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This report was prepared as an account of work sponsored by an agency of the Unites States
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product, or process disclosed, or represents that its use would not infringe privately owned rights.
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mark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of United State
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Abstract

Capability of underground carbon dioxide storage to confine and sustain injected CO-, for a long
period of time is the main concern for geologic CO; sequestration. If a leakage from a geological
CO. sequestration site occurs, it is crucial to find the approximate amount and the location of the
leak, in a timely manner, in order to implement proper remediation activities.

An overwhelming majority of research and development for storage site monitoring has been
concentrated on atmospheric, surface or near surface monitoring of the sequestered CO.. This
study aims to monitor the integrity of CO, storage at the reservoir level. This work proposes
developing in-situ CO, Monitoring and Verification technology based on the implementation of
Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data
Mining (Al&DM). The technology attempts to identify the characteristics of the CO. leakage by
de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG).

Citronelle field, a saline aquifer reservoir, located in the U.S. was considered as the basis for this
study. A reservoir simulation model for CO; sequestration in the Citronelle field was developed
and history matched. PDGs were installed, and therefore were considered in the numerical model,
at the injection well and an observation well. Upon completion of the history matching process,
high frequency pressure data from PDGs were generated using the history matched numerical
model using different CO. leakage scenarios. Since pressure signal behaviors were too
complicated to de-convolute using any existing mathematical formulations, a Machine Learning-
based technology was introduced for this purpose. An Intelligent Leakage Detection System
(ILDS) was developed as the result of this effort using the machine learning and pattern
recognition technologies.

The ILDS is able to detect leakage characteristics in a short period of time (less than a day from
its occurrence) demonstrating the capability of the system in quantifying leakage characteristics
subject to complex rate behaviors. The performance of ILDS is examined under different
conditions such as multiple well leakages, cap rock leakage, availability of an additional
monitoring well, presence of pressure drift and noise in the pressure sensor and uncertainty in
the reservoir model.
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EXECUTIVE SUMMARY

Primary objective for geologic CO, sequestration is to confine injected CO; for a long period of
time. If a leakage from a geological CO; sequestration site occurs, it is crucial to find the
approximate amount and the location of the leak, in a timely manner, in order to initiate proper
remedial activities.

An overwhelming majority of research and development for storage site monitoring has been
concentrated on atmospheric, surface or near surface monitoring of the sequestered CO,. The
main premise of this study is that in the event of a leakage in a geological CO- sequestration site,
the CO, must move (at the reservoir level) before it can reach the surface. Movement of fluids in
reservoirs are associated with pressure differences. Therefore, if pressure changes in the
reservoir can be (a) detected, and (b) analyzed effectively, one might be able to identify and
characterize such a leak, long before any surface or near surface leakage detection technology
can effectively be utilized.

This study aims to monitor the integrity of CO, storage at the reservoir level, in real-time and
analyze and report the location and amount of CO; leakage soon after such incident takes place.
This work is concentrated on developing in-situ CO, Monitoring and Verification technology based
on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” (for the detection
purposes) along with Atrtificial Intelligence and Data Mining (for the analysis of the detected
signals in order to identify the amount and the location of the leak). The technology attempts to
identify the characteristics of the CO; leakage by de-convolving the pressure signals collected
from the Permanent Down-hole Gauges (PDG).

The concept of “Smart Field” is rapidly gaining support and popularity in the oil and gas industry.
Hundreds of millions of dollars have been invested to successfully develop highly sensitive
Permanent Down-hole Gauges (PDG) that is capable of successful operation in harsh
environment for very long periods of time. PDGs collect and transmit high frequency data streams
to the remote offices to be analyzed and used for reservoir management. The industry is now
working on the state-of-the-art software solutions that can take maximum advantage of the large
amount of data that is collected, transmitted and stored in data historians using PDGs.

PDGs monitor the pressure changes in the formation and transmit high frequency data streams
to the surface. The pressure changes in the reservoir are indications of fluid flow (movement) in
the formation which during the post-injection time-frame are indicators of a potential leakage in
the system. The complex and highly convoluted real-time data transmitted by multiple PDGs is
cleansed, summarized, processed and modeled using state-of-the-art Artificial Intelligence and
Data Mining (Al&DM) technology in order to identify the approximate location and amount of the
CO; leakage that has caused the pressure change in the reservoir.

The process implemented in this study follows a four-step procedure to accomplish its objective.
First step is the development of a base reservoir model for an existing CO, sequestration site>
Citronelle Dome in Alabama has been selected for this project. In the second step, actual field
data (CO: injection) is used to history match the base model. The third step of the process
includes generation of multiple leakage scenarios using the history matched reservoir model and
collection of the high frequency pressure signals that results from the imposed leakage in the
system. Finally, during the fourth step of the process, the high frequency pressure signals are
processed and analyzed using an innovative machine learning and pattern recognition technology
in order to identify the location and the amount of the leakage in the system.

Citronelle field, a saline aquifer reservoir, located in the state of Alabama (Figure 1) was
considered as the basis for this study. Step 1 of this project included the development of a
reservoir model for the Citronelle saline aquifer. Reservoir simulation model for CO: injection at
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Citronelle dome was developed and history matched with real field data. This model
acknowledged “Lateral Heterogeneity”.

Structural maps for 17 sand layers (most extensive ones that were targeted for CO: injection)
were generated by interpretation and correlation of 14 well logs. The location of the well logs and
three cross sections for correlating the wells are shown in Figure 2. Based on correlation between
wells, 17 top maps were generated representing lateral heterogeneity in the reservoir.
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Figure 1. Location of the Citronelle Dome in the State of Alabama, the United States of America.

The same well logs were used to generate thickness (isopach) maps for all the layers. In order to
make porosity maps, 40 well logs were analyzed and interpreted. Three different porosity maps
were generated for each sand layer (51 total porosity maps for the entire reservoir). Permeability
of the reservoir was obtained using porosity-permeability correlations from core analysis.

Installed PDGs at the injection well and an observation well were modeled as part of the numerical
modeling of this asset. Real-time pressure signals from the PDGs were used to history match the
numerical model (Step 2). Quality of the history matched model and its capability to predict (in
forecast mode) reservoir performance is demonstrate in Figure 3.

Upon completion of the history matching process, different CO, leakage scenarios were designed
and modeled. High frequency pressure data from the model (representing the PDGs response to
pressure changes in the reservoir) were generated using the history matched numerical model.
Figure 4 is an example of pressure signal in one of the PDGs that results from a potential leakage
in the reservoir.
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Figure 2. The location of the well logs and three cross sections for correlating the wells.
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Figure 3. Quality of the history match of the reservoir simulation model.
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Figure 4. Modeling the CO2 leakage from the abandoned wells in the Citronelle Dome.
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leakage.

Since the behavior of pressure signals (generated due to the modeled leakage) are too complex
to be de-convoluted using any existing mathematical formulations, a Machine Learning-based
technology was introduced for this purpose (Step 4). Figure 5 and Figure 6 show the accuracy
that can be achieved using this technology to detect a leak at the reservoir level within hours of
the occurrence. These figures demonstrate that both the location and the amount of the leakage
can be identified using the Intelligent Leakage Detection System (ILDS).

The Intelligent Leakage Detection System (ILDS) was developed as the result of this project using
an innovative machine learning and pattern recognition technology (Figure 7).This report
summarizes the efforts toward the development of the Intelligent Leakage Detection System
(ILDS). The ILDS is able to detect leakage characteristics in a short period of time (less than a
day from its occurrence) demonstrating the capabilities of the system in locating and quantifying
leakage characteristics subject to complex rate behaviors.

Furthermore, this project evaluated the performance of the ILDS under following conditions:

a. Multiple well leakages,

b. Leakage in multiple vertical locations in a given well,
c. Leakage occurring in the cap rock,

d. Availability of additional monitoring wells,

e. Presence of pressure drift,

f. Presence of noise in the pressure sensor, and finally
g. Uncertainty in the reservoir model.

Figure 7 shows the interface of the ILDS. The Intelligent Leakage Detection System (ILDS) is
capable of being deployed online and perform real-time analysis. In other words, ILDS can
receive, analyze, process and provide results in real-time.
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Figure 7. A snapshot of the interface developed for the Intelligent Leakage Detection System (ILDS).

During this project, the West Virginia University team was supported by CONSOL Energy,
Advance Resources International (ARI), Battelle, and Schlumberger. Professionals from these
organizations formed an industry advisory group providing peer review, valuable insight,
guidance, and critical observations throughout the life of the project, ensuring a robust and
practical technology that can be used in the field.
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SITE SELECTION

CITRONELLE FIELD- SALINE AQUIFER

Selection of a suitable CO; sequestration site was the first step in this project. The selected site
should provide required data to build a geological model. The geological model would serve as
the foundation for the dynamic model that has been developed and used throughout this project.

In order to kick off the site selection procedure, an Industrial Advisory Committee (IAC) was
established consisting of five experts from the industry with experience and clear track record in
Carbon Capture and Storage. This committee provided technical advice to the project team
throughout the life of the project. The first task of the Industrial Advisory Committee (IAC) was
assisting the project team in selecting a site for the project. Table 1 shows the list of individuals
that serve in the Industrial Advisory Committee (IAC).

Table 1. List of Industrial Advisory Committee

Name Affiliation
Neeraj Gupta Battelle
Dwight Peters Schlumberger

George Koperna ARI
Grant Bromhal DOE-NETL
Richard Winschel CONSOL

Initially, committee agreed that data availability for building simulation model is one of the key
criteria for site selection. Five potential sites were discussed:

o Citronelle Site: Operated by Denbury. Phase Il Regional Partnership. ARI can help
provide the geological model.

e Mt. Simon Site: FutureGen Site in lllinois, Battelle has performed the geological
modeling.

¢ MRCSP Site: Phase Ill Regional partnership, Battelle has performed the geological
modeling.

¢ lllinois Basin (Decatur) Site: Rob Finely (USGS) has access to the geological model;
some simulation modeling has already been performed.

e Otway Site: Site is in Australia.

The datasheet shown in Table 2 was sent to all the member of advisory committee. The members
were asked to provide any and all information or contact points for any of the candidate sites.
Following the conversation that the WVU team had with George Koperna from AR, it was agreed
to provide WVU with the Citronelle field geo-cellular model. ARI was performing the reservoir
modeling for the phase Ill, southeast regional CO, sequestration partnership.
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Table 2 . Datasheet for all 5 candidate sites

FutureGen

IMRCsP Site, Regional
Partnership Phase Il |

Otway-Australia

Site Reference | Contact Person Affiliation Email CO2 Source Our Information Supplemental Information
e Injection Starts at January 2011,  {e Previous production history
e Injection in 1500 ft above Oil e Injection plan and history
i Field, {® Type of formation
. { gkoperna@adv- 25 Mwatt Mobil . .
Citronelle- Denbury {George Koperna ARI res.com iAIabama Power Plant ¢ Some logs are available, ¢ Geocellular model and geological
i ’ ! * 2D Seismic will be available characteristics
i 3D Seismic might be done within |e State and characteristics of
2years. {injected CO2
L . e Previous production history
{ ; * 2D Seismicis available, e Injection plan and history
| Mark McKoy, Bill i 1200t thickness }- Type of formation
| Wursmer | « First Well in 2010 characteristics
o State and characteristics of
linjected CO2
! i {® Injection plan and history
3 Neeraj Gupta, : %- Type of formation
i Joel Sminchak, i  Battelle iField to be announced {* Geocellular model and geological
David Ball, i characteristics
| State and characteristics of
injected CO2
2D Seismic and 3D Seismic * Previous production history
performed ¢ Injection plan and history
| * Some simulation models have | Type of formation
Illinois Basin Decatur!  Rob Finely lllinois GS been run. |» Geocellular model and geological
3 e Injection starts next year characteristics
i A Geocellular model exists }“ State and characteristics of
i injected CO2
i Depleted gas reservoir {® Previous production history
Justin.Glier@netl.d * One injection well * Injection plan énd history
) : i * One monitoring well { Type of formation
Justin Gleir/ oe.gov X .
| Grant Bromhal | DOE Grant.Bromhal@ne * One production well . Geocellyla'r model and geological
: : tl.doe.gov ¢ Geocellular and simulation model ‘Chal'aCtel'lSthS

fexist

|» State and characteristics of
|injected C02
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SELECTION OF RESERVOIR MODELING SOFTWARE

After a comprehensive study that included examining major reservoir simulation models that are
available in the market, the WVU team decided to use the numerical simulation and visualization
package (BUILDER/GEM/RESULTS) from Computer Modeling Group (CMG). The criteria for
selecting this simulation model to be used in our project included availability (of the software and
personnel for support), ease of use, and willingness of the provider of the package to work with
the university. This package has been used extensively by this team and the team members are
able to use the software with a high proficiency.

BACKGROUND STUDY ON CANDIDATE SITES

Citronelle in Mobile Alabama was selected as a candidates for this project. Upon selection of this
site as a prime candidate, the group started a background study on this field. A brief background
on this site that was eventually selected as the site to be used for this project is provided in
Appendix 1.

Comprehensive studies on this field can be found in literature from different groups of researchers
mainly in Alabama University and the Southeast Regional Carbon Sequestration Partnership.
Citronelle was discovered on 1955. It produces from the Rodessa formation (lower Cretaceous).
414 active and shut in well exist in this field. The Citronelle Dome is a giant, salt-core anticline in
the eastern Mississippi Interior Salt Basin of southern Alabama that is located near several large-
scale, stationary, carbon-emitting sources in the greater Mobile area. The dome forms an
elliptical, four-way structural closure containing opportunities for CO2-enhanced oil recovery (CO»-
EOR) and large-capacity saline reservoir CO; sequestration.

The Citronelle oil field, located on the crest of the dome, has produced more than 169 million bbls
of 42—-46° API gravity oil from sandstone bodies in the Lower Cretaceous Rodessa Formation.
The top seal for the oil accumulation is a thick succession of shale and anhydrite, and the reservoir
is under-filled such that oil-water contacts are typically elevated 30—60 m (100-200 ft.) above the
structural spill point. Approximately 31-34% of the original oil in place has been recovered by
primary and secondary methods, and CO,-EOR has the potential to increase reserves by up to
20%.

Structural contour maps of the dome demonstrate that the area of structural closure increases
upward in section. Sandstone units providing prospective carbon sinks include the Massive and
Pilot sands of the lower Tuscaloosa Group, as well as several sandstone units in the upper
Tuscaloosa Group and the Eutaw Formation (Figure 8). Many of these sandstone units are
characterized by high porosity and permeability with low heterogeneity. The Tuscaloosa-Eutaw
interval is capped by up to 610 m (2000 ft.) of chalk and marine shale that are proven reservoir
seals in nearby oil fields. Therefore, the Citronelle Dome can be considered a major geologic sink
where CO; can be safely stored while realizing the economic benefits associated with CO»-EOR
(Esposito 2008). Citronelle field is the location for the anthropogenic CO; Injection field test in
southeast regional CO2 sequestration partnership.
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Figure 8. Rodessa Oil and Saline Reservoirs (Left) - Tuscaloosa-Eutaw Saline Reservoirs (Right)

Source for the CO; capture is at Alabama Power's Barry Electric Generating Plant, located in
Mobile County. Plant Barry is located approximately 10 miles from the Citronelle Oil Field, the
ultimate destination of a pipeline that will link the coal-fired CO, source and the saline formation
that will be used for the demonstration project. Data confirms that the geology surrounding Plant
Barry and within the area of the Citronelle Oil Field is regionally very similar to the geologic setting
of the larger Gulf Coast area.

Beginning in 2011, between 100,000 and 150,000 tons of CO. per year — the equivalent of
emissions from 25 megawatts of the plant’s generating capacity — was the source for the SECARB
project. The CO., after capture, is transported to the Citronelle Oil Field and injected into the
Paluxy Formation, a saline sandstone reservoir that is located immediately above the oil field and
is regionally significant as a safe sequestration target throughout the southeastern Gulf Coast.

Based on the R&D objectives of a CO; Injection test project, SECARB planned an extensive MVA
program for its field activities. Each site was well instrumented with multiple sensor arrays.
Standard off-the-shelf technologies were tested in carbon sequestration applications. In addition,
novel new tools and techniques will be tested and evaluated (SECARB 2014). These MVA plans
can very well be compared to the MVA technologies that is developed this project.

Process of selecting a test site for injection pilot and detailed study of its geology, determination
of 0il-CO, minimum miscibility pressure has been completed. The injection well is B-10-10#2
which previously was a producer and was converted to a water injector in 2008. The Injector is
located in a 5 spot with 4 producers (B-19-7, B-19-8,B-19-9 and B-19-11) developed in the upper
Donovan 14-1 and 16-2 sandstone units. Well B-19-10 was initially considered in the 5 spot but
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was replaced by B-19-11 because of operational problems (Figure 9). All relevant information for
these wells was gathered through the Alabama Geological Survey website?.

(B-19:3) #1

Figure 9. Map of the 5 spot CO,—-EOR

Simulation results from University of Alabama at Birmingham were thoroughly studied. The 5 spot
model is simulated for a water injection followed by a CO,-EOR period. Results of these models
simulated by both SENSOR (Coats Engineering, Inc.) and MASTER 3.0 simulator show an
increase in oil recovery by CO; injection. Another scenario of water alternating gas (WAG)
recovery is also simulated by SENSOR and shows that this method might be preferred when the
CO: has a limited supply (Walsh 2010).

Table 3. 5 Spot CO, EOR Wells Information

Well . .
Name Type Latitude | Longitude | Spud Date Perfs
1 -11458; 11014-20; 11042-48;
B-19-7 | Producer | 31.12338 | -88.2169 | 12/6/1962 0863 >8; 110 0; 110 8
11416-24
B-19-8 | Producer | 31.12373 | -88.2127 | 4/29/1963 10904-11561
10962-68, 10984-11000, 11024-40,
B-19-9 | Producer | 31.12351 | -88.2127 | 1/19/1963 11394-401
B-19-10 .
# Injector | 31.12156 | -88.2149 | 1/26/1982 10988-92, 11031-38, 11395-99
1 - 1 -862,1 -11001
B-19-11 | Producer | 31.11962 | -88.2208 | 10/25/1962 0784-755, 3?2228%46 0954-11001,

1 http://www.gsa.state.al.us
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At the time this project was to be started, another pilot project in Citronelle, AL was about to start.
This pilot was a CO; storage project in saline aquifer (Paluxy formation) as part of the phase Il
South Eastern Carbon Sequestration Partnership. This was an anthropogenic test with large
volume of CO; injection into a saline aquifer with capture of CO, from power plant Barry. Denbury
Resources Incorporation participated in the early planning stages of the project to inject CO: into
the saline formation and to monitor CO, containment. Alabama Power Company's Plant Barry,
near Bucks, Alabama, was the source of CO,, approximately 12 miles from the Southeast
Citronelle Unit.

The project capability included capturing approximately 125,000 metric tons of anthropogenic CO;
per year. A pipeline was constructed from Plant Barry to Denbury's Southeast Citronelle Unit, and
the CO;was injected into saline Paluxy sandstones at depths of approximately 10,000 feet. These
sandstones are separated from the deeper Rodessa oil reservoir by the impermeable Ferry Lake
Anhydrite. One new injection well and one new monitoring well were planned. Injection was
planned to continue for four years at a rate of 125,000 tons per year. After finishing of injection,
the sequestered CO, would be monitored for an additional four years in order to determine how
well the CO; has been contained.

A numerical model from this site was received from Advanced Resources International. An area
of about 9000 acre with a 50 by 50 Cartesian grid (Grid Size = 400 ft. by 400 ft) was modeled.
The model contained 17 sand bodies in 51 simulation layers. Average permeability was 88 md
for the entire formation and average porosity was 19.3 %.

The model has one injection well penetrating all 17 sand bodies with thickness of about 10 to 80
ft. each. Total thickness of the paluxy formation is about 1100 ft. in southeast unit. All 17 sand
bodies except for the number 14" are surrounded (at least partially) by Carter-Tracy (Limited
extent) aquifers in the model. The injection target is the saline Paluxy sandstones at the depth of
approximately 10,000 feet. The Paluxy formation represents a regressive sequence. Injection well
is well D-9-7 which was previously plugged and abandoned on 09/12/08.

Table 4 and Table 5 provide some detail information regarding the perforations of well D-9-7 and
the formation tops used in the model.

Table 4. Anthropogenic test Injection Well Information

Well

Name Type Latitude | Longitude | Spud Date Perfs

10900-02, 10966-70, 10975-79,

D-9-7 | Injector | 31.06519 | -88.18172 | 11/19/1961 11027-40, 11069-80
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Table 5. Formation Top and Thickness (Citronelle, Al)

Formation Tops Depth T:?tekrval
ickness
(ft bgs) (%)

Bottom of Fresh Water (<1,000 mg/l) ~1,000
Base of USDW (<10,000 mg/l) ~1,200
Selma Chalk Group (seal) 4,560 1,310
Eutaw 5,870 150
Tuscaloosa Group

Upper Tuscaloosa 6,020 720

Middle Tuscaloosa (seal) 6,740 210

Lower Tuscaloosa 6,950 410
Washita-Fredericksburg (seal) 7,360 2,040
Paluxy Formation (target) 9,400 1,110
Mooringsport Formation 10,510 240
Ferry Lake Anhydrite 10,750 190
Rodessa Formation (oil reservoir) 10,940 -
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RESERVOIR SIMULATION AND MODELING

ARI| SIMULATION MODEL

The base model being used for simulation by the WVU team was received from Advanced
Resources International. The model represents the injecting target-Paluxy, between the depths
of 9,040 feet to 10,476 feet. The model that has an area of approximately 9000 acres, is built
using a 50 x 50 x 51 Cartesian grid with a total number of grid blocks equal to 138,975. The size
of each grid is 400 ft. x 400 ft. An average permeability 88 md and an average porosity 19.3% are
used as constant parameters for the entire formation in the model.

Table 6 and Table 7 provide more details on the information used in the ARl model.

Table 6. Reservoir Components Data

Reservoir Pressure 230 F
Water Properties Compressibility=3.2E-6 1/psi

Components | Critical Pressure, Psi | Critical temperature, F | Acentric factor

CO2 72.8 304.2 0.225
C1 45.4 190.6 0.008

Table 7. Reservoir Characteristics Data

Total blocks 50x50x51=138975 blocks

Block size 400x400 feet

Permeability(l.J.k) 88 md

Porosity 20%

Global Composition (C1,COy) | 0.01

Aquifers There are 16 aquifers in which leakage is allowed
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Relative Permeability Curves

Relative permeability curves which are used in the model are shown in the following figures.

kr - relative permeability
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Figure 10. Gas Relative Permeability (Red) - Oil Relative Permeability (Blue)
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Figure 11. Water Relative Permeability (Red) - Oil Relative Permeability (Blue)
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The model has 51 simulation layers, which form 17 sand layers with thickness of about 10 to 80
ft. each. A 3-D view of the simulation model is shown in the following graphs.

Figure 12. Citronelle Model Structure

Injection Scenarios and Simulation Results

The WVU team has performed several simulation Scenarios with different injecting CO, amount
followed by a certain monitoring time to examine the extent of the CO, plum after injection. The
different scenarios are chosen based on the target amount of injection which is reported for this
test project.

The Gas saturation result shows how well the CO.is contained after injection for each scenario.
The figures below show the gas saturation plume around the injection well.

Scenario 1

In this scenario, CO:is injected into the target formation with the amount of 100,000 tons per year
for four years starting on January 2010.

After injection, a period of 100 years monitoring is followed. The figures below show how CO;
travels around the injection well along the entire formation, each figure shows the Gas (CO,)
saturation before injection, end of injection, 50 years after injection, and at the end of 100 years
of monitoring, respectively.
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Figure 13. Gas Saturation around the injection well - Scenario 1
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Following graphs show the gas (CO.) rate and well pressure during the injection and the

monitoring period.
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Figure 14. Cumulative Gas Rate & Gas rate Standard Condition at the injection period
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Figure 15. Well Block Pressure at the injection period
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Figure 16. Cumulative Gas Rate & Gas rate Standard Condition at the monitoring period
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Figure 17. Well Block Pressure at the monitoring period
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Scenario 2

In this scenario, CO:is injected into the target formation with the amount of 125,000 tons per year

for four years starting on January 2010.

After injection, a period of 100 years monitoring is followed. The figures below show how CO;
travels around the injection well along the entire formation, each figure shows the Gas (CO,)
saturation before injection, end of injection, 50 years after injection, and at the end of 100 years

of monitoring, respectively.
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Figure 18. Gas Saturation around the injection well - Scenario 2
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Following graphs show the gas (CO.) rate and well pressure during the injection and the

monitoring period.
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Figure 19. Cumulative Gas Rate & Gas rate Standard Condition at the injection period
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Figure 20. Well Block Pressure at the injection period
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Figure 21. Cumulative Gas Rate & Gas rate Standard Condition at the monitoring period
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Figure 22. Well Block Pressure at the monitoring period
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Scenario 3

In this scenario, CO:is injected into the target formation with the amount of 150,000 tons per year
for four years starting January 2010.

After injection, a period of 100 years monitoring is followed. The figures below show how CO;
travels around the injection well along the entire formation, each figure shows the Gas (CO,)
saturation before injection, end of injection, 50 years after injection, and at the end of 100 years
of monitoring, respectively.
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Figure 23. Gas Saturation around the injection well - Scenario 3

Following graphs show the gas (CO.) rate and well pressure during the injection and the
monitoring period.
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Figure 24. Cumulative Gas Rate & Gas rate Standard Condition at the injection period
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Figure 25. Well Block Pressure at the injection period
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Figure 26. Cumulative Gas Rate & Gas rate Standard Condition at the monitoring period
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Figure 27. Well Block Pressure at the monitoring period
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These simulation runs demonstrated that 100 years after the stop of injection, approximately 60
to 70% of the CO; plum penetrates mostly the upper part of the sand layers, while the remaining
30% are distributed among the middle and bottom sand layers.

DEVELOPING LATERAL HETEROGENEITY FOR THE FIELD (THE WVU MODEL)

The WVU team continued the search for more geological data on the Citronelle Field. At the end
of August 2010, the WVU team received a complete report on SECARB Phase IIl anthropogenic
test project (Advance Resources International [ARI] Report). This report covers all the background
studies that have been performed on this field by ARI.

In line with the data gathering efforts, the WVU team started looking for any available well logs
from the field, especially the closest wells to the injection well. These logs were ordered from the
Alabama geological survey and were interpreted at WVU. Porosity values are interpreted from
these well logs and the permeability is calculated based on an equation used in ARI report. The
interpretation procedure will be covered later in this report.

The simulation model which was received from ARI has an average value for porosity and
permeability. However based on the ARI report these values are calculated from a well log at the
well D-9-7. The WVU team decided to incorporate the vertical heterogeneity extracted from the
well log into the numerical model in order to have a better understanding of the fate of CO; in
different depths of the reservoir.

The data for the Citronelle field presented in the ARI report provided the porosity and permeability
data for the injection well D-9-7. Simulation of the injection with just this data would not present
a very realistic picture of CO. plum in the reservoir. Our simulation runs suggested that the CO;
plum can be expected to reach as far as 1 mile away from the injection well. Thus to generate a
realistic model that captures the heterogeneity of the formation in the lateral direction, the WVU
team obtained well logs from wells up to 1 mile away from the injection well.

The wells whose logs were obtained for generating the heterogeneity were D-4-14,D-4-15,D-4-
16,D-9-2,D-9-3,D0-9-6, D-9-8,D-9-10, D-9-10,D-10-5,D-10-12. The logs obtained were induction
logs with formation resistivity values from 1400 ft to 11600 ft. The region of interest on the logs
was the injection zone from about 9400 ft to about 10500 ft.

All logs were digitized to be used for the calculation of porosity. To calculate the porosity
corresponding to each resistivity, the Archie equation provided in the ARI report was used.

1/m
a

() =5

0=
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Where

a = tortuosity factor = 1; default value

m = cementation factor = 2.25; best match to Citronelle oilfield porosity logs

n = saturation exponent = 2; common default value

Rw = resistivity of the formation water = 0.045; best match to Citronelle oilfield porosity logs
Sw = Water saturation =0.95; assume only residual gas saturation

¢ = porosity

R: = True formation resistivity = obtained from logs.

The true formation resistivity for each of the injection zones was read from the digitized logs and
the porosity at each data point was obtained by using the equation above. The digitized logs
included the resistivity value every six inches, thus our porosities were calculated at six inch
intervals. To find the porosity of each zone, the porosity thickness was calculated for each one of
the injection zones and divided by the thickness of the zone using the following equation:

Y. 0h
Y h
Therefore, average porosities for each of the injection zones were calculated. The next step was
generating the permeability for the injection zone. The ARI report shows that for most of the logs

obtained from the Citronelle field, the general relationship between porosity and permeability is
given by the following equation:

Pave =

k = 0.013¢93779

Once the permeability was calculated for each injection zone using the above equation, lateral
heterogeneity in all injection zones were introduced into the geological model. Results of these
calculations are shown in Table 8.

Numerical Modeling

The Simulation model was modified based on the parameters gathered from the document
provided by ARI. This document, discusses the new changes that have occurred in the CO,
sequestration plan. These changes were implemented in the model, the amount of permeability
and porosity in sandstone layers were updated with the new values in the document (SECARB
2010). The injection well in the model was completed and perforated in 11 sandstone layers.
Other layers were closed to injection in the model.
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The ARI document also states that the injection well has a maximum bottom hole pressure
constraint of 6,300 psi to avoid of surpassing the fracture pressure during the CO: injection.
Another constraint that was imposed in the model was the maximum CO: injection rate of 9.45
million standard cubic feet per day.

Preliminary results of the model are shown in following graphs (Figure 28and Figure 29).

Table 8. Log Interpretation results for Citronelle

Well Name D-9-6 D415 D-105 D-10-12 D-4-16 D-9-3
[ ® ® d ® H [ ® [ ©

9460 0.14 8.52 0.19 75.65 0.11 2.63 0.14 8.52 0.22 232.69 0.16 19.45
9520 0.16 19.45 0.11 1.95 0.12 3.14 0.11 2.25 0.24 617.53 0.13 4.81
9540 0.11 2.25 0.13 4.81 0.14 8.52 0.11 1.95 0.22 232.69 0.10 1.71
9570 0.11 2.25 0.15 12.33 0.13 4.81 0.11 1.95 0.10 1.49 0.11 2.63
9620 0.12 3.14 0.16 19.45 0.10 1.71 0.12 3.83 0.14 8.52 0.14 6.25
9670 0.12 3.14 0.19 75.65 0.14 8.52 0.14 8.52 0.12 3.14 0.13 4.81
9710 0.14 8.52 0.16 19.45 0.12 3.14 0.15 9.79 0.12 3.14 0.19 75.65
9740 0.14 8.52 0.19 75.65 0.10 1.71 0.11 1.95 0.15 9.79 0.12 3.83
9800 0.16 19.45 0.13 4.81 0.16 19.45 0.11 2.63 0.11 2.25 0.13 4.81
9900 0.13 4.81 0.12 3.83 0.12 3.83 0.14 6.25 0.11 2.63 0.14 6.25
9970 0.13 4.37 0.22 232.69 0.13 4.37 0.11 2.25 0.12 2.92 0.11 2.25
10060 0.13 437 0.12 3.83 0.12 4.00 0.14 6.25 0.12 3.83 0.13 4.37
10100 0.13 4.81 0.12 3.14 0.13 4.81 0.12 3.14 0.11 1.95 0.13 4.81
10130 0.13 481 0.12 3.14 0.13 4.81 0.12 3.14 0.11 1.95 0.13 4.37
10310 0.14 6.25 0.16 19.45 0.13 4.18 0.13 4.81 0.13 4.81 0.16 19.45
10370 0.12 3.14 0.14 8.52 0.14 8.52 0.13 4.81 0.15 13.40 0.15 11.38
10470 0.16 19.45 0.14 8.52 0.12 3.14 0.13 4.37 0.22 232.69 0.13 5.32
10500 0.13 4.81 0.11 2.25 0.26 [(1477.78( 0.11 2.12 0.13 4.81 0.11 2.25
Well Name D-4-14 D-9-8 D-9-2 D-9-10 D-5-7 D-9-11
o JNE © O O O
9460 0.14 7.68 0.19 77.81 0.10 1.24 0.14 7.08 0.11 1.95 0.14 8.50
9520 0.15 11.54 0.22 199.03 0.16 16.56 0.11 2.08 0.10 1.34 0.12 2.76
9540 0.14 8.08 0.16 21.38 0.11 2.05 0.12 2.76 0.12 2.90 0.11 2.25
9570 0.11 2.25 0.13 4.79 0.10 1.45 0.12 2.70 0.12 3.28 0.12 3.20
9620 0.14 6.61 0.18 38.43 0.12 291 0.13 6.05 0.10 1.40 0.12 2.82
9670 0.14 7.74 0.16 21.19 0.10 1.38 0.12 3.54 0.12 2.85 0.12 4.02
9710 0.13 5.28 0.26 (1084.88| 0.11 2.32 0.11 1.84 0.14 7.58 0.11 1.94
9740 0.22 282.02 0.19 57.30 0.11 2.33 0.11 2.34 0.10 1.40 0.12 3.06
9800 0.18 37.14 0.20 107.93 0.13 5.26 0.11 2.40 0.12 3.34 0.12 2.69
9900 0.15 13.86 0.13 5.15 0.14 7.39 0.13 5.95 0.10 1.37 0.12 3.79
9970 0.13 5.04 0.17 33.11 0.11 2.55 0.11 2.35 0.12 3.74 0.12 4.02
10060 0.12 3.76 0.12 345 0.10 1.68 0.12 3.27 0.10 1.36 0.12 3.23
10100 0.21 122.09 0.12 3.10 0.11 2.44 0.11 2.06 0.11 2.57 0.12 3.71
10130 0.13 498 0.13 4.07 0.11 2.25 0.11 241 0.14 6.23 0.12 3.18
10310 0.14 6.84 0.13 4.67 0.13 6.02 0.13 4.07 0.15 11.64 0.13 498
10370 0.14 6.81 0.17 24.80 0.12 2.97 0.11 1.99 0.10 1.68 0.15 11.30
10470 0.22 245.11 0.22 236.92 0.12 3.79 0.10 1.37 0.12 2.99 0.10 1.55
10500 0.13 5.13 0.14 6.79 0.15 9.70 0.14 6.21 0.12 3.47 0.12 3.38
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Figure 28. CO, Gas mole fraction at the end of the injection

Figure 29. CO, Gas mole fraction after 10 years of monitoring
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Permeability Realizations

Following correlation between porosity and permeability was used by ARI, In order to generate
the permeability map used in their model.

k = 0.020e%4259

The WVU team later added another correlation between porosity and permeability in order to
make the trend lines more representative of the actual data. This new correlation is shown below.
And the results of these correlations as trend lines and actual data is shown in Figure 30.

k = 0.013e2:3779
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Figure 30.The porosity-permeability correlation proposed by ARI

Base on the data presented in this figure, a large number of data points fall outside of the trend
lines; moreover several other data points do not follow the trends identified by the correlations
presented above. In order to rectify this, four different clusters were identified and ranked as the
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best to the worst rock types. The correlation between the porosity and permeability for the four
different realizations were defined. (Figure 31). The interpretation of the well logs and calculation
of porosity and permeability based on the cluster analyses shown in Figure 31 are listed in Table
9 and Table 10.

Different Rock Types
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Figure 31.The porosity-permeability correlation in different rock types
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Table 9. Log Interpretation results for Citronelle

Well Name D-18-16 D-8-2 D-16-4 D-9-5 B-33-13 D-10-4 D-8-7
Log Number 1047EL 1057EL 1059EL 1190EL 1204EL 1211EL 994EL
Sand Layer|Depth Range(ft)] ® K(md) [ K(md) [ K(md) ® |Kmd)| ® | K(md) | ® [K(md) [ @ K(md)
9460 9444-9476 0.116 3.931 0.124 6.620 0.130 5.913 0.116 | 6.179 | 0.105 | 2.241 | 0.131 | 5955 [ 0.121 7.143
9520 9513-9528 0.125 4.498 0.106 2.289 0.146 16.210 0127 | 6.183 | 0.117 | 3.248 | 0.171 | 37.120 | 0.119 | 4.409
9540 9534-9549 0.108 3.103 0.116 4.747 0.128 5.578 0.142 | 10.217 | 0.098 | 1.302 | 0.142 | 9.574 | 0.093 1.081
9570 9562-9584 0.134 6.618 0.142 29.493 0.101 1.758 0.089 | 0.879 | 0.091 | 0983 | 0.121 | 6.299 | 0.092 | 1.003
9620 9596-9638 0.139 12.302 0.104 5.651 0.125 5.696 0.148 | 23.149 | 0.117 | 6.016 | 0.110 | 2.470 | 0.101 3.400
9670 9660-9679 0.107 3.596 0.129 5.625 0111 2.893 0108 | 2.825 | 0.123 | 4472 | 0.159 | 19.662 | 0.119 | 6.094
9710 0695-9717 0.124 5.337 0.092 1102 0090 [ 1113 [o0.080 [ 0636 [ 0089 | 0927 [0113] 2745 [ 0.107 [ 3583
9740 9730-9748 0.123 5.402 0114 3.593 0.141 14.163 0121 | 5512 | 0.109 | 2140 | 0.116 | 3.721 | 0.104 | 1.976
9800 9775-9806 0.098 2.653 0.116 4.090 0.108 3.254 0.115 | 6.712 | 0.101 | 2.166 | 0.123 | 5540 [ 0.103 3.122
9900 9886-9903 0.123 4509 0.101 1.468 0.133 5.723 0116 | 3.742 | 0.101 | 1553 | 0.128 | 4.661 | 0.095 | 1.320
9970 9954-9977 0.097 1.527 0.136 6.550 0.102 1.884 0.108 | 2.650 | 0.098 | 1.392 | 0.135| 7.043 [ 0.106 2.898
10060 10055-10069 0117 3.129 0.123 4232 0.098 1.339 0.090 | 1.028 | 0.110 | 2.339 | 0.133 | 5652 | 0.129 | 5.113
10100 10099-10113 0.088 0.891 0.106 1.922 0.132 5.702 0.114 | 3.293 | 0.120 | 3.373 | 0.137 | 7.099 [ 0.132 5.493
10130 10121-10134 0.113 2.816 0111 2.672 0.110 2,635 0120 | 3.250 | 0.112 | 2544 | 0.125 | 4.102 | 0.143 | 8732
10310 10302-10318 0.128 4.696 0.147 11.876 0.106 1.850 0.127 | 4477 | 0.138 | 7.413 | 0.118 | 3.018 | 0.137 6.751
10370 10362-10381 0.135 6.495 0.101 1.489 0.149 11.878 0150 | 11.747 | 0.100 | 2.304 | 0.133 | 6.113 | 0.145 | 9.921
10470 10454-10484 0.091 1.646 0.093 1.236 0.131 5.529 0.124 | 5966 | 0.122 | 3.742 [ 0.133 | 5.873 | 0.087 [ 1.053
10500 10491-10508 0.137 7.292 0.136 7.276 0.111 2.530 0130 | 4.935 | 0.116 | 2.874 | 0095 | 1.199 | 0.129 | 5.162
Well Name D-8-1 D-5-9 D-5-16 D-17-11 D-9-7 D-9-15 D-5-1
Log Number 1075EL 1119EL 1120EL 1125EI 1126EL 1127EL 1128El
Sand Layer|Depth Range(ft)| @ K(md) [ K(md) [ K(md) ® [K(md)| @ K(md) | @ K(md) | @ K(md)
9460 9444-9476 0.123 7.140 0.108 3.944 0.114 5.003 0.165 | 27.138 | 0.096 | 1.442 | 0.118 | 4.439 [ 0.123 4.765
9520 9513-9528 0.103 2516 0.101 1.570 0.128 8.996 0.147 | 10560 | 0.090 | 1375 | 0.13 | 2.715 | 0.099 | 1.377
9540 9534-9549 0.116 4.239 0.092 1.253 0.095 1.280 0.154 | 13.788 | 0.081 | 0.635 | 0.089 | 0.874 | 0.098 1.325
9570 9562-9584 0.092 1.086 0.150 15.780 0.101 2110 0141 | 8.076 | 0.100 [ 1755 [ 0094 | 1.121 | 0.46 | 11307
9620 9596-9638 0.102 2.097 0.107 2.569 0.151 22.722 0.119 | 4.484 | 0.106 | 6.768 | 0.112 | 3.076 | 0.133 | 10.216
9670 9660-9679 0.143 10.573 0.103 2.617 0.122 7.468 0125 | 4.668 | 0.122 | 7.249 | 0.114 | 3.187 | 0.104 | 2505
9710 9695-9717 0.141 10.042 0.090 1.261 0.093 1.804 0.100 | 1.391 | 0.095| 1579 | 0.108 | 2.822 | 0.116 4.414
9740 9730-9748 0.082 0.688 0.136 6.755 0.086 0.796 0101 | 1.456 | 0.087 | 0.877 | 0.086 | 0832 | 0092 | 1.705
9800 9775-9806 0.114 5.196 0.094 1.232 0.124 4.500 0.105 | 1.967 | 0.105| 3.135 | 0.109 | 3.792 [ 0.134 6.891
9900 9886-9903 0.116 3139 0.126 4.256 0.085 1.113 0112 | 2.347 | 0.100 [ 1540 | 0.106 | 1.885 | 0.082 | 0.787
9970 9954-9977 0.104 2.576 0.130 5.054 0.128 4.586 0.121 | 3.935 | 0.086 | 1.265 | 0.100 | 1.615 [ 0.094 1.494
10060 10055-10069 0.121 3.418 0.116 2.950 0.118 3.072 0114 | 2535 | 0098 [ 1.568 | 0.108 | 2.310 | 0.098 | 1.498
10100 10099-10113 0.102 1.671 0.094 1.576 0.098 1.425 0.098 | 1.267 | 0.094 | 1.302 | 0.108 | 2.370 [ 0.091 1.108
10130 10121-10134 0.115 2.859 0.102 2.066 0.119 3.263 0134 | 9475 | 0085 [ 0928 | 0.21 | 3556 | 0.097 | 1567
10310 10302-10318 0.146 11.499 0.145 9.902 0.115 2.692 0.101 | 1.565 | 0.102 | 92.269 | 0.088 | 0.922 [ 0.115 3.575
10370 10362-10381 0.156 16.247 0.103 2.369 0.125 4235 0.095 | 1.147 | 0090 | 1711 | 0.09 | 2427 | 0.136 | 6.865
10470 10454-10484 0.093 1.818 0.119 3.268 0.105 2.102 0.102 | 1.662 | 0.090 | 1.227 | 0.103 | 2122 | 0.117 3.085
10500 10491-10508 0.125 4.728 0.114 2.696 0.117 3.260 0.117 | 3502 | 0.070 [ 0406 | 0079 | 0575 | 0.101 | 1549
Well Name D-9-4 D-9-9 D-6-5 D-9-1 B-32-10
Log Number 1132El 1189EL 1174EL 1182EL 1149EI
Sand Layer|Depth Range(ft)[ ® K(md) [ K(md) D K(md) @ |K(md)| @ K(md)
9460 9444-9476 0.119 5.304 0.119 6.876 0.115 3.989 0.132 | 15.867 | 0.083 | 0.705
9520 9513-9528 0.116 3.903 0.155 14.628 0.120 4.667 0101 | 2.115 | 0.085 | 0.763
9540 9534-9549 0.131 6.561 0.092 1.036 0.118 4.241 0.155 | 15.834 | 0.121 | 4.527
9570 9562-9584 0.096 1.855 0131 13.590 0.097 2.084 0117 | 3.203 | 0.103 | 2.250
9620 9596-9638 0.130 7.717 0.102 2.977 0.105 2.078 0.125 | 5.830 | 0.092 | 1.448
9670 9660-9679 0.113 3481 0.097 1.661 0.122 3.958 0.123 | 4.008 | 0093 | 1.140
9710 9695-9717 0.073 0.455 0.115 3.453 0.127 6.185 0.095 [ 1.256 | 0.107 | 2.329
9740 9730-9748 0.090 1.096 0.086 0.796 0.136 6.523 0131 | 6.429 | 0099 | 1573
9800 9775-9806 0.103 2.799 0.101 2.204 0.115 3.908 0.117 | 3537 | 0.107 | 2.576
9900 9886-9903 0.105 2428 0.136 6.653 0.126 4.468 0118 | 3.325 | 0.087 | 0.832
9970 9954-9977 0.105 1.886 0.132 5.619 0.108 2.806 0.116 | 3.337 | 0.113 | 3.334
10060 10055-10069 0.086 0.894 0.126 4333 0.081 0.698 0131 | 5314 | 0421 | 3412
10100 10099-10113 0.117 2.939 0.116 3.211 0.127 4.570 0.124 | 3.962 | 0.107 | 2.038
10130 10121-10134 0.124 3972 0.126 5.558 0.109 2133 0113 | 2481 | 0.17 | 3.000
10310 10302-10318 0.143 8.856 0.110 2.307 0.122 3.717 0.137 | 7.314 | 0.141 [ 8.235
10370 10362-10381 0.138 7.235 0117 3.425 0.128 4.603 0.108 | 2.323 | 0.102 | 2.260
10470 10454-10484 0.104 2.556 0.119 3.775 0.108 3.228 0.096 | 1.930 | 0.110 | 2.256
10500 10491-10508 0.125 4281 0.083 0.698 0.093 1.065 0138 | 7.265 | 0.128 | 5115
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Table 10. Log Interpretation results for Citronelle

Log Number 850EL 778EL 833EL 873EL 886EL 888EL 1044EL
Sand Layer | Depth Range(ft) D K(md) D K(md) [ K(md) D K(md) D K(md) D K(md) L) K(md)
9460 9444-9476 0.119 16.772 | 0.154 39.312 0.128 6.725 0.122 17.825 0.117 3.756 0.135 7.030 0.092 1.207
9520 9513-9528 0.084 1469 [ 0.112 7.820 0.135 6.775 0.122 8.601 0.088 1.232 0.169 26918 | 0.112 4.423
9540 9534-9549 0.112 4.143 0.068 0.451 0.134 7.217 0.137 8.620 0.065 0.319 0.147 10.686 0.102 2.006
9570 9562-9584 0.117 5100 | 0.129 7.788 0.142 9.347 0.089 2.659 0.085 2.970 0.148 11509 | 0.106 2.708
9620 9596-9638 0.084 3.406 | 0.108 5.761 0.098 2.000 0.073 1.457 0116 | 11.014 | 0.117 3.454 0.140 | 16.643
9670 9660-9679 0.075 0.929 | 0.094 3.892 0.112 2.448 0.081 2.492 0.096 2173 0.093 2.096 0.083 0.700
9710 9695-9717 0.115 4.246 0.142 8.482 0.128 4.990 0.064 0.316 0.113 2.908 0.067 0.342 0.097 2.091
9740 9730-9748 0.140 7.887 | 0.065 0.321 0.103 2.600 0.079 1.135 0.070 0.467 0.070 0.393 0.077 0.531
9800 9775-9806 0.107 2.641 | 0.084 1.523 0.125 6.195 0.075 0.714 0.098 3.274 0.097 1.898 0.124 5.173
9900 9886-9903 0.093 1.898 [ 0.118 3.651 0.115 3.013 0.062 0.277 0.110 2.224 0.070 0511 0.099 2.331
9970 9954-9977 0.113 2.857 0.116 3.950 0.102 1.634 0.086 1.608 0.100 1.441 0.118 4.207 0.119 3.524
10060 10055-10069 0.128 4709 | 0.130 5.015 0.129 4.920 0.130 5.619 0.119 3.494 0.078 0.825 0.118 2.977
10100 10099-10113 0.135 6.248 | 0.117 | 4.344 0.098 1.377 0.100 1.420 0.147 | 10468 | 0.125 4.119 0.109 2.244
10130 10121-10134 0.085 1478 | 0.128 4771 0.110 2137 0.113 2.844 0.141 8.321 0.133 5.663 0.101 1.558
10310 10302-10318 0.057 0.227 0.145 9.544 0.127 4.474 0.101 2.627 0.114 6.923 0.100 2.080 0.082 0.712
10370 10362-10381 0.092 1.985 [ 0.143 8.737 0.111 2.432 0.143 9.141 0.067 0.402 0.126 4910 0.138 7.148
10470 10454-10484 0.088 1.237 0.076 0.994 0.106 2.544 0.087 1.643 0.090 2.306 0.138 9.602 0.124 4.893
10500 10491-10508 0.121 3.468 | 0.083 1543 0.101 3.325 0.135 6.324 0.091 2.430 0.110 2.403 0.115 2.754
Log Number 888EL 913EL 944EL 948EL 967EL 968EL 1032EL
Sand Layer | Depth Range(ft) D K(md) D K(md) [ K(md) D K(md) L) K(md) D K(md) L) K(md)
9460 9444-9476 0.135 7.030 0.175 39.115 0.091 1.067 0.128 9.712 0.121 4.788 0.136 12.735 0.158 21.412
9520 9513-9528 0.169 26918 | 0.138 9.736 0.102 2.498 0.140 13511 0.110 2.655 0.132 6.232 0.112 2.694
9540 9534-9549 0.147 10.686 | 0.175 35.558 0.084 0.730 0.154 14.663 0.114 3.207 0.083 0.959 0.129 5.334
9570 9562-9584 0.148 11509 | 0.139 7.671 0.110 7.794 0.146 10.130 0.093 1.088 0.079 0.679 0.115 3.549
9620 9596-9638 0.117 3454 | 0.116 5.276 0.101 2.789 0.107 3.993 0.111 4.084 0.095 2.591 0.142 9.361
9670 9660-9679 0.093 2.096 | 0.095 1115 0.112 4536 0.086 0.802 0.087 0.855 0.122 5.201 0.151 14.620
9710 9695-9717 0.067 0.342 0.156 26.523 0.106 2.737 0.136 23.358 0.084 0.749 0.104 2.173 0.123 3.769
9740 9730-9748 0.070 0393 | 0.115 4.456 0.093 1518 0.094 1.943 0.106 2.061 0.116 3.931 0.150 12.092
9800 9775-9806 0.097 1.898 | 0.147 | 14.127 0.112 3.221 0.087 1.035 0.103 2.091 0.097 2.115 0.132 6.289
9900 9886-9903 0.070 0511 | 0.102 1.819 0.085 0.890 0.109 2.152 0.087 0.858 0.080 0.656 0.080 0.768
9970 9954-9977 0.118 4.207 0.142 9.052 0.100 1.897 0.120 3.441 0.127 5.278 0.135 6.273 0.123 4.121
10060 10055-10069 0.078 0.825 | 0.092 0.984 0.081 0.770 0.143 9.159 0.109 2.325 0.093 1.537 0.113 2.533
10100 10099-10113 0.125 4.119 | 0.082 0.729 0.127 4.511 0.096 1.228 0.120 3.323 0.122 3.627 0.117 3.038
10130 10121-10134 0.133 5.663 | 0.109 2.585 0.081 0.658 0.126 4733 0.116 2.767 0.123 3.903 0.110 2.286
10310 10302-10318 0.100 2.080 0.107 2.198 0.136 6.720 0.127 4.513 0.147 11.009 0.118 3.241 0.146 11.328
10370 10362-10381 0.126 4910 | 0.106 2.175 0.137 7.032 0.140 7.833 0.141 8517 0.127 4547 0.145 10.076
10470 10454-10484 0.138 9.602 0.110 2.390 0.127 7.016 0.128 5.146 0.104 2.399 0.099 2.317 0.108 3.275
10500 10491-10508 0.110 2403 | 0.104 2.286 0.097 1.251 0.123 3.924 0.143 8.699 0.122 3.788 0.108 2.203
Log Number 969EL 990EL 991EL 1014EL 1020EL
Sand Layer | Depth Range(ft) D K(md) D K(md) [ K(md) D K(md) D K(md)
9460 9444-9476 0.116 4.943 0.142 10.218 0.113 3.427 0.066 2.412 0.160 19.354
9520 9513-9528 0.118 3392 | 0.138 7.359 0.121 4234 0.068 0.669 0.091 1.184
9540 9534-9549 0.078 0.547 0.132 5.642 0.124 4.206 0.044 0.217 0.086 0.807
9570 9562-9584 0.085 0.761 | 0.137 8.641 0.110 2.462 0.086 0.800 0.136 8.258
9620 9596-9638 0.096 2.108 | 0.150 | 15.549 0.107 2.730 0.076 0.740 0.103 3.046
9670 9660-9679 0.114 4963 | 0.125 4353 0.136 6.668 0.062 0.389 0.164 21921
9710 9695-9717 0.109 2.839 0.125 4.326 0.079 0.585 0.051 0.176 0.076 0.509
9740 9730-9748 0.072 0.440 | 0.119 3.494 0.113 3.353 0.056 0.303 0.108 3.344
9800 9775-9806 0.124 5.685 | 0.125| 4.160 0.101 2.081 0.077 0.784 0.107 3.261
9900 9886-9903 0.081 0.676 | 0.107 1.890 0.093 1.139 0.045 0.136 0.114 2.968
9970 9954-9977 0.116 4.051 0.107 2.055 0.115 2.698 0.055 0.303 0.123 4.120
10060 10055-10069 0.114 2575 | 0.110 2.380 0.091 1.092 0.068 0.488 0.131 5.308
10100 10099-10113 0.096 1.668 | 0.108 2.004 0.113 2.620 0.043 0.126 0.117 3.175
10130 10121-10134 0.112 2386 | 0.120 3.556 0.110 2134 0.039 0.107 0.129 4.886
10310 10302-10318 0.086 1278 | 0.131 5.475 0.127 4.690 0.053 0.190 0.130 5.133
10370 10362-10381 0.126 4293 |0.128 4.693 0.146 10123 | 0.047 0.148 0.126 5.131
10470 10454-10484 0.129 5.641 0.117 3.004 0.102 1.995 0.044 0.137 0.078 0.595
10500 10491-10508 0.110 2.329 | 0.108 2.033 0.130 5.207 0.092 1.007 0.133 6.034
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NUMERICAL MODELING (PERMEABILITY REALIZATIONS)

The original simulation model was modified based on the derived porosity and permeability from
the well logs. Preliminary results of the simulation runs are shown in the following figures. The
new (revised) porosity and permeability distributions are shown in Figure 32 and Figure 33,
respectively.

The distribution of injected CO; into saline formation is initially dominated by gravity segregation
which is related to the permeability anisotropy of the saline formation.

The CO; mole fraction at the end of injection period in both heterogeneous and homogeneous
models is shown in Figure 34 and Figure 35, respectively. Please note the major differences in
CO; plum distributions in the reservoir as the heterogeneities mentioned above are introduced in
the model. Figure 36 and Figure 37 illustrate CO, mole fraction after 30 years of monitoring in
both models. The permeability in homogenous model is higher compared to the heterogeneous
model, causing more rapid dispersion of injected CO; over a wider area. This, in turn will cause
wider plume and higher CO2 concentration in the homogenous model.

Since CO; is more mobile than brine, in the homogenous formation model, viscous fingering is
dominant while in the heterogeneous formation gravity segregation has more substantial impact.
Figure 37 demonstrates the change in the CO, mole fraction over 30 years of monitoring in the
heterogeneous model.

Due to the density differences between CO; and brine, buoyancy force has a significant influence
on the CO: gas distribution in the reservoir and causes the CO; plume to migrate upward. This
can be clearly seen in the simulation model results.

Gas saturation in the area of review (AoR) after the injection period and at the end of the
monitoring period is demonstrated in Figure 39 through Figure 42 . The layers with the higher
permeable in the homogenous model have more gas saturation. The layers with the lower
permeability in the heterogeneous model have smaller plume extent and higher saturation due to
lower mobility of the CO, Plume. The homogenous model with its higher permeability has a larger
plume extent and lower saturation due to rapid dispersal of the gas from the injection zone. The
change in gas saturation over the 30 years of monitoring period is shown in Figure 43.
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Porosity

Figure 32. New and revised porosity distribution
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Figure 33. New and revised permeability distribution
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Figure 34. CO, mole fraction at the end of the injection period in heterogeneous model
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Figure 35. CO2 mole fraction at the end of the injection period in homogenous model
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Figure 36. CO, Gas mole fraction after 30 years of monitoring in heterogeneous model
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Figure 37. CO, Gas mole fraction after 30 years of monitoring in homogenous model
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Figure 38. Change in CO, Gas mole fraction over 30 years of monitoring in heterogeneous
model
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Figure 39. Gas Saturation at the end of the injection in heterogeneous model
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Gas Saturation 2014-01-01

Figure 40. Gas Saturation at the end of the injection in homogenous model
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Figure 41. Gas saturation after 30 years of monitoring in heterogeneous model
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Figure 42. Gas Saturation after 30 years of monitoring in homogenous model
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Figure 43. Change in gas saturation over 30 years of monitoring in heterogeneous model
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The Area of Review (AoR) is defined as the farthest reach of the tangible CO. plume. This value
has been reported to be 1,200 ft. from the injection well. Based on the result of our models
(homogeneous and heterogeneous models), CO. will be extent approximately 1,800 ft. from the
proposed injection well. This has been demonstrated in Figure 44.
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Figure 44. The distribution of CO; around the injection well D-9-7 in both heterogeneous and
homogenous models.

The objective of this section of the report was to demonstrate the issues that the WVU team had
identified with the original model. The conclusion of the study up to this point was that in order to
have a realistic view of distribution of CO. in this formation, a more serious effort need to be put
forward in order to develop a robust numerical model for this project.

Given the WVU team’s experience with the oil and gas industry, and the state-of-the-art static and
dynamic model development, it became obvious that the existing numerical model will not pass
the potential scrutiny by the oil and gas professionals. Therefore, to base this project on a solid
foundation, the WVU team decided to develop a new and robust static model and use it as the
basis for the dynamic flow model. What is covered in the next several sections is a summary of
the efforts that resulted in the numerical model developed by the WVU team for this project for
the Citronelle field.
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GEOLOGICAL MODEL DEVELOPMENT

In the original model the resistivity logs were used to calculate porosity. Then the porosity-
permeability correlations were utilized to generate the permeability maps. Using induction log to
calculated porosity results in large differences in porosity and consequently permeability vales.
Results of such calculations for the injection well D-9-7 are shown in Table 11.

This problem were investigated even further by incorporating the difference in the porosity and
permeability calculations into multiple reservoir realizations. The differences between these
realizations are shown in Table 12. The porosity and permeability maps based on the log data for
different realizations were created and used to modify the simulation model.

Table 11. Porosity and permeability values for the injection well D-9-7 based on different logs

log Resistivity log Induction Log
Well Name D-9-7 D-9-7
Sand Layer|Depth Range(ft)| @ K(md) )] K(md)
9460 9444-9476 0.10 1.442 0.22 229.976
9520 9513-9528 0.09 1.375 0.20 98.295
9540 9534-9549 0.08 0.635 0.19 64.263
9570 9562-9584 0.10 1.755 0.18 42.013
9620 9596-9638 0.11 6.768 0.21 150.352
9670 9660-9679 0.12 7.249 0.16 17.957
9710 9695-9717 0.09 1.579 0.19 64.263
9740 9730-9748 0.09 0.877 0.18 42.013
9800 9775-9806 0.10 3.135 0.18 42.013
9900 9886-9903 0.10 1540 0.18 42.013
9970 9954-9977 0.09 1.265 0.18 42.013
10060 10055-10069 0.10 1.568 0.19 64.263
10100 10099-10113 0.09 1.302 0.19 64.263
10130 10121-10134 0.09 0.928 0.18 42.013
10310 10302-10318 0.10 1.600 0.19 64.263
10370 10362-10381 0.09 1.711 0.18 42.013
10470 10454-10484 0.09 1.227 0.19 64.263
10500 10491-10508 0.07 0.406 0.19 64.263

Table 12. Porosity and permeability for different reservoir realizations

R1 Homogenous Homogenous

R2 Resistivity 28.8185 * { Porosity } ** 1.1063
R3 Resistivity 0.0429 * EXP ( 37.3657 * { Porosity } )
R4 Resistivity 5* EXP10 (6 ) * { Porosity } ** 7.682
R5 Resistivity 1.2582 * EXP ( 27.814 * { Porosity } )
R6 Induction 28.8185 * { Porosity } ** 1.1063
R7 Induction 0.0429 * EXP ( 37.3657 * { Porosity } )
R8 Induction 5* EXP10 (6 ) * { Porosity } ** 7.682
R9 Induction 1.2582 * EXP ( 27.814 * { Porosity } )
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Based on the geological information which is provided in the report (SECARB 2010), two cross
sections A-A’ and B-B’ had been considered for log analysis in order to build the original geological
model. The wells which are located on these two cross sections are shown in Figure 45 and the
target well in both cross sections is injection well D-9-7.

By going through the well logs, it was noticed that the top and thickness of the sand layers in the
original simulation model do not match those from the well logs. As it is shown in Figure 46, the
sand layers in the injection well D-9-7 are picked based on the highest resistivity and highest SP
values. Using the same logic in other wells located on the cross sections, logs and geological
model are not compatible with each other.

To demonstrate this problem clearly, the top and the bottom of first (from above) five sand layers
in the geological model, Table 13, is displayed on the corresponding log in Figure 47 and Figure
48 for well D-9-1 and D-4-14 respectively. Well D-4-14 is located near the injection well on cross
section A-A’ and well D-9-1 has the same position on cross section B-B’.

i SE Unit of the
|__—Citronelle Fielc
Boundary

Citronelle Fielc

/ Boundary
Proposed
Injection well |

Proposed
Observation
well

Figure 45. The location of cross section A-A’ and B-B’ and the wells on them, ARI report’
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Figure 46. The sand layers of injection well D-9-7 and its corresponding well log, the report
(SECARB 2010).
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Table 13. Top and Bottom of well D-9-1 and D-4-14 based on Geological Model

D-9-1 D-4-14
top bottom top bottom
9312.9 9323.6 9226.5 9231.6
9323.6 9334.3 9231.6 9236.7
9334.3 9345 9236.7 9241.8
9377.6 |9380.767 | 9281.6 |9287.567
9380.767 | 9383.933 1 9287.567 | 9293.533
9383.933 | 9387.1 |]9293.533| 9299.5
9399.8 9403.9 9304 ]9308.433
9403.9 9408 |9308.433|9312.867
9408 9412.1 |9312.867 | 9317.3
9437.7 |9440.633 | 9326.7 |9328.733
9440.633 | 9443.567 | 9328.733 | 9330.767
9443.567 | 9446.5 |9330.767 | 9332.8
9468.8 | 9478.167 | 9349.8 |9370.167
9478.167 | 9487.533 | 9370.167 | 9390.533
9487.533 | 9496.9 |9390.533| 9410.9
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Figure 47. The location of top five sand layers on the resistivity and SP log based on the
geological model, Well D-9-1
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Figure 48. The location of top five sand layers on the resistivity and SP log based on the
geological model, Well D-4-14
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The core and well log data for well D-9-8 were obtained. This well is considered as the observation
well and is close to the injection well. The new density log was interpreted for this well and was
compared to the one that was already available. The latter interpreted values are different from
the former ones (Table 14). The top and bottoms are not matching with the geological model
either. The information from this well can be included in the previous maps in order to modify the
top and thickness distribution.

Considering the aforementioned observations, a new geological model was built. This new WVU
geological model honors all the information obtained from the well log and the cores.

Table 14. Porosity based on Resistivity and Induction log and Density Porosity for well D-9-8

D-9-8 new log D-9-8 new log

top | bottom | P(resistivity) | p(Induction) | Dendity Porosity| top |bottom|d(resistivity) [ p(Induction)| Dendity Porosity
9300.5 | 9314.1 0.1357 0.1534 0.2227 9648.2 | 9658.1 0.1160 0.1596 0.1847
9314.1 | 9327.8 0.1487 0.1597 0.1217 9658.1 | 9667.9 0.1769 0.2139 0.1658
9327.8 | 9341.4 0.1524 0.1787 0.1986 9752.7 | 9759.1 0.0892 0.1711 0.1868
9359.2 | 9363.0 0.1038 0.1847 0.1860 9759.1 | 9765.6 0.0809 0.1774 0.1659
9363.0 | 9366.8 0.0864 0.1877 0.1867 9765.6 | 9772.0 0.0755 0.1669 0.2010
9366.8 | 9370.6 0.0866 0.1701 0.2303 9822.8 | 9829.9 0.1214 0.1313 0.2719
9391.2 | 9399.5 0.1170 0.1986 0.2593 9829.9 | 9836.9 0.1280 0.1272 0.2313
9399.5 | 9407.9 0.0964 0.2047 0.2095 9836.9 | 9844.0 0.1263 0.1237 0.2218
9407.9 | 9416.2 0.1011 0.2272 0.2242 9925.8 | 9929.3 0.1300 0.1259 0.2391
9432.1 | 9436.0 0.1030 0.3135 0.2292 9929.3 | 9932.9 0.1282 0.1313 0.1552
9436.0 | 9439.9 0.1492 0.3620 0.2121 9932.9 | 9936.4 0.1332 0.1578 0.1444
9439.9 | 9443.8 0.0997 0.1967 0.3000 9967.7 | 9969.7 0.1136 0.1745 0.1215
9462.4 | 9476.5 0.1535 0.1470 0.1798 9969.7 | 9971.6 0.1015 0.1785 0.1212
9476.5 | 9490.6 0.1347 0.1941 0.1266 9971.6 | 9973.6 0.0982 0.1765 0.1170
9490.6 | 9504.7 0.0952 0.1910 0.1858 9971.4 | 9972.9 0.0977 0.1781 0.2020
9503.6 | 9506.8 0.0914 0.2218 0.2053 9972.9 | 9974.4 0.0987 0.1746 0.1926
9506.8 | 9510.0 0.0931 0.2138 0.2059 9974.4 | 9975.9 0.0985 0.1734 0.1480
9510.0 | 9513.2 0.0854 0.2082 0.2111 10159.2 |10162.3 0.0966 0.1464 0.1144
9561.8 | 9571.6 0.1415 0.1489 0.2003 10162.3 |10165.3 0.0869 0.1242 0.4468
9571.6 | 9581.4 0.1141 0.2218 0.2591 10165.3 |10168.4 0.0805 0.1178 0.2384
9581.4 | 9591.2 0.1009 0.2569 0.2294 10231.6 (10241.3 0.1319 0.1425 0.0685
9599.0 | 9605.2 0.0829 0.1968 0.2419 10241.3 |10251.1 0.1057 0.1590 0.2492
9605.2 | 9611.5 0.1074 0.2922 0.2542 10251.1 |10260.8 0.1177 0.1291 0.2613
9611.5 | 9617.7 0.1150 0.2251 0.2101 10324.3 |10341.2 0.1279 0.1374 0.1252
9638.4 | 9648.2 0.1499 0.1871 0.1449 10341.2 |10358.2 0.1153 0.1755 0.1336
10358.2 |10375.1 0.1044 0.1438 0.1230
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WVU NUMERICAL MODELING BASED ON POROSITY LOGS

With incorporating the data obtained from well log interpretation, a vertically and laterally
heterogeneous model was generated that honored all the detail information extracted from a large
number of wells. The original simulation model was modified based on the derived porosity and
permeability from the resistivity logs for nine different reservoir realizations.

Preliminary results of the simulation runs are shown in the following figures. The porosity and
permeability distributions are shown in Figure 49 to Figure 57.

Figure 49. Porosity Distribution, Realization case number 1
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Figure 50. Porosity Distribution, Realization case number 2

Figure 51. Porosity Distribution, Realization case number 3
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Figure 52. Porosity Distribution, Realization case number 4

Figure 53. Porosity Distribution, Realization case number 5
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Figure 54. Porosity Distribution, Realization case number 6

Figure 55. Porosity Distribution, Realization case number 7

71




Figure 56. Porosity Distribution, Realization case humber 8

Figure 57. Porosity Distribution, Realization case number 9

As mentioned before, the Area of Review is defined as the farthest reach of the tangible CO.
plume. This value has been reported to be 1,200 ft. from the injection well. Based on the results
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of the WVU models (9 realizations), CO; will reach up to a distance of approximately 1,800 ft.
from the proposed injection well in the model with highest amount of injected CO.. This has been

demonstrated in Figure 58. The possibility of CO; injection into reservoir has been studied in
these cases as well. The result is illustrated in Figure 59.
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Figure 58. The distance of CO; extension from the injection well D-9-7 in whole nine models
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Figure 59. Cumulative Gas against Time for all different realization cases
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GEOLOGICAL MODEL-SAND LAYER DEVELOPMENT

As it was mentioned before, two cross sections A-A’ and B-B’ have been considered for log
analysis in order to build the geological model. The wells which are located on these two cross
sections are shown in Figure 60 and the target well in both cross sections is injection well D-9-7.
As it was mentioned in the previous section, going through the well logs of some of the existing
wells it was noticed that the top and thickness of the sand layers in the original simulation model
do not match those from the well logs. Since logs and geological model were not compatible with
each other, a new geological model was created by the WVU team.

Geographix software was used to accomplish the building of the new WVU geological model. For
the WVU geological model three different cross sections A-A’, B-B’ and C-C’ were considered
(Figure 61). The injection well D-9-7 is the well which was considered as a reference well in all
three cross sections. Figure 61 shows the location of the wells on the cross sections.

| SE Unit of the
| __—— Citronelle Field
Boundary

Citronelle Field

/ Boundary
Proposed
Injection well

| FProposed
Observation
well

Figure 60. The location of cross sections A-A’ and B-B’ and the wells on them, ARI report
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Figure 61. The location of cross section A-A’, B-B’ and C-C' and the wells on them, WVU Model

As it is shown in Figure 46, in ARl Model the sand layers in the injection well D-9-7 are picked
based on the highest resistivity and highest SP values. The same trend and also cutoff value have
been used to pick exactly the same layers as shown in injection well D-9-7 (Figure 63). The
template for resistivity and SP logs for the injection well has been applied for the rest well logs.

By going through the same procedure in other wells on cross sections, the sand layers have been
selected and structural as well as isopach maps were created. The guide for selecting the sand
layers in each well was finding the same pattern of resistivity and SP logs seen in the injection
well in other wells.

To clearly demonstrate the work that has been done, the picked sand layers on the cross sections
A-A’, B-B’ and C-C’ are shown in Figure 64, Figure 65 and Figure 66 respectively.

Since there is not enough information available and GR log does not exist for all the wells, in
creating the structural map, there is no option to calculate the shaliness of each layer. Hence the
Net to Gross thickness value in the model has been set to one.
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Figure 62. The sand layers of injection well D-9-7 and its corresponding well log, in the SECARB
report (SECARB 2010).

76




sSP Dept Resistivity

D ResS(SFLU)

0.1 OHKK 100
ResM(MIA)

ResD(MNA)

100

3500
9520
9540
3560
9530
3e00
3620
9540
9660
9630
3700
3720
3740
3760
9780
3300
3520
3340
3860
3880
3300
9320
3340
9360
3380
10000
10020
10040
10060
10050
10100
10120
10140
10160
10180
10200
10220

Figure 63. The sand layers of injection well D-9-7 and its corresponding well log, the WVU Model
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Figure 66. Sand layers on Cross section C-C', the WVU Model

The final structural maps from Geographix have been imported into CMG. The Grid top and
thickness are shown in Figure 67 and Figure 68 .
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Figure 67. Grid tops in WVU Model

Figure 68. Grid Thickness in WVU Model
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Upon further comparison between the models from ARI and WVU, two main differences can be
detected; namely: reservoir thickness and geological dip angle of the reservoir. Table 15 shows
the sand layer thickness of the wells which are located on the cross sections for both models. The
WVU model has thicker layers and the geological dip for the WVU model is less than what came
in the report for the ARI model. Figure 69 shows the cross plots of both reservoirs.

Table 15. Reservoir Thickness at the location of the wells in ARl and WVU Models

Wells D-9-7 | D-18-16 | D-4-14 D-5-5 D-5-9 D-6-1 D-§-7
WVU Model | 435.2 267.6 360.2 349.5 406.5 238.8 397.8
ARI Model 435.2 1947 3190.1 234.6 2090.9 154.6 320.9
Wells D-9-1 D-9-11 D-9-13 D-9-14 D-9-5 D-9-6 D-9-8
WVU Model | 348.6 315.2 310.6 200.8 376.1 414.9 351.6
ARI Model | 279.4 345.2 323.1 312.8 354.9 398.2 369.2
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Figure 69. Geological dip of the reservoir, the WVU Model (left) and the ARI Model (right)
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Developing Lateral Heterogeneity for the Field: New Approach

Figure 70, shows the proposed porosity-permeability correlation provided in the report (SECARB
2010). Based on the data shown in this figure, a large number of outliers can be detected,;
moreover many of the data points are not following the trends identified (by straight lines) in the
figure. There are new core data of Paluxy formation from the observation well D-9-8 which can
be added to these points as well. In order to rectify the problem of the outliers and consider new
points, five different clusters were determined and ranked as the best to the worst rock types.

10000

1000

100

10

Air Permeahility (millidarcies)

Porosity (%)

Figure 70. The porosity-permeability correlation proposed by ARI

The porosity values coming from the log and the core analysis show a good match in well D-9-8.
However, using the porosity-permeability correlation suggested in the report (SECARB 2010) and
shown in the above figure, large differences between permeability calculated from the correlation
and permeability from the core data can be observed (Figure 71). This issue arise the necessity
of having a more reliable porosity-permeability correlation.

The new correlations between the porosity and permeability for the five different rock types were
defined and are shown in Figure 72.

81




£
5

ARE Ttk

i)

10 sl 3 <0 0
-+POROD, Log
o
-Q___+__'-. Core
o
il
land
__+____:;.
¥
<
.,
e,
(a’
——
P
0—--"'__-.___*_
-
.
l‘a
t}‘_
3
. £
R
L
| |
| |
[ |
n
]
]
——
e

250,00

240000

242000

242000

4300

22200

4300

545000

—+-perm, Core

m Perm, Carrelation

Figure 71. Porosity - permeability relation between core and log in D-9-8




Different Rock Types- Including D-9-8 Cores
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Figure 72. The porosity-permeability correlation in different rock types

WVU NUMERICAL MODEL - INITIAL RESULTS

The induction logs have been used to interpret the porosity values. The porosity-permeability
correlations have been utilized to generate the permeability maps using the interpreted porosity
values. Figure 73 illustrates the porosity distribution in WVU model.

Cartesian grid has been used for the WVU model which has the same dimension as the ARI
model. It has the dimension of 50«50%51 with Ax and Ay equal to 400 ft. The same rock and fluid
properties have been applied to the model.

The first concern in the reservoir model is the extension of CO2 plume originating from the injection
well. Three simulation models, the old and the new model from ARI? and the WVU model, were
examined for this purpose. The results of the simulation runs are shown in the following figures.
The CO; extension is shown in each graph in the first sand layer which has the most CO
saturation. Also the CO, distribution in whole sand layers is depicted in both models, the WVU
and the ARI Model.

2 A modified model was later received from ARI. The modified model is referred to the “New” ARI Model.
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Figure 73. Porosity distribution in the WVU Model
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Figure 74. The extension of CO; plume in WVU Model
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Figure 75. Gas Saturation in the WVU Model
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Figure 76. The Extension of CO; Plume in the ARI New Model
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Figure 77. Gas Saturation in the ARl New Model
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Figure 78. The extension of CO; Plume in the ARI Old Model
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GRIDDING SENSITIVITY ANALYSIS

Three different grid geometries were considered in order to examine the effect of the number and
size of the grid blocks on the accuracy of the Citronelle numerical model results. The first case
(Figure 79) consisted of 50 grid blocks in i and j directions and 51 layers in k direction. The size
of each coarse grid block is 400ft by 400ft. The second case consisted of 2419 coarse grids and
729 fine girds in the Aol (Area of Investigation). The size of the each fine grid in the second case
is 133 ft. by 133 ft. (Figure 80). In the 3™ case (Figure 81) the model included 4 different grid
types where the size of grids changes from totally coarse (400 * 400 ft.) to tally fine (66.7*66.7ft).

Table 16 lists the total number of each grid type.

Table 16. Number of grid blocks in case 3

Grid Type

Coarse

1

2

Fine

Total

Number of Grids

2305

384

666

900

4255

T T T T T T T T T T T T T T T T T T
1,258,0001,261,0001 263,0001,265,0001, 267 ,0001,289,0001,271,0001 273,0001,275,0001,277,000

" 000142 VODD'ELZ VODD'SEZ 100D L4Z ) D0O'6LT 1DOD'VBZ 1 000 EAZ 1 ODD'SEZ 1§

™
00D 0.25 0.50 0.5 100 mile

3,001 2750011, 277 0041 2790011 _281,0011 2683 0011, 2850011 267 .

0.0

Q.50

1,259,0001,261,0001,263,0001,265,0001,267,0001,269.0001,271,0001.273,0001,275, 001 277,000

1.00 km

Figure 79. Citronelle model with all coarse grid-blocks (case 1)
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Figure 80. Citronelle model with coarse and fine grid-blocks (case 2)
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Figure 81. Citronelle model having 4 types of grid-blocks (case 3)

As the number of grid blocks increases, higher spatial resolution is achieved which leads to more
accurate results. It should be mentioned that the run time for case 1(coarse grids) is much less
than the case with 4 types of grid blocks. Figure 82 and Figure 83 illustrate the effect of number
of grids in CO; saturation profile in a grid close to the injection well and at the location of
observation well.
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Figure 83. CO, Saturation at the a grid close to the injection well
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DESIGNING DIFFERENT INJECTION SCENARIOS

One hundred different scenarios were designed based on the duration of injection and cumulative
amount of injection. Latin Hypercube algorithm was used in order to select only 10 out of these
scenarios as representative simulation runs. Table 17 lists the criteria for the ten selected

simulation runs.

Table 17. Different predefined parameters for 10 different simulation runs based on cumulative
injection and duration of injection

pBase pase value 1o ectio 0,348 0

Run | Latin Hypercube coefficients L (years) G (MM ft3) months of injection
1 0.2249 0.3159 3.2 19,884 38.2
2 0.1745 0.8746 2.8 45,900 33.7
3 0.8494 0.7186 7.9 38,635 94.4
4 0.9301 0.1756 8.5 13,351 101.7
5 0.0109 0.0071 1.6 5,504 19.0
6 0.4041 0.565 4.5 31,483 54.4
7 0.3453 0.9803 4.1 50,821 49.1
8 0.5861 0.4749 5.9 27,288 70.7
9 0.6851 0.6384 6.6 34,901 79.7
10 0.7742 0.2527 7.3 16,941 87.7

The injection rate increases monthly for all the scenarios. The idea behind making these runs is
to investigate the impact of change in cumulative injected CO, and duration of injection on the
reservoir pressure and CO; saturation. These characteristics are also important for the

investigation of Area of Review (AoR) and Post Injection Site Care (PISC).

For example a comparison between pressure and saturation distribution for the base case run
and Run#7 is shown in Figure 84, Figure 85, Figure 86 and Figure 87.
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SENSITIVITY ANALYSIS ON RESERVOIR SIMULATION RESULTS

Initial reservoir simulation runs showed that maximum extension of the CO- plume takes place in
the first (top) layer and sixth layer of the reservoir. This is mainly due to the fact that these layers
represent sands with higher permeability values, which cause CO. to migrate further from the
injection well. As it is shown in Figure 88, the plume area has a major diameter of about 4,933 ft,
500 years after the end of injection. CO, plume extension in all the target layers (vertically) is
shown in Figure 89.

Two Pressure Down-hole Gauges (PDG) are installed in the project’s observation well (D-9-8#2).
This observation well is located 820 ft. to the east of the injection well. These PDGs can provide
real time pressure and temperature measurements. The actual pressure data can be used for
reservoir monitoring (especially CO; leakage detection) in addition to history matching. Therefore,
the main focus of this section of the project is to analyze the reservoir simulation pressure
behavior at the location of the PDGs in the observation well.

Pressure in the observation well increases from 4,400 psi to 4,727 psi (maximum pressure) during
the 3 years of injection (from 2012 to 2015). After the injection stops, the pressure decreases
gradually to 4,660 psi after 1 year (stabilized pressure). Finally the reservoir pressure in the
observation well follows a gentle decline with a stable trend from 4,660 to 4,653 psi over 500
years (Figure 90).
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Gas Saturation 2512-01-01

Figure 89. CO; Plume extension in all layers 500 years after injection
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Figure 90. Pressure behavior in the observation well (base case model)
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SENSITIVITY ANALYSIS

In this section, sensitivity of the numerical simulation model to several reservoir properties is
presented. The procedure for the sensitivity analysis is as follows: one parameter is modified at
a time (within a given uncertainty range) and the corresponding impacts on the reservoir pressure
(at the observation well) and the CO2 plume extension are investigated. Reservoir parameters
that were analyzed in this study included permeability (rock type), gas relative permeability,
maximum residual gas saturation (hysteresis), vertical to horizontal permeability ratio, boundary
condition, brine compressibility, and density.

Since the CO, plume extension shape is elliptical, the magnitude of the major and minor axis
(Figure 88) can characterize the CO plum distribution after 5, 50 or 500 years of injection.
Additionally, to analyze the reservoir pressure behavior, we focused on maximum and stabilized
pressures (at the end of injection).

PERMEABILITY

From here forward, the contribution of each of the parameters to reservoir pressure and plume
extension are discussed. In this reservoir model, porosity originates from maps that are generated
by the interpretation of 40 well logs. Figure 91 shows porosity-permeability cross-plots. As was
mentioned before in this report, in order to have a reliable porosity-permeability correlation, the
data points are clustered into 5 different rock types, ranging from “Very Tight” to “Very Conductive”
rock types. The initial porosity-permeability data gathered from well D-9-8 (observation well) core
analysis, represents a “Conductive Rock Type”. This correlation was used in the base model.
During the sensitivity analysis, “Average Rock Type” (K = 0.64e2879) and Very Conductive (K =
9.964e2174%) rock types are introduced to the reservoir simulation model.

For the “Average Rock Type”, due to the lower permeability values, CO; injectivity decreases.
Thus, it is not possible to inject/store the all the CO, according to planned target (Figure 92).
Injectivity of CO; is the same for both “Conductive” and “Very Conductive” rock types. We can
see the results for pressure in Figure 93. Since the stabilized reservoir pressure changes very
gently during the 500 years after the stop of the injection; we show the results for only the 20
years after the injection. This is done so that more details can be observed in the figure.

By decreasing the permeability (use of “Average Rock Type”), CO: injectivity decreases to 60%
of the target value, resulting in reduced reservoir pressure compared to the base case. For higher
permeability (“Very Conductive Rock Type”), stabilized reservoir pressure is 42 psi less than the
base case, due to the higher conductivity that prevents more pressure build up. Additionally, an
increase in the permeability, enhances the CO; and brine displacement, which leads to larger
CO; plume extensions. This can be seen in Table 18.
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Figure 93. Reservoir pressure in observation well for different rock types

Table 18. CO; Plume extension size over time (in the first layer) for different rock types

Permeability

Base Case Average Very Conductive
(K=0.824e"28.18 o) (K=0.64e"21.87 @) (K=9.964e"21.74¢)
Minor
ZﬁerYearS Axis(ft) 2133 1600 2533
Injection Major
Axis(ft) 2400 1733 3200
Minor
CO, Plume z?tervears Axis(ft 2533 1867 2800
Extension Injection Major
Axis(ft) 4000 2133 4667
500 Minor
Years Axis(ft) 2667 2133 2667
after Major
Injection | Axis(ft) 4933 3733 5067
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PERMEABILITY RATIO

Typically, vertical permeability is determined as a ratio to horizontal permeability. In this study, for
the base case model, K\/Ky is considered to be 0.1. For the sensitivity analysis; we assigned
values of 0.3, 0.5, and 0.7 to the K\/Ky. As shown in Figure 94, an increase in the K./Kn generates
less pressure build up during the injection. However, after the transition time, increase in the
stabilized pressure value, corresponds to increase in vertical to horizontal permeability ratio. Also,
the size of the CO; plume slightly increases for higher K./Ky, especially for 5 and 50 years after
injection (Table 19).
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Figure 94. Reservoir pressure in observation well for different permeability ratio

Table 19. CO; Plume extension size over time (in the first layer) for different permeability ratios

Vertical to Horizontal Permeability Ratio

Base
Case K./Kn=0.3 K./Ky=0.5 K/Ky=0.7
5 Years after | Minor Axis(ft.) 2133 | 2133 2133 2267
Injection
Major Axis(ft.) 2400 | 2533 2667 2800
CO; .Plume 50 Years after Minor Axis(ft.) 2533 | 2667 2667 2667
Extension Iniection
‘ Major Axis(ft.) 4000 | 4133 4267 4400
500 vears Minor Axis(ft.) 2667 | 2667 2800 2800
after Injection = A is() 4933 | 4933 5067 5067
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GAS RELATIVE PERMEABILITY CURVES

Four different gas (CO,) relative permeability curves were generated so that two of them represent
higher and two represent lower values of relative permeability at any given gas saturation,
compared with the base case (Figure 95).

It is worth mentioning that the curves with the higher gas (CO,) relative permeability values have
lower residual gas saturations and vice versa. The results are shown in Table 20 and Figure 96.
Higher gas (COy) relative permeability curves represent lower residual gas saturation that can
mobilize CO, phase earlier (at lower gas saturations). Therefore, CO, moves further resulting in
larger CO; plume extension. Additionally, higher gas relative permeability increases the stabilized
reservoir pressure. Reversely, lower gas relative permeability leads to less extensive plume and
lower stabilized reservoir pressure.

Table 20. Plume extension size over time in the first layer for different gas relative permeability
curves

Gas Relative Permeability

Base . .
Case Krg Low2 Krg Lowl Krg nghl Krg ngh2
5 Years after Minor Axis(ft.) 2133 | 1867 2000 2133 2400
Injection Major Axis(ft.) 2400 | 2133 2266 2533 2800
S T 50 vears after Minor Axis(ft.) 2533 | 2133 2267 2667 2933
Extension  [lilISEiay Major Axis(ft.) 4000 | 2800 3467 4267 4533
500 vears | Minor Axis(ft) 2667 | 2400 2533 2800 2933
N iajor Axis(fL) 4933 | 4133 4533 5067 5467
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MAXIMUM RESIDUAL GAS SATURATION

Generally, drainage relative permeability curves are provided for the reservoir simulation model.
When the maximum residual gas saturation is introduced, the imbibition gas relative permeability
curve can be determined based on the drainage curve. During CO, movement in the reservoir,
water imbibition causes a portion of gas phase to be trapped in the pores (residual trapping).
Therefore, when the maximum residual gas saturation increases, more gas is trapped, resulting
in less mobile CO, and consequently a smaller CO, plume extension (Table 21). Changing
maximum residual gas saturation has no significant impact on the reservoir pressure.

Table 21. CO; Plume extension size over time in the first layer for different maximum residual
gas saturations

Maximum Residual Gas
Saturation(Hysteresis)

Case 0.05 | 0.1 0.2
ERNERIS Minor Axis(ft) | 2133 2133 | 2133 | 2133
Injection Major Axis(ft) | 2400 2400 | 2400 | 2400
(o(e’W Iy -W 50 Years after Minor Axis(ft) | 2533 2533 1 2533 | 2400
Extension Injection Major Axis(ft) | 4000 4000 | 3867 | 3733
500 Years after Minor Axis(ft) | 2667 20001 2533 1 2639
Injection Major Axis(ft) | 4933 4933 | 4800 | 4533
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BRINE COMPRESSIBILITY

In a closed geologic system, the amount of CO- that can be injected into the saline reservoir is
mostly dependent on the availability of the additional pore space that can be provided due to brine
compressibility. Additionally, compressibility determines how much injected fluid contributes to
reservoir pressure build up or brine volume change (also can be referred to as a change in brine

density).

As observed in Figure 97, an increase in brine compressibility results in lowering the maximum
and stabilized reservoir pressures. For higher brine compressibility, injected CO results in more
changes in brine density rather than generating pressure build up in the reservoir. Changing brine

compressibility shows no considerable influence on the CO, plume extension.

4,800

ES
~
o
S

R
o2
o
o

4,500

Pressure in Observation well(Psi)

4,400

4,300

Pressure: Base Case Model

----Pressure: Crw=2E-6 (1/psi)
----- Pressure: Crw=2.5E-6 (1/psi)
------ Pressure: Crw=3.5E-6(1/psi)

------- Pressure: Crw=4E-6 (1/psi)

2015

I
2025
Time (Date)

i
2030 2035

Figure 97. Reservoir pressure in observation well for different brine compressibility
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BRINE DENSITY

The impact of a change in brine density on the reservoir pressure can be analyzed by considering
the fact that denser the brine is, the less compressible it is, allowing more pressure build up during
and after CO; injection. As it is illustrated in Figure 98, higher brine density contributes to more
pressure gain for the reservoir (both maximum and stabilized pressures).

The influence of the brine density on CO; plume extension is addressed by the driving mechanism
that governs fluid movement in the reservoir. During CO: injection, viscous forces makes the CO:
move forward, and after injection is completed, buoyancy would be the dominant driving force.
The density difference between the brine and the CO; determines the magnitude of the buoyant
force. Higher brine density results in greater density differential and consequently, more buoyance
force. Therefore an increase in brine density accounts for more buoyant force to be exerted to the
CO: plume resulting in larger extensions (Table 22).
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Figure 98. Reservoir pressure in observation well for different brine densities
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Table 22. CO, Plume extension size over time (in the first layer) for different brine densities

Brine Density(Ib/ft3)

Base Case 52 57 67 72

S Voars after | Minor Axis(f) | 2133 2133 | 2133 | 2133 | 2133

Lz 2] Major Axis(ft) | 2400 2267 | 2400 | 2533 | 2667

N o artor | Minor AXis() | 2533 2533 | 2533 | 2533 | 2667
Extension gLty Major Axis(ft) | 4000 3467 | 3733 | 4133 | 4133
500 Years | Minor AXis(f) | 2667 2533 | 2667 | 2800 | 2800

after Injection 1=y, s | 4933 4667 | 4933 | 4933 | 5066
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BOUNDARY CONDITION

In this section, we assume that the saline reservoir in the Paluxy formation is not a closed system.
A Fetkovich aquifer which keeps the reservoir pressure constant at the reservoir boundaries is
assigned to the East, East- South and East-South-West edges of the reservoir (Figure 99). As
shown in Figure 100, reservoir pressure behavior in the closed system (no flow boundaries at alll
edges) is significantly different compared to other cases. First, maximum reservoir pressure at
the end of injection is high. Second, the stabilized pressure reaches a constant value at higher
pressures.

Figure 99. Different locations for constant pressure boundary (Fetkovich aquifer) — Presence of
the aquifer is indicated by the pink line next to the boundary.
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Figure 100. Reservoir pressure in observation well for different boundary conditions.
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Changing the boundary condition of the reservoir from closed to constant pressure, affects
reservoir pressure behavior significantly. When Fetkovich aquifers are placed at the edges of the
reservoir, maximum pressure build up decreases notably. In addition, stabilized reservoir
pressure comes back to native reservoir pressure after a while when injection is ceased. Table
23 summarize the impact of the reservoir boundary on the plum extension.

Table 23. Plume extension size over time (in the first layer) for different boundary conditions

Reservoir Boundary (Fetkovich Aquifer)

Case East South East+ South+ West
= vears aftor | Minor Axis(f) | 2133 2133 | 2267 2267
LSt Major Axis(ft) | 2400 2400 | 2667 2800
O 0 onre after | Minor AXis(®) | 2533 2533 | 2667 2667
Extension  HigfEe Major Axis(ft) | 4000 4000 | 4133 4133
500 Years | Minor Axis(f) | 2667 2800 | 2800 2800
after Injection |y, st | 4933 5066 | 5066 5066

In this section, all the steps for reservoir simulation model development for CO; injection in the
Paluxy saline reservoir of the Citronelle Dome were explained. The model was used to predict
storage performance behavior. Sensitivity analyses was performed to study the impacts of
reservoir uncertainty on the reservoir pressure in the observation well and CO; plume extension.
The results of sensitivity analysis can be considered for risk assessment in addition to history
matching the reservoir simulation model while actual field measurements (pressure data) are
available. The main findings can be summarized as follows:

- Rock type (permeability) contribution to CO: injectivity, reservoir pressure and CO; plume
extension is significant. Higher permeability represents more extensive CO; plume and
less reservoir pressure gain. Also an increase in vertical to horizontal ratio leads to higher
stabilized pressure and CO; plume extension.

- It is observed that an increase in gas (COy) relative permeability results in a higher
stabilized pressure and a larger CO; plume extension. Additionally, higher maximum
residual gas (CO,) saturation results in more residual trapping, and therefore, lower CO-
plume extension.

- Brine compressibility plays a role in reservoir pressure build up, especially in a closed
geologic system. When brine compressibility rises, we observe a decrease in stabilized
reservoir pressure.
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Density of brine is the parameter that affects both reservoir pressure and CO, plume
extension. Denser brine causes more buoyancy force, which drives CO, to move further
and distributes in more area. Also higher brine density values contribute to more reservoir
pressure build up.

Changing the boundary condition of the reservoir from closed to constant pressure, affects
reservoir pressure behavior significantly. When Fetkovich aquifers are placed at the edges
of the reservoir, maximum pressure build up decreases notably. In addition, stabilized
reservoir pressure comes back to native reservoir pressure after a while when injection is
ceased.
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HISTORY MATCHING OF THE RESERVOIR SIMULATION MODEL

COLLECTING INJECTION DATA

The objective of carbon capture and sequestration in Citronelle filed is to inject 9.48MMcf/day of
CO; during three years (starting at the beginning of 2012). Due to some operational constrains,
the injection started on August 20, 2012 with the rate of 918 Mcf/day. After that the CO; injection
rate increased with an oscillating trend (due to operational difficulties) until the 28" of September
when it reached to 9 MMcf/day. From that time injection stopped for 14 days and then it started
with almost stable trend(around 9 MMcf/day) up to the 29" of November(2012). During this
3months period, the average CO; injection rate was about 6.26 MMcf/day (66% of the injection
target was achieved). The daily injection rate from the beginning up to end of the November is
shown in Figure 101. These injection rates were used in the Reservoir Simulation Model as the
input constrains.
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Figure 101. CO: Injection rate history

108




COLLECTION OF PRESSURE DATA (DE-NOISING AND AVERAGING)

As explained in previous sections, high frequency real time pressure data from two PDGs are
available on a minute by minute basis from August 17", 2012. These high frequency and noisy
data should be processed in order to be used for history matching.

In order to perform the history matching, first we de-noise the pressure data by Daubechies
wavelets 10 in five levels. The de-noising results for 1 day pressure data (9/10/2012, 1440
records) and the entire data (103,750 records) are illustrated in Figure 102 and Figure 103.
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Figure 102. Original (noisy) and De-noised Pressure data in one day (9/10/2012)
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Figure 103. Original (noisy) and De-noised Pressure data for the entire interval
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After preprocessing (de-noising is referred to as a pre-processing procedure) the high frequency
pressure data it is necessary to do data summarization over time. As it was mentioned earlier the
pressure data from the PDGs is collected every minute. Therefore, for each day 1440 data points
are available. For the history matching of the reservoir simulation model, it is possible to run the
model by setting each time step equal to one minute, and then try to match the actual with the
simulated pressure data. But this approach is computationally expensive and impractical.
Therefore the pressure data is summarized by averaging over every day. The results of real time
pressure data on a daily basis is illustrated in Figure 104.
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Figure 104. Daily averaged Pressure data from 2 PDGs

A comprehensive explanation and analysis of the de-noising process has been included in this
report as an appendix. Details of the de-noising analysis can be found in Appendix 2.
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IN-SITU CO2 BEHAVIOR VALIDATION - EARLY INJECTION DATA

The reservoir simulation model was built using Computer Modeling Group’s (CMG) software
application called “GEM”. Geological structure of the model includes 17 sand layers representing
51 simulation layers (Figure 105). The model is a 125x125x51 models having 125 grid blocks in
X, and Y directions and 51 layers in Z direction. Ax and Ay equal to 133.3 ft.

Well logs from 40 offset wells that are within the area of study have been acquired and interpreted
in order to generate the porosity maps. The initial model was assumed to be homogeneous with
the absolute permeability of 460 md (for the entire reservoir). Relative permeability curves from
the history-match of the injection pilot test at the Mississippi Test Site were used (trapped gas
saturation was considered to be 7.5 percent). For the reservoir simulation, the injection well was
operated with maximum bottom-hole pressure limit of 6,300 psi and an injection rate constraint.
The density of saline water was set to 62 Ib/ft® and its compressibility was set to 3x10° (psi?) at
14.7 psi. The reference pressure was set to be 4,393 psi at 4,015 ft.

Grid Top (ft) 2012-01-01

File: Citronelle New]
User: PNGE-User
Date: 1/25/2013
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Figure 105. The Grid tops of the reservoir Simulation Model
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In Figure 106 pressure result at the two PDGs location from the reservoir simulation model (the
base model) is compared to the actual data. It should be mentioned that the average Block
pressure for the corresponding grid blocks (101,56,1 and 101,56,3) with the exact coordinates of
the PDGs (5109, 5108) are compared with the actual data.
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Figure 106. Comparison between actual PDG data and simulation results —base case

The objective of the history matching is to modify some of the reservoir parameters and
characteristics in the reservoir simulation model such that the gap (dis-similarity in magnitude and
behavior) of the model results and the actual pressure measurements reduces to a minimum. The
first parameter modified is absolute permeability. As mentioned in the previous sections of this
report, five different clusters were determined in the porosity-permeability cross plots that
corresponded to five rock types. The rock types were identified as the best to the worst rock types
(Figure 107) based on the data shown in Figure 107. We had selected the “Average Rock Type”
for the base model.
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Different Rock Types- Including D-9-8 Cores
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Figure 107. Different rock types based relationship between porosity and permeability

Table 24. Core porosity and Permeability from Core Data

Ezrr::je '(I;tr;lckness I(30/00;03|ty |(_|nfd) Perm V Perm (md)
9460-1 15 18 290 180
9460-2 5 22 1,830 1,100
9460-3 5 17 220 130
9460-4 1 20 1,340 810
9460-5 4 18 280 170
9460-6 1 21 1,040 630
9520 15 18 170 80
9540 13 18 170 80
9570 22 19.3 90 90
9620 41 21.8 1,230 1,140
9710 15 18.2 190 90
9740 15 17 100 40
9800 28 18.4 210 110
9900 12 16 60 20
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The results of the pressure data when the “Conductive Rock Type” was considered in the model
are shown in Figure 108. From here forward, most of the simulation runs are considered to have
the permeability values corresponding to the “Conductive Rock Type” (K=.825e%1%)
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Figure 108. Comparison between actual PDG data and simulation results —Modified
Permeability

An important point that was observed by analyzing the pressure behavior is the difference
between actual initial pressure and the simulated initial pressure. To adjust the observed
difference, the reference pressure at 9,416 ft was changed to 4,370 psi. Another observation is
that the difference between pressure readings from PDGs (P @ 9,441 ft— P @ 9,416 ft = 4,385 -
4,370 = 15 psi) is not the same as the difference between the 2 corresponding grid blocks (P @
101, 56,3 - P @ 101, 56, 1 = 4,411 — 4,400 = 11psi) knowing the fact that both PDGs and Grid
blocks are exactly 25 ft apart. This means that the pressure gradient between the PDGs is 0.613
psi/ft while it has the value of 0.428 psi/ft between the grids. This means that the brine density
should be higher than what was set in the simulation model. Brine density at the reservoir
conditions can be calculated by the following equation:

IEbr = Et?r [:I'+Cbr (p_ po)]

In order to keep the brine compressibility the same as the initial value, new density of brine should
be set as 87 Ib/ft3. It should be mentioned that the brine compressibility can also be changed in
order to have the same brine density at the reservoir level. The results for the case that reference
pressure and brine density were changed are shown in Figure 109 and Figure 110 (it should be
mentioned that since the PDGs depths are not exactly at middle of grid blocks a modification
based on the elevation difference was performed so that the grids represent the same initial
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pressure as PDGs). The results for modified Brine compressibility, reservoir boundary and
horizontal permeability are shown in detail in Appendix 3.
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Figure 109. Comparison between actual PDG data and simulation results —Modified reference
pressure and brine density
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Figure 110. Comparison between actual PDG data and simulation results —Modified reference
pressure and brine density
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The effect of vertical to horizontal perm ratio, rock -fluid compressibility, water viscosity, porosity
and boundary of the reservoir was studied on simulation pressure results. By tuning the
mentioned parameters, although simulation pressure results convert towards the actual
measurements, but the mismatch between simulation and actual pressure remains high.

The next step that improved the simulation results considerably was maodification of vertical
transmissibility in order to control vertical communications between the layers. The transmissibility
multiplier was set to zero for the layers that are subject to no CO; injection (due to either high
shaliness or very high permeability that causes rapid gas movement). By making transmissibility
modification, the trend in simulated pressure responses started to approach that of actual
pressure (Figure 111).
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Figure 111. Comparison between actual PDG data and simulation results —modified
transmissibility multiplier

From here forward, we try to apply the changes on the simulation model with modified absolute
permeability, initial pressure, brine density and more importantly vertical transmissibility multiplier.
The next step was to investigate the effect of relative permeability curves on the simulation
pressure results. The original relative permeability curves (gas and water) that initially were used
in the simulation model came from a Mississippi Storage pilot plan, located 70 miles from the
Citronelle site.

There are two important features that characterize relative permeability curves. The first feature
is immobile or irreducible phase saturation below which, the corresponding phase (water or gas)
cannot move. The other important characteristic of relative permeability curve is the curvature.
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This feature has considerable influence on fluid movement in the reservoir model. To investigate
the effect of these relative permeability features on the simulated pressure behavior, we defined
ranges of relative permeability values in the vicinity of the original curves. Both irreducible phase

saturation and curvature of relative permeability changed in a reasonable range. The generated
curves are shown in Figure 112.

Krg Kew

Figure 112. Relative permeability curves (Right: water relative permeability, Left: gas relative
permeability)

We tested the effect of both gas and water relative permeability curves on the pressure behavior.
Higher curvature and lower irreducible phase saturation increased the simulated pressure results.
By adjusting the relative permeability curves, we obtained reasonably good match between
simulated pressure results and actual field measurements.

In Figure 113 the best history match results based on changing the gas relative permeability is
illustrated. Also in the Appendix 3, we show how simulation pressure history behaves with respect
to different reservoir boundary conditions, absolute and relative permeability.
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Figure 113. Comparison between actual PDG data and simulation results —modified gas relative
permeability

As these studies were ongoing, more field data became available including actual injection and
pressure (coming from PDGs in observation well) from 8/19/2012 to 11/30/2012. The injection
rate and pressure data were in daily and in per minute basis, respectively. In order to keep the
consistency between to different available data and also decrease computational time and effort
for reservoir simulation, minute-based pressure data was averaged to daily basis. Several
reservoir parameters were tuned (as shown in Table 25) in order to minimize the mismatch
between actual field data and simulation results. The best history matched results during the
mentioned time interval are shown in Figure 114.

Table 25. Reservoir parameters that tuned for history matching

Matching Parameter

Absolute Permeability

Brine Density

Reference Pressure

Transmissibility Multiplier

Reservoir Boundary

Relative Permeability

118




+ PDG(5109) = PDG(5108) Simulation(Grid,101,56,1) = Simulation(Grid,101,56,3)

4465

4445

4425

4405

Pressure Psi

4385

4365

4345
8/17/2012 9/6/2012 9/26,/2012 10/16/2012 11/5/2012 11/25/2012
Date

Figure 114. Comparison between actual PDG data and simulation results —modified gas relative
permeability-best history matched results with no additional data

Available field data for two more months (December2012 and January 2013) were considered for
history matching. The reservoir simulation predicted the pressure data for the two new months
using the best history matched model. The results for the reservoir pressure are overestimated
by reservoir simulator model.

Comparison between reservoir simulator and actual pressure data is shown Figure 115
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Figure 115. Comparison between actual PDG data and simulation results —modified gas relative
permeability-best history matched results with additional data

Several reservoir parameters were tuned again, aiming to reduce the overall mismatch between
the actual field data and simulation results (those recently acquired — the new two months of data).
These parameters modified: absolute permeability, brine compressibility, brine viscosity, relative
permeability, reservoir boundary condition and vertical to horizontal permeability ratio. In order to
compare the mismatch between reservoir simulation predictions and actual field data, an objective
function that measures the difference between simulated and actual data was used according to
the following equation:

OF = Itv=t1(Pts _Ptm)z
Nt

Where P7andP{™* are simulated and measured pressure values at each time step (day) and Nt is
the total number of measurements. The values of the mismatch or the objective functions are
shown in Table 26.

Based on the results of the models we learned that higher brine compressibility (4e-6 1/psi)
represents the lowest mismatch with actual data. The pressure results for this model are shown
in Figure 116. All the history match results are illustrated in Appendix 3.
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Table 26. Pressures mismatch values for changing different reservoir parameter

Tuned Reservoir Parameter Pressure Mismatch Value(OF,Psi)
Reduced pw 16.89
New Boundary 20.01
Reduced K(half of the base) 20.94
Brine Compressibility=4e-6/psi 16.34
Kv/Kn=0. 9 16.99
Kw low 17.08
Krw High2 18.75
Krw High3 20.815
Krg low 20.21
Krg high 20.7
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Figure 116. Comparison between actual PDG data and simulation results —results with lowest
mismatch (modified brine compressibility)
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IN-SITU CO2 BEHAVIOR VALIDATION - ENTIRE INJECTION DATA

In previous section, in-situ CO. behavior validation was initiated for the reservoir simulation model
based on the availability of the field data. The first set of available data (injection rate and pressure
data from observation well) belonged to a time period from 8/19/2012 to 11/30/2012. A second
set of data which covered two more months (December 2012 and January 2013) became
available upon completion of the first set of history matching efforts. Once this new set of data
was received it was considered for continuation of history matching. The history matching process
of almost eleven months of injection rate and pressure data is presented in this section. Locations
of injection and observation wells are shown in Figure 117.
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Figure 117. Location of the injection and observation well in the area of interest

During the entire year the injection process was almost stable, although it experienced some
periodic shutdown. The daily injection rate from the beginning up to August, 2013 is shown in
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Figure 118. These injection rates were used in the reservoir simulation model as the input
constrains for the history matching process.
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Figure 118. CO; injection history at Citronelle field

In the observation well (D-9-8#2) at Citronelle field (Figure 117), two Pressure Down-hole Gauges
(PDG-5108/5109) are installed at different depths (9,416 and 9,441 ft TVD) in order to provide
real time pressure and temperature readings during and after the injection period. The pressure
data is available from mid-August 2012 till the end of September 2013, recorded on one-minute
basis (1,440 records per day). The pressure data was summarized by averaging over each day.
The actual pressure data on a daily basis is illustrated in Figure 119.

Initially a base case reservoir model was developed considering reservoir properties that are
summarized in Table 27. Porosity maps for each simulation layer were acquired by interpretation
of 40 well logs. In this model, operational constrains were the actual CO; injection rates (Figure
118). Furthermore, maximum bottom-hole pressure limit of 6,300 psi was also imposed as
additional operational constraint. The solubility of CO: in the brine was not considered in the base
model. Block pressure for the grids corresponding to the PDGs were compared with the actual
data. Simulated pressure data using the base model are plotted against actual pressure history
in Figure 120.
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Figure 119. Daily pressure data from PDGs @ observation well

Table 27. Reservoir parameters and properties (base case model)

Parameter Value Parameter Value
Permeability(md) 460(all grids) Water density(Ib/ft3) 62
Temperature(-F) 230 Water viscosity(cp) 0.26

Salinity(ppm) 100000 Water compressibility(1/psi) 3.2E-6
Residual gas saturation 0.35 Kv/Kh(permeability ratio) 0.1
Residual water saturation 0.6 referenz;ecf)zljdfriSft(psi) 4393
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Figure 120. Model’s pressure results and actual history for the base model

A thorough sensitivity analysis was performed to study the effects of several reservoir parameters
on pressure behavior in the observation well. As expected, the results of sensitivity analysis
showed that permeability (rock type) contributed significantly to injectivity, CO» plume extension
and reservoir pressure. By use of Alabama’s southwestern Dataset, porosity-permeability cross-
plots (Figure 121) were generated for the Paluxy formation core data. Available data from the
cores taken from injection well demonstrated the dominance of conductive rock type
(k=0.824e28'8%) in the vicinity of the injection area. Also, vertical to horizontal permeability ratio
was calculated to be 0.58 using core data analysis.

Modification of pressure references, brine density and permeability in addition to zero
transmissibility between the sand and shale layers resulted in pressure predictions illustrated in
Figure 122.

Please note that a more thorough explanation of how this process was conducted (but for the first
set of pressure and injection rate data) was provided in the previous section. Therefore, in this
section we just mentioned the highlights and the corresponding results of the history matching
process for the larger data set.
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By Implementation of the modified parameters in the model, a closer match between the
simulated and the actual pressure data as well as the pressure gradient was achieved. However,
modeled pressure predictions did not follow PDGs pressure trend correctly. As it is shown in
Figure 122, reservoir simulation results underestimated actual data during first four months after
the injection, and overestimated the rest of pressure history.

Additionally, simulated pressure drawdowns reached a stable trend much faster, compared to the
actual data. This behavior can be explained by the fact that higher permeability (in the model)
resulted in lowering the time that pressure drawdown got to a steady trend. Therefore, it was
necessary to decrease the permeability in the model to adjust pressure drawdown behavior. On
the other hand, lowering the permeability led to CO; injectivity reduction. As a result, reservoir
model was divided into two regions:

A. grids in the vicinity of the injection (zone 20*20 grids around the injection well), and
B. grids outside the injection (zone-Figure 123).

To correct model’s pressure drawdown trend, dual modification in reservoir permeability was done
by decreasing permeability in region “a” and increasing permeability in region “b”.
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Figure 123. Two permeability regions in the reservoir
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Figure 124. Model’s pressure results and actual history; modified permeability in different
reservoir regions

As itis shown in Figure 124, although modifications in the model's permeability improved pressure
drawdown behavior, pressure predictions were overestimated considerably (compared to the
actual PDG data). To lower pressure results, solubility of CO; in the brine (aqueous phase) was
incorporated in the model. More importantly, volume modifier was assigned to the grids at the
eastern boundary of the reservoir (Figure 125-left). This accounted for the fact that reservoir
boundary and volume might be larger than what was assigned in the model.

To develop geological model, top and thickness of sand layers were picked for log data of 14
wells (crossing at injection well) and then correlated with one another as shown in Figure 125 -
right. Due to the limited amount of information (just two well logs) at the east side of the injection
well, it was not possible to estimate the extension of the sand layer on that area. Therefore, it was
probable to have more reservoir volume beyond the boundary of the geological model.

Adding more volume to the reservoir (sand layers) resulted in lowering the modeled pressure
behavior. After activating CO; solubility in the brine phase and tuning the “volume modifier”, a
good match between the model behavior and the actual pressure data, with less than 0.001%
average error was achieved (Figure 126).
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Figure 125. Increased volume modifier at the east boundary (left) and well cross sections (right)
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Figure 126. Model’s pressure results and actual history; final history match
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HISTORY MATCHED MODEL VALIDATION

As showed in the previous section, especially in Figure 126, the history matched model showed
good precision in generating ten months of pressure results which resembled the actual field
measurements. In order to study predictability of reservoir model, last three months (from August
1rd to October 30th, 2013) of actual injection/pressure was set aside in advance during the history
matching process and was utilized in order to validate the history matched model’s predictive
capability.

During these three months, CO. was injected steadily according to targeted rate of 9.48 MMcf/day
(Figure 127 and Figure 128). The Injection process experienced few shutdowns that resulted in
average rate to be 7.98 MMcf/day. Consequently, reservoir pressure increased during August
2013, followed by some drawdowns (due to no injections) in September 2013 and gentle buildup
during the last month.

Last Three Months of Injection for Model's Validation
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Figure 127. Last three months of injection rate
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Figure 128. Daily pressure data for last three months of injection

The history matched model was deployed in forecast mode and the operational constraints
(injection rates) were imposed. The model generated the corresponding pressure signals at the
observation well. Model’s pressure prediction results were plotted versus actual measurements
from the field (Figure 129). Model’s predictions have accurately captured the trend of the actual
data as shown in this figure. The average error for the two permanent downhole gauges are
0.12% and 0.073%, respectively.
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Figure 129. Model’s pressure result and actual data for prediction and history
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Model Integrity Verification

A time window of 500 years was considered to be investigated for the long term behavior of the
reservoir based on the results of the latest validated history matched model (Figure 129). The
results also used to verify if any CO- leakage happens in the reservoir because of some numerical
or non-physical effects.

There are two main parameters to be considered for the long term monitoring of CO:
sequestration, as reservoir pressure and CO; plume extension. The well bottom-hole pressure
at well D-9-8#2 which is the observation well is shown in Figure 130. Reservoir pressure starts
from the initial value of 4,380 psi and reaches to the maximum value of 4,628 psi at the end of
the injection period. Then, it takes almost a year for the reservoir pressure to decline from the
maximum value to 4,525 psi to the final, settled and almost constant value of 4,517 psi, 500 years
after the injection is completed (Figure 130).

CO:; plume extension in the first layer and 500 years after the injection (for all layers), are shown
in Figure 131 and Figure 132. The maximum plume extension spreads almost 4,800 ft. in the
East-West direction and almost 2,800 ft. in the south-north direction.
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Figure 130. Pressure behavior in observation well during 500 years post injection (latest history
matched model)
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Figure 131. CO; plume extension in the first layer (500 years after injection-latest history
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LEAKAGE MODELING

Typically there are 3 main sources for the leakage in CO; storages reservoirs; faults, wells and
high permeability zones. Based on the geological report (SECARB 2010), no fault exists in the
vicinity on CO: injection well. But there are different types of wells in the AOR (Area of
Review).The most recent Citronelle numerical model (The model developed by the WVU team)
shows that the distance of CO. plume from the injection well will reach as far as 2,200 ft. away
from the injection well. Therefore, abandoned wells in this extended area (around 34 water
disposal, dry whole, injector, producer, and observation wells) would be candidates for potential
leakage. The leakage can be determined by four parameters; leak radius, permeability, length
and location. These parameters can be assigned to each candidate well and the effect of leakage
on the reservoir behavior (especially pressure) can be investigated.

High permeability zones can be formed by the reaction of the CO; with specific type of clays which
forms dehydrate clays in the cap rock. Also there is the possibility that increasing reservoir
pressure cracks the cap rock and provides a conduit for CO; to leak. Since the chemical reaction
between CO; and clay mineral was not considered in this model, only potential CO.-induced
fractures are studied.

First, the leakage was introduced to the reservoir model by adding a CO- production well in the
plume area of the homogeneous model for Citronelle field. Due to the high number of grids and
complexity, the iterations did not converge and no results achieved in this trial. So it was decided
to work on the simpler model to avoid convergence problems. A 2-D model with same properties
of the Citronelle model was built (Figure 133).
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Figure 133. Saturation profile in 2-D model

Two different constrains were set for the leakage well; minimum bottom-hole pressure and
leakage rate. Different values for mentioned parameters were considered in order to evaluate
pressure behaviors of the reservoir. There is a threshold value for minimum reservoir pressure,
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below which there would be no flow of CO.. In this model if the reservoir pressure reaches 30,000
kpa (4,351 psi) there would be no flow from the leakage well (Figure 134).

Different leakage rates also were considered. As the amount of the leakage rate decreases, the
duration of the CO; production incrases until the reservoir pressure reaches to the minimum
flowing pressure (Figure 135).
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Figure 134. Reservoir pressure and leakage rate at min BHP 25000kpa

As pressures changes in the reservoir, the pressure on one side of the seal may differ more and
more from pressures on the other side; that is, a pressure drop begins to appear across the cap
rock. When this pressure drop becomes sufficiently large, the seal provided by the cap rock may
be breached, and flow across the breach may occur.

This type of leakage was simulated in the 2-D model. In this type of leakage CO. starts flowing
from production well when a specific pressure difference between the reservoir pressure and
assigned minimum bottom-hole pressure is achieved. At this time there would be a jump in the
CO; rate. While COs; is leaking through the cap rock, the reservoir pressure drops and the cap
rock leak starts closing (Figure 136).
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In the next step the top layer of the final Citronelle model (that was history matched) was selected
to model the leakage®. A total of 4 actual wells were identified to be in the plum extension area
within the time domain of the interest in this project. These are: injection well (D-9-7), observation
well (D-9-8) and 2 other existing wells (Figure 137).

For this case, at first a cap rock leakage was assigned to Well-Leak 2. A jump of the gas rate in
Figure 138 represents the leakage. Furthermore, the pressure decline in the observation well also
is an indication of the presence of the leak.
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Figure 137. Location of the injection, observation and 2 leakage wells in the first layer of the
Citronelle field

The main objective of this section of the study was to determine the number of wells that are
prone to leakage and investigate the characterization of the reservoir behavior when CO; leakage
occurs. To investigate the number of possible well locations that are disposed to leakage, it is
necessary to know the extension of the CO, plume. Based on the WVU and the ARI studies
regarding the AoR (Area of Review), the maximum diameter of the CO, plume ranges from 2,800
ft. (ARI model) to 3,900ft (WVU model) as depicted in Figure 139.

3 Working on the whole field requires a lot of run time and leads to numerical convergence issues.
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It should be mentioned that the maximum CO- plume extension occurs in the first layer (Figure
140). Therefore it is unlikely that CO. reaches to the existing wells in the other layers.

According to the Denbury Resources report (SECARB 2010) there are 34 wells in the radius of
one mile from the injection well (12 oil producer, 5 water injection and 17 abandoned wells). Based
on the realization which resulted in maximum CO; extension, a total of 7 wells (D-9-1, D-9-2, D-
9-3, D-9-6, D-9-9, D-9-10, D-9-11) can be potential candidates for CO; leakage as it is shown by
red circle in Figure 141.

Figure 140. Gas Saturation in different layers of the Citronelle aquifer (WVU Model)

As mentioned before, the maximum extension of the plume exists in the first layer of the reservoir.
Therefore, this layer (Figure 142) — including CO- injection well (D-9-7), observation well (D-9-8)
and 4 existing wells (D-9-1, D-9-3, D-9-9, D-9-11) - was considered for the simulation of the CO
leakage through the wells (cap rock fracture, fault and high permeability zone leakages are not
addressed in this study).
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The leakage rate is highly dependent on water production. The WVU team was able to model
leakages due to the presence of an existing well and leakage due to cap rock fracturing (there is
no fault in this reservoir) within the CMG software that is used for the numerical modeling in this
project is able to. In the cap rock leakage, it is possible to assume that the water can also leak
through the induced fractures. But this assumption cannot be valid for the well leakage because
of the characteristics of the flow paths. The water rate in the well leakage should be restricted to
very small values in order to represent the reality more accurately.

First, it is necessary to investigate the effect of the water which is produced along with the CO,
through a leakage from the well in the Citronelle Model. The leakage has been simulated by
considering one of the wells as the leakage location. CO, leakage rate has been set as the model
constraint with the value of 175,000 ft3/d. Figure 143 shows the results of this simulation run.

As it is shown in Figure 143 , water production begins after almost one and a half year in this
case. Hence, the pressure behavior recorded in observation well is due to both gas and water
production.
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Figure 143. Pressure behavior of the reservoir during leakage of CO, and water

In order to minimize the effect of water production on the pressure behavior, its value has been
set to be 1 bbl/day. The results of this situation are illustrated in Figure 144. In this case the well
produces CO: at a fixed rate for almost one and half year. After that, the CO, leakage rate starts
decreasing significantly since the water reaches to the leaking well. CO; is trapped in the
Citronelle geologic formation due to hydrodynamic mechanism in which formation water is
compressed and displaced due to high injection pressure in order to provide pore space for CO..

When gaseous or supercritical CO; phase is being produced, water finds its way back to the pores
that have already been occupied by the gas. Once all the CO; surrounding a leaky well escapes
through the leakage well, water reaches to that well and starts production from the well in the
model. This is not possible in reality.

To determine the maximum and minimum leakage rate, the CO. production for one leakage well
was varied incrementally. Based on the results, maximum leakage rate for one well was
determined to be about 1,750 MCFD (Figure 145). It should be mentioned that there is no lower
limit for the leakage rate.
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Figure 144. Pressure behavior of the reservoir during leakage of CO- with 1 bbl/day water
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The most important subsurface indicator that can be used in order to determine the amount of
CO; leaking through a well is reservoir pressure. The effect of different leakage rates on the
behavior of the observation well pressure (D-9-8) was investigated. To do so, the leakage rate
was decreased incrementally from 175 MCFD to 50 MCFD. It is should be noted that “1 bbl/day”
water production constraint was considered for the leakage well in order to prevent water leaking
through the well and to maximize CO; leakage. Figure 146 and Figure 147 demonstrate the
results of the leakage rate investigation.
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Figure 146. Pressure behavior in the observation well (D-9-8) for the leakage rate =175000
scf/day

For all the cases the value of cumulative produced leaked gas is the same. This means that for
the high leakage rate scenarios, the duration that we can see a plateau in CO, leakage
(production) is less than lower rate scenarios. The maximum amount of pressure drop in the
observation well due to the leakage is about 30 psi.

For example for the leakage rate of 1,750 MCFD the pressure of the observation well decreases
10 psi annually (the leakage takes 3 years). However, when the leakage rate is 50 MCFD, the
pressure in the observation well declines only 3 psi per year.
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Figure 147. Pressure behavior in the observation well (D-9-8) for the leakage rate =50000
scf/day

The effect of the leakage through 2 wells also was studied. Two existing wells were assigned as
the probable sources of leakage. Different sets of leakage rates were considered for the wells.
The results for the scenario that both wells leak at 175,000 scf/day, and the case that one well
leaks at 175,000 scf/day and the other at 50,000 are shown in Figure 148 and Figure 149.

It should be mentioned that in some cases the effect of the leakage from two wells is the same
as leakage from a single well. Hence, it might not be possible to distinguish 1 or 2 leakages by
just one sensor in the observation well. If additional sensors are placed in different locations, it
would be possible to determine the location and the amount of the leakage more accurately by
knowing the location of the sensors and the pressure profile recorded by each sensor.

In the last case, effect of CO, leakage from all 4 wells in the Citronelle field was studied. All of
these wells (D-9-1, D-9-3, D-9-9, and D-9-11) were subject to CO; leakage rate of 175,000 scf/day
and water rate of 1 bbl/day. Each well produces at the constant CO; rate until all the CO- which
is surrounding the well is produced and water reaches the bore hole.

When all the wells start leaking, the pressure in the observation well (D-9-8) drops at the maximum
rate. As the leakage stops at any well (based on the location of the well in the plume area), the
slope of the pressure decline in the observation well decreases. When all the wells stop leaking,
there would be no further decline in the pressure of the observation wells.
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Figure 148. Pressure behavior in the observation well (D-9-8) for the leakage rate = 175,000
scf/day of two wells
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DATA PREPARATION FOR THE INTELLIGENT LEAK DETECTION SYSTEM (ILDS)

To implement the technology developed in this project in an actual CO. storage site, the
technology must be implemented in the form of a software application and put online and on-site.
Development and demonstration of such a software application is presented in this report. The
main engine of the ILDS software application includes a series trained data-driven models that
are capable of de-convolving complex pressure signals from the PDGs into location and rate of
the CO; leakage in a sequestration site.

Development of the Intelligent Leakage Detection System (ILDS) requires that following steps to
be completed:

1. A history matched model of the CO; storage site be developed and validated.

2. The validated, history matched model is used to generate a series of leakage scenarios.

3. Real-time pressure data (from the modeled PDGs) due to a variety of leakage scenarios
are collected.

4. The collected pressure data are used to train a set of data-driven models, as the heart
and main engine of the ILDS, using machine learning and pattern recognition technology.

5. The data-driven models are tested and validated for accuracy, and are embedded in the
ILDS.

6. Pressure signals from the PDGs in the storage site are uploaded into the ILDS and passed
through the trained data-driven models.

7. ILDS response by identifying the location and the amount (rate) of the CO. leakage in the
system.

In this report we demonstrate how a software implementation of the ILDS can be applied to the
Citronelle storage site. Since use of pressure data that are received in high frequency streams
from Permanent Down-hole Gauges (PDG) are required, a set of simulation runs are designed
and executed and pressure behavior (signals) in the observation wells (D-9-7 and D-9-8) as a
function different leakage scenarios (rates and locations) are generated.

Total of nine wells (D9-7 or injection well, D-9-1, D-9-2, D-9-3, D-9-6, D-9-8, D-9-9, D-9-10 and
D-9-11) are located in the Area of Investigation. There are pressure gauges in the wells D-9-8
and D-9-7 (Figure 151).

In this model CO: is injected in 10 reservoir layers for 3 years with the rate of 500 ton/year
(9,480,600 ft¥/day). The maximum CO- plume extension is about 3,800 to 4,000 ft. away from the
injection well. The focus is on the different leakage scenarios. The leakage rates that have been
used in the simulation scenarios are based on published observation (Loizzo 2010). The leakage

rates considered in the simulation runs to generate pressure signal data are shown in Table 28.
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Figure 151. Reservoir model with the existing wells in Area of Investigation

Table 28 - Leakage rates observed in real cases (Loizzo 2010)
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Based on published data (Loizzo 2010) the leakage rates of the order of 35 - 100 tons/year are
considered as small leakages. The rates that range from 100 to 800 tons/year are the ones that
typically happen in the underground CO; storage projects. 93% of the wells have a leak rate
smaller than 1,400 ton/year. A major event which may result in fatalities and extreme damages
requires the leak rate of the order of 10,000 to 100,000 ton/year.

We assigned the rates shown in Table 28 to all the wells. Figure 152 shows that the CO, plum
extension in this site (within 500 years) will only reach three of the wells (wells D 9-6, D 9-2 and
D9-10). Therefore, the simulation runs and data generation in this project is concentrated around
the potential leakage from these three wells.
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Figure 152. Location of the wells that represent leakage rates in Table 1.

There are different types of Permanent Down-hole Gauges in the oil industry which represents
various working specifications. One of the most reliable ones is named “reserve CQG crystal
quarts gauge” which is designed for a wide range of pressure conditions (up to 15,000 psi) and
the resolution of better than 0.004 psi. Based on the resolution of this down-hole pressure gauge
we used the reservoir simulation pressure results for the observation and injection wells with the
accuracy of 0.005 psi.
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To start, pressure values in the observation and the injection wells are generated in the case with
no leakage, to be used as reference. For the observation well (D-9-8) the pressure rises from
4,344 to 4,443 psi during 3 years of injection period (2012 to 2015). After the injection stops, the
pressure decreases sharply from 4,443 to 4,395 psi. This change in pressure takes place in a
period of three months. Finally, the reservoir pressure in the observation well follows a gradual
and stable decline from 4,395 to 4,393 psi during 20 years (Figure 153).
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Figure 153. Pressure behavior in well D-9-8 in the case that no leakage happens

From here forward, the difference between the reference pressure signals (when no leakage is
occurring in the system) and pressure signals due to any given leakage scenario that is collected
at the observation wells, are referred to as AP. In this section we present the case of leakage
from a single well.

As mentioned earlier, three wells showed potential to leak with the rates shown in Table 28. In all
these cases the pressure behavior in the observation well and injection well show almost the
same trend when the leakage duration increases. For brevity, we just show the results of the
cases that well D-9-6 was subject to different leakage rates in Table 28.
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For the first case, the leakage rate of 1,830 ft/day was considered for well D-9-6. The leakage
starts in 01/01/2017, two years after the end of injection. At this time we can assume that CO: is
in equilibrium with the reservoir and there is no sudden change in the pressure. The frequency of
the pressure recordings is one day (this can be increased to hourly for high frequency data
generation). As it is shown in Figure 154 and Figure 155, after the leak starts, there is a change
in the pressure difference (AP). The magnitude of this change in AP is between -0.05 and 0.05

psi.

Based on the fact that the reservoir pressure decreases due to the leakage of CO., it is expected
that AP (Pieak — Proleak) have a positive value, therefore, negative values are not acceptable. They
are mainly because of numerical dispersion. These negative values should be disregarded and
replaced with zero during the training of the data-driven models. This pressure behavior is almost
the same for the leakage rate equal to 5,250 ft®/day.
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Figure 154. AP in well D-9-8 in the case that well D-9-6 leakage rate is 1,830 ft3/day.

In the situation that leakage rate from the well D9-6 was set at 11,025 ft3/day no negative values
for AP in the well D-9-8 were observed (Figure 156). The only fact is that during the post leakage
time, some fluctuation in AP behavior (ranging between 0 and 0.1 psi) is observed. This behavior
may result in incorrect pattern recognition analysis. The pressure behavior which can be
measured in the injection well (D-9-7) is more reasonable after the leakage (Figure 157). The
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pressure difference reaches 0.04 psi in a year and remains constant for almost 4,000 days. Then
it gradually increases to 0.06 psi.
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Figure 155. AP in Injection well in the case that well D-9-6 leakage rate is 1,830 ft/day.
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Figure 156. AP in well D-9-8 in the case that well D-9-6 leakage rate is 11,025 ft3/day.
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Figure 157. AP in well D-9-8 in the case that well D-9-7 leakage rate is 11,025 ft3/day.
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Figure 158. AP in well D-9-8 in the case that well D-9-6 leakage rate is 42,000 ft3/day.
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For the case that the assigned leakage rate for well D-9-6 is equal to 42,000 ft®/day, the pressure
difference behavior in both injection (D-9-7) and observation wells (D-9-8) follows almost the
same trend. AP in well D-9-8 increases sharply to 1.5 psi at the beginning of post leakage time
for 2,000 days followed by a plateau (Figure 158). AP in the injection well (D-9-7) shows a similar

behavior (Figure 159).
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Figure 159. AP in Injection well in the case that well D-9-6 leakage rate is 42,000 ft*/day.

When the Leakage rate in well D-9-6 reaches to 73,500 ft3/day, pressure difference in both
observation and injection wells follows the same logarithmic trend (Figure 160, Figure 161). It
means that the rate of increase of the AP in the early times during the post leakage period is more
than the later times. AP in the first 3 months after the leakage reaches to 0.54 psi in the injection
well (D-9-7) and 0.67psia in the observation well (D-9-8) are shown in the following figures.
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Figure 160. AP in well D-9-8 in the case that well D-9-6 leakage rate is 73,500 ft*/day.
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Figure 161. AP in injection well in the case that well D-9-6 leakage rate is 73,500 ft3/day

156




The leakage rates of 99,750, 120,750 and 131,259ft*/day were assigned for the well D-9-6. The
trend of AP for the mentioned rate is also logarithmic. It should be noted that as the leakage rate
increases, we can observe that AP in the observation and injection well raises proportional to the
rate. For instance AP in the observation well (D-9-8), after 3 months of the leakage from well D-
9-6 at the rates of 99,750, 120,750 and 131,259 ft3/day are 0.94, 1.66 and 2.22 psi, respectively.
It is worthy to mention that we cannot increase the leakage rates above 131,259 ft¥/day since the
amount of the CO; around the well D-9-6 is not enough to support flow rates of the CO..
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LEAKAGE IN WELLS D-9-2 AND D-9-10

The procedure for assigning different leakage rates to well D-9-2 and analyzing the AP in the
injection and observation wells is the same as those of well D-9-6, but the pressure behavior is
not the same.

For the leakage rate of 42,000 ft*/day, we can see the logarithmic behavior for the AP trend (Figure
162). Also the amount of AP during the same time interval when a leak happens in well D-9-2 is
higher compared to D-9-6 leakages. Another point is that the AP trend in the observation and
injection down-hole gauges becomes linear instead of logarithmic when the well D-9-2 leaks with
the rate of 99,750 ft3/day (Figure 163).

For well D-9-10 we cannot see any logarithmic trend in AP behavior respect to time when the CO»
leakages occurs. Most of the trends are considered linear. The results of the AP trends for all
three wells are presented in Appendix 4.

AP- Well:D-9-8

[N
»

= =
[\ ~

=
o

Delta P(Psia)
oo

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (Days)

Z /

Figure 162. AP in well D9-8 in the case that well D-9-2 leakage rate is 42,000 ft3/day.
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Figure 163. AP in well D9-8 in the case that well D-9-2 leakage rate is 99,750 ft3/day.
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INTELLIGENT LEAKAGE DETECTION SYSTEM

PROCESSING OF HIGH FREQUENCY DATA STREAMS — DATA SUMMARIZATION

Citronelle reservoir simulation model was used to generate high frequency pressure data
(pressure reading from observation and injection well). The injection scenario used to generate
the pressure signals included 500 ton/year (9,480,600 ft3/day) into 10 reservoir layers of the Pluxy
formation. Figure 164 demonstrates the extent of the maximum CO; plume extension 4 years
after the end of injection. Based on the extension of the CO; plum, wells D-9-2, D-9-6 and D-9-
10 can be included within the reach of the CO; plum, and therefore, are considered for the leakage
study.

In order to generate high frequency pressure data in observation and injection well, due to the
leakage from the wells mentioned above, twenty different CO; leakage rates- in the range of real
leakage rates observed in actual cases- were assigned to the wells D-9-2, D-9-6 and D-9-10.
These CO; leakage rates are shown in Table 29.
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Table 29. CO; Leakage rates assigned for the wells D-9-2, D-9-6 and D-9-10

Leakage rate

Ton/year ft3/day Ton/year | ft3/day
286 15000 1333 70000
381 20000 1429 75000
476 25000 1524 80000
571 30000 1619 85000
667 35000 1714 90000
762 40000 1810 95000
857 45000 1905 | 100000
952 50000 2000 [ 105000
1048 55000 2095 | 110000
1143 60000
1238 65000

At each CO; leakage scenario it is considered that leakage starts 2 years after the end of injection
(1/1/2017). For each CO- leakage rate, reservoir simulation run was performed at one hour time
steps. The duration of leakage is 6 months. We also performed a simulation with no leakage. In
this case the bottom-hole pressure in the observation well starts increasing during the injection
until it reaches to its maximum at the end. After end of injection, the pressure drops until reservoir
reaches the equilibrium. The typical time for this period is about 4 to 5 months. After that, the
bottom-hole pressure becomes almost constant.

When a CO; leakage takes place in one of the wells, it creates a pressure change in the reservoir.
This pressure change can be observed in the observation well. Therefore the difference between
pressure in the observation well, in the case that no leakage exists and when a leakage happens,
is considered as the leakage indicator. This pressure difference (or Ap) behavior can characterize
the specifications of the leakage, specifically the location and the amount of CO; being leaked.

For example the magnitude of Ap is directly proportional to the amount of the CO, leakage rate.
Also the shape of the Ap as a function of time is related to the location of the leakage. As an
example Ap history (high frequency-hourly basis) in the observation well, for the case that well D-
9-6 leaks with the rate of 30,000 ft3/day is shown in Figure 165. For all the leakage rate scenarios
in Table 29 (3 wells leak individually) high frequency Ap values were generated for both injection
and observation well.
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Figure 165. AP in injection well in the case that well D-9-6 leakage rate is 30000ft3/day

Data Summarization

Normally the data that is transmitted from the PDG sensors include Noise. The First step in
processing such data streams is removing the noise associated with the data. The next step is
summarizing the high frequency PDG data and transforming the data into a format that can be
used by the pattern recognition technology.

Based on the characteristics of the Ap extracted from the high frequency data streams,
“Descriptive Statistics” was used for data summarization. Descriptive Statistics quantitatively
describes the main features of a collection of data and provides simple summaries about the
sample and about the observations that have been made. These summaries form the basis of the
initial description of the data that will be used by the pattern recognition technology.

The parameters that can represent and summarize a large amount of data can be listed as: Mean,
Standard Error, Median, Mode, Standard Deviation, Sample Variance, Kurtosis, Skewness,
Range, Maximum, Minimum and Sum. For example the descriptive statistics and summarization
of 504 hourly Ap data points in the observation well (D-9-8) for the case that well D-9-6 leaks with
the rate of 110,000 ft3/day is listed in Table 30.
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Table 30. Descriptive statistics and summarization of 504 hourly Ap data points in the

observation well (D-9-8)

Descriptive statistics

Mean 0.05297658
Standard Error 0.00344277
Median 0.01220703
Mode 0
Standard
Deviation 0.07729008
Sample Variance | 0.00597376
Kurtosis 1.0883939
Skewness 1.52563822
Range 0.28369141
Minimum -0.0004883
Maximum 0.28320313
Sum 26.7001953
Count 504

Another way to represent large numbers of data points that can also be implemented in the neural
network training and pattern recognition is Curve Fitting. In this process a curve is constructed,
providing a mathematical function that has the best fit to a series of data points. The shape of Ap
history curve is different respect to the location of the leakage. Therefore, it is not possible to
determine a typical curve (linear, exponential...) to fit all the data points.

The only curve that can provide a good fit for Ap points is a “Polynomial” curve. In this project 4th
degree polynomial curve was used to fit Ap points for different leakage rates and leakage
locations. For instance for the case that well D-9-6 leaks with the rate of 30,000 ft3/day (Figure
165), following polynomial function represents the best fit with the R?2=0.9992 :

Ap = - 7x10M t* + 3x10° t3 — 3x10°7 t2 + 0.0001t - 0.0085

The coefficients and intercept of the above mathematical relationship can be used for pattern
recognition and Neural Network Training.
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PREPARATION OF HIGH FREQUENCY DATA FOR PATTERN RECOGNITION

Data Partitioning for Neural Network Modeling

In order to make neural network model, first of all it is necessary to prepare the data set including
input and output features. In this project, our aim is to determine the location and amount of
leakage based on the data that is provided by PDGs reading. Therefore, latitude and longitude
(X, Y) of the leaking well (D-9-2, D-9-6 and D-9-10) and the CO; leakage rate are the output
features of the Neural Network. The CO; leakage rates are shown in Table 29.

The actual input data that we receive directly from PDGs are pressure readings from observation
well or in another word, the difference between pressure readings during the leakage and no
leaking condition (Ap). As explained in the previous section, the Ap readings at different times
(hourly basis) are summarized using descriptive statistics. For initial study the pressure
information (PDG readings) in observation after 1 week of leakage in hourly basis was selected.

Prior to the input data selection, KPI* or key performance indicator analysis should be completed
in order to determine which parameters are more influential to be considered as inputs. The first
KPI test was performed on the location of leakage (coordinates of the possible leaking wells); to
see which parameters are more effective. The results of the key performance indicator analysis
for the location of the leakage are shown in Figure 166 and Figure 167.

Rank Feature % Degree of Influence
1 Skewness 100
2 F.urtosiz b
3 Range 12
4 Standard Dreviation 11
4] Standard Error 11
G Sum 11
7 Sample Yariance g
a td arirnuinm g
q bean B
10 i edian 1

Figure 166. Key performance indicator analysis results for the latitude of the leakage.

Based on the key performance indicator results, skewness, kurtosis and range (or maximum)
have the most influence on identifying the location of the leakage and mean and median are in
the least degree of importance. Therefore the median was not selected as the input data for
Neural Network Training.

4 These analysis were performed using IDEA™, a software application provided by Intelligent Solutions, Inc.
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The same analysis was performed to see the effect of each parameter on the CO; leakage rate.
According to the results of the KPI (Figure 168), skewness, kurtosis and Maximum have the most
effects on the CO; leakage rate. Also it is concluded that the median has the least effect on the
leakage rate.

Rank Feature # Degree of Influence
1 Skewneszz 100
2 K.urtozis 44
3 Standard Error 15
4 Range 15
a] b @i 15
G Standard Deviation 14
7 Sum 14
a Sample VY anance q
3 tean 2
10 Median 1

Figure 167. Key performance indicator analysis results for the longitude of the leakage.

Rank Feature # Degree of Influence
1 Skewness 100
i F.urtoziz )
3 b atirLr 19
4 Standard Deviation 19
a] b ean 18
B Sum 18
7 Range 18
a Sample Vanance 15
3 Standard Error 15
10 b edian 1

Figure 168. Key performance indicator analysis results for the CO; leakage rate.

According to the key performance indicator analysis results, we decided to select 10 inputs (Mean,
Standard Error, Mode, Standard Deviation, Sample Variance, Kurtosis, Skewness, Range,
Maximum, and Sum) for Neural Network training. In this case we assigned 20 different CO-
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leakage rates to 3 leakage locations(wells D-9-2,D-9-6 and D-9-10).As a result totally 60 different
records including 10 input parameters for each were considered for neural network training. For
this data set, intelligent data partition was used for the segmentation of the records in which 80%
of data were allocated for neural network training, 10% for network calibration and 10% for
verification. Therefore 48 records will be used for training, 6 for calibration and 6 for verification.
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NEURAL NETWORK ARCHITECTURE DESIGN

Error Back-propagation is one of the popular learning algorithms that was used in this study. For
this algorithm just one hidden layer was provided. Based on the 10 inputs - 3 outputs, 12 neurons
in the hidden layer and one random seed number were allocated for the neural network (Figure
169). The random numbers initialize the weights on the neural network prior to the training.

[nput Hidden Layer
Layer Layer

# neuron in Hidden Layer: | 12 Random Seed Mumber: | 1

Figure 169. Neural network architecture

As shown in Figure 169 , there are two sets of synaptic connections in the network. First is the
synaptic connections between the input layer and the hidden layer, and the second set of
connections are those between the hidden layer and the output layer. Since we used “Vanila “
and “Enhance “ networks®, for each connection set, 2 parameters as Momentum and Learning
rate are assigned. “Learning Rate” which is an indication of how fast the network learns the
information presented. This is usually a moderate to low number (between 0 and 1). Small

5 IDEA™, from Intelligent Solutions, Inc.
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learning rate value may prolong the learning process and slow it down to a crawl. Momentum is
an extra push to the learning process that serves two purposes. First, it may accelerate the
learning process, and second, it has the potential to kick the solution out of the local minima, that
usually exists in the search space and causes the solutions to converge pre-maturely. In this
project Learning rate and Momentum are considered 0.3 and 0.8 respectively. Also Logistic
activation function was used to connect input layers to the hidden layers.

The next step is to identify how and when to save the trained network. It is recommended to save
the network that has achieved the best training set, or the calibration set. Also the network can
be saved after 1 epoch (or more) of training. Each epoch of training is completed when all the
records in the training set have been visited by the network once.
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NEURAL NETWORK TRAINING AND CALIBRATION

In the first step it was decided to train a network that relates the location of the leakage (X and Y
coordinates) to the summarized pressure readings (Table 30) from observation well (D-9-8). The

results of the neural network training and calibration of the X coordinate of the leakage after
15,000 epochs® are shown in Figure 170 and Figure 171.
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Figure 170. Neural Network training results for the leakage location(X)
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Figure 171. Neural Network Calibration results for the leakage location(X)

6 Each epoch is defined as an iteration of the training of the neural network with all available data.
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The best results for the training set were achieved after 14,993 epochs with minimum average
error of .00071. For calibration set data the best results were saved at Epoch 13,455 with the

minimum average error of .0012. The results for the CO; leakage rate training and calibration are
illustrated in Figure 172 and Figure 173.
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Figure 172. Neural Network training results for the leakage rate
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Figure 173. Neural Network calibration results for the leakage rate

In order to investigate the effect of more data assimilation in neural network training, we prepare
the summarized pressure data set (weekly basis) for 8 weeks after CO; leakage happens. The

neural network training and calibration results for the week 1, 5 and 8 are shown in the next
section. A comprehensive results are included in Appendix 5.

170




PATTERN RECOGNITION ANALYSIS

Neural Network Validation

In order to develop the Intelligent Leakage Detection System (ILDS), a set of high frequency
pressure data was generated corresponding to different CO2 leakage characteristics. In the
reservoir simulation model of the CO; injection in the Citronelle field (Paluxy Formation), it was
observed that CO2 plume extension would reach to the three existing wells (D-9-2, D-9-6 and D-
9-10) at the end of 2017.Twenty Different CO2 leakage rates ranging from 15 to 110 Mcf/day were
assigned to each well in order to generate high frequency pressure data. The behavior of AP (the
difference between pressure data in the case that no leakage is happening and when we have a
leakage in the well) is the indicator of leakage characteristics as shown in Figure 174.

For each leakage scenario, the pressure difference data (AP) were collected from the observation
well and summarized by descriptive statistics. By doing so, the data would be in proper format for
pattern recognition. The hypothetical leakage started at the beginning of year 2017 and the
pressure data were collected on hourly basis. The time window of one week was considered in
order to summarize the pressure data (Figure 175).
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Figure 174. Pressure difference when no leakage happens compared to the case that leakage
occurs
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Descriptive Statistics
AP in Observation well{D-9-8) Mean 0.091532
03 Standard Error 0004755
Median 0.091797
Mode ]
. Standard Deviation 0.06l636
£ .. Samnple Variance 0.003799
T Kurtosis -1.31344
Skewness 0.029047
o Range 0194824
" Minirmurm ]
. a 3o 10 . Maximum 0.194824
Time(hour) Sum 1537744
Count 168

Figure 175. Pressure difference in Observation well and the corresponding descriptive statistics

The data set for neural network Training and Calibration was generated based on 60 different
leakage scenarios. For each scenario, specific CO, leakage rate was assigned to one well (out of
the three wells that are prone to the leakage). The aggregation of the descriptive statistics
parameters of the high frequency pressure data for all the 60 scenarios formed the data set for
pattern recognition.

Table 31 . Verification Dataset

Leakage Location, X Leakage Location, Y Leakage Rate, ft3/day
1270184.28 11276221.98 30,000
1270184.28 11276221.98 65,000
1270359.36 11279158.24 70,000
1270359.36 11279158.24 75,000
1268902.52 11277566.74 55,000
1268902.52 11277566.74 105,000

It is worthy to note that summarized pressure data are the inputs for neural network and Leakage
location and rates are the output. This input-output selection is due to the fact that real time
pressure data (summarized) is going to be fed into neural network to determine the location and
amount of COz2 leakage. The date set was partitioned to three sections for training, calibration and
verification of neural networks.
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For the verification of the predictive capabilities of the neural networks, 10 percent of the data
were set aside for the final analysis. These data would be used to test the validity of the neural
networks that were trained and calibrated. In other words, the verification data set, determines
the power of the neural network for prediction. In this case 6 records out of the 60 records were
set aside for verification. The data records used for verification are shown if Table 31.

The verification results for the leakage location are shown in Figure 176 and Figure 177. Based
on the results shown in these two figures, it can be concluded that neural networks for clean
pressure data (including no associated noise) are well trained. The R? for verification data records
corresponding to latitude and longitude of leakage location is equal to 1.
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The verification results for CO; leakage rate are shown in Figure 178. There is only one point for
leakage rate that lies out of the general trend for predictions. This leads to a R? of about 0.4. It is
worthy to mention that R? for training and calibration are 0.94 and 0.99, respectively. As a result,
although we see a low value for R?in verification section, higher values of R? for training and
calibration makes the overall predictability of the network to be reasonably high. The results for
neural network verification are shown in Table 32. Detail results for overall neural network training,
Calibration and verification are summarized in Appendix 5.
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Figure 178. Verification results for leakage rate

Table 32. Results for neural network verification

N.Net Leakage Location, X N.Net Leakage Location, Y N.Net Leakage Rate, ft3/day

1270184.64 11276223.67 24770.36
1270184.89 11276223.64 73583.62
1270359.14 11279157.49 69651.10
1270359.15 11279157.48 74652.59
1268902.65 11277565.91 96394.92
1268902.55 11277568.66 97346.52
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Blind run Validation

In order to validate the performance of the ILDS, 3 different CO- leakage rates (not seen by the
Neural Network before) were assigned to possible leakage location (wells D-9-2, D-9-6, D-9-10)
as blind runs. Pressure data from these runs were applied to the ILDS. The ILDS predications for
CO; leakage location and rates are shown in Table 33 and Figure 179, respectively.

The predictions of the ILDS for the Leakage location show high accuracy in a way that the results
are almost the same as actual values. For the low Leakage rate (26MCf/day), Neural Network
predictions demonstrate minor difference with the actual values, nevertheless, the range of

predicted rates is reasonably correct.

noticeably precise.

Leakage Location(X)

Run Actual

Table 33. Blind run ILDS predictions

Leakage

Location(X) ILDS

Leakage Location(Y)

Actual

For the higher leakage rates the ILDS prediction is

Leakage

Location(Y) ILDS

1 1268902.53 1268903.05 11277566.74 11277569.97
2 1268902.53 1268902.78 11277566.74 11277565.13
3 1268902.53 1268902.55 11277566.74 11277567.57
4 1270359.37 1270359.03 11279158.24 11279157.46
5 1270359.37 1270359.11 11279158.24 11279157.51
6 1270359.37 1270359.17 11279158.24 11279157.44
7 1270184.29 1270184.53 11276221.98 11276223.47
8 1270184.29 1270185.16 11276221.98 11276224.14
9 1270184.29 1270183.81 11276221.98 11276222.66
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Figure 179. Results for blind runs, leakage rates
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Neural Network Model Analysis

The initial results of the neural network training are illustrated in Figure 179 and Table 33 which
compare actual data (Leakage rate and locations) with neural network predictions.

The neural network determines the location of the leaking well with high accuracy (R? = 1).
However, for Leakage rates, neural network results cannot represent a few of the actual data
correctly (R?=0.92) specifically when the rates belongs to well D-9-6. In order to improve the
results for CO2 leakage rates predictions, an individual Neural Network was trained for each
hypothetical leaking well. This approach was successful to enhance the prediction performance
of the Neural Network model for the Leakage rate which is shown in Figure 180 (R?=0.96).
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Figure 180. Neural Network pridiction for Leakage rate(network trained for each well
individually)

Based on the Neural Network Modeling results we would design the ILDS in following way. At first
the summarized pressure data are fed to the main Neural Network that predicts the location of
the COz2 leakage. Afterwards when the location is determined, the pressure data would be fed
into the corresponding Neural Network that was designed for that specific location. Based on the
initial results. Location and the amount of CO; leakage are quantified, using continuous monitoring
of the reservoir pressure. Pattern recognition capabilities of Artificial Intelligence and Data Mining
may be used as a powerful de-convolution tool for pressure behavior analysis.
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INTELLIGENT LEAKAGE DETECTION SYSTEM DEVELOPMENT-
HETEROGENEOUS MODEL

PATTERN RECOGNITION ANALYSIS

What was covered in the previous section was the application of the pattern recognition
technology to the simpler version of the Citronelle numerical model’. In this section we summarize
the result of applying the pattern recognition technology to the actual history matched model of
the Citronelle field. The history matched model was used for modeling high frequency pressure
signal behavior subject to various CO, leakage scenarios.
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Figure 181. Location of five wells in the CO- plume area

Five different wells are located in the area of interest (the extension of the CO, plume - Figure
181). Each well would be prone to the leakage if the integrity of the well is compromised. Since
wells D-9-7 (injection well) and D-9-8 (observation well) were drilled recently specifically for CO»

”The model used in the previous section was essentially the non- history matched, base model. This was
done to see the viability of the technology in a simpler case and learn from it when applying it to the real
history matched model.

177




storage purposes, probability of CO, leakage through these wells was neglected. Wells D-9-6, D-
9-7 and D-9-8 could experience some kind of leakage. When a leakage happens, a pressure
change (AP) signal can be observed in the observation well. The pressure change signal in the
observation well for the leakage rate of 65,000 cuf/day, at well D-9-7 is illustrated in Figure 182.
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Figure 182. Reservoir Pressure in the observation Well (D-9-8)

NEURAL NET DATA PREPARATION

Intelligent Leakage Detection System (ILDS) consisted of a neural network that learned patterns
that related the leakage characteristics (location and rate) to the corresponding pressure signals.
In order to train the neural network, it was necessary to have pressure signals corresponding to
each leakage scenario. Reservoir simulation was used to generate mentioned pressure signals.

Each well that was prone to the leakage (wells D-9-6, D-9-7 and D-9-8) experienced different
leakage rates (in the range of 15,000 - 105,000 ft3/day with 10,000 ft¥/day increments). The
synthetic leakage initiated at 1/1/2022 and 168 pressure signals (collected on hourly basis) were
recorded from the observation well (D-9-8). Descriptive statistics were used to summarize the
pressure signals and to develop the data set for the neural network training.

Intelligent Data partitioning was used to divide the data set into Training (80%), Calibration (10%)
and Verification (10%) portions. Then, data sets were analyzed by Key Performance Indicator
(KPI) analysis in order to identify the relative impact of each input parameter (summarized
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pressure data) on the output features. The results of KPI analysis (all the data points with
maximum possible combinations) are shown in Figure 183.

Rank Feature % Degree of Influence Rank Feature % Degree of Influence
1 Skewness 100 1 Kurtosis 100
2 Kurtozis 7B 2 Skewness 45
3 Standard Error 21 3 Sample Varance 7
4 Range 20 4 Standard Ermor [
5 b amirnum 18 ] Sum E
B Sum 16 G Mean E
7 Standard D eviation 16 7 M asirmum 5
a tean 15 g Median 2
3 Sample Y anance 12 ] Range 2
10 Median 1 10 Stamdard D eviation 1

Figure 183. Key performance indicator for Leakage location (left) and rate(right)

Neural Network Architecture Design

Back-propagation method was used for training the networks using all the parameters that were
analyzed in key performance indicator as the input variables. Leakage location (X coordinate) and
rate were set as the output parameters. Based on input-output selection, 10 neurons with one
hidden layer formed the structure of the neural network (Figure 184). Input layers were connected
to the hidden layers by logistic activation function. Also one random seed number was used to
start initialization of neural network weights.

Input Hidden Layer Olutput
Layer #1 Layer

# neuron in Hidden Layer: | 10 Random Seed Mumber: | 1
Figure 184. Neural Network architecture
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NEURAL NETWORK TRAINING, CALIBRATION AND VERIFICATION

Training is a process during which data is introduced to the neural network for the purposes of
identifying the best set of weights for the synaptic connections between all processing elements.
The training algorithm is the set of mathematical equations that are used to find the most
appropriate weight. This is usually done through an optimization process. The training algorithm
used in this project is known as error back propagation. During the training a correlation is
established between a set of multiple inputs (summarized pressure signals) and the output
(leakage characteristics). Training is an iterative process which tries to minimize the average error
through multiple epochs. When the error does not decline anymore (while the number of epochs

continues to increase), the training process is considered to be complete.

Neural network training was stopped at epoch 112,693 when the minimum average error for the
leakage locations and the leakage rate were 0.00043 and 0.000056, respectively (Figure 185 and

Figure 186).
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Figure 186. Neural Network training results for the leakage rate

The calibration data was set aside in order to look over the training process and save the best
training results. Additionally, calibration data set helped to avoid over training of the neural

network models. In this neural network, three data points were considered for calibration (Table
34). The results for neural network predictions for the calibration data are shown in Figure 187
and Figure 188.

Table 34: Calibration data set

Leakage Location, X Leakage Rate, ft3/day
1268829 25,000
1271495 35,000
1270562 75,000
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NEURAL NETWORK VALIDATION

Validity of neural network predictions was tested by different methods. In the first method, 10% of
data was not used during training and calibration processes. When the neural network was trained
and calibrated, verification data was applied to the neural network to see how predictive the neural
network model is. The verification results for the leakage rate obtained by the first method are
shown in Figure 189.
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Figure 189: Neural Network Verification results for the leakage rate

Table 35: leakage rates and locations for ILDS validation

[P R

Run Number Leakage Rate Leakage Location Well
1 23,000 1268829
2 72,000 1268829 D-9-6
3 93,000 1268829
4 32,000 1270562
5 61,000 1270562 D-9-7
6 87,000 1270562
7 27,000 1271495
8 48,000 1271495 D-9-8
9 101,000 1271495
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In the second method, 9 different simulation runs were performed to generate pressure signals
corresponding to the leakage rates that were not seen by the neural network during the training
process. Three different leakage rates were assigned to each well (Table 35) and the pressure
signals were collected and summarized by descriptive statistics. The results of the neural network
predictions were compared with the data originally used in the simulation runs, to investigate the
predictability of ILDS. Figure 190 and Figure 191 show the results of this exercise.
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NEURAL NETWORK MODEL ANALYSIS

The Neural Network prediction’s precision can be analyzed by looking at the error plots and R?
values. As it is shown in Figure 192, the R?for leakage location predictions is 0.99 which indicates
high precision in neural network predictions. Additionally the error for leakage location prediction
ranges between -5 to 7 ft. (actual leakage locations are: 1,268,829, 1,270,562, 1,271,495 ft). For
leakage rate results (Figure 193); the R?is equal to 0.98 which shows very good prediction
capabilities for the neural network models. The maximum errors for leakage rate predictions range
from -5 to 9 Mcf/day which is less than 10 %.
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ILDS ENHANCEMENT AND EVALUATION

As part of a monitoring technique, an Intelligent CO, Leakage Detection System (ILDS) was
developed for CO, storage project at Citronelle Dome. This system, which was designed based
on Pattern Recognition Technology and Smart Wells, is able to identify the location and the
amount of the CO; leakage at the reservoir level using real-time pressure data from PDGs.

The history matched reservoir simulation model (based on 11 months of actual injection/pressure
data) was used for CO; leakage modeling studies. High frequency real time pressure streams
were processed with a novel technique to form a new data driven Real-Time ILDS (RT-ILDS)
which was able to detect leakage characteristics in a short period of time (less than one day after
the initiation of a leakage). RT-ILDS also demonstrated high precision in quantifying leakage
characteristics subject to complex rate behaviors. The performance of RT-ILDS was examined
under different conditions as multiple well leakage, availability of additional monitoring well,
uncertainty in the reservoir model, leakage at different vertical locations along the well and cap-
rock leakage.
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REAL-TIME INTELLIGENT LEAKAGE DETECTION SYSTEM (RT-
ILDS)

Real-Time Intelligent Leakage Detection System (RT-ILDS) is a data driven monitoring package
which receives real time pressure data and determines occurrence of a CO; leakage, and
consequently predicts location and amount of the leak. This system originally was designed (and
discussed in detail in previous sections of this report) in a way that it would receive pressure
signals for a time interval, one week of hourly signals - 168 records after the leakage.

Summarized pressure data obtained by descriptive statistics was fed into trained neural networks
to find leakage characteristics. In that system, it was necessary to wait till the end of the time
interval to find leakage characteristics. A new method of data processing is discussed in this
section for the development of Real-Time Intelligent Leakage Detection System (RT-ILDS). In this
method the pressure data is analyzed in real-time considering the previous trend of the signals.
By this method it is possible to determine leakage characteristics much faster in less than a day.

In order to process the data and convert it to a format which is appropriate for the pattern
recognition technology, pressure signal based on thirty different CO, leakage scenarios were
used. Each scenario was corresponded to a simulation run that modeled specific CO, leakage
rate (ranging from 15 to 105 Mcf/day with 10 Mcf/day increments) at one of the three leakage
locations (wells D-9-6, D-9-7, and D-9-8).

The specifications of the simulation runs and behavior of the pressure signal for each scenario
was similar to those covered in detail in the previous sections. First, a threshold was assigned as
.01 psi for the AP that is defined as: (Pno Leakage — PLeakage), @s the leakage indicator.

This threshold is actually equal to the precision of the PDGs that are currently used in the industry
and that are currently installed in the observation well D-9-8. When this threshold is achieved,
data processing starts by considering values of AP, pressure derivative, AP average, AP
summation, AP standard deviation, AP skewness, and kurtosis for the past history of the data (in
a given window of time — usually an hour).

The hourly pressure data for one week for each CO; leakage scenario were used to generate the
data set for the neural network training, calibration and verification. The first 12 hours of the data
after beginning of the leakage (AP > 0.01 psi) were neglected from the data processing, since
they proved not to be useful for our analysis.

Neural Network Data Preparation

Development of the RT-ILDS is mainly based on the training, calibration and verification of the
neural networks that received the pre-processed real-time pressure data for each CO, leakage
scenario as the input and the corresponding leak rate and location as the output. Initially, a neural
network was trained to find a pattern between leakage location (output) and the corresponding
pre-processed pressure signals. The entire data set for leakage location neural network consisted
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of 3,527 data records which were partitioned into 2821, 353, and 353 records for training,
calibration, and verification, respectively.

The influence of each input parameter on the output (leakage location) was determined by Key
Performance Indicator (KPI) analysis. As it is illustrated in Figure 194, skewness, standard
deviation and average of the AP are indicated to have the most impact on the output (leakage
location).

It is worth mentioning that descriptive statistics for AP (in Figure 194 and Figure 195) data at each
time step is calculated on a cumulative basis after pressure threshold of 0.01 psi (leakage
indicator) is observed. For example, at time step 24 (after pressure threshold was detected),
average, summation, standard deviation, skewness and kurtosis were calculated for 24 AP
records (Cumulative). Derivative and AP are point values at time step 24. The last 12 data records
and corresponding calculated parameters will be used in neural network training.

Rank Feature # Degree of Influence
1 Curn Skewness[DeltF] NN
2 Cum ST Dev(DetF] NS
3 Cumn &AvereageDetP]
4 Delp -
5 Cum KurtosizDetP] TS
= Curn Surn[DeltP) e 26
7 Derivitive | 2
a Tirme[Mew] | 1

Figure 194. Key performance Indicator for the Leakage Location

For leakage rate determination, one neural network was trained for each well separately. The
number of input data records for each well is different due to implementing 0.01 psi threshold as
the leakage indicator. For instance, 1,553 records were used to train leakage rate neural network
for Well D-9-8. That data records were partitioned into 1243, 155, and 155 records for training,
calibration, and verification, respectively. The results for Key Performance Indicator analysis for
well D-9-8 which shows the impact of the input parameters on the CO; leakage rate are shown in
Figure 195.
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Figure 195. Key performance Indicator for the leakage rate at well D-9-8

Results and Validation

Neural network training process attempts to calculate most proper weights that describes a
pattern between leakage locations and the specified input data (pressure signals). The entire
process consisted of number of epochs that attempts to minimize the error between actual and
predicted results.

It was necessary to calibrate the training process by looking over the training results and finding
the best training outcomes. When the error in the calibration reached a minimum value, the
training process is stopped and the training process is identified as completed. The results for all
the training processes (training, calibration, and validation) are shown in Figure 196 (CO. leakage
location) and Figure 197 (CO: leakage rate in well D-9-8). For both leakage location and results,
R-square is more than 0.99 which represents high precision.

In order to validate the performance of the RT-ILDS, a set of blind runs (not used for the neural
network training) were designed, the simulation runs were performed and the appropriate data
was collected and pre-processed to appropriate for mat for the application to the neural network
models.

As it is shown in Table 35 nine total simulation runs were performed considering assignment of
three CO; leakage rates at the possible locations of the leakage (wells: D-9-6, D-9-7, and D-9-8).
Pressure signals which corresponded to each CO; leakage scenario were processed by applying
the leakage threshold (0.01 psi) and generating AP, pressure derivative, AP average, AP
summation, AP standard deviation, AP skewness, AP kurtosis at each time step.

For each leakage scenario, all the calculated parameters were fed to the RT-ILDS to get the
prediction for leakage location and leakage rate. All the results for RT-ILDS prediction for each
blind run are shown in Figure 198, Figure 199. All the details of the analysis are presented in
Appendix 6.
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Figure 197. Neural network results for leakage rate in well D-9-8
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Figure 198. R-ILDS Leakage Location prediction, all blind runs

ILDS Leakage Rate Prediction-All runs

120

100 | SR

5
3 80
(%)
2
2 60 _W-—.—
-4 ¢ Leak Rate-R-ILDS
[J]
) D T = Actual Rate
© 40
3 ——EEE

20 ? g

0

0 50 100 150 200
Time(hour)

Figure 199. R-ILDS Leakage rate prediction, all blind runs
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The precision of the neural network predictions can be quantified by R? parameter and the
distribution of the errors. The neural network that was trained for leakage location, has an R?
value that is practically equal to 1. The prediction’s error histogram for locations of wells is shown
in Figure 200.

Histogram for Error in Leakage Location

700 - 637
600 -
500 -
)
< 400 - 353
o
ff 300 - ® Frequency
200 -
100 - 52
0 4 5 4 6 0
0 T T T T T T T - T 1
-47 -37 -27 -17 -7 3 13 23 More
Error(ft)
Figure 200. Histogram for the error in neural network’s location prediction
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Figure 201. Neural network prediction errors for Leakage rates in well D-9-8
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The average error for the leakage location is 3 ft. with the maximum error of 46 ft. The R2for the
CO; leakage rate predictions is 0.998 which represents a good precision. The percentage error
plot for leak rate at well D-9-8 is shown in Figure 201. The maximum error for the leakage rate is
less than 9 %. The average error for CO- leakage rate predictions is less than 4% at well D-9-8.

DETECTION TIME

When CO: leakage occurs in the reservoir (from the existing wells, D-9-6, D-9-7, and D-9-8), there
is a delay until Pressure Down-hole Gauges receive the generated pressure signal. The time that
takes to detect CO, leakage depends on the Pressure Down-hole Gauge resolution and amplitude
of the pressure signals. Resolution of the PDGs that were installed in observation well is 0.01
psi. Therefore, if the amplitude of an induced pressure signal due to CO; leakage is less than
PDG resolution, it wouldn’t be possible to detect the leak.

Another important parameter related to leakage detection timing is the amplitude of the pressure
signal. The signal amplitude is proportional to the inverse distance from the location of the leakage
to the location of the observation well. The distances of each possible leakage location (wells D-
9-6, D-9-7, and D-9-8) to the observation well are shown in the Figure 2028,

Figure 202. Distance of possible leakage locations to the observation well

8 Please note that distance, as far as the transmission of the pressure transients are concerned, includes
the impact of the permeability as well as the physical distance between two points. Furthermore, the
accuracy of the permeability distribution is a function of the accuracy of the history matching process.
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The induced pressure signal (as a result of the leakage in the reservoir) for the cases that each
of three wells leak 55 Mcf/day is shown in Figure 203. As the leakage location gets closer to
observation well, the amplitude of the pressure signal increases. RT-ILDS was developed based
on the fact that pressure change threshold of 0.01 psi can be detected by PDGs.

Pressure Signal :Leakage rate=55Mcf/day @D-9-6,D-9-7,D-9-8
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Figure 203. Comparison of pressure signal amplitude when wells leaked with the same rate

Also, the first 12 pressure data records (after reaching to AP=0.01 psi) were not included in RT-
ILDS development. Based on mentioned criteria, detection times for different CO; leakage rates
at each leakage location are plotted versus CO; leakage rate in
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Figure 204. As the distance between the leakage source and the observation well decreases,
pressure signal amplitudes increase and it takes less time to detect the leakage and provide valid

results.
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Figure 204. Detection time for each rate at different locations

TESTING RT-ILDS FOR MULTIPLE GEOLOGICAL REALIZATION

Reservoir simulation model for CO; injection at Citronelle saline aquifer was developed and
history matched with real field data. This model acknowledged “Lateral Heterogeneity” in different
ways. The first reservoir characteristics that played important role in making the reservoir model
heterogeneous was the top of sand layers.

Structural maps for 17 sand layers (most extensive ones that were targeted for CO: injection)
were generated by interpretation and correlation of 14 well logs. The location of the well logs and
three cross sections for correlating the wells are shown in Figure 61. Based on correlation
between wells, 17 top maps were generated representing lateral heterogeneity in the reservoir.
The top map for the first sand layer is shown in Figure 67.

The same well logs were used to generate thickness (isopach) maps for all the layers. The
example for grid thickness map (first sand layer) is shown in Figure 68. In order to make porosity
maps, 40 well logs were analyzed and interpreted. Three different porosity maps were generated
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for each sand layer (51 total porosity maps for the entire reservoir). The lateral heterogeneity for
porosity is shown in Figure 73. In this model, permeability of the reservoir was obtained using
porosity-permeability correlations from core analysis. This means that there are lateral
heterogeneities for the permeability as well.

Multiple reservoir characteristics realizations were generated aimed at changing the parameters
that control lateral heterogeneity in the reservoir. Reservoir porosity, sand layer top/thickness and
vertical to horizontal permeability ratio were the main parameters to be modified for generating
lateral heterogeneity realizations. All these parameters varied compared with the original value
according to Table 36. For each realization, leakage rates equal to 70, 60 and 50 Mcf /day were
assigned to wells D-9-6, D-9-7, and D-9-8, respectively.

Table 36. Changes in reservoir Property Parameter

Variation 2%

0 0 0, 0,
Reservoir Parame UP 2% low | 5% low | 10% up | 10% low

Porosity

Sand Layer Top

Sand Layer Thickness

Vertical to Horizontal Permeability Ratio

The corresponding pressure signals (due to leakage from the wells) at the observation well, were
collected, processed and fed to the RT-ILDS. It should be mentioned that after changing reservoir
characteristics (like porosity or thickness), initial reservoir pressure and stabilization pressure after
end of injection varied (compare with the initial history matched model). This means that Pno leakage
and consequently AP had to be recalibrated and recalculated.

To recalibrated and recalculated the AP, for each realization, a “No-Leakage” scenario was
modeled and relevant data was extracted. Reservoir pressure signals at the observation well were
collected for each realization. At this point, new AP values were calculated for each realization,
having No-Leakage pressure data for all the cases.

As an example, AP —Original and AP —New for the realization that porosity of the reservoir lowered
10% and CO:. leakage rate equal to 60 Mcf/day was assigned to well D-9-7, are shown in Figure
205.

Pressure signals from different CO. leakage rate scenarios and reservoir characteristic
realizations were collected, processed and fed into the RT-ILDS. Detail results of all these
exercises that demonstrated the robustness of the RT-ILDS are shown in Appendix 7.
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Figure 205. Original and new AP, at observation well subject to lowering reservoir porosity

First, the effect of each specific parameter on the RT-ILDS predictions for leakage location is
explained. When the leakage (rate = 70 Mcf/day) took place at well D-9-6, RT- ILDS predicted the
location for all the realization correctly except for the case that reservoir porosity decreased 10%.
In this case, RT-ILDS prediction started deviating from the actual value (1,268,829 ft.) almost 35
hours after detecting the leakage. The location prediction from that time showed 1000 ft deviation
from the actual value and then it gradually moved back to the actual value.

For the case that well D-9-7 leaked (rate = 60 Mcf/day), RT-ILDS location prediction represented
almost 20 ft. error. In the situation that reservoir porosity decreased 10%, prediction values
showed 20 ft. error early after leakage detection. Then, the error for R-ILDS location prediction
slightly increased to 80 ft. This error is acceptable since the predicted location is still in the vicinity
of the target leaking well (D-9-7).

When well D-9-8 was leaking with the rate of 50 Mcf /day, changing the reservoir characteristics
showed no effect in R-ILDS location prediction apart from the case that reservoir porosity
increased 10%. In this case, R-ILDS predicted the leakage location to be at well D-9-6.

The impact of model’s specific parameters on RT-ILDS’s prediction for leakage rate is as follow.
RT-ILDS'’s predictions for CO; leakage rate at well D-9-6 were almost precise excluding the cases
that reservoir porosity varied. The R-ILDS’s results for CO- leakage rate were 105 Mcf/day (actual
value = 70 Mcf/day) while reservoir porosity was changed +10%.
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Once well D-9-7 was leaking, change of main reservoir parameters showed very little impact of
RT-ILDS’s results for CO: leakage rate. The maximum error of 10 Mcf/day in the results was
caused by decreasing reservoir porosity for 10%. It should be mentioned that CO, leakage rate
for this well was 60 Mcf/day.

Finally, for the case that well D-9-8 was leaking 50 Mcf/day, RT-ILDS’s results for CO; leakage
rate were consistent with the actual value with the exception of the realizations with reservoir
porosity change. Lowering reservoir porosity for 10% led to R-ILDS prediction to be 15 Mcf/day
while increasing reservoir porosity resulted in 70 Mcf/day predictions.

All'in all, the impact of models specific parameters was studied on the performance of RT-ILDS.
For most of the cases, changes in the model’s parameter did not show significant impact on RT-
ILDS’s results. The only parameter that impacted R-ILDS’s predictions considerably for both CO-
leakage rate and location was reservoir porosity. In reservoir simulation model that was developed
for CO; injection at Citronelle filed, reservoir permeability was calculated by porosity-permeability
correlation. Therefore, variation of reservoir porosity indirectly changes reservoir permeability. In
other words, any change in reservoir porosity leaded to change in permeability as well.

Reservoir permeability plays very important role in fluid flow in the reservoir and consequently
pressure signals coming from the observation well. Porosity change caused different fluid flow
behavior and consequently different pressure signal behavior. As aresult, RT-ILDS’s results were
impacted by variation of reservoir porosity.

DETECTION OF LEAKS AT DIFFERENT VERTICAL LOCATIONS ALONG THE WELLS

Based on the reservoir simulation results for CO; distribution and extension, it was observed that
CO: plume reached to existing wells in reservoir mainly in layer 1 (Figure 206). Therefore all the
synthetic leakages were assigned to the wells at layer 1 (the well was perforated just in that layer).

More investigation showed that CO, Plume was in contact with Well D-9-7 through 9 layers and
Well D-9-8 in two layers. This means that CO; leakage could take place at different vertical
locations along the well D-9-7. For that reason, the changes in the vertical leakage location were
applied to investigate if the system was capable of detecting the leak and the rate regardless of
where (vertically) the leak was initiated within a well.

It should be mentioned that two Pressure Down-hole Gauges were installed at well D-9-8 in the
first layer of the reservoir. During the history matching process, based the reservoir pressure
behavior in the observation well, it was concluded that the transmissibility of the shale layers that
were inter-bedded in the sand layers was zero (Figure 207). This resulted in no communication
between sand layers vertically. Therefore, if a leakage took place at well D-9-7 in layer 5, it would
not be possible to observe the pressure change by the sensors located in layer 1. The pressure
change in PDG located in well D-9-8#2 when well D-9-7 was leaking from layer 5 (50Mcf/day) is
shown in Figure 208.
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Figure 206. CO plume extension in different layers

Trans Multiplier K 2012-01-01  J layer: 56

File: vm300-1-with
User: PNGE-User

Scale: 1:19430
Z/X: 6.00:1
Axis Units: ft

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30

0.20

€ 0.10

0.00

4,000 5000 6,000 7,000 8000 9,000 10,000 11,000 12,000 13,000 14,000 15,000 16,000

002'0L9°0NS OLP' ONE ONZ OML OLO'D LJB‘GI[JIB@U[GUB'&UQ‘&OV'GUS'QUZ‘GFO 1’61006

0.00 0.25 0.50

0

~1),500,400,3001,2000,100,,000,900,,8001, 7001600, 5000, 4001, 300+, 2001, 1001, 000

(3]

File: VM300-1-WitH
User: PNGE-User
Date: 3/25/2014

Scale: 1:23203
Z/X: 6.00:1
IAxis Units: ft

1.00

1

1

lile

0.00 0.25 0.50 0.75 1.0

4,000 5000 6,000 7,000 8000 9,000 10,000 11,000 12,000 13,000 14,000 15,000 16,000

0.00

Figure 207. Transmissibility multiplier for shale layers
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Figure 208. Pressure change in observation well when leakage initiated at layer 5

It was assumed that several Pressure Down-hole Gauges were installed at the observation well,
at multiple sand layers in the reservoir. By making this assumption, it would be possible to
measure pressure changes due to CO, leakage at every layer. Therefore, the corresponding
pressure changes (AP), during a potential leakage at wells D-9-7 and D-9-8 were recorded,
processed and provided to RT-ILDS. The RT-ILDS’s results for CO; leakage location and rate are
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shown In Figure 209, Figure 210 and
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Figure 211.

Based on the results for leakage location (Figure 209), it can be concluded that RT-ILDS is able
to detect CO; location correctly when CO; leakage took place in well D-9-8 at different vertical
locations (assuming existence of PDG in every layer).

When CO; leakage took place at well D-9-7, RT-ILDS predicted the leakage location correctly
specially within 80 hours after the leakage (except the cases that well leaked form layer 5 and
layer 29). After 80 hours from the detection time, the results started deviating from actual location
of well D-9-7.
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CO; leakage rate of 50 Mcf/day was assigned to each leakage scenario (different vertical

locations along the well). For the case that well D-9-7 was leaking (Figure 210); RT-ILDS’s

leakage rate predictions were around 100 Mcf/day. When the leakage was from well D-9-8(at

different layers), RT-ILDS predicted the rate for case that CO; leakage was from layer 19 correctly
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Figure 211).

However the results for CO. leakage rate when leak was initiated from layer 5, was not
satisfactory. The main reason for not having correct prediction for the cases that CO- leakage
initiated at different vertical locations is that pressure signals are coming from different layers with
completely different reservoir characteristics.

Therefore, these pressure signals cannot be exactly the same as the case the CO, leakage
initiated from layer 1 (the RT-ILDS was developed based on pressure signals for different CO
leakage scenarios at layer 1).
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Figure 210. Leakage rate prediction at well D-9-7 when leakage took place at different vertical
locations
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Figure 211. Leakage rate prediction at well D-9-8 when leakage took place at different vertical
locations

EFFECT OF GAUGE ACCURACY OR PRESSURE DRIFT ON RT-ILDS RESULTS

One of the important parameters that affect the accuracy of the pressure measurements is
Pressure Sensor Drift (PSD). Most of the Pressure Down-hole Gauges (PDGs) experience drift
over their life time. PSD can be defined as a gradual malfunction of the sensor that may create
offsets in pressure readings from the original calibrated form. Changes in reservoir temperature
or pressure make the PDGs to respond differently depending on manufacturing characteristics.
The scale of PSD changes according to working conditions and manufacturing specifications.

PSD can be measured as how much pressure readings deviated from the original value in a year
(psi/year). Distributions of different PSD values are shown in Figure 212. For RT-ILDS, Pressure
Sensor Drift (PSD) can act as a CO: leakage indicator. When AP of greater than 0.01 is recorded
by the pressure sensor, RT-ILDS reports a leakage and starts processing the data to quantify
leakage characteristics. For example PSD equal to 1 psi/year generates AP=0.01, almost 88
hours after the initiation of the drift.
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Figure 212. PSD distribution for the sensors

Based on the different values of reported PSDs (Figure 212), the times that RT-ILDS reports a
leakage mistakenly are shown in Figure 213. This leakage is due to pressure gauge drift and not
actual induced pressure change. PSD trends (are substitute for AP for actual leakage) over 168
hours were generated and applied to RT-ILDS. The RT-ILDS prediction results for CO, leakage
location and rate are shown in Figure 214. RT-ILDS results for the leakage location at early times
oscillate between wells D-9-6 and D-9-7. After 80 hours, all the results converge to Well D-9-6.
This means that PSD makes ILDS to reports inaccurately that well D-9-6 is leaking.
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Figure 214. R-ILDS prediction for leakage location based on different drift values
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Use oF WELL HEAD PRESSURE AT INJECTION WELL

Typically, there are three different reservoir pressure regimes during the injection and post
injection. The first period refers to the start of the CO injection until it ends (We refer to this time
period as T1). At this Injection time (T1), reservoir pressure increases proportional to the amount
of CO: injected and reaches to a maximum value at the end of injection period.

When the CO: injection ends, there would be a transition time (We refer to this time period as T2)
when the reservoir pressure decreases until the brine and injected CO. reach a semi-equilibrium
point. At the end of the transition time (T2), reservoir pressure remains almost constant (or
decrease with a very slow trend) which can be referred to a steady state period (We refer to this
time period as T3).

These three time cycles are shown in Figure 215. The objective of this study was to develop RT-
ILDS for time cycle T3 when there had been no injection in the field and reservoir pressure
reached to steady state trend. During this time period, since CO; injection is stopped, there is no
fluid flow in the well and well head pressure would not change (it is possible to have well head
pressure during the injection-T1). Therefore it is not possible to use well head pressure at the
injection well for leakage detection in this study.
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Figure 215. Different time cycles during and after CO: injection
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The wells can be equipped with a pressure gauge that measures casing pressure (Figure 216).
When there is only steady state production from tubing and no leakage occurs, the gauge
measuring the casing pressure will show zero. Sometimes due to heating of the casing and
completion fluids, the gauge measuring the casing pressure may not read zero.

By closing a needle valve, casing pressure should get back to zero. Otherwise, the casing
represents Sustained Casing Pressure (SCP) which is an indicator for leakage; analysis of SCP
can lead to determination of leakage pathway characterization on the same well (no other wells
in that area). This is outside of the scope for this Study.
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Figure 216. Sustained Casing Pressure
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RT-ILDS FOR VARIABLE CO, LEAKAGE RATES

In previous sections, it was demonstrated that RT-ILDS is capable of incorporating pressure
signals that were generated by CO; leakage rates with step function behavior (Figure 217). CO;
leakages were initiated with a specific rate that remained constant as the time passed. In order
to investigate the effect of variable CO. leakage on the performance of RT-ILDS, a set of
simulation runs was designed to assimilate different CO- leakage rate behaviors such as linear,

exponential and logarithmic.

The corresponding pressure signals for each variable rate function were included in leakage
detection system development. Exponential and logarithmic CO, leakage rate functions are
shown in Figure 218. Additionally, 20 different linearly changing CO; leakage rates were assigned
to each possible leakage locations (well D-9-6, D-9-7, and D-9-8) in the reservoir simulation model
(60 total simulation runs). Linear CO. leakage rates are shown in the Figure 219. The
corresponding pressure signals for each CO; leakage scenario were collected, processed and
sorted to form a data set which is appropriate for pattern recognition technology.
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Figure 217. Step function CO; leakage rate
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Nonlinear CO2 Leakage Rate
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Figure 218. Logarithmic and exponential CO; leakage rates
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Figure 219. Linear CO; leakage rates
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For CO; leakage location detection (with different leakage rate functions) all the pressure signals
(coming from 60 simulation runs) as function of time and their calculated time-based descriptive
statistics were lumped together to form input data set. Therefore, input data set included 10,950
data records that were partitioned into training, calibration and verification sets (80%, 10% and
10%, respectively). The outputs for this network were three leakage locations (wells D-9-6, D-9-
7, and D-9-8).

Back-propagation neural network with 50 neurons in hidden layers was selected for training
process. Neural network results (virtual versus actual) for CO, leakage location are shown in
Figure 220. Neural network was able to find the pattern between leakage location and pressure
signals with high precision (R? = 0.998)

All Data

WVirtual Actual

1.2715M S —

1.2710M

1.2705M

Location

1.2700M

1.2695M

R Square : (g,9985
Cor.Coeff: 0.99347

1.2690M * .

I'I:i

0 1000 2000 3000 4000 5000 G000  70OO 8000 9000 10000 11000

Figure 220. Neural network results for leakage location

Three neural networks were trained for each well individually to detect the leakage rate. The input
data was the same as what was used for the leakage location training. However the output is CO;
leakage rate at each specific time. It is different from that case the leakage rate remained constant
as function on time.
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The neural network architecture was almost the same as previous ones except the number of
neurons in hidden layers. The results for CO; leakage rate (well D-9-8) are shown in Figure 221
(results for other wells are included in Appendix 4). Neural networks were able to determine a
pattern between 32 different CO; leakage rate functions (as function of time) and corresponding
pressure signals quite accurately (R? = 0.999).
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Figure 221. Neural network results for leakage rates at well D-9-8

In order to further validate the performance of the RT-ILDS, a complex CO; leakage rate as
function of time was considered for the blind test of the system. This rate function represented
logarithmic behavior at the beginning followed by a linear trend. The end part of the rate function
showed exponential characteristic.

The rate function for the blind run is shown in Figure 222. This rate function was assigned to
each of the leakage locations (D-9-6, D-9-7, and D-9-8) as the rate constraints and corresponding
pressure signal from observation well (D-9-8) was collected. The pressure signals were
processed to determine real time AP and calculated descriptive statistics values to be applied to
the RT-ILDS and find the CO; leakage location and the rate. RT-ILDS predictions for leakage
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location and rate (at well D-9-8) are shown in Figure 223 and Figure 224. (Details of all the results
of this portion of the study are included in Appendix 8).
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Figure 222. Rate function for the blind test of the ILDS.
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Figure 223. R-ILDS prediction for leakage location (variable rate)
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R-ILDS Rate Prediction- Well D-9-8
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Figure 224. R-ILDS prediction for leakage rate in well D-9-8 (variable rate)

RT-ILDS predictions for the CO; leakage locations were reasonably accurate. RT-ILDS was able
to predict the location of each well correctly. For the CO; leakage rate in well D-9-8, RT-ILDS
prediction represented the actual rate especially at the early times.

RT-ILDS predicted just one value for rate at each time. In order to have range of rates rather than
a single value, “Monte Carlo” simulation was used. Monte Carlo method is a computerized
mathematical technique designed for explanation of risk in quantitative analysis and decision
making.

Following steps are included in Monte Carlo simulation process:
1. ldentification a range for possible inputs.
2. Generate random inputs from a probability distribution over the range.
3. Perform a large number of simulations with determined inputs
4. Collect, combine and analyses the results

The domain of the input parameters was defined by having Key Performance Indicator (KPI)
analysis for leakage rate in Well D-9-8 (Figure 225).
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Figure 225. KPI for CO, leakage rate in well D-9-8

As it is shown in Figure 225, cumulative summation (AP), average (AP), standard deviation (AP)
and skewness indicated the most impact on CO; leakage rate in well D-9-8. Based on the “t20%”
rectangular probability distribution, 1000 random variables for each mentioned parameter were
generated. Then, the trained neural network computed CO; leakage rate 1000 times based on
combinations of the generated input variables.

Calculated leakage rates were sorted according to their relative frequency and cumulative
probability. As an example at time 162 hr after leakage, the actual rate was 83 Mcf/day while RT-
ILDS prediction showed 67.4 Mcf/day. Monte Carlo results provided a leakage rate range (Figure
226) that includes the actual rate.
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Figure 226. Relative frequency & cum. probability for the leakage rate at time 162 hr
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USE OF PRESSURE DOWN-HOLE GAUGE (PDG) IN INJECTION WELL

Two Pressure Down-hole Gauges were installed in the well D-9-8 to measure and transfer real-
time pressure data (Figure 227) to the surface. So fare, all the studies were performed based on
the presence of PDG at observation well. At this section, it is assumed that a pressure down-hole
gauge is installed in the Injection well (D-9-7) rather than observation well. This may reduce the
need for drilling an observation well in the system.

All the reservoir simulations runs that addressed 30 different CO, leakage scenarios were
repeated in order to generate high frequency pressure data at the injection well. The same
procedure was used to apply this new sets of data (high frequency pressure data collected at the
injection well) as the new engine of the RT-ILDS. The results for the RT-ILDS with new processing
engine based on the presence of the PDG at the injection well are included in details in Appendix

.

D-9-7#2-Inject'io~n

Figure 227. Location of the injection and observation well in the area of interest

According to the training results, RT-ILDS was able to predict the CO; leakage rates with good
precision (CO- leakage rate R? were more than 0.99 for all three wells, D-9-6, D-9-7, and D-9-8).
For the CO; leakage location, the RT-ILDS results were not representing the actual locations (CO-
leakage location R? was 0.49). The reason for not having good results is that injection well is
located approximately in the middle of wells D-9-6 and D-9-8 as shown in Figure 227 (Almost
equal distance from both wells).

This symmetric characteristics of well locations, led to having the same pressure signals, when
well D-9-6 or D-9-8 leaked (Figure 228). Since the injection well is located in the middle of CO
plume (based on reservoir characterization), it receives the same pressure signals from different
leakages that are at the same distance to the well. Therefore it is not possible to detect the exact
location correctly. PDG should be installed in location that represents distinct pressure signals
from different leakage location. Otherwise the presence of second monitoring well is necessary
to be able to detect CO; leakage location correctly.
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Figure 228. Pressure signals subject to leakages at well D-9-6 and D-9-8

LEAKAGE FROM THE CAP-ROCK

Initially, the reservoir was assumed to have a continuously sealed cap-rock that prevented any
communication between the reservoir and formations above it. After the injection period, pressure
on one side of the seal (in the target zone) would increase leading to a pressure difference across
the cap-rock. When the pressure difference across the cap rock exceeds the fracture pressure,
the seal layer breaches and provides a path for CO; to migrate to the other layers.

In order to model cap-rock leakage in the reservoir simulator, the pressure in the Dantzler sand
located on top of the seal (

Table 5) was estimated by having the pressure gradient in the formation and its average depth.
This pressure was assigned as the constraint for the cap rock leakage in the model. The pressure
difference between two layers is the main driving force for CO; flow through the leakage path.

As an example, the reservoir pressure (in the observation well) and CO, leakage rate behavior
for the case that cap rock leakage occurs (at 01/01/2022) in the North of the injection well (Figure
229) is shown in Figure 230. When the cap-rock fracture is initiated, large amount of CO; is
released and leaked to the upper layer in very short period of time (less than a day). This high
flow rate of CO; leakage causes sharp decline in the reservoir pressure.
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As the reservoir pressure decreases, the driving force (pressure difference between reservoir and
top sand layer) declines and less CO; leakage rate is observed. Typically ,the pressure signal
that is created due to cap rock leakage represents higher amplitudes compare with the well
leakages signals (that were studied in previous sections). Therefore a different RT-ILDS
implementation was used to detect and quantify the characteristics of cap rock leakage.
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Figure 229. Cap-rock leakage location
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Figure 230. Pressure behavior in the observation well and CO- rate due to cap rock leakage

In order to develop the new implementation of the RT-ILDS for detecting the cap-rock leakage, 9
different simulation runs were designed based on the location of the leakage (Figure 231). The
only constrain for cap-rock leakage was pressure in the upper layer (Dantzler sand) which was
assigned as the bottom-hole pressure for a synthetic well that was drilled in the leakage location.

As mentioned earlier, there is a sharp increase in the CO; leakage rate. To eliminate this peak in
the CO; leakage rate behavior, cumulative amount of leaked CO, was used instead of rate. The
training process is exactly the same as what was explained before. For each leakage scenario,
the corresponding pressure signals were processed in real time by descriptive statistics to be
used as the input for neural network.

The outputs for the neural network were the leakage location (x and y) and the cumulative leaked
CO¢.. Details results for the neural network training are shown in Appendix 10. The neural network
results for cumulative leaked gas and x coordinate of leakage location were precise with R? equal
to 0.97, and 0.99, respectively. For leakage location “y” coordinate the neural network predictions
were not as accurate as the other ones (cumulative leaked gas and x coordinate). This might be

due to the symmetric locations of cap-rock leakages respect of observation well in “y” direction.
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Figure 231. 9 different locations for cap-rock leakages and 3 blind runs

The final part for the verification of cap-rock R-ILDS was to design a set of blind runs that were
not used during the neural network training process. Three cap-rock leakage locations were
considered in the reservoir simulation model (Figure 231). Two cap-rock leakage locations (out
of three) were inside the range of the locations used for neural network training. The results for
blind run verification are shown in Appendix 10.

It can be observed that for cumulative leaked rate, RT-ILDS results are almost the same as actual
values for the first two blind run cases (were located in the range of locations). For the third blind
run which was located outside the range, RT-ILDS results overestimated the actual value
considerably. X-coordinate results were almost the same as actual locations except blind runs 2.
For the Y coordinate results there were noticeable difference between actual values and RT-ILDS
prediction. Overall, location of cap-rock leakage can be predicted as accurate as well-leakage
due to symmetry of the location and impulsive and uncertain behavior of the leakage.
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MULTI-WELL LEAKAGE

In the previous sections, a single well leakage was studied and analyzed. Since it possible that
leakages take place from multiple locations, simultaneously, this section covers the capabilities
of the RT-ILDS in detecting multiple leakages. To investigate multi-well leakage, combination of
rates for two and three well leakages were assigned to the wells in the reservoir model according

to Table 37.

Table 37. CO. leakage rates for multi-well leakage

Two Well Three Well
Leakage Rate(Mcf/day) | Leakage rate(Mcf/day)
D-9-6 | D-9-7 | D-9-8 | D-9-6 | D-9-7 | D-9-8

15 15 0 15 15 15
15 60 0 15 15 60
15 105 0 15 15 105
60 15 0 15 60 15
60 60 0 15 60 60
60 105 0 15 60 105
105 15 0 15 105 15
105 60 0 15 105 60
105 105 0 15 105 105
15 0 15 60 15 15
15 0 60 60 15 60
15 0 105 60 15 105
60 0 15 60 60 15
60 0 60 60 60 60
60 0 105 60 60 105
105 0 15 60 105 15
105 0 60 60 105 60
105 0 105 60 105 105
0 15 15 105 15 15
0 15 60 105 15 60
0 15 105 105 15 105
0 60 15 105 60 15
0 60 60 105 60 60
0 60 105 105 60 105
0 105 15 105 105 15
0 105 60 105 105 60
0 105 105 105 105 105

After performing simulation runs (start of leakage was at 1/1/2022) based multi-well leakage
scenarios and processing all the corresponding pressure signals, it was required to train a neural
network to differentiate between various combinations of well leakages. In this regard, a “Leakage
Index” was defined based on the distance of each well from the observation well. Longer distances
from the observation well resulted in selecting lower values for leakage index. The index values
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ranged from 1 to 7 (higher values represent higher pressure signal amplitudes) according to
distance to observation well and number of the leaking wells. All the scenarios can be divided into
three classes as: single well leakages (indices: 1, 2, and 3), two well leakages (indices: 4, 5, and
6) and three well leakage (index: 7). The leakage index values are shown in Table 38

Table 38. Leakage Index for different single and multi-well leakage scenarios

Leaking Well Leakage Index
D-9-6 1
D-9-7
D-9-8
D-9-6 & D-9-7
D-9-6 & D-9-8
D-9-7 & D-9-8
D-9-6 & D-9-7 & D-9-8

N[OOI A~|WIN

Several neural networks were trained considering different leakage indices as the output and
processed pressure signals (AP) as the input. Detail results for this section are shown in Appendix
11. As it can be seen, it was not possible to get reasonable results for the neural networks. The
main reason for not getting acceptable neural network training is that convolution of several
pressure signals (generated by different combinations of well leakages) makes it very difficult for
the networks to catch specific patterns out of final pressure signals.
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Figure 232. Neural network results for two-well leakage
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In order to de-convolve mixed pressure signals (generated by multi-well leakages), existence of

an additional pressure down-hole gauge was considered in the injection well (in addition to the
observation well). The problem also was simplified in a way where only two well leakages were
subject to investigation (leakage index values of 4, 5, and 6). Addition of one more pressure down-
hole gauge brought in more information about pressure signals and the time that signals were
observed by the gauges. For this case, a neural network was trained by Generalized Regression
Neural Network GRNN, algorithm. The results for neural network training are shown in Figure
232.

By use of this new approach (adding more pressure gauge in the injection well), the results for
neural network training improved significantly (R? equal to 0.9935). As a result, it became possible
to differentiate which two wells were leaking by having pressure signals coming from two pressure
down-hole gauges. The final step was to verity the practicality of the RT-ILDS which was devolved
for multi well leakage. To do so, six simulation runs considering combinations of two-well leakages
(Table 39) were performed.

Table 39. CO; leakage rates for the blind runs-two well leakages

Two Well
Run Leakage Rate(Mcf/day)
D-9-6 D-9-7 D-9-8

1 40 80 0
2 80 40 0
3 40 0 80
4 80 0 40
5 0 40 80
6 0 80 40

The results for blind run verifications are shown in Figure 233. RT-ILDS was able to predict the
leakage index correctly except for few hours at the early times after the leakages. Although the
probability of two wells leak simultaneously is low, but with use of two pressure gauges installed
in two distinct wells, it was possible to say which wells leak at the same time.
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ANALYSIS TO DEMONSTRATE THE PROJECT TECHNOLOGY’S ABILITY TO SUPPORT
DOE’s GoAL OF LESS THAN 1% CO2 LEAKAGE OVER 100 YEARS

The objective of CO, sequestration in the Citronelle dome was to inject 9.4 MMcf/day (500
tons/day) of CO: into the saline aquifer at Paluxy formation for duration of three years. Therefore,
the total injected value will be 10,293 MMcf or 547.5 Mton.

One percent of total injected value is 102.93 MMcf (5.47 ton). If 102.93 MMcf of CO, leak from
the reservoir over 100 years, the corresponding daily leakage rate from one will be 2.85 Mcf/day
or 0.15 ton/day. Three different reservoir simulation runs were performed by assigning 2.85
Mcf/day of CO; leakage rate to the three wells that were located in the CO; plume area. For each
leakage location, the pressure change in the observation well was recorded. As it is shown in
Figure 234 it takes 281 hours to detect the leakage from wells D-9-6, it takes 79 hours to detect
the leakage from wells D-9-7, and it takes 12 hours to detect the leakage from wells D-9-8.
Therefore RT-ILDS technology is able to detect leakages correspond to 1% on total injected value
over 100 years within a reasonable time.

After the leakage is detected, remediation activities must be implemented to rectify the situation.
Remediation activities are outside of the scope of this project.
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Figure 234. Pressure change in the observation well when leakage rate is 2850 ft®/day or 1% of
the total injected volume.
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CONCLUSIONS

An Intelligent Leakage Detection System (ILDS) was developed. This modeling technology was
implemented using Citronelle field, a saline aquifer reservoir, located in the U.S. The process
included development and history matching a reservoir simulation model for CO, sequestration
in the Citronelle field. The modeling and history matching included installed PDGs at the injection
well and an observation well. High frequency pressure data from PDGs were generated using the
history matched numerical model using different CO, leakage scenarios. ILDS incorporates
machine learning technology for deconvolution of pressure signals.

It was demonstrated that the ILDS is able to detect leakage characteristics in less than a day from
its occurrence. The performance of ILDS was examined under different conditions such as
multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of
pressure drift and noise in the pressure sensor and uncertainty in the reservoir model.

Itis concluded that if there are impermeable (shale) layers between the sand (or carbonate) layers
that are host of the CO2 injection, then, in order to have a system that can pick up leakage at any
layer in the reservoir, all layers must have PDGs.
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APPENDICES




APPENDIX1

CITRONELLE FIELD

The approximate surface area of the Citronelle oilfield is 16,380 acres which is located in Mobile
County. The oilfield surrounds the city of Citronelle and covers portions of Township 2 North,
Ranges 2 West and 3 West; and Township 1 North, Ranges 2 West and 3 West. This giant oil
reservoir has 524 wells which 414 of the m are active now. The production rate of 50000 bbl/month
has been reported.

The CO, captured from Alabama Power’s Plant Barry, is transferred with a short pipeline to
Citronelle field to be injected and stored into the brine saturated Paluxy formation at the depth of
9400-10500 ft. The location of the proposed injection well and observation well is shown in in
Figure 235. Information about these two well can be found in Table 40.

The proposed storage area, southeast unit, is located more than 8000 ft. below the underground
source of drinking water. It occupies about 1520 acres.

There are multiple thick layers with low permeability (shale intervals) in the formation of the
proposed injection area that act as a barrier and help to stop the upward movement of buoyant
fluid and brine.

The start of CO; injection will be 2011 and injection will be continued for up to three years. The
total injection is up to 547,500 tons of CO; during these three years. The maximum bottom hole
pressure constraint of 6300 psi is based on considering the pressure gradient of 0.6 psi/ft at 10500
ft.

Different porous and permeable sandstones layers in the Paluxy formation improve the CO-
injectivity. Net sandstone layers thickness (11 sandstone flow units) is about 287 ft which is about
%60 of the net sandstone thickness. The average porosity for the Paluxy sands is %19 and a
thickness-weighted average permeability of 88 md was reported. So the high transmissibility of
the Paluxy formation causes a little pressure gain during the injection. The maximum pressure
difference for the injection well grid block is 520 psi at the top sand layer.

As the structure dip is so low (about 1.25 degree) at the proposed storage area, there is just a
little post-injection up-dip migration.

The maximum plume extend based on the primary simulation results is 1200 ft. This value is
defined as an “Area of Review”. Two wells, the abandoned well D-9-7 and also an active injection
well D-9-8 exist in this area. The migration of CO, toward the drinking water source is very unlikely
as these two wells are constructed properly. Outside the area of review, in 0.8 mile there is shallow
water well at the depth of 529 ft. No faulted or fractured zone within the Citronelle dome structure
was found. So all in all, this proposed area is safe to consider as a suitable site for storage.
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Table 40. Basic Wells Information

Proposed Injection Well no. 1

survey,
Abstract Section 9, Township 1 North, Range 2 West

latitude 31.06486° N (NAD27)
well location longitude 88.18201° W (NAD27)
spud date Dec., 2010
completion date Jan., 2011

total well depth

11800 ft below GL

elevation

Ground Level

161.36 ft

Rig Floor

172 ft

injection zone

Paluxy Formation

9415-10520 ft

Injection
Interval

Upper Paluxy Sandstone

9415-9810 ft

Basal Paluxy Sandstone

10455-10520 ft

Proposed Observation Well no. 1

survey,
Abstract Section 9 Township 1 North, Range 2 West

latitude 31.06163° N (NAD27)
well location longitude 88.17822° W (NAD27)
spud date Jan., 2011
completion date Jan., 2012

total well depth

11800 ft below GL

elevation

Ground Level

147.83 ft

Rig Floor

158 ft

injection zone

Paluxy Formation

9400-10530 ft
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Figure 235 - survey plot showing the location of the proposed injection well, and the proposed
observation




APPENDIX 2

THE DE-NOISING PROCESS

DE-NOISING OF PERMANENT DOWN HOLE GAUGE DATA USING WAVELETS

Permanent downhole gauges have been installed in more than 1000 wells worldwide. The
continuous pressure measurement allows the operator to make adjustments to the well to
optimize recovery. Past experience indicates that permanent down hole gauges are cost-effective
even for the single use of well monitoring to assist operational management (Athichanagorn®).
Additional value could be derived by analyzing the pressure data for reservoir information or using
it during history matching.

An operator will attempt to maximize the value from the investment in a permanent downhole
gauge acquisition system. However, in practice lots of permanent downhole gauge data have
been archived or even discarded because of the lack of tools to process the data. This is because
permanent downhole long term measurements are prone to different kinds of errors than data
from a short well test. In the traditional well test, the pressure response of the reservoir is
measured carefully under a strictly controlled environment. In the case of long term reservoir
monitoring using permanent pressure gauges, the well and the reservoir and its fluid composition
may undergo dynamic changes. The well may be stimulated or worked over causing the gauge
to record invalid measurements.

The pressure data may also be stored at low precision or the system may malfunction creating
superfluous outliers and noise. Flow rate data are often not available in the permanent downhole
gauge acquisition system. Athichanagorn®developed an interpretation methodology for long-term
pressure data records from permanent downhole gauges. This methodology is useful when flow
rates data are not available or not complete. If flow rates prior to a transient are available, a
transient can be analyzed using conventional well testing methods but the data may still be
preprocessed using the data processing tools developed by Athichanagorn (Athichanagorn 2002)
implemented algorithms to remove outliers and noise from a data set using wavelet transform
signal processing. Since the amount of data collected by the permanent downhole gauges is very
large, an algorithm to reduce the number of data to a manageable size by eliminating redundant
information was also implemented. In order to interpret the permanent long-term data, a complete
history of flow rates and the time of flow rate changes are needed, and these records are often
unavailable. So Athichanagorn (Athichanagorn 2004) developed algorithms to detect the times
at which flow rate changes occur (the break points) and to reconstruct unknown or uncertain flow
rates from the pressure data.

Guan et al (Guan 2004) described wavelets as mathematical functions which are used to separate
a given function into different components. These components however retain the basic
information about the original signal thus allowing the original signal to be reconstructed. There
are in existence different types of wavelets, which lend themselves to different applications, there
is the Haar wavelet, which is the first wavelet proposed and there is the Daubechies wavelet,
which has been the most widely used wavelets in signal processing(de-noising and compression),
image compression to name a few processes. Guan et a |. also report the use of thresholding
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methods to filter the data from PDG’s, a soft thresholding method for the discontinuous regions
of the data, and a hard thresholding method for the continuous regions of the chart.

Unlike Fourier transforms which are limited to signals that do not change over time, Wavelet
transforms are well suited for transient data such as those we receive from PDG’s.

With respect to data compression, Bernasconi et al. (Bernasconi 1999) reported that by using a
Wavelet transform algorithm, data compression ratios of 15:1 were achieved without any data
degradation upon decompression. Higher compression ratios of up to 50:1 have been reported
without significant deterioration of the original data upon decompression

Althichanagorn et al. proposed a 7 step process for data processing data from PDG’s. The first
steps involves using the wavelet transform to remove outliers from the collected data and then to
de-noise the data. We can obviously determine outliers by merely observing the data trend and
observing those points that do not follow the general trend of the data.

Kikani et al. (Kikani 1998)report that data is reduced at each level by a factor of 2. Thus by using
a DB wavelet to decompose to a level of 10, a stream of data with 12000 points can be reduced
to 6 points. Obviously this is an extreme case and we will probably stop at level 7 with 47 points
so that the general trend of the data. But this highlights the power of the Wavelet transform in the
compression of data.

Dr. Stark (Stark 2005) describes wavelets transforms and how to compute them using the Matlab
software. He presented several exercises showing the merits of the wavelet transforms over the
Fourier transform. In one such exercise, the two methods are used to represent an “attack” signal
and the Fourier transform misses several peaks of the original signal while the wavelet captures
all the significant portions of the original signal. Thus a lot of people in literature have described
compression using Fourier transform as “lossy” data compression as part of the original signal is
typically lost during the transformation.

Two methods of wavelet analysis are presented in Dr. Stark’s book; Dicrete Wavelet analysis and
Continuous Wavelet analysis. The names imply that the continuous wavelet analysis deals with
transforms of continuous time signals, and vice versa with the discrete wavelet analysis.

Dr. Stark discusses transforming signals into wavelets and the subsequent reconstruction of the
original signal. This is of interest to our research as after de-noising our signal we would like to
reconstruct the original signal we started with before we proceed to compression of the data.

The Wavelet Toolbox in MATLAB allows one to perform a number of analyses on either 1
dimensional or 2 dimensional data. For our Research we only deal with 1 dimensional data. Figure
236 shows a flow chart of how one would expect to de-noise the data using the transform.
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Figure 236. Wavelet Transform and Inverse Wavelet Transform Flow Chart

There are sample signals saved in the toolbox to serve as demos and we have focused on the
signal for electrical consumption with time. Figure 237 below shows the original demo signal.
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Figure 237. Original Noisy Signal for Electrical Consumption

There are a number of operations which can be performed on the original signal such as de-
noising, compression and decomposition. The software also presents the user with a number of
wavelets to use for the analysis, such the Haar wavelet, the DB wavelet, the orthogonal wavelet.

For this analysis the DB wavelet has been used. The reason for choosing this wavelet was simply
to follow the examples in the book. The first analysis was in de-noising the signal provided. After
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selecting the de-noise button, there is a default thresholding of the signal performed by the
software. The user can go in and manually reduce the threshold and clean up the signal more or
simply use the default settings of the software. Following de-noising, the signal is saved. Figure
238 is a comparison of the original signal to the de-noised signal.
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Figure 238. De-noised Signal Using Wavelets

Looking at the comparison of the two signals above, a reduction in the noise can be noted when
comparing the original signal to the de-noised signal

The objective of this part of work is to illustrate the feasibility of using wavelets in de-noising data
obtained from permanent downhole gauges. Once de-noised, the data will then be summarized
and ready for further analysis.

METHODOLOGY OF DE-NOISING USING WAVELET

To accomplish the stated objectives, the following steps are taken.

1. Read the data pressure data into Matlab
2. Perform Wavelet De-noising using Matlab
3. Write and summarize the data into Microsoft excel

Reading Pressure Data into Matlab

To generate the data used for de-noising, a reservoir model was generated using a reservoir
simulator (CMG IMEX). The data was imported into excel and noise was simulated and added to
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it. A function was generated to add noise to the data from the simulator to simulate a real injection
case.

Noise = 2.5*Randbetween (-20,20)

Figure 239 shows the comparison between the original data and noisy data.
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Figure 239. Comparison of Noisy and Simulated Data
A code was generated to read the data into Matlab. The code is shown below.

C = xlsread(‘'filename.xls")

Figure 240 shows a screen shot of data being read into Matlab.
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Figure 240. Screenshot of data reading

PERFORM WAVELET DE-NOISING USING MATLAB

The code to de-noise the data is shown below and makes use of wavelet transforms of the sym
family. We use this wavelet due to the fact that it is able to provide useful surface texture features.
The code used to de-noise is shown below

sig = C;

[sden,cfs] = cmddenoise(sig, 'sym4',5,'s");
subplot(2,1,1); plot(sig,'r'); axis tight

hold on; plot(sden,'k');

title('Original and denoised superimposed signals')

subplot(2,1,2); plot(sden,'k'"'),; axis tight
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title('Denoised signal')

A screen shot of the program upon executing is shown below in Figure 241.
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Figure 241. Application of code to noisy data

To Write data into Excel

To write data into excel, the following code was used

xlswrite ('Denoiseddata.xls', sden')

A snapshot of this is shown in Figure 242.
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Figure 242. Screen shot of de-noised data in excel

The results of application of the wavelets can be seen in Figure 243 where the data obtained after
De-noising is compared to the noisy data and the original data from the reservoir simulator.
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Figure 243. De-noising data comparison

239




It was observed that different decomposition levels of the wavelets could be used, but the higher
the level of decomposition, the better the noise removal. The smaller the level of decomposition
the more artifacts of the noisy signal remain.

The maximum error between the de-noised data obtained and the original data was 0.27%. This
shows a good applicability of wavelets to noise reduction.

HIGH FREQUENCY DATA GENERATION

Reservoir Modeling

The main objectives of this work were generating high frequency data from flow model, simulating
noise by distorting the data and finally pre- processing and summarizing high frequency distorted
data for the next step (Pattern Recognition).

For this study the grid geometry of WVU reservoir simulation model was changed to provide high
resolutions data for pattern recognition analysis. This model consists of 150 by 150 grids in | and
J direction (Figure 244) with the size of 133*133 ft. Totally 51 layers in the vertical direction was
considered for modeling this reservoir.
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Figure 244. Totally fine grid model with heterogeneous permeability

Also in this model a correlation between porosity and permeability was considered to introduce
heterogeneity to the reservoir. Based on available core and log data from the same layer (Paluxy)
of the Citronelle surrounding Fields, a core plot of permeability versus porosity was generated.
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Because the data was so scattered, it was not possible to find an appropriate and unique pattern
that relates permeability to the porosity. Therefore the data was divided to 5 different categories
based on the magnitude of permeability and R? (Figure 245). These 5 categories represent very
poor, poor, average, good and excellent rock conductivity respect to CO- plume extension in the
reservoir.

Different Rock Types- Including D-9-8 Cores

10000 e

y=9.956402 7f . -
R*=0.6575 = nm
. I
" !,./Q 0824502818 ————— » Goo
1000 L] o <y R-0.841 P
o = _— 1 2% ol < .
.= He - o y = 0.64602 871
E e S R -09057 - (Average
£ - .l » s * B Q
¥ %2
E 100 e N 2 o N
o T ok -
s -~ YW-¢ y=0.2533e2 %>
g R® = 0.8652 3
e ‘ > Poor
10 ke
S Ll T T = 0.900468 M3 P Y
N R'=0.3473 - y.
- y
(Very Poor )
\
1 b /
0.05 0.1 0.15 0.2 0.25 03 0.35 -

Porosity

Figure 245. 5 different permeability realizations based on the rock conductivity

In the case that “Excellent” permeability was assigned to the reservoir (Figure 244) maximum CO-
plume extension (about 4000 ft.) was observed in the top layer (Figure 246). The second largest
CO; plume was observed in the 19" vertical layer.
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Gas Saturation 2035-01-01 K layer: 1
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Figure 246. CO Plume extension in different layers of the reservoir

The maximum extension of the plume can be seen in the first layer of the reservoir. This layer
(Figure 247 and Figure 247) ,which includes CO; injection well (D-9-7), observation well (D-9-8)
and 3 existing wells (D-9-2, D-9-6, D-9-10,) - was considered for the simulation of the CO, leakage
through the well (permeability and injection were increased to enlarge plume extension in South
—North direction and consequently CO; reaches to well D-9-2 and D-9-10 for high frequency data
generation based on different leakage scenarios).The extension of the plume is different from the
previous study because here the heterogeneity affects the shape and extension of the CO;

plume(in previous model the permeability for all the grids in the reservoir were set to 400 md).
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Figure 247.CO; Plume extension in first layer of the reservoir and location of the wells
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HFD Generation

Totally 12 different leakage scenarios were studied based on the leakage rate and combinations
of the wells that experience the leakage. For each scenario, the pressure behavior in the
observation well (D-9-8) was recorded from the simulation results to generate high frequency data
with noise and outlier

The next step was to generate high frequency data for pressure in the observation well (D-9-8)
during the injection and equilibrium period (post injection). In order to do so, reservoir simulation
run was performed based on “1-day” time step. The daily pressure results were converted to
hourly results by using linear interpolation. Therefore high frequency (hourly based) pressure
records were generated for well D-9-8 during 3 years of injection and 20 years after the end of
injection (Totally 201623 data points were recorded for pressure).

Adding Noise and Outliers

There are in general, two types of measurement errors when managing long-term data, Noise is
a group of data points that scatter around the trend of the overall data but lie in the same
neighborhood as the true data and Outliers, that are data points that lie away from the trend of
data. Because the data outlier is isolated, it causes a discontinuity in the data stream. Both of
them can be identified from their misalignment with the rest of the data.

The raw data in the hourly base are coming from the numerical simulator which here is CMG.
The data include 23 years of pressure data at the observation well (D-9-8). In the real case these
data are coming from the Permanent Down-hole Pressure Gauges installed at the D-9-8. Since
in the real case these data are including the noise and outliers, these items have been added
artificially. The noise generation process includes adding maximum two percent of the pressure
range to the data. For the outlier points maximum pressure of 30 psi has been considered. The
noise and outliers were distributed in a randomly manner to the different points (Figure 248, Figure
249 and Figure 250). White noise has been used to generate distorted pressure data.
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Figure 248. Pressure data for 2 years (year 2014 to 2016) without any noise

Criginal
T I

4950 [~

Plpsi)

4900 —

4850 [~ —

4800 —

4750 —

2000 4000 6000 . 8000 10000 12000 14000 16000
Timefhr)

Figure 249. Pressure data for 2 years (year 2014 to 2016) after adding the noise and outlier
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Figure 250. Histogram Pressure data for 2 years (year 2014 to 2016) after adding the noise and
outlier

DE-NOISING AND DATA SMOOTHING

In order to extract the most representative features from the data and reduce fluctuations, a
procedure called de-noising is commonly applied. Most of the de-noising methods tend to smear
out sharp features in the data. The method being used in this project is denominated the Wavelet
Thresholding Method which generally preserves most of these features.

Wavelets are mathematical functions that divide or separate data into different frequency
components, and then study each component with a resolution matched to its scale, basically
provides a multi-resolution framework for data representation. They have advantages over
traditional Fourier methods in analyzing physical situations where the data contains discontinuities
and sharp features.

The general de-noising procedure consists of 3 different steps. First of all the noisy data should
be divided to N levels, following by decomposition of the data at level N. After that for each level
from 1 to N, a threshold should be considered and then soft thresholding should be applied to the
detail coefficients. Finally the data is reconstructed using the original approximation coefficients
of level N and the modified detail coefficients of levels from 1 to N.

The important step in de-noising data is threshold selection method for each level. Three
threshold selection rules are implemented in this study as: Rigorous SURE, Heuristics SURE and
Fixed form threshold. The results of de-noising the data implementing 3 mentioned thresholding
methods for the case that no leakage occurs in the reservoirs are depicted in Figure 251, Figure
252 and Figure 253.
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Figure 251. Rigorous SURE thresholding method
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Figure 252.Heuristics SURE thresholding method
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Figure 253.Fixed form threshold method

Comparison between the results shows that by using Fixed form Threshold method, noise and
outliers can be removed more effectively. Hence Fixed form Threshold was used for de-noising
pressure results for all different leakage scenarios.

Also several methods have been developed regarding wavelet shrinkage and thresholding. The
main two thresholding methods are the soft-thresholding and hard-thresholding method. The main
difference between them is that the soft-thresholding method consists on analyzing the difference
between the wavelet coefficients and the chosen threshold smoothing the data once the wavelet
transform is applied. In the hard-thresholding method, wavelets coefficients whose absolute
values are less than the threshold are set to zero. Depending on the scale and particular
characteristics of the data either method can be used and the result is a cleaned-up data that will
still show important details. Based on the results, the soft thresholding shows better effectiveness
in removing outliers. This method (soft) is applied for de-noising in this study.
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Figure 254. Soft thresholding (red: noisy data, black: de-noised data)
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Figure 255. Hard thresholding (red: noisy data, black: de-noised)

After first time of de-nosing the data it can be seen that still some outliers were converted to the
small noises. If the de-noising process is repeated for the de-noised data, it is possible to
decrease the magnitude of the remaining noises a little bit. This can be seen in Figure 256 where

the de-noised data reprocessed again.
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Figure 256. Reprocessing the de-noised data (red: noisy data, black: de-noised data)

Finally we performed the de-noising process for 12 different leakage scenarios that occurs in the
first layer of the Citronelle field. Different combination of leaking wells and leakage rates for the
wells D-9-2, D-9-6 and D-9-10 were considered according to

Table 41. The pressure in the observation well converted to high frequency data with added noise
and outliers. At the end the noises and outliers removed by Soft-Fixed Form Threshold method.
The results of de-noising the pressure data in all the scenarios is shown in figure 14 to 26. The
results represent the pressure in the observation well during the post injection period.

Table 41. Different combination of leaking wells

Scenario Well Status Constraints Injection Gas Rate,
ft3/d
D-9-2 D-9-6 D-9-10 D-9-2 D-9-6 D-9-10

1 "OPEN" | "OPEN" | "OPEN" | 2.00E+06 | 2.00E+06 | 2.00E+06
2 "OPEN" | "OPEN" | "OPEN" | 1.00E+06 | 1.00E+06 | 1.00E+06
3 "OPEN" | "OPEN" | "OPEN" | 1.50E+06 | 1.50E+06 | 1.50E+06
4 "CLOSE" | "OPEN" | "OPEN" - 1.00E+06 | 1.00E+06
5 "CLOSE" | "CLOSE" | "OPEN" - - 1.00E+06
6 "CLOSE" | "OPEN" | "CLOSE" - 1.00E+06 -
7 "OPEN" | "CLOSE" | "CLOSE" | 1.00E+06 - -
8 "CLOSE" | "OPEN" | "CLOSE" - 2.00E+06 -
9 "OPEN" | "CLOSE" | "OPEN" | 2.00E+06 - 2.00E+06
10 "OPEN" | "CLOSE" | "CLOSE" | 2.00E+06 - -
11 "CLOSE" | "CLOSE" | "OPEN" - - 2.00E+06
12 "CLOSE" | "OPEN" | "CLOSE" - 1.00E+06 -
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DETERMINATION OF NOISE DISTRIBUTION AND LEVEL

There are two pressure down-hole Gauges (PDG) installed in the observation well (D-9-8#2) in
Citronelle field. These gauges are located at the depth of 9416ft and 944 ft) with the intention of
providing real time pressure and temperature data during and after injection period. The pressure
data is available from 8/17/2012 to 11/29/2012 at every minute. It should be mentioned that there
are some gaps in the pressure records due to onsite computer failure. The pressure trends from
the PDGs are illustrated in Figure 257.
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Figure 257. Monitoring Well (D-9-8#2) PDG data

Up to this point it has been assumed that associated random noise have continuous uniform
distribution (or rectangular distribution), since we did not have access to actual data; which means
that in the interval of the assigned noise (2% of pressure value) the chance of picking any random
value is equally probable. Having access to actual pressure data enables us to analyze the
characteristics of the noise in a practical way.

In order to prepare high frequency data for pattern recognition (and also de-noising process) it is
necessary to evaluate the noise behavior. There are two main features in the noisy pressure data
that requires a more detailed analysis, namely: Noise distribution and Noise level.

The noise level can be determined by knowing the difference between actual data and the fitted
curve of the same data over a predefined time interval (with no fluctuation in the data).

1 n 1/2
Ni=P, — Py Noise Level = —ZN-Z
l actual fitteda — IVOlse Leve (n—l_ y 1)
1=
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6,500 pressure records in the interval of 26th to 29" of September, when the pressure trend has
no sharp transients, were selected. Generalized Regression Neural Network (GRNN) was used
to determine the fitted curve of the selected data. The results of curve fitting are shown in Figure

258.
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Figure 258. GRNN results for fitted pressure curve

According to the abovementioned formula the noise level is 0.08 Psi. The maximum and minimum
value of the Ni is equal to 0.185 and -0.282 respectively. The frequency distribution of the noises
was generated as well. Based on the results it can be concluded that the noises represent Normal
or Gaussian distribution (Figure 259). Therefore the noise with the mentioned characteristics will
be added to the pressure data acquired from different realization built and run using reservoir
simulation. The noisy and de-noised data would be preprocessed to be transformed into a format
that is suitable for pattern recognition analysis.
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Figure 259. Noise distribution for actual PDG data (6500 records, Normal Distribution)

ADDING NOISE TO THE SIMULATION DATA, DE-NOISING AND DATA SUMMARIZING

Three wells (D-9-2, D-9-6 and D-9-10) were considered as the possible locations of the CO;
leakage in the reservoir simulation model. For each of these candidates, twenty CO- leakage
rates- in the range of real leakage rates observed in actual cases- were set as the constraint and
corresponding pressure changes in the observation well were recorded (representing PDG data).
Those pressure data was considered to be clean with no noise or outlier. The noise with the same
characteristic (mentioned earlier) was added to the pressure data. The data was processed
afterward in order to perform data cleansing. Based on the characteristic of the noise in this case,
“‘Daubechies wavelets 10” in five levels were used to decompose the noisy data. After
decomposition to 5 levels, a threshold was assigned to each level to remove the outliers. Then
the processed data from each level were combined to reconstruct the De-noised data. It is worthy
to mention that for each leakage scenario (leakage location and rate) the corresponding pressure
difference readings (Ap=P o leakage) — P(Leakage)) Were summarized over a predefined period of time
by descriptive statistics in order to extract the main and most important features of real time data.
In this case we also summarize noisy and De-noised pressure data over three time periods (1,2
and 3 weeks after leakage - pressure readings are hourly basis) to prepare data for pattern
recognition technology and Neural Network development. An example of pressure data from
simulator, the same data with normal distributed noise and cleansed (De-noised) data when CO;
leakage occursin well D-9-6 leaks with the rate of 30 Mcf/day are shown in Figure 260. The results
of pressure data summarization for both noisy and de-noised records are listed in
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Table 42.
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Figure 260. Presure data from simulator(red),added noise(green) and denoised (black) when
well D-9-6 leaks with the rate of 30Mcf

Table 42 Data Sumerization of noisy and De-noised AP for 3 weeks after the leakage

oisy AP De-noised AP

Weekl Week2 Week3 Week1l Week2 Week3
0.001 0.003 0.005 0.001 0.003 0.005
6.00E-04 | 4.44E-04 | 3.79E-04 | 1.81E-04 | 1.88E-04 | 1.75E-04
0.001 0.003 0.005 0.000 0.004 0.006
-0.022 -0.022 -0.022 -0.003 -0.003 -0.003
0.008 0.008 0.009 0.002 0.003 0.004
6.05E-05 | 6.61E-05 | 7.24E-05 | 5.52E-06 | 1.18E-05 | 1.55E-05
2.936 2.934 2.881 2.083 1.820 1.992
0.070 -0.044 -0.114 0.487 -0.111 -0.480
0.043 0.051 0.053 0.008 0.013 0.014
-0.022 -0.022 -0.022 -0.003 -0.003 -0.003
0.021 0.030 0.031 0.005 0.010 0.011
0.138 1.149 2.670 0.123 1.142 2.663
168 336 504 168 336 504

PERFORMING PATTERN RECOGNITION ANALYSIS

NEURAL NETWORK ARCHITECTURE DESIGN
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The Neural Networks architecture for Noisy and De-noised AP data are designed as explained
previously. In one case all the parameters from Descriptive statistics were selected as the input.
In other Case the Number of inputs was decreased to 6, namely: Kurtosis, Skewnes, Maximum,
Sum, Standard deviation and Mean. Since the number of outputs is three (Leakage location X,
Leakage location Y and Leakage Rate), the number of hidden layers are designed to be ten
(Figure 261).

Input Hidden Layer
Layer Layer

# neuron in Hidden Layer: | 10 Random Seed Mumber: | 1

Figure 261. Neural Network architecture

NEURAL NETWORK TRAINING AND CALIBRATION

The actual input data consists of 60 set of CO: leakage scenarios (20 different leakage rates for
each leaking well). By using intelligent data partitioning 48 cases are assigned for training and 6
cases for calibrating the Neural Networks. The outputs in all the neural networks are CO: leakage
coordinates (X, Y) and rate. The results of the neural network training for the leakage location ()
and leakage rate with de-noised pressure data after 3 weeks of leakage are shown in Figure 262
and Figure 263.
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Figure 262. Neural network training results for the leakage location; de-noised pressure data

after 3 weeks of leakage
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The maximum errors in the training the leakage rate mostly happens in low leakage rates. The
results of the neural network calibration for the Leakage location (Y) and leakage rate when de-
noised pressure data after 3 weeks of leakage are shown in Figure 264 and Figure 265.
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Figure 264. Neural network calibration results for the leakage location Y; de-noised pressure
data after 3 weeks of leakage
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NEURAL NETWORK VALIDATION FOR NOISY DATA

In previous section, it was proved that Intelligent Leakage Detection System (ILDS) performs
precisely when the real time pressure data is clean. There is some noise associated with real time
pressure data. In order to investigate the robustness of the ILDS performance while noisy
pressure data are transmitted from the observation well, the actual noise are added to the clean
pressure data (generated by reservoir simulator for each Leakage scenario). The clean and noisy
pressure records from observation well, when well D-9-6 leaks with rate of 35Mcf/day, are shown
in Figure 266.
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Figure 266. Clean (blue) and Noisy (red) high frequency pressure data from observation well

The first step for processing high frequency noisy pressure records is data cleansing. There are
some accepted de-noising methods that have been widely used in the industry and academia.
Initially we used Wavelet threshold method. In de-noising process generally the noisy data should
be divided to different levels (decomposition). After that for each level, a threshold should be
considered in order to remove the data that lies out of the threshold. Finally the data is
reconstructed using the modified data from each level. An example of distorted pressure data
which goes under de-noising process is depicted in Figure 267.
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Figure 267. Noisy and De-noised pressure data using Wavelet threshold method

The main concern for using Wavelet threshold method for data cleansing is that, the de-noised
data generally follows the trend of noisy data. This is mostly the case when leakage rates are low
and corresponding real time pressure signal changes in the observation well are in a narrow
range. This oscillating pattern of de-noised data changes the parameters that we got by data
summarization of clean data. Especially the parameters like skewness and kurtosis that play
important role in leakage location detection. In order to alleviate the effect of noise and clean the
data in a way that represent behavior of pressure trend, we used GRNN (General Regression
Neural Networks). GRNN is a type of probabilistic neural networks that requires just some small
portion of data records for training. That specification of GRNN is advantageous since it would be
able to capture the underlining trend and functionality of the large amount of data with few
samples. When we are dealing with high frequency noisy pressure data, it would be better to use
GRNN rather than Wavelet threshold method. Because the GRNN uses smaller portion of data,
the presence of the noise cannot generally affect the calculated trend. This would be the case
especially when the frequency of data increases. Therefore GRNN can be considered to be a
very useful tool to de-noise high frequency pressure data. The results for de-noising pressure
records by GRNN are shown in Figure 268. By comparing the resulted trends from Wavelet
threshold de-noising method and GRNN with the original clear data, it can be concluded that
GRNN method performs better.
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Figure 268. Noisy and De-noised pressure data using GRNN

In order to facilitate ILDS with the capability of receiving noisy pressure data, we added noise to
the clean pressure data (generated by reservoir simulator for each leakage scenario). Then the
noisy pressure data was cleansed by GRNN and summarized using descriptive statistics. Finally
neural network was trained based on GRNN de-noised pressure data. The verification results for
leakage location are shown in Figure 269 and Figure 270.
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Figure 269. Verification results for leakage location(X)-noisy data
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Figure 270. Verification results for leakage location(Y)-noisy data

As we can see from the abovementioned figures the R? value for X and Y coordinates for
verification results are 0.5 and 0.94, respectively. Although the prediction ability of the neural
networks verification decreases due to existence of the noise, but still it is able to predict the
location with reasonable accuracy. The results for Leakage rate verification are shown in Figure
271. For verification of leakage rate when the pressure data is noisy, the R? is 0.77 which
represents decent accuracy.
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Figure 271. Verification results for leakage Rate(Y)-noisy data
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Figure 272. De-noising pressure data for leakage scenario#1 (red: noisy data, black: de- noised
data)
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Figure 273. De-noising pressure data for scenario 1 during post injection (red: noisy data, black:
de-noised data)
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Figure 274. De-noising pressure data for scenario 2 during post injection (red: noisy data, black:

de-noised data)
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Figure 275. De-noising pressure data for scenario 3 during post injection (red: noisy data, black:

de-noised data)

262




Original and Denoised

asau
4970
4960

Plpsi) [

4850

4940

4930

4920

49310

Time(hr)

Figure 276. De-noising pressure data for scenario 4 during post injection (red: noisy data, black:
de-noised data)
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Figure 277. De-noising pressure data for scenario 5 during post injection (red: noisy data, black:
de-noised data)
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Figure 278. De-noising pressure data for scenario 6 during post injection (red: noisy data, black:
de-noised data)
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Figure 279. De-noising pressure data for scenario 7 during post injection (red: noisy data, black:
de-noised data)
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Figure 280. De-noising pressure data for scenario 8 during post injection (red: noisy data, black:
de-noised data)
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Figure 281. De-noising pressure data for scenario 9 during post injection (red: noisy data, black:
de-noised data)
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Figure 282. De-noising pressure data for scenario 10 during post injection (red: noisy data,
black: de-noised data)
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Figure 283. De-noising pressure data for scenario 11 during post injection (red: noisy data,
black: de-noised data)
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Figure 284:De-noising pressure data for scenario 12 during post injection (red: noisy data,
black: de-noised data)
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APPENDIX 3

THE HISTORY MATCHING PROCESS
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Figure 285. Comparison between actual PDG data and simulation results —Modified reservoir

boundary (smaller boundary)
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Figure 286. Comparison between actual PDG data and simulation results —Modified vertical

permeability (Ky=.1*kn)
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Figure 287. Comparison between actual PDG data and simulation results —Modified brine

compressibility (Cbr=1e-6)
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* PDG(5109) ® PDG(5108) Simulation(Grid,101,56,1) = Simulation(Grid,101,56,3)
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Figure 288. Comparison between actual PDG data and simulation results —Modified reservoir
boundary (with updated reservoir parameters)

+ PDG(5109) ® PDG(5108) Simulation(Grid,101,56,1) = Simulation(Grid,101,56,3)
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Figure 289. Comparison between actual PDG data and simulation results —Modified reservoir
water relative permeability (with updated reservoir parameters)
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¢ PDG(5109) = PDG(5108) === Simulation(Grid,101,56,1) = Simulation(Grid,101,56,3)
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Figure 290. Comparison between actual PDG data and simulation results —Base Case

¢ PDG(5109) = PDG(5108) === Simulation(Grid,101,56,1) == Simulation(Grid,101,56,3)
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Figure 291. Comparison between actual PDG data and simulation results —Kg high
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& PDG(5109) = PDG(5108) Simulation(Grid,101,56,1)  =——Simulation(Grid,101,56,3)
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Figure 292. Comparison between actual PDG data and simulation results —Kg low

+ PDG(5109) = PDG(5108) Simulation(Grid,101,56,1) == Simulation(Grid,101,56,3)
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Figure 293. Comparison between actual PDG data and simulation results —K./Kx=.9
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* PDG(5109) = PDG(5108) Simulation(Grid,101,56,1) = Simulation(Grid,101,56,3)
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Figure 294. Comparison between actual PDG data and simulation results —K is half of the base
case

¢ PDG(5109) = PDG(5108) Simulation(Grid,101,56,1) = Simulation(Grid,101,56,3)
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Figure 295. Comparison between actual PDG data and simulation results —Kn, high
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Figure 296. Comparison between actual PDG data and simulation results —reservoir with

smaller boundary
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Figure 297. Comparison between actual PDG data and simulation results —reservoir with

smaller boundary
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APPENDIX 4
LEAKAGE RATES
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Figure 298. AP in well D-9-8 well in the case that well D-9-6 leakage rate is 99750ft*/day
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Figure 299. AP in well D-9-8 well in the case that well D-9-6 leakage rate is 120750ft3/day.
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Figure 300. AP in well D-9-8 and Injection well in the case that well D-9-6 leakage rate is
131250ft3/day.
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Figure 301. AP in well D-9-8 well in the case that well D-9-2 leakage rate is 1830ft*/day.
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Figure 302. AP in well D-9-8 well in the case that well D-9-2 leakage rate is 5250ft%/day.
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Figure 303. AP in well D-9-8 well in the case that well D-9-2 leakage rate is 11250ft3/day.
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Figure 304. AP in well D-9-8 and Injection well in the case that well D-9-2 leakage rate is
42000ft3/day
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Figure 305. AP in well D-9-8 and Injection well in the case that well D-9-2 leakage rate is
73500ft%/day.
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Figure 306. AP in well D-9-8 and Injection well in the case that well D-9-2 leakage rate is
99750ft3/day.
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Figure 307. AP in well D-9-8 well in the case that well D-9-10 leakage rate is 1830ft3/day.
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Figure 308. AP in well D-9-8 well in the case that well D-9-10 leakage rate is 5250ft3/day.
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Figure 309. AP in well D-9-8 well in the case that well D-9-10 leakage rate is
11025ft/day.
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APPENDIX 5
NEURAL NETWORK RESULTS

Results for the case that Neural Network training and calibration use hourly pressure data in one
week after CO, leakage are shown below (Homogenous Model).
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Figure 310.Actual Leakage Location(X) - Neural Network training results -1 week after leakage
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Figure 311. Actual Leakage Location(Y) - Neural Network training results -1 week after leakage
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Figure 312. Actual Leakage Rate - Neural Network training results -1 week after leakage
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Figure 313. Errors in Leakage Rate (Neural Network training results) -1 week after leakage
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Results for the case that Neural Network training and calibration use hourly pressure data in 5
weeks after CO, leakage are shown below.
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Figure 314. Actual Leakage Location(X) - Neural Network training results -5 weeks after leakage
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Figure 315. Actual Leakage Location(Y) - Neural Network training results -5 week after leakage
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Figure 316. Actual Leakage Rate - Neural Network training results -5 weeks after leakage
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Figure 317. Errors in Leakage Rate (Neural Network training results) -5 weeks after leakage
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Results for the case that Neural Network training and calibration use hourly pressure data in 8
weeks after CO, leakage are shown below.
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Figure 318. Actual Leakage Location(X) - Neural Network training results -8 weeks after leakage
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Figure 319. Actual Leakage Location(Y) - Neural Network training results -8 weeks after the
leakage
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Figure 320. Actual Leakage Rate - Neural Network training results -8 weeks after leakage
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Figure 321. Errors in Leakage Rate (Neural Network training results) -8 weeks after leakage
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Results for the case that Neural Network training and calibration use hourly pressure data in one
week after CO; leakage are shown below (Heterogeneous Model).
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Figure 322. Leakage location(X) - Neural Network results for all steps (training, calibration and
verification)-clean pressure data

All Data

Wirtual Actual
e b e b B
11.2750M

11.2785M

11.2780M

Leakage Location,

o thdattabstta st bbbty
2TTEM g
1
L
i
i

11.2770M
1

11.2765M

0.00000 0.00001M 0.00D02M 0.00D03M 0.00D04M 0.00005M 0.00D0EM

Figure 323. Leakage location(Y) - Neural Network results for all steps (training, calibration and
verification)-clean pressure data
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Figure 324. Leakage rate - Neural Network results for all steps (training, calibration and
verification)-clean pressure data

Results of Neural Network training, calibration and verification, using Noisy pressure data
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Figure 325. Leakage location(X)- Neural Network results for all steps (training, calibration and
verification)-noisy pressure data
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Figure 326. Leakage location(Y)- Neural Network results for all steps (training, calibration and
verification)-noisy pressure data
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Figure 327. Leakage rate- Neural Network results for all steps (training, calibration and
verification)-noisy pressure data
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APPENDIX 6

Blind
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Figure 328. R-ILDS leakage location prediction, runl: well D-9-6 leaks 23 Mcf/day
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Figure 329. R-ILDS leakage location prediction, run2: well D-9-6 leaks 72 Mcf/day
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Figure 330. R-ILDS leakage location prediction, run3: well D-9-6 leaks 93 Mcf/day
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Figure 331. R-ILDS leakage location prediction, run4: well D-9-7 leaks 32 Mcf/day
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Figure 332. R-ILDS leakage location prediction, run5: well D-9-7 leaks 61 Mcf/day
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Figure 333. R-ILDS leakage location prediction, run6: well D-9-7 leaks 87 Mcf/day
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Figure 334. R-ILDS leakage location prediction, run7: well D-9-8 leaks 27 Mcf/day
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Figure 335. R-ILDS leakage location prediction, run9: well D-9-8 leaks 101 Mcf/day
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Figure 336. R-ILDS leakage location prediction, run9: well D-9-8 leaks 101 Mcf/day
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Figure 337. R-ILDS leakage rate prediction, runl: well D-9-6 leaks 23 Mcf/day
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Figure 338. R-ILDS leakage rate prediction, run2: well D-9-6 leaks 72 Mcf/day
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Figure 339. R-ILDS leakage rate prediction, run3: well D-9-6 leaks 93 Mcf/day
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Figure 340. R-ILDS leakage rate prediction, run4: well D-9-7 leaks 32 Mcf/day
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Figure 341. R-ILDS leakage rate prediction, run5: well D-9-7 leaks 61 Mcf/day
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Figure 342. R-ILDS leakage rate prediction, run6: well D-9-7 leaks 87 Mcf/day
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Figure 343. R-ILDS leakage rate prediction, run7: well D-9-8 leaks 27 Mcf/day
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Run 8
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Figure 344. R-ILDS leakage rate prediction, run8:well D-9-8 leaks 48 Mcf/day
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Figure 345. R-ILDS leakage rate prediction, run9: well D-9-8 leaks 101 Mcf/day
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APPENDIX 7
ILDS SENSITIVITY ANALYSIS

Impact of reservoir parameters on R-ILDS Results (Section 6-3)
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Figure 346. Sensitivity analysis of the reservoir parameters on R-ILDS leakage location
prediction Well D-9-6
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Figure 347. Sensitivity analysis of the reservoir parameters on R-ILDS leakage location
prediction Well D-9-7
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Figure 348. Sensitivity analysis of the reservoir parameters on R-ILDS leakage location
prediction Well D-9-8
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Figure 349. Sensitivity analysis of the reservoir parameters on R-ILDS leakage rate prediction
Well D-9-6
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Figure 350.
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APPENDIX 8

Rate(Cf/day)

Rate(Cf/day)

RT-ILDS RESULTS FOR VARIABLE RATES

R-1LDS Rate Prediction- Well D-9-6

100000
90000
80000
70000
60000 - i 002w ® e
50000 .
40000
30000
20000
10000

0

¢ R-ILDS

m Actual rate

0 10 20 30 40 50 60 70
Time(hour)

Figure 352. R-ILDS prediction for leakage rate in well D-9-6 (variable rate)
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Figure 353. R-ILDS prediction for leakage rate in well D-9-7 (variable rate)
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APPENDIX 9

NEURAL NETWORK BLIND RUNS

Results for RT-ILDS neural network and blind runs-PDG in injection well
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Figure 354. Neural network predictions for the leakage rate for the case that PDG is in Injection
well, D-9-6 results
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Figure 355. Neural network predictions for the leakage rate for the case that PDG is in Injection
well,  D-9-7 results
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Figure 356. Neural network predictions for the leakage rate for the case that PDG is in Injection
well, D-9-8 results
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Figure 357. Neural network predictions for the leakage location for the case that PDG is in
Injection well
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Figure 358. R-ILDS Leakage location prediction for well D-9-6, PDG in Injection well
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Figure 359. R-ILDS Leakage location prediction for well D-9-7, PDG in Injection well
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Leakage location-Blind Runs Well D-9-8
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Figure 360. R-ILDS Leakage location prediction for well D-9-8, PDG in Injection well
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APPENDIX 10

CAP-ROCK LEAKAGE RESULTS
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Figure 361. Neural network results for Cumulative leaked gas -cap-rock leakage
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Figure 362. Neural network results for leakage location(X) -cap-rock leakage
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Figure 363. Neural network results for leakage location(Y) -cap-rock leakage
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Figure 364. R-ILDS prediction for cumulative leaked gas, Blind Run 1(Cap-rock Leakage)
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R-1LDS Cum Gas-Run 2

¢ Cum Gas R-ILDS Run 2 = Actual Cumulative Gas Run 2
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Figure 365. R-ILDS prediction for cumulative leaked gas, Blind Run 2(Cap-rock Leakage)
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Figure 366. R-ILDS prediction for cumulative leaked gas, Blind Run 3 (Cap-rock Leakage)
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Figure 367: R-ILDS prediction for cumulative leaked gas, Blind Run 3 (Cap-rock Leakage)
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Figure 368: R-ILDS prediction for cumulative leaked gas, Blind Run 3 (Cap-rock Leakage)
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APPENDIX 11

MULTI-WELL LEAKAGE RESULTS
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Figure 369. Neural network training results for Leakage Index (one, two and three-well leakage)
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Figure 370. Neural network training results for Leakage Index (one and three-well leakage)
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APPENDIX 12

THE SOFTWARE APPLICATION

INTELLIGENT LEAKAGE DETECTION SYSTEM (ILDS)

The Intelligent Leakage Detection System (ILDS) is a software application that has been
developed as part of this project and is delivered according to the instructions provided by DOE.
ILDS is designed such that it receives the pressure data from the permanent downhole gauges,
processes them and connects the data to a series of trained neural networks for analysis. Upon
receipt and process of the real-time data, the Software System (ILDS) will determine the
possibility of a leak in the system. The ILDS will communicate its finding to the user through the
following three conditions:

1. “Allis well” or “No Leak is Being Detected”. Green Radar Screen

2. “There is the Possibility of a Leak in the System”. Orange Radar Screen (Transitional
Phase)

3. “A Leak has been detected in the System”. Red Radar Screen

ILDS communicates its finding using a “radar” screen. A green moving radar screen on top of the
map of the field, indicates that “All Is well” or “No Leak is Being Detected”. Alternatively, the
system may detect the possibility of a leak. Since the system will not remain in this state for too
long and will eventually converge into one of the other two states, this is called a “Transitional
Phase”. In this “Transitional Phase” the radar screen will change to the orange color indicating
that some unusual pressure activities have been detected in the system. ILDS continues its
survey of the reservoir behavior in order to be able to make some conclusions regarding the
nature of the unusual pressure behavior in the system. One of the two things may happen at this
point:

a. The unusual behavior proves to be nothing (a drift in the gauge or some other nuances)
in which case the radar screen will return to green indicating “No Leak is Being Detected”
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b. The unusual behavior persists and eventually results in detection of a leak in the system.

In this case the orange radar screen will turn red indicating “A Leak has been detected in
the System”.
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Figure 371. Identify the time step for pressure data.

And finally, if and once “A Leak has been Detected in the System”, the radar screen will turn red.

Furthermore, once a leak is detected in the system, ILDS will provide two more pieces of
information:

1. It estimates the location of the leak.
2. It estimates the amount of the leak.

313




For cap-rock leakage detection, cumulative leaked gas and coordinates of leakage locations are
the output of the ILDS.

Figure 371 shows the main interface of the ILDS. The main ILDS interface includes three sections.
The main section (top-left) includes the map of the field (the map of the Citronelle field for this
project). The color and the caption of the button on top of this section identify the status of the
leak detection. In Figure 371 the color is green and the caption reads “No Leakage Detected”.
The color of the button and the caption will change accordingly during the transition phase or if a
leak is detected in the system.

On the right hand side of the interface a figure identifies the locations of the permanent downhole
pressure gauges in the observation well. In the observation well, two pressure downhole gauges
were installed at depths of 9416 ft. and 9441 ft. below surface. And finally a panel on the bottom
left provides means for identifying the time-step for the analysis. Upon identification of the time
step, the information is communicated to “ILDS” by clicking on the “OK” button. This action will
open a dialog box shown in Figure 372 where the user can identify the location of the file
containing the real-time pressure data. Use of a data historian for the collection and preparation
of the real-time data is covered in a separate section of this report.

e Select Input File 23
» MVAcodes » 1-main » testl » bin » Debug » data » ¥ | +4 W Search data pel
Organize » New folder =~ 0 @
' Favorites Name Date modified Type Size
Bl Desktop D-8-6 9/10/2014 10:46 AM  File folder
4 Downloads D-8-6-No early time 2014 3:10 PM File folder
= Recent Places D-9-7 410:44 AM  File folder
D-8-7-No early time 014 3:10 PM File folder
= Libraries D-9-8 9/10/2014 10:47 AM  File folder
=| Documents D-8-8-No early time 0/2014 10:06 AM  File folder
@' Music Location 0/2014 10:45 AM  File folder
E=| Pictures MNew Data -Disrigarding early time 014 3:10 PM File folder
B videos MM for location 014 3:10 PM File folder
£ d-9-7-32000 0/16/20141:12 PM  Microsoft Excel W... 54 K
"M Computer = d-9-8-23000 10/15/2014 10:48 ...  Microsoft Excel W... 39K
.;u 05 () |z_|1 input 10/8/2014 11:14 AM  Microsoft Excel W... 100 K
—u DATAPARTL (D) |Z_|] MNo_Leak P 2 Microsoft Excel W... 54 K
—w My Passport-NETL-Masoud (F:) E noleak 9/4/2014 2:21 PM Microsoft Excel W... 68 K
k"I_-I Metwork
4 [T 3
File name: d-9-7-32000 + | Bxcel Files -]
| Open |v| | Cancel |

Figure 372. Dialog box for identification of the location of real-time pressure data.
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Once the real-time pressure file is selected, IDLS connects to this file and continuously reads and
then process the imported pressure data. The real-time pressure data from the permanent down-
hole gauges is usually noisy, therefore in order to make the analysis more accurate the noisy data
must first be de-noised. The de-noising process takes place in the background without any
interaction from the user.

The clean (de-noised) data is forwarded to a module to calculate the change in pressure. If the
change in pressure is above a certain threshold, the statistical module is invoked to calculate the
required statistics of the data series. The complete data set is then introduced to a series of
trained, intelligent systems to detect the leak.

At this point in time the system (ILDS) reacts by generating an “Orange” radar screen, while
identifying whether an actual leak has been detected or not. If an actual leak is detected, the
system will generate a “red” radar screen and estimates the location and the amount of the leak.
The flow chard of the system described above is shown in Figure 373.

Real-Time Data Data Imported From the
Historian Data Historian

Series of Trained, Intelligent
Systems for Leakage
Detection

Data De-Noising Module .
Ap Calculation

Leakage Detected
Ap Statistical Analysis of the
Threshold Reached ? Clean Data
Leakage Leakage
Location Amount

Figure 373. Flow Chart describing the Intelligent Leak Detection System.

NO .
No Leak Detected P mumy Probability of Leakage

Figure 374 shows the interface of ILDS when it is reading the pressure data. In the upper right
hand corner of the interface the real-time pressure is displayed (represented by a line chart). This
is to let the user observe (in real-time) the pressure behavior at the observation well. The value
of Ap (change in pressure, delta pressure) is also calculated and plotted in this interface (located
in the bottom right hand side).
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The Ap chart shows the difference between pressure measurements at the observation well with
the expected pressure values at this location when no leakage is expected (the reference
pressure®). ILDS analyzes each new pressure data to determine the status of the leakage. A
green moving radar screen on the map of the field indicates that “No Leak is Being Detected” (as
shown in Figure 374).
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Figure 374. Software is reading pressure data. No leakage is detected.

Once the behavior of the pressure is calculated to be unusual (Ap passes a certain threshold),
the information is passed to a statistics module so that certain statistics of the signals can be
calculated. Upon calculation of the required statistics, values of Ap, pressure derivative, Ap
average, Ap summation, Ap standard deviation, Ap skewness and kurtosis for each time step are
organized and passed to the trained, intelligent systems for leakage detection. All these
calculations are performed in the background and the process is completely hidden from the user.

In this stage, the status of the system changes to “Possibility of Leakage” and the color of the
radar screen and the background color of the pressure charts are changed to orange in order to

°? Please note that the values of the reference pressure can be modified if new information becomes
available identifying what the reference pressure should be. Values of the reference pressure for this
version of ILDS was calculated based on history matched model generated for this project.
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attract the attention of the person in charge of this system!°. Figure 375 shows the interface in
“Transitional Phase”. In this phase the system is trying to identify (estimate) the location of the
leakage. Each time step a location is determined by ILDS and shown in the field map by a red
circle (Figure 376). As time goes on, and more data is collected, and transmitted through the data
historian to the ILDS, the estimation of the location becomes more accurate, until the estimated
location will stop moving. This is the final estimated location of the leakage by the ILDS.
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OK

Figure 375. Pressure behavior is unusual and there is a possibility of leakage.

When ILDS has converged to the final leakage location, the status of the interface changes to
“Leakage Has Been Detected” and the color of the radar screen and the background color of the
pressure charts turn to the color “red”. The system continues to process the data in order to
estimate the amount of leakage. Once the amount of the leakage (that is a function of the severity
of pressure change) is estimated, the location of the leakage, the amount of the leakage, as well

10 Please note that an automatic system can be developed at this point to generate an alert in the form of
Email or Text Message in order to alert the responsible parties. Development of such a facility eliminates
the need of a person continuously attending to the leakage detection system.
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as the amount of time that has passed from the start of the leakage is shown in bottom left of the

interface (Figure 376).

% CO2 Leakage Detection System

@ Leakage is Detected
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Figure 376. Leakage is detected. Leakage location and amount is shown in the form.

CONNECTING THE ILDS 1O A DATA HISTORIAN

The design of ILDS is such that it will read the real-time pressure data from an excel file.
Therefore, in order for the real-time pressure data to be communicated to ILDS it must go through
the following process: (Please note that this process is reasonably standard for recording real-

time data from the instruments in the field)

1. Data is transmitted from the downhole pressure gauge to a data collection center on the

surface.

2. The surface data collection center stores the transmitted data into a data historian.

3. The data historian is capable of reformatting the historical (real-time) data into the required
format (This format of ILDS is CSV or any format recognizable by Excel).

4. The real-time pressure data in the form of a excel spreadsheet is continuously updated

and made available to the ILDS.

Figure 377 shows a screen shot of the excel spreadsheet that include the real-time pressure data
that is used as input to the ILDS. Please note that the data includes headers on the first row.
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APPENDIX 13

PUBLICATIONS RESULTED FROM THIS PROJECT

"Pressure History Matching for CO2 Storage in Saline Aquifers: Case Study for Citronelle Dome".
Haghighat, S. A., Mohaghegh, S. D., Gholami, V., Shahkarami, A. Manuscript #P306522, 2013
Carbon Management Technology Conference. Alexandria, Virginia, 21-23 October, 2013.

"Using Big Data and Smart Field Technology for Detecting Leakage in a CO2 Storage Projects".
Haghighat, A., Mohaghegh, S. D., Gholami, V., Shahkarami, A., Moreno, D. SPE 166137, SPE
Annual Technical Conference and Exhibition. New Orleans, Louisiana, September 30 - October
2,2013.

"Reservoir Simulation of CO2 Sequestration in Deep Saline Reservoir, Citronelle Dome, USA".

Haghighat, S., Mohaghegh, S. D., Borzouie, N., Moreno, D. and Shahkarami, A. Twelfth Annual
Conference on Carbon Capture, Utilization and Sequestration. Pittsburgh, PA, MAY 13-16, 2013.
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