthermore, the dimensionless average pressure buildup after the onset of
boundary effects can be correlated to dimensionless time, CO; plume footprint, and storativity contrast
between the reservoir and caprock.

In the second category, statistical “proxy models” are developed using the simulation domain described
previously with two approaches: (a) classical Box-Behnken experimental design with a quadratic
response surface, and (b) maximin Latin Hypercube sampling (LHS) based design with a multi-
dimensional kriging metamodel fit. For roughly the same number of simulations, the LHS-based
metamodel yields a more robust predictive model, as verified by a k-fold cross-validation approach (with
data split into training and test sets) as well by validation with an independent dataset.

In the third category, a reduced-order modeling procedure is utilized that combines proper orthogonal
decomposition (POD) for reducing problem dimensionality with trajectory-piecewise linearization
(TPWL) in order to represent system response at new control settings from a limited number of training
runs. Significant savings in computational time are observed with reasonable accuracy from the POD-
TPWL reduced-order model for both vertical and horizontal well problems — which could be important in
the context of history matching, uncertainty quantification and optimization problems.

The simplified physics and statistical learning based models are also validated using an uncertainty
analysis framework. Reference cumulative distribution functions of key model outcomes (i.e., plume
radius and reservoir pressure buildup) generated using a 97-run full-physics simulation are successfully
validated against the CDF from 10,000 sample probabilistic simulations using the simplified models.

The main contribution of this research project is the development and validation of a portfolio of

simplified modeling approaches that will enable rapid feasibility and risk assessment for CO»
sequestration in deep saline formations.

DOE Award No. DE-FE0009051, Final Report iii



Simplified Predictive Models
for CO, Sequestration

Table of Contents
Page
1. Introduction 1
1.1 ProJECt ODJECLIVES. ....cciiiiieie ettt et e te e e te e be e e e s reesteeneeaneenneans 1
1.2 Summary of TOPICAl REPOITS ......couveiiiieiece e 1
1.3 Organization Of REPOIT.........ciiiiiieieieite et 3
2. Developing and Validating Simplified Predictive Models of CO, Geologic Sequestration 4
20 R 1 1 oo [0 od o o F OSSPSR PSSR 4
2.2 Simplified Physics Based MOGEIS ...........cccocviiiiieciciic e 5
2.2.1 BACKGIOUN ......eiiiiiiiieiieieiei ettt bbbttt bbbttt 5
2.2.2 Modeling and Analysis Methodology........ccccoeiiiiriiiiiiiieiee e, 5
A T 1V, oo [T I T=TTod o o o S 6
2.2.4 Predicting average pressure BUIAUD ........cooeiveiieii i 11
2.2.5 Predicting total storage efficiency and plume radius..........ccccereniiinieiniiennenn 12
2.3 Statistical Learning Based MOGEIS ...........cceiiiiiiiiiiiisiicce e 16
2.3.1 BACKQrOUNG .......coiivieiecie ettt et nae e 16
2.3.2 MEthOAOIOQY .....coeiivieiece e e 17
2.3.3  StUAY DESCIIPLION. ...c.uiitieiiiiiie ittt bbb 19
F B (=TT | | OSSR 21
2.4 Reduced-Order Method Based MOEIS ..........cccoiiiiiiiiiiinieee e 25
2.4.1 BaCKGIOUNG .....ooiiiiiiieiieesiie ettt ettt et et e e sra e e e reeennee e 25
2.4.2 MEthOAOIOGY .....cviiiiiiiiiieee s 25
2.4.3 Application of POD-TPWL for 3D Model with Horizontal Wells..................... 29
2.5 Summary and Concluding ReMArkKS...........ccccveiieiiiiiicce e 35
2.5.1 Simplified-physics based Models...........cccoiiiiiiiiic 35
2.5.2 Statistical-learning based Models...........cccooviiiiiiiii 36
2.5.3 Reduced-order method based MOdelS ..o 36
3. Uncertainty and Sensitivity Analysis Based Validation of Simplified Models 41
T8 A [0 oo [0 Tod o] o IR UR 41
3.2 Description of simulation cases and Parameters ..........occoeeereriereenesiee e 41

DOE Award No. DE-FE0009051, Final Report iv



Simplified Predictive Models
for CO, Sequestration

3.3 Analysis MethodolOgy .......c.cccueiiiieiieci e 43

3.3.1 Statistical learning based models (Models A and B) ........cccccevvevviieiveinsiennnn, 43

3.3.2 Simplified physics-based models (Model C)........cccoovviiiiiiiiiiiesec e, 44

3.4 Results — Simplified Physics Based MOdElS ...........c.ccooiiiiiiiiiiiice 47

3.5 Results — statistical learning based Models ...........cccooviiiiieiici i 55

3.6 Comparison Of MOGEIS .........ccveiiiiecic e 58

4. Conclusions and Recommendations 59

g O o [ 1] o] 1SRRI 59

4.2 Recommendations for FULUIE WOTK ..........cooiioiiiiie i 59

4.2.1 Simplified physics based MOdels...........cccoeiviiiiiciic e 59

4.2.2 Statistical learning based MOdelS ... 59

4.2.3 Reduced-order method based MOdelS...........ccooiiiiiiiiiiiei e 60

4.2.4 Uncertainty and sensitivity analysis based validation ................cccoecevvveiiiiinnnn. 60

APPENDIX: Topical RepOIrt EXCErPLS. ... .oueirii e 62
List of Tables

Page

Table 2-1. Summary of test cases explored with parameter values for the reference case and

tE TWO VAITANTS. ...ttt 7
Table 2-2. Input Distributions used with LHS Sampling ..........cccccoveiiiiiiiicieccece e, 19
Table 3-1. Parameter values for the reference case and the two variants. ..........cc.ccceevereinennns 41
Table 3-2. Input Distributions used with LHS Sampling .........cccoceiiiiiininiiiieec e 42
Table 3-3: Model Performance COMPAIISON.........cuciieiiieiieeiieeiee e e sre e see et e e see e e sreas 58

DOE Award No. DE-FE0009051, Final Report %



Simplified Predictive Models
for CO, Sequestration

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

List of Figures

Page

2-1. Model geometry and gridding for the system of interest. ..........cccoovieieicieniniiins 6
2-2. (a) Relative permeability model variations, with different gas-water relative

permeability curves (left panel); (b) Fractional flow curves for the three relative

permeability models characterized in terms of their slopes (right panel). ....................... 8
2-3. Scatter plot of PD values for varying dfg/dSg and VDP............ccccooviviiienencienenn 10
2-4. Comparison plot between regression model predictions and simulator output

VAIUBS TOF Dt 10
2-5 Comparison plot between regression model predictions and simulator output

VAIUBS TOF P, .ttt 10
2-6. The ‘f* factor for closed reservoirs is correlated to the square of the ratio of the

reservoir radius to the plume radius at the end of injection. ............cccccovevieieiiciienns 11

2-7. Plot illustrating equivalence of fSC and ratio of porosity-thickness of the reservoir to
the total porosity-thickness of the system (cap rock + reservoir) for all three relative
PErmMEability MOEIS. ........coviiiece e 12

2-8. System schematic showing graphical definition of plume extent, volumetric sweep
and displacement effiCIENCY........c.oov oo 13

2-9. Scatter plots of ES values as a function of all four independent variables: (a)
dfg/dSg, (b) VDP, () Ng, and (d) LC. ....cceeeceeeeeeceee e 15

2-10. Comparison plot between regression model predctions and simulator output
VAIUBS FOF Es...oveie e 15

2-11. Compariosn plot between regression model predictions and simulator output values
B0 RC0Z. - v e et 15

2-12. A Box-Behnken Design for three inputs (left) and its representation in the input
SPACE (FTGNT). ¢t e bbb 17

2-13. Examples of LHS designs (red) and maximin LHS designs (green) using 20
0bServations fOr tWO INPULS. .......coveieiie e 18

DOE Award No. DE-FE0009051, Final Report vi


file:///C:/Users/Brantleyc/Documents/Simplified%20Modeling%20Final%20Rev1%20(002)%20CB%20SM%20CB.docx%23_Toc439248041
file:///C:/Users/Brantleyc/Documents/Simplified%20Modeling%20Final%20Rev1%20(002)%20CB%20SM%20CB.docx%23_Toc439248041

Simplified Predictive Models
for CO, Sequestration

Fig. 2-14. Comparison of R2 for BB-quadratic and MM-kriging proxy models for the three
different performance metrics of INErest. ........cccevviieiieie i 22

Fig. 2-15. Scatterplots showing actual (horizontal axis) vs. predicted response (vertical axis)

for Total Storage EffICIENCY. .....ooiieiiiece e 23
Fig. 2-16. Scatterplots showing actual (horizontal axis) vs. predicted response (vertical axis)

FOr PIUME RAAIUS. ... 24
Fig. 2-17. Scatterplots showing actual (horizontal axis) vs. predicted response (vertical axis)

TOr AVEIA0E PIESSUIE. ...o.viiieeeie sttt ettt ettt sae et esbe e be e sreenneenee e 24
Fig. 2-18. Time-varying BHPs for the training and teSt CASES. .........ccceveririrenieee e 28
Fig. 2-19. Injection-block pressure (left) and CO- injection rate (right) for test case. ................. 28
Fig. 2-20. Areal grid and well locations for conceptual Mount Simon model. .............cccceevenes 29
Fig. 2-21. Log horizontal permeability (mD) for conceptual Mount Simon model. .................... 30
Fig. 2-22. Training and target BHPs for the four injection Wells. ... 31
Fig. 2-23. CO; injection rates for test case With 0= 0.5 .......cccceiiiiiiiiniiiiie e 32
Fig. 2-24. Time-varying rate specifications for training and test simulations. .............c.cccccvvneee. 32
Fig. 2-25. COz injection Well BHPS fOr teSt CASE. .........cviviiiiiieierie e 33
Fig. 2-26. Injection rates for training and teSt CASES. .......coveieeiieiieiie it 34
Fig. 2-27. CO; injection well BHPs for test case (geological perturbation example). ................. 34

Fig. 3-1. Scatter plot showing the model ‘C’ predictions versus the detailed numerical
simulator results for plume radius and average reservoir pressure buildup with the
97-run reference LHS datasetl .........ocoviiiiiiie e 48

Fig. 3-2. Comparison plot of CDF of 97-sample ‘reference’ LHS simulation results and
10,000 sample ‘test’ model predictions. (a) plume radius (m); (b) average reservoir
Pressure DUITAUD (PST)....eveirerieieieiee s 49

Fig. 3-3. Scatter plots showing Es model predictions getting to nonphysical values with
increasing gravity number cases for the ‘test’ LHS design. .......cccocoovvveiiiiiciciieennn, 50

Fig. 3-4. Comparison of histograms of log(Gravity number) showing the increasing range of
values as we move from the Task 2 training dataset to the 97-run LHS reference
dataset and the 10000-run LHS test dataset. ..........ccocerereriienininisieee s 51

DOE Award No. DE-FE0009051, Final Report vii


file:///C:/Users/Brantleyc/Documents/Simplified%20Modeling%20Final%20Rev1%20(002)%20CB%20SM%20CB.docx%23_Toc439248058

Simplified Predictive Models
for CO, Sequestration

Fig. 3-5. Comparison plot of CDF of 97-sample ‘reference’ LHS simulation results and

10,000 sample ‘test’ model predictions after treatment of outliers. Performance
metrics in the panels consist of: top — total storage efficiency (%) and bottom —
dimensionless average reservoir pressure BUHAUP. ..o 53

Fig. 3-6. Comparison plot of CDF of 97-sample ‘reference’ LHS simulation results and

10,000 sample ‘test’ model predictions after treatment of outliers. Performance

metrics in the panels consist of: top — maximum plume extent (m) and bottom —
average reservoir pressure buildup (psi). Plot titles also indicate the corresponding
KS-test and EMD STALISTICS. ....c.veiieiieieiie ettt 54

Fig. 3-7. Comparison plots of CDFs for the 97-sample ‘reference’ LHS simulation results vs.

Fig. 3-8.

the 10,000 sample ‘test” model predictions for Model ‘A’ (Box-Behnken design with
quadratic metamodel). Performance metrics in the panels consist of: top —

maximum plume extent (m) and bottom — average reservoir pressure (psi). Plot titles
also indicate the corresponding KS-test and EMD statistics. ..........cccccvvveveivieivesieennene, 56

Comparison plots of CDFs for the 97-sample ‘reference” LHS simulation results vs.

the 10,000 sample ‘test” model predictions for Model ‘B’ (Maximin LHS design

with kriging metamodel). Performance metrics in the panels consist of: top —
maximum plume extent (m) and bottom — average reservoir pressure (psi). Plot titles
also indicate the corresponding KS-test and EMD statistics. ..........ccccoevveveiieivcsieennene, 57

DOE Award No. DE-FE0009051, Final Report viii



Simplified Predictive Models
for CO, Sequestration

Executive Summary

The objective of this research project is to develop and validate a portfolio of simplified modeling
approaches for CO; sequestration in deep saline formations — based on simplified physics, statistical
learning, and/or mathematical approximations — for predicting: (a) injection well and formation pressure
buildup, (b) lateral and vertical CO; plume migration, and (c) brine displacement to overlying formations
and the far-field. Such computationally-efficient alternatives to conventional numerical simulators can be
valuable assets during preliminary CO; injection project screening, serve as a key element of probabilistic
system assessment modeling tools, and assist regulators in quickly evaluating geological storage projects.
The project team includes Battelle and Stanford University. Support for the project is provided by U.S.
DOE National Energy Technology Laboratory and the Ohio Development Service Agency Office of Coal
Development (ODSA).

Over the last decade, the development and demonstration of geologic sequestration technologies to
mitigate greenhouse gas emissions has been an area of active research. Geologic sequestration of CO; in
deep saline formations has been recognized for its immense potential for long-term storage of captured
CO.. To ensure safe and effective deployment of this technology, it is crucial for us to understand the
nature of pressure and plume propagation as injected CO; displaces the native reservoir fluids. Detailed
numerical simulation of such processes generally requires extensive reservoir characterization data and
computational burden. In this context, validated simplified models can be valuable as they have minimal
data and computational requirements in comparison. Simplified models that are based on the most
relevant physical processes and validated against full-physics simulators are thus being sought after as
efficient and useful alternatives for rapid screening and evaluation of CO. sequestration projects. The
research carried out under this project utilizes three broad approaches: (a) simplified physics-based
modeling, (b) statistical-learning based modeling, and (c) reduced-order method based modeling. Finally,
an uncertainty and sensitivity analysis based validation framework is used to compare the results of full-
physics and simplified models from probabilistic simulations.

In the simplified-physics based approach, only the most important physical processes are modeled to
develop and validate simplified predictive models of CO, sequestration in deep saline formation. The
system of interest is a single vertical well injecting supercritical CO- into a 2-D layered reservoir-caprock
system with variable layer permeabilities. A set of well-designed full-physics compositional simulations
is used to understand key processes and parameters affecting pressure propagation and buoyant plume
migration. Based on these simulations, correlations have been developed for dimensionless injectivity as
a function of the slope of CO.-water fractional-flow curve, variance of layer permeability values, and the
nature of vertical permeability arrangement. The same variables, along with a modified gravity number,
can be used to develop a correlation for the total storage efficiency within the CO. plume footprint.
Correlations are also developed to predict the average pressure buildup within the injection reservoir, as
well as the pressure buildup within the caprock. These correlations are generally found to have good
predictive ability.

In statistical-learning based modeling, two approaches are compared for building a statistical proxy model
(metamodel) for CO. geologic sequestration from the results of full-physics compositional simulations.
The first approach involves a classical Box-Behnken or Augmented Pairs experimental design with a
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guadratic polynomial response surface. The second approach uses a space-filling maximin Latin
Hypercube sampling (LHS) or maximum entropy design with the choice of five different meta-modeling
techniques: quadratic polynomial, kriging with constant and quadratic trend terms, multivariate adaptive
regression spline (MARS) and additivity and variance stabilization (AVAS). Simulations results for CO;
injection into a reservoir-caprock system with 9 design variables (and 97 samples) were used to generate
the data for developing the proxy models. The fitted models were validated with using an independent
data set and a cross-validation approach for three different performance metrics: total storage efficiency,
CO: plume radius and average reservoir pressure. The Box-Behnken—quadratic polynomial metamodel
and the maximin LHS—kriging metamodel performed almost the same.

Reduced-order models provide a means for greatly accelerating the detailed simulations that will be
required to manage CO- storage operations. This work investigates one such method, POD-TPWL, which
has previously been shown to be effective in oil reservoir simulation problems. The method combines
trajectory piecewise linearization (TPWL), in which the solution to a new (test) problem is represented
through a linearization around the solution to a previously-simulated (training) problem, with proper
orthogonal decomposition (POD), which enables solution states to be expressed in terms of a relatively
small number of parameters. The application of POD-TPWL for CO-water systems is simulated using a
compositional procedure. Stanford's Automatic Differentiation-based General Purpose Research
Simulator (AD-GPRS) performs the full-order training simulations and provides the output (derivative
matrices and system states) required by the POD-TPWL method. A new POD-TPWL capability
introduced in this work is the use of horizontal injection wells that operate under rate (rather than bottom-
hole pressure) control. Simulation results are presented for CO; injection into a synthetic aquifer and into
a simplified model of the Mount Simon formation. Test cases involve the use of time-varying well
controls that differ from those used in training runs. Results of reasonable accuracy are consistently
achieved for relevant well quantities. Runtime speedups of around a factor of 370 relative to full-order
AD-GPRS simulations are achieved, though the preprocessing needed for POD-TPWL model
construction corresponds to the computational requirements for about 2.3 full-order simulation runs. A
preliminary treatment for POD-TPWL modeling in which test cases differ from training runs in terms of
geological parameters (rather than well controls) is also presented.

One of the intended applications of simplified models is for performance assessment calculations, where
the analyses are typically carried out in a probabilistic framework to deal with model and parameter
uncertainty. It is therefore important to ensure that the simplified models are also capable of reproducing
the full spectrum of uncertainty and sensitivity analysis results from detailed numerical simulators. A 97-
run LHS design with the full-physics model is used to generate the reference cumulative distribution
function (CDF) of two key outcomes: plume radius and average pressure buildup in the reservoir. This is
compared against CDFs from 10,000-run LHS designs with three different models: (a) response surface
from a Box-Behnken design and quadratic metamodel, (b) response surface from a maximin LHS design
and kriging metamodel, and (c) simplified physics based methodology. The statistical learning-based
simplified models are found to provide a more robust representation of the reference CDF, particularly
with respect to outliers.
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1. Introduction

1.1 Project Objectives

The objective of this research project is to develop and validate a portfolio of simplified modeling
approaches for CO; sequestration in deep saline formations — based on simplified physics, statistical
learning, and/or mathematical approximations — for predicting: (a) injection well and formation pressure
buildup, (b) lateral and vertical CO; plume migration, and (c) brine displacement to overlying formations
and the far-field. Such computationally-efficient alternatives to conventional numerical simulators can be
valuable assets during preliminary CO; injection project screening, serve as a key element of probabilistic
system assessment modeling tools, and assist regulators in quickly evaluating geological storage projects.
The project team includes Battelle and Stanford University. Support for the project is provided by U.S.
DOE National Energy Technology Laboratory and the Ohio Development Service Agency Office of Coal
Development (ODSA).

Over the last decade, the development and demonstration of geologic sequestration technologies to
mitigate greenhouse gas emissions has been an area of active research. Geologic sequestration of CO; in
deep saline formations has been recognized for its immense potential for long-term storage of captured
CO,. To ensure safe and effective deployment of this technology, it is crucial for us to understand the
nature of pressure and plume propagation as injected CO; displaces the native reservoir fluids. Detailed
numerical simulation of such processes generally requires extensive reservoir characterization data and
computational burden. In this context, validated simplified models can be valuable as they have minimal
data and computational requirements in comparison. Simplified models that are based on the most
relevant physical processes and validated against full-physics simulators are thus being sought after as
efficient and useful alternatives for rapid screening and evaluation of CO, sequestration projects.

The project is organized around four main technical tasks:

Task 2 — simplified physics-based modeling, where only the most relevant physical processes are
modeled,

Task 3 — statistical-learning based modeling, where the simulator is replaced with a “response surface”,

Task 4 — reduced-order method based modeling, where mathematical approximations reduce the
computational burden.

Task 5 — uncertainty and sensitivity analysis based validation, where probabilistic simulations are used to
compare the results of full-physics and simplified models.

1.2 Summary of Topical Reports

Results of research activities related to Tasks 2-4 have been described in detail in a series of topical
reports (Ravi Ganesh and Mishra, 2014 [1]; Schuetter and Mishra, 2014 [2]; Jin et al, 2015 [3]). The
abstracts of these reports are presented below.

DOE Award No. DE-FE0009051, Final Report 1
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Simplified physics-based modeling (Ravi Ganesh and Mishra, 2014): We present a simplified-physics
based approach, where only the most important physical processes are modeled, to develop and validate
simplified predictive models of CO2 sequestration in deep saline formation. The system of interest is a
single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable
layer permeabilities. We use a set of well-designed full-physics compositional simulations to understand
key processes and parameters affecting pressure propagation and buoyant plume migration. Based on
these simulations, we have developed correlations for dimensionless injectivity as a function of the slope
of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability
arrangement. The same variables, along with a modified gravity number, can be used to develop a
correlation for the total storage efficiency within the CO, plume footprint. Similar correlations are also
developed to predict the average pressure within the injection reservoir, as well as the pressure buildup
within the caprock.

Statistical-learning based modeling (Schuetter and Mishra, 2014): We compare two approaches for
building a statistical proxy model (metamodel) for CO. geologic sequestration from the results of full-
physics compositional simulations. The first approach involves a classical Box-Behnken or Augmented
Pairs experimental design with a quadratic polynomial response surface. The second approach used a
space-filling maximin Latin Hypercube sampling or maximum entropy design with the choice of five
different meta-modeling techniques: quadratic polynomial, kriging with constant and quadratic trend
terms, multivariate adaptive regression spline (MARS) and additivity and variance stabilization (AVAS).
Simulations results for CO; injection into a reservoir-caprock system with 9 design variables (and 97
samples) were used to generate the data for developing the proxy models. The fitted models were
validated with using an independent data set and a cross-validation approach for three different
performance metrics: total storage efficiency, CO plume radius and average reservoir pressure. The Box-
Behnken—quadratic polynomial metamodel performed the best, followed closely by the maximin LHS—
kriging metamodel.

Reduced-order method based modeling (Jin et al., 2015): Reduced-order models provide a means for
greatly accelerating the detailed simulations that will be required to manage CO- storage operations. In
this work, we investigate the use of one such method, POD-TPWL, which has previously been shown to
be effective in oil reservoir simulation problems. This method combines trajectory piecewise
linearization (TPWL), in which the solution to a new (test) problem is represented through a linearization
around the solution to a previously-simulated (training) problem, with proper orthogonal decomposition
(POD), which enables solution states to be expressed in terms of a relatively small number of parameters.
We describe the application of POD-TPWL for CO,-water systems simulated using a compositional
procedure. Stanford's Automatic Differentiation-based General Purpose Research Simulator (AD-GPRS)
performs the full-order training simulations and provides the output (derivative matrices and system
states) required by the POD-TPWL method. A new POD-TPWL capability introduced in this work is the
use of horizontal injection wells that operate under rate (rather than bottom-hole pressure) control.
Simulation results are presented for CO; injection into a synthetic aquifer and into a simplified model of
the Mount Simon formation. Test cases involve the use of time-varying well controls that differ from
those used in training runs. Results of reasonable accuracy are consistently achieved for relevant well
guantities. Runtime speedups of around a factor of 370 relative to full-order AD-GPRS simulations are
achieved, though the preprocessing needed for POD-TPWL model construction corresponds to the
computational requirements for about 2.3 full-order simulation runs. A preliminary treatment for POD-
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TPWL modeling in which test cases differ from training runs in terms of geological parameters (rather
than well controls) is also presented. Results in this case involve only small differences between training
and test runs, though they do demonstrate that the approach is able to capture basic solution trends.

1.3 Organization of Report

The report is divided into two main parts. Chapter 2 provides a summary of the topical reports for Tasks
2-4 in the form of a paper that was prepared for presentation at the 2015 Annual Technical Conference
and Exhibition of the Society of Petroleum Engineers (Mishra et al., 2015 [4]). Chapter 3 presents the
results of Task 5, i.e., validation of simplified modeling approaches using uncertainty and sensitivity
analysis. Finally, Chapter 4 presents conclusions from this study, and recommendations for future work.
Also, excerpts from the Topical Reports (i.e., abstract, table of contents, list of tables, list of figures and
executive summary) are included in the Appendix.
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2. Developing and Validating Simplified Predictive Models of
CO: Geologic Sequestration

2.1 Introduction

CO; injection into the sub-surface is emerging as a viable technology for reducing anthropogenic CO-
emissions into the atmosphere [1]. Deep saline formations provide a particularly attractive target for this
purpose, with potential storage capacity in such systems in North America estimated to be of the order of
3400 billion tons of CO,, or the equivalent of emissions from hundreds of years [2]. Over the last decade,
the development and demonstration of geologic sequestration technologies to mitigate greenhouse gas
emissions has been a field of active study. The U.S. Department of Energy’s (DOE’s) Carbon Storage
Program has provided the primary impetus for R&D activities in the U.S. to develop and advance
technologies that will significantly improve the efficacy of the geologic carbon storage technology,
reduce the cost of implementation, and be ready for widespread commercial deployment between 2020
and 2030.

When large amounts of CO, are sequestered underground, excess pressure buildup in the storage
formations and cap rock is an associated risk in terms of endangering integrity of underground formation
and wellbores, along with the risk of potential plume movement beyond the injected domain. Multiple
technologies related to the evaluation of capacity and injectivity, monitoring of CO, plume movement,
and risk assessment are needed to ensure safe and effective deployment of geologic storage. One key
technology in this regard is the simulation of CO; injection and migration over very large areas and over
long periods of time [3]. Detailed numerical models of CO, geological storage are, however, data and
computation intensive. In this context, validated simplified analytical or semi-analytical modeling tools
can be valuable assets in preliminary CO; injection project screening and implementation phases [4].
Such tools have minimal data and computational requirements compared to detailed-physics numerical
simulators. Simplified models are therefore being sought after as alternatives for rapid feasibility and risk
assessment of CO; sequestration projects [5].

The primary motivation for this study is to provide simplified modeling tools that will enable rapid
feasibility and risk assessment of CO, sequestration projects in deep saline formations. These tools will:
(a) provide project developers with quick and simple tools to screen sites and estimate monitoring needs,
(b) provide regulators with tools to evaluate geological storage projects quickly without running full-scale
detailed numerical simulations, (c) enable integrated system risk assessments to be carried out with
robust, yet simple to implement, reservoir performance models, and (d) allow modelers to efficiently
analyze the impact of variable CO- injection rates on plume migration and trapping for optimal well
placement and rate allocation.

In this chapter, three strategies are described for the development and validation of simplified modeling
approaches for CO. sequestration in deep saline formations: (1) simplified physics-based modeling,
where only the most relevant physical processes are modeled, (2) statistical-learning based modeling,
where the simulator is replaced with a “response surface”, and (3) reduced-order method based modeling,
where mathematical approximations reduce the computational burden.
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The chapter is organized as follows. There are three main sections dealing with each of three strategies
noted earlier. For each section, we provide a summary of the relevant literature, discuss the full-physics
model that forms the basis for deriving the reduced-order models, and describe the methodology for
simplified model formulation and validation. The chapter concludes with a discussion of the practical
aspects for each modeling strategy and concluding remarks based on the study.

2.2 Simplified Physics Based Models
2.2.1 Background

Simplified models based on first principles can be extremely useful for rapid integrated system
assessment of CO; sequestration projects. One common modeling approach builds upon a Buckley-
Leverett type radial displacement formulation first presented for gas storage in aquifers [6], and
subsequently adapted for the problem of CO, plume migration in deep saline aquifers [7, 8]. Others have
developed corresponding expressions for injection well pressure buildup using various assumptions
regarding the mobility of the two-phase region [9-11].

A second approach uses an elegant sharp interface approximation to front propagation that leads to
closed-form expressions for plume radius [12, 13] and pressure propagation [14, 15]. As is the case with
the Buckley-Leverett type models discussed earlier, this approach also assumes that the reservoir is
homogeneous in both radial and vertical directions, bounded above and below by impermeable layers, and
is infinite-acting in the radial direction.

Ref. [16] presented simple expressions for computing pressure buildup in reservoirs that were semi-
confined (i.e., with permeable over and/or underlying layers) and closed (i.e., with finite lateral
boundaries). Their solution is strictly valid for single-phase flow conditions, although they show
reasonable agreement with two-phase simulations if the injected volumes are balanced. Similar
relationships based on single-phase pseudo-steady state flow equations have also been presented [17].

Based on this literature review, we conclude that there is need for simplified models that account for
pressure buildup and CO; plume migration in saline formations while taking into account two-phase flow
conditions, vertical variations in permeability (which can affect plume stratification), semi-confined
conditions (presence of a cap rock) and finite lateral extent (well injecting into a closed volume).

2.2.2 Modeling and Analysis Methodology

The computational model consists of a single vertical well radially injecting supercritical CO- in the
middle of a 2D layered reservoir overlain by a cap rock. We add an overlying cap rock and vertically
layered heterogeneity to previously considered simplified model geometries, thus introducing buoyancy
and heterogeneity effects on plume migration. Our approach is based on a combination of first-principles
and inspectional analysis from detailed numerical experiments using following workflow:

o Well-defined compositional simulations of CO; injection into a semi-confined cylindrical saline
aquifer system are carried out for a broad range of reservoir and cap rock properties.

DOE Award No. DE-FE0009051, Final Report 5



Simplified Predictive Models
for CO, Sequestration

o Data from this sensitivity analysis exercise are used to develop insights into the relationship
between the performance metrics of interest and fundamental reservoir/ cap rock properties.
Inspectional analysis yields dimensionless groups for correlating the data.

o Regression analysis is used to represent dimensionless pressure buildup and total storage
efficiency (defined below) as a function of the underlying independent variable groups identified
from sensitivity analysis.

e The resulting predictive relationships are tested to validate the predictive models using “blind”
runs with simulations not part of the “training set” (i.e., not used in the model formulation).

2.2.3 Model Description

The basic model is that of a single-well injecting supercritical CO; into a bounded 2D radial-cylindrical
aquifer initially filled with brine. The model domain consists of a porous and permeable heterogeneous
reservoir, overlain by a low-permeability cap rock. The top of the cap rock, the bottom of the reservoir
and the lateral boundary are all assumed to be no-flow boundaries. Fig. 2-1 illustrates the system of
interest and the grid defined. The simulations are executed in the numerical simulator GEM® developed
by the Computer Modeling Group (CMG). The following simulation elements are considered for our
system:

e A semi-confining system similar to the Mt Simon sandstone (reservoir) — Eau Claire shale (cap
rock) configuration in the Illinois basic [20]

o Reservoir and cap rock thickness (and variants) similar to that used for the Arches project [18,19]

e Reservoir permeability and porosity (and variants) similar to that used for the Arches project
[18,19]

e Cap rock permeability and air entry pressure from the Illinois basin project [20]

o Permeability variation and anisotropy ratio assumed over a realistic range

Permeability, mD Injector
130
5101
78 CAP ROCK (CR)
= 0.02
. Ker 02 mD
L 47
=1 36
N .. -+ et .
I T [ [
1 22 RESERVOIR (R)
17
10

0.00 2.00 4.00 km
-

-

Fig. 2-1. Model geometry and gridding for the system of interest.
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(A) Simulation Scenarios

Simulations are run to observe CO; displacement characteristics for an injection period of 30 years in a
closed system — as would be the case in a network of injection wells. The independent variables of
interest are thickness and porosity of reservoir and cap rock, reservoir permeability heterogeneity,
permeability and capillary pressure of the cap rock, and CO; injection rate. Reservoir heterogeneity is
varied by controlling the mean reservoir permeability, permeability anisotropy ratio (ratio of vertical to
horizontal permeability) in the reservoir, spatial arrangement of the heterogeneous reservoir permeability
layers, and relative permeability curves for the reservoir. We investigate the sensitivity of system
behavior for high and low variants from a reference case for each of these variables and seek to quantify
their effect on the dimensionless pressure buildup in the reservoir.

There are 10 independent variables identified in Table 2-1. A set of one-off simulations are carried out to
develop a library of results from which insights related to the development of simplified-physics based
model will be extracted. For each of these simulations, all other independent variables are kept fixed at
their reference values. This simulation matrix is run with each of the three different relative permeability
models described next.

Relative permeability curves for the reservoir are taken from [21]. Relative permeability curves are
assumed to be the same for the caprock in all cases. These curves are shown in Fig. 2-2 (a). As far as
variations from the reference case, the gas relative permeability curve for the reservoir is assumed to be
linear for one of the variants (case A), whereas the other variant (case B) lies somewhere in between. The
three separate curves provide a range of permeability characteristics for the reservoir model. Fig. 2-2 (b)
shows the characterization of these relative permeability models using the slopes of the tangents to their
gas fractional flow curves, i.e. dfy/dS,. A total of 60 simulations cover all one-off parameter variations.

Table 2-1. Summary of test cases explored with parameter values for the reference case and the two variants.

Referen
Paramet ce Low High
er Description Units Value Value Value Comments
1 hr Thickness of m 150 50 250
reservoir
2  her Thickness of m 150 100 200
caprock
3 ke Average horizontal mD 46 12 220
permeability of
reservoir
Vpp Dykstra-Parsons — 0.55 0.35 0.75 Correlated
coefficient with kg
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4 ker Average horizontal mD 0.02 0.002 0.2
permeability of
caprock
5  kv/kn Anisotropy ratio - 0.1 0.01 1
6 q CO;injectionrate MMT/yr 0.83 0.33 1.33
bbl/day ~17074 ~7238 ~25855 Averages
from the
reference
case
L Outer radius of m 10000 5000 7000 Correlated
reservoir with g
7 Or Porosity of - 0.12 0.08 0.18
reservoir
8 Ocr Porosity of caprock — 0.07 0.05 0.1
9  Pccer Capillary pressure  — referenc  decreased increased Pc
model of caprock e Pcby x3 by x3
10 Ik Permeability - random increasing
layering from bottom
1.0 o« 1.0
Reference
0.8 0.8 (df,/ds,) = 4.64 Y (df,/ds,) = 1.74
0.6 0.6
* = ——fg_Reference
0.4 :::i_:e'::fr:::ce 0.4 1 ---Tgangent_Reference
-O-krg_C-ase A -o-fg_Case A
0.2 -o-krwg_Case A 0.2 -e-Tangent_Case A
-&-krg_Case B -a-fg_Case B
-8-krwg_Case B -@-Tangent_Case B
0.0 T 0.0 T
0.0 0.2 0.4 sg 0.6 0.8 1.0 0.0 0.2 0.4 sg 0.6 0.8 1.0

Fig. 2-2. (a) Relative permeability model variations, with different gas-water relative
permeability curves (left panel); (b) Fractional flow curves for the three relative permeability
models characterized in terms of their slopes (right panel).
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(B) Predicting dimensionless pressure buildup and injectivity

Our objective here is to develop a simplified model for dimensionless pressure buildup at the injection
well as a function of key reservoir and fluid properties. This model can be used to predict the injectivity
(i.e., ratio of injection rate to pressure buildup) in similar layered aquifer systems, given their respective
system parameters. We describe the process of formulating and validating the predictive model for CO,
injectivity below.

From our sensitivity analysis simulations, we consistently observe that CO; begins displacing brine in the
reservoir with an initial pressure jump followed by a transient period of quasi-steady injection well
pressure. Once the pressure front reaches the lateral boundary of our system, further CO, injection causes
additional pressure buildup in the reservoir as expected. The pressure jump at the well can be converted
into a dimensionless quantity (Pp) using Eq. 2-1.

SN
jump

Py
Qrey (2-1)

where K is reservoir permeability, hg is reservoir thickness, g is volumetric injection rate, p is brine
viscosity, and APjump IS the observed value of the pressure jump.

Based on inspectional analysis, we find that the dimensionless pressure buildup can be characterized as a
function of the following variable groups:

o Relative permeability model characterized by the slope of the tangent to the CO, fractional flow
curve, dfy/dSy
o Dykstra-Parsons coefficient, defined as

(kso — kgs1)
kso

where kso is median (i.e., 50th percentile) reservoir permeability, and ksa 1 is the reservoir permeability at
the median + one standard deviation (i.e., 84.1th percentile), assuming a log-normal distribution.

Fig. 2-3 shows a plot of the dimensionless pressure jump, Pp, versus the slope of the fractional flow
curve, dfy/dSg, which characterizes the relative permeability relationship. From the minimal scatter in the
data, we conclude that the relative permeability model has a strong impact on Pp and hence injectivity,
while permeability heterogeneity as characterized by Vpp has only a second-order effect.
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Fig. 2-3. Scatter plot of PD values for varying dfg/dSg and VDP.

The simulated data in Fig. 2-3 were fit to a multivariate quadratic regression model with interaction terms
to yield the following relationship for Pp:

df, df, df, )’ )

P, =10.3+0.59—% +3.41V,, +1.23—%V,, —0.342 —% | -8.89(V,, )
ds ds ds

g 9 9 (2_2)

Fig. 2-4 shows a comparison between the simulated values of Pp and those predicted with Eq. (2-2),
indicating very good agreement. The coefficient of determination for this fit is R? = 0.93.

Injectivity index (q/APjump) Of the well is calculated from the dimensionless pressure buildup using Eq. 2-

1. Fig. 2-5 compares the predicted injectivity indexes from our model with those calculated directly from

the simulation dataset. The general equivalence between the model predictions and the simulations for the
injectivity thus demonstrates the validity of our model.

14 400
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10 5 300
c o
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3 3 200
2 6 o
o £ 150
4 g
2 100 - Ref
5 A Ref o M Case|B
W Case B :1 50 - ®Case A
0 ®|Case A <> Valig‘ation
! 0 t }
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Pp_simulation J_simulation, bbl/day/psi
Fig. 2-4. Comparison plot between regression model Fig. 2-5. Comparison plot between regression
Predictions and simulator output values for Pp. model predictions and simulator output

values for g/AP.
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The simplified predictive model obtained for dimensionless pressure buildup (and hence for CO,
injectivity) is also validated successfully for its robustness with two ‘blind’ simulation cases that were not
part of the regression analysis, shown as yellow diamonds in Fig. 2-5. We find that the injectivity index
predicted by our model for the first validation case is 10.5 bbl/day/psi compared to the simulation result
of 9.6 bbl/day/psi. For the second validation case, the injectivity index predicted by our model is 27.5
bbl/day/psi compared to the simulation result of 28.7 bbl/day/psi. Thus, our simplified model (Eq. 2-2),
together with Eq. 2-1, can be used to determine the CO; injection rate for a given target pressure
differential, or alternatively, the pressure differential that would result from injecting CO. at a target rate.

2.2.4 Predicting average pressure buildup

For single-phase flow in closed systems, the dimensionless form of average reservoir pressure buildup
can be written as [22]:
_ kh(P-P)) kt

Pp =2mtp, = P tpa = DucA (2-3)

where Pp is dimensionless pressure and tpa is dimensionless time based on the drainage area, A. First,
using simulated CO2-brine displacement data with no-flow upper and lower boundaries (i.e., for a
confined system), we investigate how this relationship changes for each of the three different relative
permeability models shown in Fig. 2-2. In each of these cases, we notice a linear relationship between Pp
and tpa, as would be expected in the case of single-phase flow. However, the slope is always found to be
lower than the single-phase value of (27), which can be attributed to the effects of two-phase flow and the
variability in the relative permeability models. The factor that quantifies the deviation from (2m), denoted
by ‘f*, is postulated to be a function of the effectiveness of two-phase flow in the reservoir. This is
dependent on the relative permeability model as well as the two-phase displacement dynamics. A proxy
for the effectiveness of this displacement is the plume extent. Hence we determine ‘f” to be directly
related to the ratio of the system size to the plume extent, as shown in Fig. 2-6.

0.96

=0.003x + 0.7738
0.94 y

R?=10.9985 /
0.92 /
0.9

0.88

0.86
¢

0.84

'f' factor

0 10 20 30 40 50 60

(Rboundary/RCOZ )2

Fig. 2-6. The ‘f* factor for closed reservoirs is correlated to the square of the ratio of the reservoir radius to
the plume radius at the end of injection.
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The next step is to determine the effect of reservoir and cap rock properties on ‘f*” in semi-confined
systems. We can express this in terms of a modified form of Eq. (2-3), viz.

Pp = fsc.f.2mtpy (2-4)

We expect that ‘fsc’ changes with varying storage capacity of the rock for each relative permeability
model. All the simulation cases for all three relative permeability models have been analyzed to study the
effect of rock properties on the slope factor. The ‘fsc’ factor was found to be essentially equivalent to the
storativity ratio, i.e., ratio of the porosity-thickness of the reservoir to the total porosity-thickness of the
system:

_ PrhR
®rhr+ Ocrhcr

fsc (2-5)

We summarize the results for each relative permeability model in Fig. 2-7, which compares fsc calculated
from the simulation results to that predicted by Eq. 2-5, thus indicating the robustness of this simple
analytical proxy.

Ref 0 cases CaseA cases CaseB cases
1 1 1

o8 / o /\/”/ o8 /
0.6 &

° 0.6 / A g 0.6 / I /
-

- 0.4 \0.4 / 0.4 /

0.2 / 0.2 0.2

T T T - , 0 T T T T ) T T T T 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(dphg)/( dehg+ deghcr) (dghg)/( dghe+ derher) (dghg)/( dghg+ degher)

S
S

Fig. 2-7. Plot illustrating equivalence of fSC and ratio of porosity-thickness of the reservoir to the
total porosity-thickness of the system (cap rock + reservoir) for all three relative permeability
models.

2.2.5 Predicting total storage efficiency and plume radius

Our objective here is to develop a simplified model to estimate the outer extent of the CO,-brine interface
at the end of CO; injection in the reservoir. It is useful to define a few concepts using a schematic of the
plume as shown in Fig. 2-8. Within the plume footprint, the fraction of the total pore volume in the
reservoir contacted by CO; is given by the volumetric sweep efficiency (E,). This is the ratio of the
volume swept (contacted) by CO- to the total volume within the footprint of the CO, plume. Within this
swept volume, the efficiency of displacement of the native brine by the CO, is given by the displacement
efficiency. Because the initial gas saturation in the reservoir is zero, the average CO; saturation behind the
front, Sqav, gives this displacement efficiency [24]. The total storage efficiency Es, defined as the product
of Ey and Sgq.av, thus signifies the efficiency of CO»-brine displacement process or the ability to effectively
sequester CO; in that reservoir. The lesser the value of total storage efficiency, the farther the areal
footprint of the plume would be from the injection well.
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g,.av = Average Gas Saturation in Swept Volume
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Fig. 2-8. System schematic showing graphical definition of plume
extent, volumetric sweep and displacement efficiency.

Es is related to the maximum radial extent of the CO, plume at the end of injection, R, as given in Eq. 6
below:

2 _ Q _ Q
7T¢RhR5g,ava TPRrhREs

(2-6)

R can be calculated for a given injection volume and reservoir storativity (porosity-thickness product), if
we can compute Es as a function of fundamental inputs using Eg. 6. For our heterogeneous system, we
can draw comparison of Es terms with the volumetric sweep and displacement efficiencies from other
simplified models in literature. The classic Buckley-Leverett theory gives the average gas saturation
(Sg.av) to be the reciprocal of the shock velocity, i.e., slope to the tangent of the gas fractional flow curve,
dfy/dSq [6]. In ideal homogeneous storage formations, perfect sweep efficiency (Ev = 1) is achieved such
as that considered in [7-8].

Based on first principles and the sensitivity analysis exercise described earlier, we characterize total
storage efficiency as a function of the following variable groups:

e Gravity number is a ratio of gravity and viscous effects. We define the dimensionless gravity
number while accounting for the reservoir permeability anisotropy as:

(Apghr)krhr(“E)
Ng=—""7y
"4
g (E)

The definition for gravity number in surveyed literature varies from source to source [23]. However the
fundamental behavior of this number remains the same through all definitions as to when the gravity
effects are more pronounced compared to the viscous flow effects (such as in thicker reservoirs) and vice-
versa.

(2-7)

e The heterogeneity of the reservoir, in terms of its spatial variation in permeability, is
characterized by the Dykstra-Parsons coefficient, Vpp
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e The heterogeneity of the reservoir can also be characterized in terms of the Lorenz coefficient
which is related to the Dykstra-Parsons coefficient. It is defined as [24]:

Le = 2{J; FadCy — 3} (2-8)

. . " krihgi
where F, = cumulative flow capacity = W
i=1 "*Ril*RI

: : Yie, Prilgi

and C, = cumulative storage capacity = SF———
Zi:1 ¢thRl

The Lorenz coefficient also ranges from 0 to 1 with Lc being null for homogeneous reservoirs and closer
to one for extremely heterogeneous ones. We calculate the Lorenz coefficient by honoring the
permeability layering from the bottom-most to the top-most layer of the reservoir.

o Relative permeability model characterized by the slope of the tangent to CO; fractional flow
curve, dfy/dS,.

Fig. 2-9 shows Es plotted as a function of all four independent variables defined above. As in
waterflooding, we see the dependence of the total efficiency on relative permeability, i.e., higher dfy/dSq
values tend to have lesser scatter. The effect of reservoir heterogeneity is captured from the dependency
of Es on both the Dykstra-Parsons coefficient and the Lorenz coefficient. Buoyant CO; displacing brine is
also affected by gravity segregation which is shown from Fig. 2-9(c).
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Fig. 2-9. Scatter plots of Es values as a function of all four independent variables: (a) dfy/dSg, (b)
Voe, (€) Ng, and (d) Lc.

The simulated data in Fig. 2-9 were fit to a multivariate quadratic regression model with interaction terms
to yield the following relationship for Es (in percent):

_ df, df,
Es =307 + 0435~ + 29.24Lc — 22.02Vpp — 112Ny +4.59 7 Vpp
g g
dAf N\ (2-9)
g
— 25.21L:Vpp — 0.692 (E) +6.11(N,)>

Fig. 2-10 shows the agreement between simulated and predicted values of Es using our model, indicating

very good agreement. The predicted total storage efficiency from Eg. 2-9 can be used to calculate the CO>
plume extent for a given amount of CO: injected into the reservoir. Fig. 2-11 compares the predicted CO2
plume extents (using predicted Es in Eq. 2-6) for our simulations with the plume extents resulting from

the respective simulations.
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The simplified predictive model obtained for total storage efficiency and hence plume radius, is also
validated for its robustness with two ‘blind’ simulation cases (shown as yellow diamonds in Fig. 2-11)
that were not part of the regression analysis. We find that the plume radius predicted by our model for the
first validation case is 1648 m compared to the simulation result of 1557 m. For the second validation
case, the plume radius predicted by our model is 1794 m compared to the simulation result of 1670 m.
Thus, our simplified model (equation 9) can be used to reasonably predict the total storage efficiency and
hence determine the ultimate plume extent at the end of CO: injection from Eq. 2-6.

2.3 Statistical Learning Based Models
2.3.1 Background

The routine use of full-physics models for such tasks as uncertainty quantification, optimization and
sensitivity analysis is often hindered by the computational burden of running repetitive simulations.
Statistical-learning based modeling, also called proxy modeling, metamodeling or response surface
modeling, is one common strategy for ameliorating this situation [25]. In this approach, an affordable
sample of input settings is chosen, and the full physics model is run at those settings to obtain responses
of interest. A proxy model or response surface is then fit to these data using statistical techniques. The
proxy model is a functional approximation of the full-physics model for a given set of input values, albeit
at a fraction of the computational cost of the full model. When the response in the full-physics model is
well behaved and does not change erratically with respect to the input settings, proxy models can be quite
accurate. When the response is less well behaved, the approximation could be poorer, at least in certain
parts of the input space. However, even in these cases the proxy model can be useful for discovering the
general parts of the input space that produce the most desirable response, at which time a more detailed
study could be performed with the full physics model using only a small set of runs.

In the reservoir modeling literature, metamodels are often used as proxies for the underlying simulation
models, especially for optimization and uncertainty quantification studies. Several studies have addressed
sampling and metamodeling strategy for reservoir simulations. In particular, [26] examines Latin
hypercube sampling (LHS) designs and compares polynomial and kriging metamodels, [27] focuses
specifically on LHS designs, [28] compares polynomial, kriging, thin plate spline, and artificial neural
network metamodels. In [29], the authors compared a second order polynomial model and kriging model
using an orthogonal array (OA) sample design in a gas coning case study. In this case, the second order
polynomial outperformed kriging with a 36-run design in 14 variables. Ref. [30] settled on first order
polynomial models for fitting outputs of a CMG STARS simulation for CO; sequestration in deep saline
carbonate aquifers. The models were fit using LHS designs of size 100 over 16 variables. Finally, [31]
used a Box-Behnken design and a stepwise quadratic regression model to develop probability
distributions for responses related to CO- injection into deep saline formations.

The goal of this study was to compare two different approaches to sampling and proxy modeling for CO>
sequestration where a compositional simulator, CMG-GEM, is used as the full-physics model. Running a
simulation requires the specification of nine input parameters, and results in a host of responses over a 30-
year period. Of these responses, three were chosen for the proxy model comparison. The first is average
pressure in the reservoir, the second is radius of the CO, plume, and the third is total storage efficiency of
the reservoir. All responses were selected at the end of the 30-year period.
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2.3.2 Methodology

One of the standard proxy modeling approaches used in the reservoir modeling literature is quadratic
polynomial modeling with a classical experimental design. A popular design for this purpose is the Box-
Behnken design [25], which assigns a “Low” (-1), “Medium” (0), and “High” (+1) level to each input
variable. Levels of the inputs are judiciously chosen in such a way that linear and quadratic terms of the
polynomial surface can be estimated with the smallest number of runs possible. This corresponds to a
selection of uniquely located sampling points along the edges of a hypercube in the input space (see Fig.
2-12).

X1 | X2 | X3 15

-1 -1 0 1
°
-1 0 -1 05 ®
o
-1 |0 |+ 0 ° e
*
1 [+ o | 7% »
0 |1 |- * o
0 -1 +1
0 0 0
0 +1 -1
0 +1 +1
+1 -1 0
+1 0 -1
+1 0 +1
+1 +1 0

Fig. 2-12. A Box-Behnken Design for three inputs (left) and its representation
in the input space (right).

The quadratic polynomial model fits a model to the response that is the analogue of the parabola in p
dimensions, where p is the number of inputs. It is defined as a sum of all linear, quadratic, and pair-wise
cross-product terms between the predictors. That is, the approximating function £ (x) is given by the
equation below.

f) =bo + X0 bix; + Xb_ bii(x)? + XF_, ¥ isi bijxix; (2-10)
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For responses that have smooth, well-defined behavior over the input space, a quadratic polynomial
model based on a classical experimental design like the Box-Behnken design would be appropriate.
However, in some cases this may not be a valid assumption. Additionally, interesting behavior in the
response could be occurring somewhere between the “Low” and “Medium” input settings, or between the
“Medium” and “High” settings. A design which only considers those three input levels may be
oversimplifying and not provide an appropriate level of granularity.

An alternate approach is to use a sampling-based design, which is not restricted to three input levels. Such
a design generates a sample that is intended to satisfy a particular criterion. In some cases, these designs
are even determined through numerical optimization of that criterion. Typically, the criteria capture
information about the “space-filling” nature of the design. That is, they measure how well dispersed the
sample points are across the input space. Intuitively, the better spaced the points are throughout the space,
the fewer “gaps” or “holes” there will be for which no sampled observations were collected at a similar
set of input values.

These designs come in many flavors, but the one discussed in the context of this study is a maximin Latin
Hypercube sample (LHS) [25]. A LHS is a design that is intended to fill the input space by randomly
selecting observations in equal probability bins across the range of the inputs. These designs sample
values in [0, 1] for each of the inputs at each design point. The sampling is done in such a way that for a
sample of size n, there will be exactly one observation in each of the intervals [0, 1/n), [1/n, 2/n), ..., [(n-
1)/n, 1] for each of the inputs. A maximin LHS is created by generating a large number (e.g., thousands)
of LHS designs and selecting the design that has the largest value of the function

M(xt,x?%, ..., x™) = ming; ||x" — x7||,  (2-11)

where x?,x?, ..., x™ are the n sampled observations and ||x* — x/|| is the Euclidean distance between
observations i and j. In other words, the maximin LHS design is the one that maximizes the minimum
distance between any pair of observations in the sample. Examples of LHS and maximin LHS designs are
shown in Fig. 2-13, that highlight the superior space-filling nature of the latter scheme.

Basic LHS

Maximin LHS

Fig. 2-13. Examples of LHS designs (red) and maximin LHS designs (green) using 20 observations
for two inputs.
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In addition to sampling designs, there are also alternative proxy models that can be used in place of a
quadratic polynomial [32]. A common alternative used for oil and gas applications is the kriging model
[32-35], which has an approximation function £(x) that is composed of a trend term and an
autocorrelation term:

fX) =pux +2(x), (2-12)

where u(x) is the overall trend and Z(x) is the autocorrelation term. Z(x) is treated as the realization of a
mean zero stochastic process with a covariance structure given by Cov(Z (x)) = ¢?R, where R is an nxn
matrix whose (i, )™ element is the correlation function R(x‘,x/) between any two of the sampled

observations x* and x/. One choice is the Matérn (5/2, 8) correlation, which is given by the equation
below, where

d, = (x,‘< — x,ﬁ)

o, diV5 | 5dj diVs
R(x, %) = T2, [1 FES e_,gk] exp (—42) (2-13)

In this study, we have used ordinary kriging which assumes a scalar trend (x) = p,,

2.3.3 Study Description

As described previously for the simplified-physics based modeling case, the system being studied
represents a single-well injecting supercritical CO- into a bounded 2-D radial-cylindrical formation
(storage reservoir) initially filled with brine. The model domain consists of a porous and permeable
heterogeneous reservoir, overlain by a low-permeability cap rock. The top of the cap rock, the bottom of
the reservoir and the lateral boundary are all assumed to be no-flow boundaries. The simulations are
executed in the numerical simulator CMG-GEM. Table 2-1 shows the nine independent variables, and the
reference (0), low (-1) and high (+1) values used to set up the Box-Behnken designs. Table 2-2 shows the
distributions used to sample these variables for the maximin LHS design. Here, T denotes a triangular
distribution, and InT denotes a log-triangular distribution.

Proxy models were trained for each of three responses (total storage efficiency, plume radius and average
reservoir pressure) generated by the GEM reservoir simulator. Both sampling designs contained n = 97
runs with different values for the nine input variables. The selection of 97 runs was made because the
Box-Behnken design for p = 9 input variables has n = 97 unique observations. To avoid any bias that
could be attributed to unequal sample sizes, all of the maximin LHS designs were restricted to the same
number of runs as the Box-Behnken design.

Table 2-2. Input Distributions used with LHS Sampling

Input Description Distribution
hr Thickness of the reservoir, m T(50,150,250)
hcr Thickness of the caprock, m T(100,150,200)
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Link_R Log-mean reservoir permeability Wik R ~ T(2.45, 3.56, 4.67)
(mD),
Dykstra-Parson’s coefficient
Vor (perfectly correlated) Vor ~T(0.35, 0.55, 0.75)
Kcr Average horizontal permeability of InT(0.002,0.02,0.2)
the caprock, mD
Kv/Kn Anisotropy ratio InT(0.01,0.1,1)
q COs; injection rate, MMT/yr discrete with equal probability — {0.33, 0.83, 1.33}
Or Porosity of the reservoir T(0.08,0.12,0.18)
Qcr Porosity of the caprock T(0.05,0.07,0.10)
Ik Order of permeability layering Discrete w/equal probability,

9 9 9 9

Ik € {“random”, ” increasing”, ”decreasing”}

To compare different models, the common approach of characterizing the goodness-of-fit based on the
training data set was used as a starting point. Note that in this case, the statistics will be biased
optimistically, since the metamodel first and foremost is designed to fit those particular observations well.
An overtrained model will fit the training data very well, but perform poorly on independent test data.
Therefore, an independent ordinary LHS design with m = 97 independent observations was generated as a
“validation” data set. Finally, a k-fold cross-validation approach was applied [36].

Under this paradigm, the dataset is randomly partitioned into k folds, which are mutually exclusive and
exhaustive subsets of the observations. Each fold is then systematically held out and the metamodel is fit
to a dataset consisting of only the remaining k — 1 folds. This model is then used to make a prediction on
the fold that was left out. After repeating this process on all k folds, there are a total of k models that are
constructed, each of which are used to predict the value of the single fold that was left out of the training
set. While the cross-validation approach does not specifically test the unique model that is created by
using all n training observations together, it does test the algorithm that is used to construct the model.
When each fold is held out of the training set, it will behave like independent test data as far as that
particular model is concerned. Therefore, the errors from the cross-validation more accurately reflect error
rates in the model fit over parts of the response surface that have not been sampled. The rule of thumb is
to use somewhere between k =5 and k = 10 [36].

The accuracy of each model (using the training data set, independent validation data set, or k-fold cross-
validation) was then captured using three different related measures. The first is the root mean squared
error (RMSE), which is defined as the square root of the average squared difference between predictions
9; = f(x*) and true response values y; = f(x") over the set of validation observations {x*,x2, ..., x"}.
The RMSE may also be divided by the median response to produce a scaled RMSE (SRMSE) that
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facilitates easier comparison between responses. The final statistic used in model evaluation was a
pseudo-R? value, which measures the amount of variation in the response that can be attributed to the
predictors. Note that in this definition of the R? value, negative values are possible and indicate a model
that is less useful in prediction than simply using the mean response.

2.3.4 Results

The performance of the two design-model combinations studied, i.e., Box Behnken (BB)-quadratic and
maximin (MM)-kriging, are shown in Fig. 2-14. The bar charts show the pseudo-R2 statistic indicating
goodness-of-fit for the full training data, independent validation data and k-fold cross-validation exercise.
Taller bars indicate better performance. Beginning with the left panel, which shows model performance
for the training data only, it is clear that the bars represent a biased view of model performance, since the
models are being evaluated over the same dataset used to train them. For example, since kriging models
are perfect interpolators (i.e., they pass through each observation by design), they always achieve zero
error over the training set. However, one obviously could not expect them to perfectly model the response
at other points in the input space. The middle panel shows results for validation using the independent
LHS sample set. Here, the performance of BB and MM designs are essentially equivalent when
considered across all three metrics.

The right panel shows the results for the cross validation exercise. The question of interest here is: had
validation data not been available, would cross-validation have given similar results in terms of which
metamodels had the best performance on each of the responses? To investigate this question, a 5-fold
cross-validation procedure was implemented 100 times for each of the metamodels. For each response,
this produced 100 cross-validated predictions at every set of sampled predictor inputs. The metamodels
were compared using the average R? over the 100 sets of predictions. There are several interesting things
to note in comparing these results to the validation results. First of all, the cross-validation error rates
seem higher than the validation error rates, especially for the Box-Behnken design. This is likely because
predictions by cross-validated models can only be made at sampled locations in the response surface. In
the case of the BB designs, the only samples points were on the boundaries of the predictor space, where
models are not as likely to fit well, especially when those points are left out of the training process. These
considerations do not apply to space filling designs, because of which the MM LHS appears to be
superior to the BB design.
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Total Storage Efficiency
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Fig. 2-14. Comparison of R? for BB-quadratic and MM-kriging proxy models for the three different
performance metrics of interest.

These results are further substantiated via the scatterplots between the simulated and predicted values of
the three performance metrics of interest, shown in Fig. 2-15 through 2-17. These scatterplots show a
comparison of the actual response (horizontal axis) to the predicted response (vertical axis), with perfect
prediction represented by the dashed diagonal gray line. In the case of the full training evaluation, the
dots represent the design used to train the model, with predictions being made on those same design
points. In the case of the validation approach, the dots represent the validation LHS design over which
the models were evaluated. Finally, in the case of cross-validation, the dots represent the median cross-
validated predictions over the training design. The bars show the spread of the predictions over the 100
replications of the cross-validation procedure, with the black line showing the middle 50% of predictions,
the dark gray extending out to the 5th and 95th percentile predictions, and the light gray lines extending to
the minimum and maximum predicted value. In some cases, the light gray lines are truncated to avoid
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distorting the vertical axis. Note also both models tended to underestimate the magnitude of the largest
average pressures for the validation set as well as for the cross-validation case.
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Fig. 2-15. Scatterplots showing actual (horizontal axis) vs. predicted response (vertical axis)
for Total Storage Efficiency.
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Fig. 2-16. Scatterplots showing actual (horizontal axis) vs. predicted response (vertical axis)
for Plume Radius.
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Fig. 2-17. Scatterplots showing actual (horizontal axis) vs. predicted response (vertical axis)
for Average Pressure.
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2.4 Reduced-Order Method Based Models
2.4.1 Background

Our goal in this work was to develop and test a reduced-order modeling framework for CO- storage
problems. The method we are pursuing is based on trajectory piecewise linearization (TPWL) and uses
proper orthogonal decomposition (POD) to project the linearized representation into a low-dimensional
space. We thus refer to the overall method as POD-TPWL. Reduced-order modeling techniques that rely
on POD alone have been developed for subsurface flow simulation [37-39], though these methods are
limited in terms of the amount of speedup achievable for general (nonlinear) problems such as those
associated with CO; storage. The TPWL method, originally presented in [40], is more approximate but it
can achieve much greater speedups for such cases. Implementations of POD-TPWL for subsurface flow
have been reported for oil-water problems [41-42], idealized thermal simulation systems [43], and oil-gas
compositional problems [44].

2.4.2 Methodology

The reduced-order model (ROM) developed in this work can be classified as a reduced numerical
procedure. As such, it is based on the underlying (discretized) equations describing the flow process of
interest. This is in contrast to surrogate models that apply statistical or data-fitting procedures such as
those described in previous sections, which are not based directly on the underlying equations.

The governing equations for two-phase or compositional flow in porous formations are derived by
combining expressions for mass conservation with Darcy’s law. These equations are solved numerically
in this work using a fully-implicit finite-volume technique. We apply the usual discretization procedures
(two-point flux approximation, first-order implicit time-discretization method, standard well
representation), in order to arrive at the discretized flow equations. We then write the nonlinear set of
discretized equations (for either black-oil or compositional systems) as:

g(Xn+1,Xn, un+1) =0, (2_14)

where g designates the vector of discretized residual equations we wish to solve, x denotes the system
states (e.g., pressure and saturation in every grid block in a two-phase flow problem), u designates the
specified controls (well bottomhole pressures or injection/production rates), and n and n+1 indicate time
levels. The goal is to compute x™?, the states at the next time level. Previous states x” and controls u™* are
known or specified. This nonlinear system of equations is typically solved iteratively, using Newton’s
method, which can be very time consuming for large models. For a two-component model containing ny
grid blocks, Eq. 2-14 represents a system of 2n, equations and 2n, unknowns.

In TPWL procedures, the nonlinear set of equations is linearized around “points” (vectors of states and
controls) that have been simulated in previous full-order “training” simulations. Given the current state
xn, we designate the closest saved state encountered during the training run as xi (the specific definition
of “distance,” used to determine “closeness,” is problem dependent; see, ¢.g., He and Durlofsky [44] for
detailed discussion). To determine x™, we linearize Eq. 2-14 around the saved states and controls
(x'*1, x4, u'*1), and then represent new solutions using the linear expansion
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gntl = git1 4 287 (Xn+1 xi+1) +a§—:1(x —x )+

axl+1

PoET (uTl+1 i+1)' (2_15)

where g"*1 = g(x™*1,x™, u"*1) = 0 and g'*! = g(x'*1,x’, u'*t) = 0. Note that the Jacobian matrix,
which is the derivative of the residual vector with respect to the state vector, for time step i+1 in the
training run, is given by Ji+1 = agi*1/9x'*1. In all of our expressions, this matrix is always evaluated at
the converged states x*1.

Application of POD enables us to represent the states x in terms of a small number of parameters. This is
accomplished using the relationship x = ®&, where & is the so-called basis matrix (constructed from
“snapshots”; i.e., the solution states computed in training runs) and ¢ is the reduced-variable vector. The
matrix @ is “tall and skinny,” of dimensions 2nbx|, where | << 2nb. This means that the states x (of
dimension 2nb) can be expressed efficiently in terms of the “short” vector & (of dimension I). After
manipulating Eq. 2-15, and inserting x = ®§, we have an over-determined system of 2nb equations (for
a two-component problem) in | unknowns. This can be written concisely as:

J+lpEntl = . (2-16)

Eq. 2-16 must be solved for £**1, Information in the right-hand side vector b is known (it is either
prescribed or involves information at time step n). See He and Durlofsky [44] and Jin [45] for details.

In order to render Eq. 2-16 directly solvable, it must be projected into a subspace of dimension 1. This is

accomplished by premultiplying Eq. 16 by a matrix (‘P"“)T, where Wit s of the same dimensions
(2nbxI) as @. Then, at each time step, the POD-TPWL equation to be solved for &**1 is as follows:

((q;i+1)T]i+1q)) g+l - (1Pi+1)Tb _ (2-17)

This equation can be written as A,.§"*1 = b,., where A, = (‘P”l)T]”ldJ and b, = (ll'”l)Tb. Note that

the dimension of the reduced matrix A, is Ixl, which is much smaller than that of the full-order Jacobian
matrix J. This reduction, combined with the fact that we now solve a linear equation, gives POD-TPWL
its high degree of efficiency.

The choice for the premultiplication matrix (which is referred to here as the constraint reduction matrix)
can have a significant impact on POD-TPWL stability and accuracy for many problems, including CO-
sequestration. The schemes considered in this study include: (a) Galerkin projection, where we set
Pi+l — ¢, (b) Petrov-Galerkin projection (used within the context of reduced-order modeling by, e.g.,
Carlberg et al. [46]), where we take Wi+ = Ji+1d, (c) inverse projection (IP), where Wit! =

(]"+1)_Td> , and (d) weighted inverse projection, which is similar to IP but additionally includes a
weighting matrix W to give Wi+t = (]i“)_TWTWd).
Stanford’s Automatic Differentiation-based General Purpose Research Simulator, AD-GPRS [47], is used

for the full-order simulations and to provide all of the state and derivative matrix information required by
our POD-TPWL model.

DOE Award No. DE-FE0009051, Final Report 26



Simplified Predictive Models
for CO, Sequestration

(A) Application of POD-TPWL for 2D Cross-Sectional Model with Vertical Well

The problem we first consider is a cross-sectional (x-z) version of the radial axisymmetric (r-z) model
described earlier. Most of the reservoir properties, component properties, fluid properties and rock-fluid
properties are consistent between the AD-GPRS model used here and the GEM base case model
described previously. There are, however, some discrepancies, e.g., (2) AD-GPRS uses an equation of
state to compute gas dissolution into water, rather than Henry’s law, as is used in GEM, and (b) the AD-
GPRS model does not include salinity, which results in slightly different liquid density and viscosity
compared to GEM. The AD-GPRS model does not include capillary pressure effects, and it uses the
same relative permeability curve for both the reservoir and cap rock. We inject CO, at the same rate as in
the GEM base case. The simulation period is 30 years.

As discussed above, the POD-TPWL procedure transforms the high-dimensional nonlinear compositional
problem into a linear model with a small number of variables. Once the POD-TPWL model is built using
information from training simulations, it is capable of providing fast forecasts for new sets of controls
(such as well BHPs). To this end, two training simulations are used; one to provide the linearization
points, and the other to provide additional snapshots, which are required to construct the basis matrix. The
2000 full-order pressure variables are reduced to 90 low-dimensional variables, and the 4000 mole
fraction variables are reduced to 120 low-dimensional variables. The POD-TPWL model is then used to
predict the injection rate and well-block pressure for a new (test) case in which the time-varying injection-
well BHP differs from that used in the training run.

Fig. 2-18 shows the time-varying BHPs for the training and test simulations. Both BHPs increase
monotonically, but they start at different points and have different slopes. Fig. 2-19 shows the injection-
block pressure (left) and CO; injection rate (right) results for the various simulations. The black dotted
curves represent the solution for the training case, around which we linearize. The red curves represent
the true (full-order) solution for the test case, computed using AD-GPRS. The test-case solution clearly
differs from the training solution. We run POD-TPWL with three of the constraint reduction methods
discussed above. POD-TPWL with Galerkin projection is not stable for this case and the results are not
presented here. For injection-block pressure, both the Petrov-Galerkin (PG) method and the inverse
projection (IP) method match the true solution closely (both POD-TPWL solutions overlay the AD-GPRS
solution), though the IP method provides slightly better accuracy than the PG method.

The improvement in accuracy using the IP method is more apparent in the prediction of the CO, injection
rate. Here the POD-TPWL-IP results (purple curve) essentially overlay the true AD-GPRS results (red
curve). In this case, because of the very high well index, the injection rate is particularly sensitive to small
errors in the injection-block pressure, which is why the POD-TPWL-PG results (blue curve) display some
inaccuracy. It is significant that the POD-TPWL-IP method is able to provide a high level of accuracy for
this important quantity.
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Fig. 2-18. Time-varying BHPs for the training and test cases.
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Fig. 2-19. Injection-block pressure (left) and CO> injection rate (right) for test case.
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2.4.3 Application of POD-TPWL for 3D Model with Horizontal Wells

We now describe the application of our POD-TPWL reduced-order modeling framework for an idealized
model of CO; storage in the Mount Simon Sandstone in Illinois. This formation was the target for the
CO; storage associated with FutureGen 2.0 [48]. The model and permeability field, shown in Figs. 2-20
and 2-21, are intended to be conceptual and lack many of the complexities of the simulation model
developed and applied at Pacific Northwest National Laboratory. The simplified model used here is
nonetheless quite useful for POD-TPW.L testing. It represents the storage aquifer on a 30x30x30 grid
(total of 27,000 grid blocks), and the full regional system on a 46x46x30 grid (total of 63,480 grid
blocks). The storage aquifer is of physical dimensions 3.1 mi (5 km) x 3.1 mi (5 km) x 1346 ft (410 m),
and the full model is of dimensions 100 mi x 100 mi x 1346 ft. CO- injection is accomplished using four
horizontal wells, as shown in Fig. 20 (right).

Fig. 2-20. Areal grid and well locations for conceptual Mount Simon model.
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Fig. 2-21. Log horizontal permeability (mD) for conceptual Mount Simon model.

(A) Wells with BHP Control

As explained earlier, in order to apply the POD-TPWL model, we first perform one or more full-order
AD-GPRS training runs. Results and data from these runs are used to construct the POD-TPWL model.
For test runs, the degree of perturbation from the training run can be quantified using the parameter a,
with o=0 indicating the training run and o.=1 the case with the largest perturbation, referred to as the
target case. For values of o between 0 and 1, the test-case BHP for a particular well at time t (designated
uf,¢.) used in the simulation is computed using:

ugest = (1 - a)ugraining + augarget ’ (2'18)
Where uf, gining aNd Ufqrge, are the training and target BHPs for the well at time t.

Fig. 2-22 shows the time-varying BHPs for the training («=0) and target (a=1) runs. In the training run,
wells 11 and 13 display a decrease in BHP at 4000 days, while wells 12 and 14 display (stepwise-linearly)
increasing BHPs. In the target case the trends are the opposite — wells 11 and 13 have increasing BHPs,
and wells 12 and 14 have BHPs that decrease at 4000 days. This represents a challenging case for the
POD-TPWL model.

Test results for a=0.5 are shown in Fig. 2-23. The red line and points denote the reference (full-order)
AD-GPRS simulation results. The blue lines and points are the POD-TPWL results, which are labeled
PG_PS 90 120 (“PG” indicates Petrov-Galerkin, which is the constraint reduction procedure used, and
“PS_90 120~ indicates the number of reduced pressure and mole fraction variables), and the black dotted
curves represent training results. The POD-TPW.L results are seen to be quite accurate over much of the
simulation period, but for times up to about 1000 days, errors relative to AD-GPRS are evident. These
errors are most noticeable for wells 12 and 14. In general, we observe these errors to decrease with
decreasing values of a.
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(B) Wells with Rate Control

A new feature in the current POD-TPWL implementation is the ability to use well rates, rather than
BHPs, as the control parameters. See Jin [45] for the implementation details associated with this
capability. We now consider results using this type of specification. The rate profiles for the training and
test runs are shown in Fig. 2-24. In both cases, all wells are specified to inject the same volume of COg,
though this is not a requirement of the implementation. Test-case results for injection well BHPs for the
four wells are presented in Fig. 2-25. The various curves are as described earlier. The POD-TPWL results
in Fig. 2-25 display reasonable accuracy relative to the reference full-order simulation for this challenging
problem. There is, however, some inaccuracy at late time (after ~6500 days). We believe this is due to
limitations in the current POD-TPWL point selection scheme, and we plan to generalize this procedure in
future work. Runtime speedups of about a factor of 370 are achieved using POD-TPW.L (relative to the
full-order simulation) for this 3D case.
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Fig. 2-22. Training and target BHPs for the four injection wells.
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Fig. 2-25. COz injection well BHPs for test case.

(C) Prediction for Cases Involving Geological Perturbation

We now develop POD-TPWL models in which the perturbed “control” variable is a geological parameter.
Our discussion here, and the general development, follows that in He et al. [49] and Jin [45], where full
details can be found. We define y = log T, where T is the usual block-to-block transmissibility. The new

term appearing in the TPWL representation is now:

agi+1
w

(2-19)

agi+1
Y= Yo) = EDTM()'— Vo)

where gi** denotes the residual vector for the training run, T,, designates the vector of transmissibilities
for the training simulation, and Dy, is a diagonal matrix whose elements coincide with T,,. The POD-

TPWL model now becomes
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gL = g () AR (E — ) + B - vl

Here Bi*1 is given by

agi+1
aT,

B*'=wI'=—p, ,

where all variables are as defined previously.

(2-20)

(2-21)

We test this procedure on a vertical slice of the Mount Simon model where the storage aquifer is
represented by 30x30 grid blocks and the full regional system by 46x30 blocks. CO injection is from two
horizontal wells near the bottom of the model, with the injection schedule for both wells given in Fig. 2-
26. The training run corresponds to the geological model in Fig. 2-21. The test case involves a model in

which all permeabilities (and thus all

transmissibilities) are multiplied by a factor of 2.0

relative to the training case.

The POD-TPWL results for the test case are presented

in Fig. 2-27. It is apparent that there are only small

differences between the (full-order) training and test-
case results, though the test-case results are captured

by the POD-TPWL model. These results are

preliminary, though they do suggest that the POD-

TPWL implementation for geological perturbation is

essentially correct. Further testing and development of

this capability will be the subject of future work.
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2.5 Summary and Concluding Remarks

Here, we summarize the findings of the main component of our research project whose objective was to
develop and validate a portfolio of simplified modeling approaches for CO, sequestration in deep saline
formations — based on simplified physics, statistical learning, and/or mathematical approximations — for
predicting: (a) injection well and formation pressure buildup, and (b) lateral and vertical CO; plume
migration. Such computationally-efficient alternatives to conventional numerical simulators can be
valuable assets during preliminary CO; injection project screening, serve as a key element of probabilistic
system assessment modeling tools, and assist regulators in quickly evaluating geological storage projects.

2.5.1 Simplified-physics based models

For the simplified-physics based approach, we have used a set of well-designed full-physics
compositional simulations to understand key processes and parameters affecting pressure propagation and
buoyant plume migration. Based on these insights, we have developed correlations for dimensionless
pressure buildup (injectivity) as a function of the slope of fractional-flow curve, variance of layer
permeability values, and the nature of vertical permeability arrangement. The same variables, along with
a modified gravity number, can be used to develop a correlation for the total storage efficiency within the
CO; plume footprint. Similar correlations are also developed to predict the average pressure within the
injection reservoir, and the pressure buildup within the caprock. These relationships are thus a hybrid of:
(@) first principles and (b) response surface type modeling. The simplification of physics occurs through
the sensitivity analysis of full-physics simulations, which helps in isolating the key variables and
dimensionless groups affecting the performance metrics of interest. Also, such an approach is useful only
when the “macro” behavior of the system is being required, rather than point to point variations in the
state variables.

In order to use the predictive models for well injectivity or plume extent, we need to determine the input
sources for each of the independent variables involved. The most important terms in the simplified model
for total storage efficiency involve the relative permeability model followed by the reservoir
heterogeneity. Of the four independent variables, the porosity, thickness (from logs) and permeability are
assumed to be known for any given reservoir. Dykstra-Parsons coefficient can be calculated with the
knowledge of the permeability distribution in the reservoir obtained from well logs. Typical values of the
Dykstra-Parsons coefficient found in literature lie between 0.5 and 0.7. The Lorenz coefficient is related
to VDP and can be obtained from knowledge of the spatial arrangement of permeability in the vertical
layers. Brine viscosity can be calculated using reservoir salinity, pressure and temperature data. The slope
of the tangent to the fractional flow curve is one of the hardest inputs to obtain for a given reservoir. In
the absence of core data to test with, we encourage the user to use a lower and upper bound for the dfy/dSy
values from our study. This would yield an expected range of values for the injectivity.

Regarding the average pressure behavior in the reservoir for a given amount of CO; injected, we
determine that the effectiveness of two-phase flow in a given reservoir depends on an ‘f” factor. For
closed reservoirs, this ‘f* factor (which is a function of the relative permeability) is correlated to the
square of the ratio of the reservoir radius to the plume radius at the end of injection. When an overlying
cap rock is present, this ‘f* factor is modified to account for the relative storage capacity of the rock; i.e.,
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ratio of reservoir storativity to the total system storativity. These parameters are readily obtainable from
geologic considerations, and by applying our predictive model for plume radius.

2.5.2 Statistical-learning based models

In this strategy, we use statistical learning based methods to build “proxy” or surrogate models that serve
as functional equivalents of full-physics simulation results. We have compared two approaches for
building a statistical proxy model for CO. geologic sequestration from the results of detailed
compositional simulations. The first approach involves a classical Box-Behnken experimental design with
a quadratic polynomial response surface. The second approach used a space-filling maximin Latin
Hypercube sampling combined with an ordinary kriging meta-modeling techniques. Simulations results
for CO; injection into a reservoir-caprock system with 9 design variables (and 97 samples) were used to
generate the data for developing the proxy models. The fitted models were validated with using an
independent data set and a cross-validation approach for three different performance metrics: total storage
efficiency, CO; plume radius and average reservoir pressure.

The performance of the Box-Behnken — quadratic polynomial and the maximin LHS — kriging
metamodels are roughly equivalent for the independent validation data set, with the latter clearly
performing better for the cross-validation data exercise across all three responses. Thus, the maximin —
kriging metamodel can be considered to be a better overall choice for building robust predictive models.
The space-filling maximin LHS design provides a higher level of granularity than the 3-point Box-
Behnken design, and thus can provide a better understanding of input-output sensitivities at different
points in the parameter space. The kriging metamodel is a robust interpolator with many positive
gualities, but is computationally expensive to train and predict. Elsewhere, we describe how a quadratic
polynomial, combined with a LASSO variable selection scheme, can be an effective alternative to kriging
for metamodeling purposes in conjunction with a maximin LHS design [32].

Also note that a single proxy modeling strategy may not necessarily perform in a similar manner for
different performance metrics, as indicated by the results for average pressure. This aspect of proxy
modeling was also pointed out elsewhere [28]. From a practical standpoint, this may require building
different proxy models for each performance metric and evaluating them based on a cross-validation
criteria.

2.5.3 Reduced-order method based models

Reduced-order models provide a means for greatly accelerating the detailed simulations that will be
required to manage CO- storage operations. In this work, we investigated the use of one such method,
POD-TPWL, which has previously been shown to be effective in oil reservoir simulation problems. This
method combines trajectory piecewise linearization (TPWL), in which the solution to a new (test)
problem is represented through a linearization around the solution to a previously simulated (training)
problem, with proper orthogonal decomposition (POD), which enables solution states to be expressed in
terms of a relatively small number of parameters. In this study, we have applied POD-TPWL for CO--
water systems simulated using a compositional procedure. Stanford's Automatic Differentiation-based
General Purpose Research Simulator (AD-GPRS) performs the full-order training simulations and
provides the output (derivative matrices and system states) required by the POD-TPWL method. A new
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POD-TPWL capability introduced in this work is the use of horizontal injection wells that operate under
rate (rather than bottom-hole pressure) control.

Simulation results were presented for CO- injection into a simplified model of the Mount Simon
formation. Test cases involved the use of time-varying well controls that differed from those used in
training runs. Results of reasonable accuracy were consistently achieved for relevant well quantities.
Speedups of around a factor of 370 relative to full-order AD-GPRS simulations were observed for the 3D
example. The preprocessing needed for POD-TPWL model construction corresponds to the computational
requirements for about 2.3 full-order simulation runs (most of this time is used in performing the two full-
order training runs). A preliminary treatment for POD-TPWL modeling in which test cases differ from
training runs in terms of geological parameters (rather than well controls) was also presented. Results in
this case involved only small differences between training and test runs, though they do demonstrate that
the approach is able to capture basic solution trends.
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3. Uncertainty and Sensitivity Analysis Based Validation
of Simplified Models

3.1 Introduction

The previous chapter described the development and validation of simplified physics based, statistical
learning based and reduced order method based models for CO- geologic sequestration in stratified
aquifer-caprock systems. One of the intended applications of such models is in the integrated system
performance assessment of geologic CO, sequestration operations — especially if the analyses are carried
out in a probabilistic framework to deal with model and parameter uncertainty. Therefore, another
research goal of this project is ensure that these simplified models are also capable of reproducing the full
spectrum of uncertainty and sensitivity analysis results from detailed numerical simulators. Specifically,
it is important to verify that the cumulative distribution function (CDF) of outcomes from the detailed and
simplified models are in reasonable agreement, and the importance ranking of key uncertain variables
from both sources is similar. Such a “validation” step (in addition to the standard benchmarking using
deterministic test cases as described in the previous chapter) would add to the credibility of systems
model from a decision-maker’s perspective.

In this chapter, an evaluation of the uncertainty and sensitivity analysis performance of the various types
of simplified models developed in Sections 2.2 and 2.3 will be carried out in a Monte Carlo simulation
framework. In what follows, the simulation cases and input parameters are described first, followed by
the methodology for carrying out the validation. Next, the results of the analyses are presented, along
with some concluding remarks.

3.2 Description of simulation cases and parameters

As described previously in Section 2.2.3, the basic model to be utilized is that of a single-well injecting
supercritical CO; for 30 years into a 2-D radial-cylindrical bounded domain initially filled with brine.

The model domain consists of a porous and permeable reservoir, overlain by a low-permeability caprock.
The top of the caprock, the bottom of the reservoir and the lateral boundary are all assumed to be no-flow
boundaries. The relevant model parameters are defined below in Table 3-1 for a reference case, as well as
for “high” and “low” variants. In addition, the parameter ranges in Table 3-1 have also been transformed
into probability distributions for Latin Hypercube Sampling, as shown in Table 3-2.

Table 3-1. Parameter values for the reference case and the two variants.

Parameter | Description Units Reference | Low High Comments

value Value Value

1 | he Thickness of m 150 50 250
reservoir

2 | her Thickness of m 150 100 200
caprock

3 Kavg R Average mD 46 12 220
horizontal
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permeability of
reservoir
Dykstra-Parson’ perfectly
Vier yrSTaramson’s | _ 0.55 0.35 0.75 correlated
coefficient .
with kavg,R
Average
4 | Kager horizontal mD | 0.02 0.002 0.2
permeability of
caprock
5 kv/Kn Anisotropy ratio | -- 0.1 0.01 1
6 q CO2 Injection MMT/ 0.83 0.33 133
rate yr
Outer radius of perfectly
L . km 10 5 7 correlated
reservoir .
with g
7 e Porosity of . 0.12 0.08 0.18
reservoir
Porosity of
8 - 0.07 0.05 0.1
ber caprock
Indicator for . Increasing
- Increasing
9 I permeability - random from
) from top
layering bottom
Table 3-2. Input Distributions used with LHS Sampling
Input Description Distribution
hr Thickness of the reservoir T(50,150,250)
her Thickness of the caprock T(100,150,200)
Link R Log-mean reservoir permeability, Dykstra- Link R ~ T(2.45, 3.56, 4.67)
Parson’s coefficient (perfectly correlated)
Vo Vopr ~ T(0.35, 0.55, 0.75)
kcr Average caprock horizontal permeability InT(0.002,0.02,0.2)
kv/Kn Anisotropy ratio InT(0.01,0.1,1)
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q CO; injection rate discrete with equal probability -
{0.33, 0.83, 1.33}

Or Porosity of the reservoir T(0.08,0.12,0.18)
Qcr Porosity of the caprock T(0.05,0.07,0.10)
I Order of permeability layering Discrete w/equal probability, Ix e

9 9 9 9

{“random”, ” increasing”, ’decreasing”}

The following approach will be used for the uncertainty and sensitivity analysis.

e The performance metrics of choice are: (1) total storage efficiency, and (2) average reservoir
pressure.

e Start with the 97-run Box-Behnken design simulations, fitted with a quadratic polynomial model.
Consider this to be the “Model A”. Also, utilize the 97-run maximin LHS design simulations,
fitted with a kriging metamodel. Consider this to be the “Model B”. See section 2.3.4 for details
on these models.

o Next, utilize the simplified physics based models reported previously in Sections 2.2.5-2.2.7.
Consider this to be “Model C”.

e Create an LHS design with 10,000 samples based on Table 3-2.

e Compute the two performance metrics (step 1 above) at each of these sample points using Models
A, B and C. Calculate the empirical CDF.

e Compare the 10,000 sample empirical CDF to the 97-sample empirical CDF.

3.3 Analysis Methodology
3.3.1 Statistical learning based models (Models A and B)

The initial assessment described in Section 2.3 provided information about which design/model
combinations performed the best across three different responses from the GEM simulation. Of these,
two were selected for the uncertainty analysis, based on both accuracy and robustness across the
responses. These are the Box-Behnken design with quadratic regression (denoted Model ‘A’) and the
maximin LHS design with kriging (denoted Model ‘B’). Both of these designs were of size n = 97.

One measure of the quality of an approximation model is how well the range and distributions of
estimated responses across the input space match the true distribution of responses. In this case, the true
distribution of responses cannot be feasibly known, but a proxy for it is the empirical distribution
produced by responses from the GEM simulation run over a small space-filling design. For this purpose,
a 97-run LHS design was used to gather responses from the simulator that were evaluated at points in the
input space that were completely independent of those used to fit Models ‘A’ and ‘B’. Those responses
were then used to construct an empirical CDF for the true response over the problem domain.

In order to generate the range and distribution of estimated responses over the input space, the Models ‘A’
and ‘B’ were evaluated at all locations in a 10,000-run LHS design. With such a large sample size, the
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modeled responses across this design provide a good representation of the responses one might expect
across all combinations of input parameter values.

The “closeness” of the true and estimated empirical distributions was measured using two different
techniques. A common procedure for determining whether distributions match is the Kolmogorov-
Smirnov (KS) test [1]. In this test, the null hypothesis HO is that the distributions are the same, and the
alternative is that they are different. The KS statistic is the largest gap between the CDFs. For this
analysis, the p-value of the KS test was used to describe the closeness of the distributions. Larger p-
values (up to a maximum of 1) indicate more similar distributions.

The second measure used to capture the closeness of the distributions is called “earthmover’s distance”[2]
(EMD). The concept here is that the two empirical distributions, represented as probability density
functions (in, e.g., histogram form) can be thought of as mounds of earth. The earthmover’s distance
measures the least amount of work required to redistribute the earth in one distribution such that it
matches the profile of the other distribution. In this case, a low value indicates similar distributions,
while a large value indicates dissimilar distributions.

3.3.2 Simplified physics-based models (Model C)

Simplified physics based modeling runs use the simulation results from the LHS design runs (97 nos.) as
the reference case for the Uncertainty Analysis task. A separate 10000 run sample LHS dataset is our test
dataset. Model ‘C’ calculations estimate the final pressure using the predictive model for injectivity. CO-
properties at evaluated at this final pressure and temperature which is then used to predict the plume
extent followed by the average pressure buildup in the reservoir at the end of the CO; injection period.
Inputs consist of the following known system parameters:

e Slope of CO; fractional flow curve, dfy/dS,

e Initial pressure i.e. Pinit (psi)

e Temperature, T (degree F)

e Formation brine salinity, Sal (fraction)

e COq injection rate, q (tonnes per year)

e Time of injection, t (yr)

e Reservoir thickness, hg (M)

e Reservoir average porosity, ¢r (fraction)

o Radial extent of reservoir, L (m)

e Reservoir permeability anisotropy ratio, (kv/kn)r

o Total compressibility (pore + brine compressibility), C; = Cs + Cw (1/psi)

e Caprock thickness, hcr (m)

e  Caprock porosity, @cr (fraction)

e Array of values corresponding to layer permeability values in the system, [KRiayers] arranged from
the top through the bottom layers.

Refer Section 2 for the discussion of the input sources of the above-mentioned parameters for use in the
simplified predictive models.

The calculations steps in our MATLAB code for model “C” are as follows:
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1. Calculate measures of heterogeneity from the permeability array input, thickness and porosity of
each of the reservoir layers.

1(a)  Mean reservoir permeability, kr — calculated from the arithmetic mean of [KRjayers] in mD.
This assumes all layers have equal thickness which is the case for our simulation runs.

1(b)  Dykstra-Parsons co-efficient, Vpp — calculated from the mean of the log permeabilities

i.e. wink r- Vop @and punk_r are taken to be perfectly correlated inputs and we have pn r =
[2.45,3.56,4.67] corresponding to Vpp = [0.35,0.55,0.75].

1(c)  Lorenz co-efficient, Lc — calculated while honoring the permeability layering/
arrangement from the bottom to top permeability layer in the reservoir.

Lc = 2{f1Fnan - %} .~ (3.1)
0

. . kgihgi
where cumulative flow capacity, F, = M
Yi=1KkRihRi

and cumulative storage capacity, C,, = w
Yi=1 PrilRi

2. Determining final reservoir pressure Ps to calculate CO, properties more accurately

2(a)  Calculate Pp using dfy/dSg and Ve in our simplified predictive model for dimensionless
CO: injectivity.

d d d
Yo, 3.41Vpp + 1.23Ys /]

2
P, =10.3+0.59 Vop — 0.342 —8.89(V,5)? ...(3.2
D + ds, ds, DP <ng> (Vbp) (3.2)

2(b)  Use this Pp to estimate the initial guess of the final pressure Ps at time t in field units.

bbl
9(day)  kghg (mD.ft)

(P = Pinic)(psi)  141.2p1,,(cP)Pp

With this initial guess value, solve for Ps such that

Jealc = ..(3.3)

g/(P)/[Ps-Pinit] matches {q/[P+-Pinit] = (2.pi.kr.hr)/(Po.pw)}

3. Get g in bbl/day at time t using CO, properties at Prand T.

4. Calculate Gravity number, Ng using CO; properties at Prand T in SI units
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_ kghg (m*)(pw — peoz) (kg/m*) ghy (mz/sz)(hR/L)
9~ 3
q (mT> Hcoz(kg/ms) (kV/kH)

~(34)

where, KV = (kv/Kn)r*Kr

5. Maximum plume extent, Rco2 calculation using Es:

5(a)  Calculate total storage efficiency, Es (%) from dfy/dSy, VDP, Lc and Ng using the
simplified predictive model:

d d
Es = 30.6862 + 0.4348% +29.2359L; — 22.018Vpp — 11.2445N, + 4.5962%1@,,
g g
dfy\" 2
—25.2141L; Vpp — 0.6917 (ﬁ) +6.1074(N,) ..(3.5)
g

5(b)  Calculate m3 free phase CO- present in reservoir at time t i.e. Qcum USING an average
factor of 0.8 used to account for the free phase CO, from the total CO; present. This
factor is determined for our calculations as the representative average value for the
uncertainty analysis exercise from simulation runs (that use Henry’s law).

5(c)  Calculate CO, plume extent in meters at time, t, in Sl units

100Q.y;m (m3

g (fraction) hgy (m)Es (%)

6. Average reservoir pressure buildup, APravg Calculation using simplified model for dimensionless
average reservoir pressure buildup Pp1

6(a) Calculate f

L
f=0.003(-—)%+0774 ..(3.7)
RCOZ
6(b)  Calculate fs
drh
foc RCR ..(3.8)

" (¢rhg + drhp)

6(c)  Calculate combined factor, ft

fe=ffsc - (3.9)

6(d)  Calculate dimensionless time, tpas, in field units
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0.0002637kgr (mD)t(hr)

¢ g (fraction)u,, (cP)C; (%) L2 (ft?)

tDAl = ...(3.10)

6(e)  Calculate dimensionless average reservoir pressure buildup, Pp1

PDl = anttDAl ...(3.11)
6(f)  Calculate average reservoir pressure buildup, APr avg, iN pSi

bbl
141.2qf (dle).Uw(CP)Pm

kr(mD)hg(ft)

APpayg = . (3.12)

7. Treatment of outliers to eliminate nonphysical predictions: Outliers are those that satisfy the
following criteria:

e Gravity number greater than the threshold value of 2 i.e. Ng> Ng threshold of 2
e hr/hcrcases that have higher injection in thin reservoirs i.e. hr/hcr <=0.5 and g>=1.33 MT/yr

8. Generate the empirical Cumulative Distribution Functions (CDFs) for Rco2 and APg,avg from both
the reference and test datasets.

9. Compare CDFs of both LHS datasets with the KS-test statistic and the EMD statistic.

3.4 Results — Simplified Physics Based Models

We consider the plume radius and the average reservoir pressure buildup at the end of CO; injection
period to be our performance metrics of interest for the uncertainty analysis exercise. In the case of
Models ‘A’ and ‘B’, the response is average reservoir pressure after 30 years, which is identical to the
pressure buildup with a shift of a constant, and does not affect the shape of the distribution. For each of
our three chosen models, the cumulative distribution function (CDF) generated from the simulation
responses for the 97-run reference LHS design is compared with the cumulative distribution function
generated from the model prediction across the 10,000-run LHS design. The performance of each of the
models is sequentially discussed and compared.

Model ‘C’ is successfully validated by testing the code for both the Task 2 training dataset followed by
the 97-run reference LHS dataset. Fig. 3-1 gives the resulting cross-plots of the model predictions for the
LHS reference dataset versus the corresponding detailed simulator results for the plume radius and the
average reservoir pressure buildup.
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Maximum plume extent (m): calc vs. sim
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Fig. 3-1. Scatter plot showing the model ‘C’ predictions versus the detailed numerical simulator results for
plume radius and average reservoir pressure buildup with the 97-run reference LHS dataset

The CDF generated from the simulation results for the 97-run reference LHS dataset represent the
simulation ‘reference curve’ for our uncertainty analysis. The black CDF curve in the following figures is
this reference CDF curve. The red CDF curve in each plot is the cumulative distribution function
generated from the model prediction across the 10,000 run LHS ‘test’ design for the performance metric
indicated in the title of each plot. The CDF comparison plot for plume extent and average reservoir
pressure buildup from Model ‘C’ is shown in Fig. 3-2.

DOE Award No. DE-FE0009051, Final Report 48



Simplified Predictive Models
for CO, Sequestration

Empirical CDF: LHS10k (RCO2)
KS 0.0030, EMD 0.1094

S
w —
o
[(e]
© 4
x
c
L
<
T S
(o}
g
B Reference Curve
o _| B Test Curve
o
T T T T T T T
0 500 1000 1500 2000 2500 3000
Plume Radius, m
Empirical CDF: LHS10k (delPRavg)
KS 0.1199, EMD 0.0319
< ]
«© —
=}
w
Q 4
=
=1
L
<
S -
(o]
g
B Reference Curve
e B Test Curve
o

I | I | I
1000 2000 3000 4000 5000

Avg. Res. Pressure Buildup, psi

Fig. 3-2. Comparison plot of CDF of 97-sample ‘reference’ LHS simulation results and 10,000 sample ‘test’
model predictions. (a) plume radius (m); (b) average reservoir pressure buildup (psi).
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We observe 7% of the ‘test’ dataset produce outliers with nonphysical predictions of the total storage
efficiency or erroneous pressure buildup when computed using the simplified physics-based models.
Certain combinations of input parameter values sampled using the LHS design sometimes leads to such
outlier cases cause the tail effect in the model test curves (red curves) in Fig. 3-2. Cases such as large
injection in thin reservoirs result in big difference between the simulation and prediction results.

We analyze the input parameters in each of our datasets to determine the relationship between
nonphysical model predictions of total storage efficiency and input parameter limits. Fig. 3-3 isa
scatterplot representation illustrating the effect of Lc, Vor and Ny values on Es predictions.

Lc
o
T

VDP

r r r [ r r r [
18 U U T U U U T

20+ et
10+ / :

0= =
L I L L [ L L L [ r
-2,000 0 2,000 4,000 6000 8000 10,000 12,000 14,000 16,000
Es, %

Fig. 3-3. Scatter plots showing Es model predictions getting to nonphysical values with increasing gravity
number cases for the ‘test’ LHS design.

Fig. 3-3 shows how increasing Gravity number cases lead to nonphysical predictions of total storage
efficiency (i.e. Es> 100%). The range of Gravity numbers is much higher in the LHS datasets compared
to the range of Gravity numbers sampled in our Task 2 training dataset as shown in Fig. 3-4. Hence
predictions using model ‘C’ for these higher Gravity number cases in the LHS datasets result in much
higher Es values and consequently much lower plume extents compared to the detailed simulation results.
A threshold gravity number of 2 honors the range of our output performance metrics effectively and has
been used to eliminate outlier cases in our analysis.

DOE Award No. DE-FE0009051, Final Report 50



Simplified Predictive Models
for CO, Sequestration

Task 2 training datasetifor model ‘C’

2k
0 L L L I

g 5 = 3 2 ] 0 1 2

97-run LHS referenceldataset

5 = -4 B E

2
Mg

10,000-run LHS test d

1200 [

1000

800

0 —

I‘_lzg
Fig. 3-4. Comparison of histograms of log(Gravity number) showing the increasing range of values

as we move from the Task 2 training dataset to the 97-run LHS reference dataset
and the 10000-run LHS test dataset.
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Hence, we treat the model results from our LHS datasets to conform to the below-mentioned parameter
limits and hence eliminate outlier cases:

e Applying threshold gravity number of 2 as the cut-off (i.e., Ngmax = 2) to treat nonphysical
predictions of total storage efficiency.

e Applying cut-offs hr/hcr<0.5 and q >=1.33 MT/yr cases to eliminate average reservoir pressure
buildup outliers.

The elimination of outliers from the predictions of the total storage efficiency and dimensionless average
reservoir pressure buildup models result in the empirical CDFs shown in Fig. 3-5.

The consequent model ‘C’ predictions of maximum plume extent and the average reservoir pressure
buildup result in the modified empirical CDFs shown in Fig. 3-6.

Hence we verify that the CDF of outcomes from the simplified physics based models generated after
treatment for outliers are in reasonable agreement to the simulation results for the full spectrum of
sensitivity analysis results.
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Fig. 3-5. Comparison plot of CDF of 97-sample ‘reference’ LHS simulation results and 10,000 sample ‘test’
model predictions after treatment of outliers. Performance metrics in the panels consist of: top — total storage
efficiency (%) and bottom — dimensionless average reservoir pressure buildup.
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Fig. 3-6. Comparison plot of CDF of 97-sample ‘reference’ LHS simulation results and 10,000 sample ‘test’
model predictions after treatment of outliers. Performance metrics in the panels consist of: top — maximum
plume extent (m) and bottom — average reservoir pressure buildup (psi). Plot titles also indicate the
corresponding KS-test and EMD statistics.
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3.5 Results — statistical learning based models

To perform the comparison between the true and estimated response distributions for the statistical
learning based models, both models were evaluated at each of the 10,000 runs in the LHS test design.
The CDF of those responses was then compared to the true CDF, which was taken to be the GEM
simulation response over the independent 97-run LHS design. Fig. 3-7 shows the comparisons for Model
‘A’ (Box-Behnken design with quadratic metamodel), and Fig. 3-8 shows the comparisons for Model ‘B’
(Maximin LHS design with Kriging metamodel). Both models show general agreement with the response
for the reference model for both responses.
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Fig. 3-7. Comparison plots of CDFs for the 97-sample ‘reference’ LHS simulation results vs. the 10,000
sample ‘test’ model predictions for Model ‘A’ (Box-Behnken design with quadratic metamodel).

Performance metrics in the panels consist of: top — maximum plume extent (m) and bottom — average
reservoir pressure (psi). Plot titles also indicate the corresponding KS-test and EMD statistics.
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Fig. 3-8. Comparison plots of CDFs for the 97-sample ‘reference’ LHS simulation results vs. the 10,000
sample ‘test’ model predictions for Model ‘B’ (Maximin LHS design with kriging metamodel). Performance
metrics in the panels consist of: top — maximum plume extent (m) and bottom — average reservoir pressure
(psi). Plot titles also indicate the corresponding KS-test and EMD statistics.
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3.6 Comparison of Models

Our objective in this phase of the research was to validate our simplified physics and statistical learning
based models for plume and pressure propagation in semi-confined aquifer systems in a probabilistic
setting. Additionally, our goal was to establish confidence-levels on their credibility and rank their
performance against each other. We generated and verified that the CDF of outcomes from the simplified
physics models are in reasonable agreement to the simulation results for the full spectrum of sensitivity
analysis results.

The three chosen modeling approaches (i.e., the two statistical learning based models, Model A and
Model B, and the simplified-physics based model, Model C) can be compared using the KS-test statistic
and the EMD statistic to rank their relative performance.

Table 3-3: Model Performance Comparison
Performance metric Model ‘A’ Model ‘B’ Model ‘C’

Plume extent
Earth Mover’s distance (EMD) statistic 0.035 0.085 0.081

KS-test statistic 0.522 0.155 0.021

Average reservoir pressure buildup
Earth Mover’s distance (EMD) statistic 0.060 0.068 0.053

KS-test statistic 0.020 0.409 0.057

We observe that while all models agree reasonably with the simulation results, the best model fits for our
performance metrics turn out to be the statistical learning based models. Model ‘A’ performs best for the
plume extent while model ‘B’ performance best for the average reservoir pressure buildup. The simplified
physics based models have been trained using a smaller subset of the input parameter values which do not
possibly cover the entire input parameter space compared to the statistical models developed using space-
filling designs. This could possibly explain the tail seen in the Model ‘C’ predictions in Fig. 3-2.
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4. Conclusions and Recommendations

4.1 Conclusions

Key conclusions from this research project can be summarized as follows:

We developed and validated simplified predictive models for dimensionless pressure buildup
(i.e., well injectivity and average reservoir pressure) and total storage efficiency (i.e., plume
radius), in terms of key underlying parameters combined into dimensionless groups, based on
insights from full-physics simulations,

We compared the performance of a traditional experimental design based surrogate modeling
strategy (i.e., Box-Behnken design combined with quadratic model) to a sampling-based design
and metamodeling strategy (i.e., maximin Latin Hypercube sampling combined with
multidimensional kriging) using a k-fold cross-validation strategy,

We demonstrated the applicability of the POD-TPWL approach to reduced-order modeling for
CO,-brine systems — with vertical and horizontal wells, under BHP and rate control, as well for
geologic perturbations — as a computationally-efficient alternative to full-order simulations
showing speedups upto a factor of ~370, and

We validated the simplified physics and statistical learning based approaches using an uncertainty
analysis framework wherein CDF of outcomes from the simplified models were found to be in
reasonable agreement with detailed numerical simulation results after eliminating non-physical
outliers.

4.2 Recommendations for Future Work

421

4272

Simplified physics based models

The range of conditions used to develop the simplified-physics based models (e.g., Table 2-1)
should be expanded, particularly with respect to the relative permeability variants.

Alternatives to dfy/dSy (slope of gas fractional flow curve) — as a “bulk” representation of relative
permeability relationships — should be explored in greater detail.

The impact of time-dependence on CO, plume extent models should be studied.
Statistical learning based models
The issue of appropriate sample size of LHS simulations should be further studied.

Applicability and efficacy of metamodels to capture time-dependent output behavior (as opposed
to fitting the output at only selected points in time) should be studied.

Better screening-level designs should be investigated.
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4.2.3

4.2.4

Robust variable importance ranking methods that do not require additional simulations beyond
the primary experimental design should be explored.

Reduced-order method based models
Improved formulations for constraint reduction (see section 2.4.2) should be studied.

Further testing and assessment of the approach for handling geological perturbations (section
2.4.4¢) in POD-TPWL should be investigated.

Late-time deviations between full-order simulations and POD-TPWL for rate-control wells
(section 2.4.4b) should be further studied.

The applicability of POD-TPWL in a multi-well setting (i.e., network of injection wells) should
be explored.

Uncertainty and sensitivity analysis based validation

Automated methods of ensuring consistency between the sample space of the original simplified
models and that used for probabilistic applications (and the elimination of non-physical parameter
combinations) should be investigated.

Additional schemes of comparing two different CDFs should be applied.

Importance ranking from simplified and detailed models should be compared, in additional to
comparing the similarity of CDFs.

The uncertainty and sensitivity analysis based validation framework should also be applied for
reduced-order method based models.
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Abstract

We present a simplified-physics based approach, where only the most important physical
processes are modeled, to develop and validate simplified predictive models of CO, sequestration
in deep saline formation. The system of interest is a single vertical well injecting supercritical
COa into a 2-D layered reservoir-caprock system with variable layer permeabilities. We use a set
of well-designed full-physics compositional simulations to understand key processes and
parameters affecting pressure propagation and buoyant plume migration. Based on these
simulations, we have developed correlations for dimensionless injectivity as a function of the
slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical
permeability arrangement. The same variables, along with a modified gravity number, can be
used to develop a correlation for the total storage efficiency within the CO: plume footprint.
Similar correlations are also developed to predict the average pressure within the injection
reservoir, and the pressure buildup within the caprock.
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Executive Summary

The objective of this research project is to develop and validate a portfolio of simplified
modeling approaches for CO- sequestration in deep saline formations — based on simplified
physics, statistical learning, and/or mathematical approximations — for predicting: (a) injection
well and formation pressure buildup, (b) lateral and vertical CO» plume migration, and (c) brine
displacement to overlying formations and the far-field. Such computationally-efficient
alternatives to conventional numerical simulators can be valuable assets during preliminary CO»
injection project screening, serve as a key element of probabilistic system assessment modeling
tools, and assist regulators in quickly evaluating geological storage projects. The project team
includes Battelle and Stanford University. Support for the project is provided by U.S. DOE
National Energy Technology Laboratory and the Ohio Development Service Agency Office of
Coal Development (ODSA).

Over the last decade, the development and demonstration of geologic sequestration technologies
to mitigate greenhouse gas emissions has been an area of active research. Geologic sequestration
of CO. in deep saline formations has been recognized for its inmense potential for long-term
storage of captured CO,. To ensure safe and effective deployment of this technology, it is
crucial for us to understand the nature of pressure and plume propagation as injected CO;
displaces the native reservoir fluids. Detailed numerical simulation of such processes generally
requires extensive reservoir characterization data and computational burden. In this context,
validated simplified models can be valuable as they have minimal data and computational
requirements in comparison. Simplified models that are based on the most relevant physical
processes and validated against full-physics simulators are thus being sought after as efficient
and useful alternatives for rapid screening and evaluation of CO- sequestration projects.

This topical results presents results from Task2 of the research project. Our research objective is
to develop and validate simplified physics based models for CO» sequestration in deep saline
formations based on insights from a set of well-designed full-physics compositional simulations
of this system. The study involves an extensive parameter space covering different reservoir and
cap rock properties. We investigate the sensitivity of system behavior for high and low variants
from a reference case for various reservoir and caprock properties and systematically seek to
quantify their effect on each performance metric.

Our computational model consists of a single vertical well radially injecting supercritical CO: in
the middle of a 2-D layered reservoir overlain by a caprock. We add relevant buoyancy and
heterogeneity effects to the system considerations in the simplified 1-D 3-region model of
Oruganti and Mishra (2013) and Burton et al. (2008). Simulations are run for an injection period
of 30 years to observe CO displacement characteristics in a closed system — as would be the
case in a network of injection wells. The independent variables of interest are thickness and
porosity of reservoir and caprock, reservoir permeability heterogeneity, permeability and
capillary pressure of the caprock, and CO; injection rate. Reservoir heterogeneity is varied by
controlling the permeability of the reservoir, permeability anisotropy ratio (ratio of vertical to
horizontal permeability) in the reservoir, spatial arrangement of the heterogeneous reservoir
permeability layers, and relative permeability curves for the reservoir.
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The maximum plume extent at the end of CO- injection is affected by the efficiency of the two-
phase (CO--brine) displacement process — this total storage efficiency, Es, being a product of:
(a) volumetric sweep efficiency i.e. fraction of total pore volume contacted by CO, and (b)
displacement efficiency within the pore volume contacted by COa. We establish a relationship
for maximum plume extent at the end of injection as a function of the amount of CO, injected
and the storavitity (porosity-thickness product) of the reservoir, for a given total storage
efficiency. The most important terms in the simplified model for total storage efficiency involve
the relative permeability model followed by the reservoir heterogeneity.

CO» injectivity, which is the ratio of amount of CO: injected to the corresponding pressure
buildup, is a critical performance metric to determine operational constraints of pressure buildup
or injection rate for allowable injected volume of CO» or operating pressure constraints
respectively. We consistently observe from the sensitivity analyses that our system response to
CO:s injection is such that the pressure at the injection well quickly jumps to a quasi-steady value
and remains relatively stable thereafter during the early transient period before boundary effects
come into play. This pressure jump can be converted into a dimensionless pressure buildup, Pp,
which includes the effects of reservoir permeability-thickness, CO> injection rate and brine
viscosity, and helps us effectively capture the injectivity index of the well

The pressure buildup at the mid-point of the reservoir is observed to be affected primarily by the
permeability-thickness product of the reservoir, the CO; injection rate, and the relative
permeability model for the reservoir. When expressed in terms of the dimensionless variable Pp,
we determine the dimensionless pressure buildup at the CO» injector well to be a function of the
slope of the fractional flow curve (df¢/dS,) and the Dykstra-Parson’s coefficient (Vpp). Thus,
using a steady-state version of Darcy’s law and dominant parameter groups identified from the
sensitivity analysis exercise with full-physics compositional simulations, we develop a
multivariate linear regression model to determine Pp, and hence, the injectivity index. This
predictive model is successfully validated to check for robustness of fit.

We also evaluate the average pressure behavior in the reservoir for a given amount of CO,
injected into closed and semi-closed saline formations. For closed reservoirs, the effectiveness of
two-phase flow in a given reservoir depends on an ‘f* factor (which is a function of the relative
permeability) and is correlated to the square of the ratio of the reservoir radius to the plume
radius at the end of injection. For semi-closed formations when an overlying caprock is present,
this ‘/° factor is modified to account for the relative storage capacity of the rock i.e. ratio of
reservoir storavitity to the total system storativity.

Finally, the effect of the overlying cap rock properties — mainly thickness and permeability, were
investigated for their effect on the pressure buildup in the system. The ratio of the pressure
buildup in the cap rock to that in a given reservoir at the end of injection was determined to be a
function of the ratios of the thickness and permeability of cap rock and the reservoir.

Thus, using the basic physical processes involved, these simplified physics models can be used

to reasonably predict the plume extent in the reservoir and pressure propagation in both the
reservoir and the cap rock resulting from the injection of a given amount of COx.
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Abstract

We compare two approaches for building a statistical proxy model (metamodel) for CO,
geologic sequestration from the results of full-physics compositional simulations. The first
approach involves a classical Box-Behnken or Augmented Pairs experimental design with a
quadratic polynomial response surface. The second approach used a space-filling maxmin Latin
Hypercube sampling or maximum entropy design with the choice of five different meta-
modeling techniques: quadratic polynomial, kriging with constant and quadratic trend terms,
multivariate adaptive regression spline (MARS) and additivity and variance stabilization
(AVAS). Simulations results for CO: injection into a reservoir-caprock system with 9 design
variables (and 97 samples) were used to generate the data for developing the proxy models. The
fitted models were validated with using an independent data set and a cross-validation approach
for three different performance metrics: total storage efficiency, CO, plume radius and average
reservoir pressure. The Box-Behnken—quadratic polynomial metamodel performed the best,
followed closely by the maximin LHS-kriging metamodel.
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Executive Summary

The objective of this research project is to develop and validate a portfolio of simplified
modeling approaches for CO» sequestration in deep saline formations — based on simplified
physics, statistical learning, and/or mathematical approximations — for predicting: (a) injection
well and formation pressure buildup, (b) lateral and vertical CO» plume migration, and (c) brine
displacement to overlying formations and the far-field. Such computationally-efficient
alternatives to conventional numerical simulators can be valuable assets during preliminary CO»
injection project screening, serve as a key element of probabilistic system assessment modeling
tools, and assist regulators in quickly evaluating geological storage projects. The project team
includes Battelle and Stanford University. Support for the project is provided by U.S. DOE
National Energy Technology Laboratory and the Ohio Development Service Agency Office of
Coal Development (ODSA).

This topical report presents results from Task 3 of the research, which focuses on statistical
learning based models, with the objective of identifying and comparing several different
ways of creating such predictive models. These are commonly called “proxy models” or
“metamodels” in the geoscience literature. In applications related to subsurface flow,
response variables of interest are often simulated with full physics mathematical models that
are based on a large number of predictor variables. When a deep understanding of the
relationship between the predictors and response is required, e.g., for optimization, many
runs of the predictors at different combinations of settings may be necessary. Due to time
and cost, running such a model for a large number of runs may not be feasible. The idea of a
proxy model is to first acquire a small number of simulation runs at prescribed combinations
of predictors, called a design matrix. These combinations are specially chosen to be
representative of all possible predictor settings, called the input space. The runs are also
chosen to allow estimation of large scale effects in the response. Using the observed runs, a
statistical model is then developed. This model describes a specific mathematical
relationship between the predictor variables and the response.

A good metamodel needs to have two characteristics. First, it must provide an accurate
approximation of the full physics simulation.. That is, for any combination of predictor
settings, the metamodel should predict a value of the response that is close to the value one
would get by running the full simulation at the same settings. Second, the metamodel must
run orders of magnitude faster than the full physics simulation. If these two requirements
are met, then the metamodel may be used as a proxy for the full physics simulation, and
since it can produce responses quickly, it can be used to explore the input space for optimal
predictor combinations.

After conducting a survey of geoscience literature, several designs and models were selected
for the comparison study. Regarding designs, both experimental and sampling design
approaches were considered. From the former group, Box-Behnken (BB) and augmented
pairs (AP) designs were selected. BB designs are the industry standard, and AP is a
competitor of the BB that uses fewer runs. From the latter group, maximum entropy (ME)
and maximin Latin hypercube sampling (LHS) designs were selected. LHS designs are also
popular in the geoscience literature, and ME designs are a leading competitor.
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Regarding modeling techniques, five different approaches were considered. These include
quadratic polynomial regression, which is common in oil and gas applications; kriging,
which is a popular choice often used with LHS designs; MARS, which is another method
often cited in the literature; and AVAS, which is a non-parametric modeling option. In

" addition, a version of quadratic modeling that uses LASSO variable selection was also
considered as a more refined alternative to traditional quadratic regression modeling.

All 20 combinations of designs and models were used to predict each of three responses in a 9-
input full-physics simulation of CO» injection into a closed reservoir using the compositional
simulator, GEM. The performance of each metamodel was evaluated by fitting to thls data set
using three criteria: root mean squared error (RMSE), scaled RMSE, and pseudo- -R’. Evaluation
was performed both for 5-fold cross-validated predictions on the training set as well as
predictions on an independent test set.

In this latter case, the traditional approach of a BB design with a quadratic regression model
came out as the top performer in terms of general performance scores and robustness to different
responses. In particular, it beat out the other models in-the validation study, and was competitive
with the top performer in the cross-validation study. Of the other models, the maximin LHS with
either kriging or quadratic regression models also showed good performance and robustness to
different responses. .

The poorest performing design was augmented pairs (AP), which was not competitive with the
other three designs. This could be due to the fact that the AP design has fewer runs and is
designed to work best with linear modeling approaches like quadratic regression. It does not
have the kind of space-filling characteristics that one would expect for good performance using
the other types of models. The worst performing modeling approaches were MARS and AVAS,
which showed decent performance on some responses, but poor results on others.
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1 Introduction

1.1 Background

To understand the behavior of a response function with respect to multiple predictor values, one
typically needs a large number of observations to adequately cover the input space. An
inefficient approach is to compute the response for all combinations of predictor values chosen
on a suitably fine grid. Usually, this is not feasible. In physical experiments, some combinations
of predictors may not be available to the experimenter, or may produce responses that are beyond
the capability of the instrumentation to measure. In simulated experiments (e.g., finite element
computer models), a large amount of computation may be required to collect each response.
Therefore, computing responses over a grid of predictor values may take too long, or be too
expensive to complete.

The standard method for avoiding costly data collection is to only observe the response at a
subset of predictor values, and then fit a metamodel (also called a “proxy model” or “response
surface model” or “reduced-order model”™) to those points. Metamodels approximate the response
at unobserved combinations of predictor values using the available sampled data, and are
typically designed for rapid prediction. In this way, an approximate response surface can be
generated for the entire input space in a short amount of time, and it can subsequently be used to
meet project-specific research goals.

1.2 Previous Work

In the oil and gas literature, metamodels are often used as proxies for the underlying simulation
models, especially for optimization and uncertainty quantification studies. Osterloh (2008) [1],
Ekeoma and Appah (2009) [2]; and Zubarev (2009) [3] provide overall guidance on sampling
and metamodeling strategy for reservoir simulations. In particular, Osterloh (2008) [1] examines
Latin hypercube sampling (LHS) designs and compares polynomial and kriging metamodels,
Ekeoma and Appah (2009) [2] focuses specifically on LHS designs, and Zubarev (2009) [3]
compares polynomial, kriging, thin plate spline, and artificial neural network metamodels.

There are also examples of specific case studies in which metamodeling was used. Kalla and
White (2005) [4] compared a second order polynomial model and kriging model using an
orthogonal array (OA) sample design in a gas coning case study. In this case, the second order
polynomial outperformed kriging with a 36-run design in 14 variables. Anbar (2010) [5] settled
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Abstract

Reduced-order models provide a means for greatly accelerating the detailed simulations that will be
required to manage CO; storage operations. In this work, we investigate the use of one such method,
POD-TPWL, which has previously been shown to be effective in oil reservoir simulation problems.
This method combines trajectory piecewise linearization (TPWL), in which the solution to a new
(test) problem is represented through a linearization around the solution to a previously-simulated
(training) problem, with proper orthogonal decomposition (POD), which enables solution states
to be expressed in terms of a relatively small number of parameters. We describe the application
of POD-TPWL for CO;-water systems simulated using a compositional procedure. Stanford’s
Automatic Differentiation-based General Purpose Research Simulator (AD-GPRS) performs the
full-order training simulations and provides the output (derivative matrices and system states)
required by the POD-TPWL method. A new POD-TPWL capability introduced in this work is
the use of horizontal injection wells that operate under rate (rather than bottom-hole pressure)
control. Simulation results are presented for CQO, injection into a synthetic aquifer and into a
simplified model of the Mount Simon formation. Test cases involve the use of time-varying well
controls that differ from those used in training runs. Results of reasonable accuracy are consistently
achieved for relevant well quantities. Runtime speedups of around a factor of 370 relative to full-
order AD-GPRS simulations are achieved, though the preprocessing needed for POD-TPWL model
construction corresponds to the computational requirements for about 2.3 full-order simulation
runs. A preliminary treatiment for POD-TPWL wmodeling in which test cases differ from training
runs in terms of geological parameters (rather than well controls) is also presented. Results in this
case involve only small differences between training and test runs, though they do demonstrate that
the approach is able to capture basic solution trends. The impact of some of the detailed numerical
treatments within the POD-TPWL formulation is considered in an Appendix.
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Executive Summary

The methods and results presented in this topical report represent the accomplishments under
Task 4 of the overall project on ‘Simplified Predictive Models for CO3 Sequestration Performance
Assessment.” Task 4 was concerned with Reduced-Order Method (ROM) based Models, and the
research associated with this task was performed at Stanford University. The need for reduced-
order modeling is motivated by the observation that, although flow simulation can be used to
design and manage CO, sequestration projects, the large number of detailed runs required for
some applications (such as computational optimization and uncertainty assessment) can lead to
great computational expense. Computationally-efficient procedures, including numerical reduced-
order models, which have béen applied in related areas such as oil reservoir simulation, may thus
be very useful for these problems.

In this work, we explore the use of trajectory piecewise linearization (TPWL) combined with
proper orthogonal decomposition (POD) for simulating COs storage problems. POD-TPWL models
of this type have been successfully used for oil-water and oil-gas compositional reservoir simulation
problems. The basic approach with POD-TPWL is to first perforin one (or a few) full-order
“raining’ runs, which entail high-fidelity (full-order) flow simulations .under a prescribed sct of
well controls (e.g., time-varying bottom-hole pressures or rates). For subsequent (test) runs, which
involve different well control settings, the solution at cach time step is represented based on a
linearization around a training solution. The use of POD, which allows us to represent solution
states (e.g., pressure and overall mole fraction in every grid block) in terms of a small number
of parameters, along with a constraint reduction procedure, which projects the set of governing
equations into a low-dimensional subspace, provides a high degree of efficiency.

The full-order simulations applied in this work use a two-phase, two-component (CO2 and
water) formulation within Stanford’s Automatic Differentiation-based General Purpose Research
Simulator (AD-GPRS). This simulator was modified to output the state and derivative matrices
required to construct the POD-TPWL model. New features introduced in this work, in addition
to the application of POD-TPWL to CO. sequestration simulations, are the use of rate-control
specifications for wells and the incorporation of horizontal injectors into the model. Because of the
way in which AD-GPRS represents wells, the use of rate-controlled wells in POD-TPWL requires
additional matrix manipulations in the model construction step.

CO3 storage with both a synthetic (channelized) aquifer and an approximate mode] of the Mount
Simon formation (planned for use with FutureGen 2.0} is considered for test cases that involve wells
controlled by both time-varying bottom-hole pressures and rates. Generally accurate results are
obtained for well quantities and for CO» plume location, though the accuracy of the POD-TPWL
model is seen to degrade as the controls used in test cases deviate from those applied in training
runs. Runtime speedups with POD-TPWL for these cases are about a factor of 370 relative to
high-fidelity AD-GPRS simulations. The overhead required to construct the POD-TPWL model
(including training runs) is equivalent to about the time required for 2.3 full-order runs.

The POD-TPWL model is then extended to allow parameters associated with the geologic

model to be perturbed in test runs. Preliminary results using this capability in two-dimensional
" models, in which all block-to-block transmissibilities are multiplied by a constant value relative
to the training run, demonstrate that the POD-TPWL model is able to capture general trends in
the relevant well quantities. The differences between test- and training-case results are, however,
very small in the scenarios considered. Results are also presented for a COz-enhanced oil recovery
problem, which demonstrates the use of POD-TPWL for problems where COq is both utilized and
sequestered.

An Appendix to this report presents a detailed assessment of constraint reduction procedures
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for POD-TPWL models of the type considered here. As noted above, the constraint reduction
procedure projects the set of governing equations into an appropriate subspace of much lower di-
mension. The approach used in previous POD-TPWL models of oil-water systems was the Galerkin
projection procedure, in which the left-projection matrix is the transpose of the POD basis matrix
used to concisely represent the system states. In this work, we show that the use of a (different) so-
called Petrov-Galerkin procedure leads to much better stability properties in POD-TPWL models
of oil-water and oil-gas compositional systems. This is the approach used in all of the CO» storage
simulations presented in this report. '
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