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Disclaimer 
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Abstract 

Capability of underground carbon dioxide storage to confine and sustain injected CO2 for a long 

period of time is the main concern for geologic CO2 sequestration. If a leakage from a geological 

CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the 

leak, in a timely manner, in order to implement proper remediation activities.  

An overwhelming majority of research and development for storage site monitoring has been 

concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2. This 

study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes 

developing in-situ CO2 Monitoring and Verification technology based on the implementation of 

Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data 

Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by 

de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). 

Citronelle field, a saline aquifer reservoir, located in the U.S. was considered as the basis for this 

study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed 

and history matched. PDGs were installed, and therefore were considered in the numerical model, 

at the injection well and an observation well. Upon completion of the history matching process, 

high frequency pressure data from PDGs were generated using the history matched numerical 

model using different CO2 leakage scenarios. Since pressure signal behaviors were too 

complicated to de-convolute using any existing mathematical formulations, a Machine Learning-

based technology was introduced for this purpose. An Intelligent Leakage Detection System 

(ILDS) was developed as the result of this effort using the machine learning and pattern 

recognition technologies. 

The ILDS is able to detect leakage characteristics in a short period of time (less than a day from 

its occurrence) demonstrating the capability of the system in quantifying leakage characteristics 

subject to complex rate behaviors. The performance of ILDS is examined under different 

conditions such as multiple well leakages, cap rock leakage, availability of an additional 

monitoring well, presence of pressure drift and noise in the pressure sensor and uncertainty in 

the reservoir model. 
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EXECUTIVE SUMMARY 
Primary objective for geologic CO2 sequestration is to confine injected CO2 for a long period of 
time. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the 
approximate amount and the location of the leak, in a timely manner, in order to initiate proper 
remedial activities.  

An overwhelming majority of research and development for storage site monitoring has been 
concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2. The 
main premise of this study is that in the event of a leakage in a geological CO2 sequestration site, 
the CO2 must move (at the reservoir level) before it can reach the surface. Movement of fluids in 
reservoirs are associated with pressure differences. Therefore, if pressure changes in the 
reservoir can be (a) detected, and (b) analyzed effectively, one might be able to identify and 
characterize such a leak, long before any surface or near surface leakage detection technology 
can effectively be utilized. 

This study aims to monitor the integrity of CO2 storage at the reservoir level, in real-time and 
analyze and report the location and amount of CO2 leakage soon after such incident takes place. 
This work is concentrated on developing in-situ CO2 Monitoring and Verification technology based 
on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” (for the detection 
purposes) along with Artificial Intelligence and Data Mining (for the analysis of the detected 
signals in order to identify the amount and the location of the leak). The technology attempts to 
identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected 
from the Permanent Down-hole Gauges (PDG). 

The concept of “Smart Field” is rapidly gaining support and popularity in the oil and gas industry. 
Hundreds of millions of dollars have been invested to successfully develop highly sensitive 
Permanent Down-hole Gauges (PDG) that is capable of successful operation in harsh 
environment for very long periods of time.  PDGs collect and transmit high frequency data streams 
to the remote offices to be analyzed and used for reservoir management. The industry is now 
working on the state-of-the-art software solutions that can take maximum advantage of the large 
amount of data that is collected, transmitted and stored in data historians using PDGs.  

PDGs monitor the pressure changes in the formation and transmit high frequency data streams 
to the surface. The pressure changes in the reservoir are indications of fluid flow (movement) in 
the formation which during the post-injection time-frame are indicators of a potential leakage in 
the system. The complex and highly convoluted real-time data transmitted by multiple PDGs is 
cleansed, summarized, processed and modeled using state-of-the-art Artificial Intelligence and 
Data Mining (AI&DM) technology in order to identify the approximate location and amount of the 
CO2 leakage that has caused the pressure change in the reservoir. 

The process implemented in this study follows a four-step procedure to accomplish its objective. 
First step is the development of a base reservoir model for an existing CO2 sequestration site> 
Citronelle Dome in Alabama has been selected for this project. In the second step, actual field 
data (CO2 injection) is used to history match the base model. The third step of the process 
includes generation of multiple leakage scenarios using the history matched reservoir model and 
collection of the high frequency pressure signals that results from the imposed leakage in the 
system. Finally, during the fourth step of the process, the high frequency pressure signals are 
processed and analyzed using an innovative machine learning and pattern recognition technology 
in order to identify the location and the amount of the leakage in the system. 

Citronelle field, a saline aquifer reservoir, located in the state of Alabama (Figure 1) was 
considered as the basis for this study. Step 1 of this project included the development of a 
reservoir model for the Citronelle saline aquifer. Reservoir simulation model for CO2 injection at 
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Citronelle dome was developed and history matched with real field data. This model 
acknowledged “Lateral Heterogeneity”.  

Structural maps for 17 sand layers (most extensive ones that were targeted for CO2 injection) 

were generated by interpretation and correlation of 14 well logs. The location of the well logs and 

three cross sections for correlating the wells are shown in Figure 2. Based on correlation between 

wells, 17 top maps were generated representing lateral heterogeneity in the reservoir.  

 

Figure 1. Location of the Citronelle Dome in the State of Alabama, the United States of America. 

 

The same well logs were used to generate thickness (isopach) maps for all the layers. In order to 

make porosity maps, 40 well logs were analyzed and interpreted. Three different porosity maps 

were generated for each sand layer (51 total porosity maps for the entire reservoir). Permeability 

of the reservoir was obtained using porosity-permeability correlations from core analysis.  

Installed PDGs at the injection well and an observation well were modeled as part of the numerical 
modeling of this asset. Real-time pressure signals from the PDGs were used to history match the 
numerical model (Step 2). Quality of the history matched model and its capability to predict (in 
forecast mode) reservoir performance is demonstrate in Figure 3.  

Upon completion of the history matching process, different CO2 leakage scenarios were designed 
and modeled. High frequency pressure data from the model (representing the PDGs response to 
pressure changes in the reservoir) were generated using the history matched numerical model. 
Figure 4 is an example of pressure signal in one of the PDGs that results from a potential leakage 
in the reservoir. 
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Figure 2. The location of the well logs and three cross sections for correlating the wells. 

 

 

Figure 3. Quality of the history match of the reservoir simulation model. 
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Figure 4. Modeling the CO2 leakage from the abandoned wells in the Citronelle Dome. 

 

 

Figure 5. Accuracy of the Intelligent Leakage Detection System (ILDS) in identifying the location of the 

leakage. 
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Figure 6. . Accuracy of the Intelligent Leakage Detection System (ILDS) in identifying the amount of the 

leakage. 

 

Since the behavior of pressure signals (generated due to the modeled leakage) are too complex 
to be de-convoluted using any existing mathematical formulations, a Machine Learning-based 
technology was introduced for this purpose (Step 4). Figure 5 and Figure 6 show the accuracy 
that can be achieved using this technology to detect a leak at the reservoir level within hours of 
the occurrence. These figures demonstrate that both the location and the amount of the leakage 
can be identified using the Intelligent Leakage Detection System (ILDS). 

The Intelligent Leakage Detection System (ILDS) was developed as the result of this project using 
an innovative machine learning and pattern recognition technology (Figure 7).This report 
summarizes the efforts toward the development of the Intelligent Leakage Detection System 
(ILDS).  The ILDS is able to detect leakage characteristics in a short period of time (less than a 
day from its occurrence) demonstrating the capabilities of the system in locating and quantifying 
leakage characteristics subject to complex rate behaviors.  

Furthermore, this project evaluated the performance of the ILDS under following conditions: 

a. Multiple well leakages,  
b. Leakage in multiple vertical locations in a given well,  
c. Leakage occurring in the cap rock,  
d. Availability of additional monitoring wells,  
e. Presence of pressure drift,  
f. Presence of noise in the pressure sensor, and finally 
g. Uncertainty in the reservoir model.  

Figure 7 shows the interface of the ILDS. The Intelligent Leakage Detection System (ILDS) is 
capable of being deployed online and perform real-time analysis. In other words, ILDS can 
receive, analyze, process and provide results in real-time. 
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Figure 7. A snapshot of the interface developed for the Intelligent Leakage Detection System (ILDS). 

 

During this project, the West Virginia University team was supported by CONSOL Energy, 
Advance Resources International (ARI), Battelle, and Schlumberger. Professionals from these 
organizations formed an industry advisory group providing peer review, valuable insight, 
guidance, and critical observations throughout the life of the project, ensuring a robust and 
practical technology that can be used in the field. 

 

  



26 

 

SITE SELECTION  

CITRONELLE FIELD- SALINE AQUIFER  

Selection of a suitable CO2 sequestration site was the first step in this project. The selected site 

should provide required data to build a geological model. The geological model would serve as 

the foundation for the dynamic model that has been developed and used throughout this project.  

In order to kick off the site selection procedure, an Industrial Advisory Committee (IAC) was 

established consisting of five experts from the industry with experience and clear track record in 

Carbon Capture and Storage. This committee provided technical advice to the project team 

throughout the life of the project. The first task of the Industrial Advisory Committee (IAC) was 

assisting the project team in selecting a site for the project. Table 1 shows the list of individuals 

that serve in the Industrial Advisory Committee (IAC).  

Table 1. List of Industrial Advisory Committee 

Name Affiliation 

Neeraj Gupta Battelle 

Dwight Peters Schlumberger 

George Koperna ARI 

Grant Bromhal DOE-NETL 

Richard Winschel CONSOL 

 

Initially, committee agreed that data availability for building simulation model is one of the key 

criteria for site selection. Five potential sites were discussed: 

 Citronelle Site: Operated by Denbury. Phase III Regional Partnership. ARI can help 

provide the geological model. 

 Mt. Simon Site: FutureGen Site in Illinois, Battelle has performed the geological 

modeling. 

 MRCSP Site: Phase III Regional partnership, Battelle has performed the geological 

modeling. 

 Illinois Basin (Decatur) Site: Rob Finely (USGS) has access to the geological model; 

some simulation modeling has already been performed. 

 Otway Site: Site is in Australia.  

 

The datasheet shown in Table 2 was sent to all the member of advisory committee. The members 

were asked to provide any and all information or contact points for any of the candidate sites. 

Following the conversation that the WVU team had with George Koperna from ARI, it was agreed 

to provide WVU with the Citronelle field geo-cellular model. ARI was performing the reservoir 

modeling for the phase III, southeast regional CO2 sequestration partnership. 
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Table 2 . Datasheet for all 5 candidate sites 

 

 

  

Site Reference Contact Person Affiliation Email CO2 Source Our Information Supplemental Information

Citronelle- Denbury George Koperna ARI
gkoperna@adv-

res.com

25 Mwatt Mobil 

Alabama Power Plant

• Injection Starts at January 2011, 

• Injection in 1500 ft above Oil 

Field, 

• Some logs are available, 

• 2D Seismic will be available 

• 3D Seismic might be done within 

2 years.

• Previous production history

• Injection plan and history

• Type of formation

• Geocellular model and geological 

characteristics

• State and characteristics of 

injected CO2 

• 2D and 3D Seismic

Mt. Simon - Mattoon 

FutureGen

Mark McKoy, Bill 

Gwilliam, Dick 

Winschel - Signe 

Wurstner 

NETL/ CONSOL / 

Battelle

• 2D Seismic is available, 

• 1200 ft thickness

• Geological model is done by 

Battelle, 

• First Well in 2010

• Previous production history

• Injection plan and history

• Type of formation

• Geocellular model and geological 

characteristics

• State and characteristics of 

injected CO2 

• 2D and 3D Seismic

MRCSP Site, Regional 

Partnership Phase III

Neeraj Gupta, 

Joel Sminchak, 

David Ball,

Battelle Field to be announced

• Previous production history

• Injection plan and history

• Type of formation

• Geocellular model and geological 

characteristics

• State and characteristics of 

injected CO2 

• 2D and 3D Seismic

Illinois Basin Decatur Rob Finely Illinois GS

• 2D Seismic and 3D Seismic 

performed

• Some simulation models have 

been run.

• Injection starts next year

• A Geocellular model exists

• Previous production history

• Injection plan and history

• Type of formation

• Geocellular model and geological 

characteristics

• State and characteristics of 

injected CO2 

• 2D and 3D Seismic

Otway-Australia
Justin Gleir / 

Grant Bromhal
DOE

Justin.Glier@netl.d

oe.gov     

Grant.Bromhal@ne

tl.doe.gov

• Depleted gas reservoir

• One injection well

• One monitoring well

• One production well

• Geocellular and simulation model 

exist

• Previous production history

• Injection plan and history

• Type of formation

• Geocellular model and geological 

characteristics

• State and characteristics of 

injected CO2 

• 2D and 3D Seismic
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SELECTION OF RESERVOIR MODELING SOFTWARE 

After a comprehensive study that included examining major reservoir simulation models that are 

available in the market, the WVU team decided to use the numerical simulation and visualization 

package (BUILDER/GEM/RESULTS) from Computer Modeling Group (CMG). The criteria for 

selecting this simulation model to be used in our project included availability (of the software and 

personnel for support), ease of use, and willingness of the provider of the package to work with 

the university. This package has been used extensively by this team and the team members are 

able to use the software with a high proficiency. 

 

BACKGROUND STUDY ON CANDIDATE SITES 

Citronelle in Mobile Alabama was selected as a candidates for this project. Upon selection of this 

site as a prime candidate, the group started a background study on this field. A brief background 

on this site that was eventually selected as the site to be used for this project is provided in 

Appendix 1. 

Comprehensive studies on this field can be found in literature from different groups of researchers 

mainly in Alabama University and the Southeast Regional Carbon Sequestration Partnership.  

Citronelle was discovered on 1955. It produces from the Rodessa formation (lower Cretaceous).  

414 active and shut in well exist in this field. The Citronelle Dome is a giant, salt-core anticline in 

the eastern Mississippi Interior Salt Basin of southern Alabama that is located near several large-

scale, stationary, carbon-emitting sources in the greater Mobile area. The dome forms an 

elliptical, four-way structural closure containing opportunities for CO2-enhanced oil recovery (CO2-

EOR) and large-capacity saline reservoir CO2 sequestration. 

The Citronelle oil field, located on the crest of the dome, has produced more than 169 million bbls 

of 42–46° API gravity oil from sandstone bodies in the Lower Cretaceous Rodessa Formation. 

The top seal for the oil accumulation is a thick succession of shale and anhydrite, and the reservoir 

is under-filled such that oil-water contacts are typically elevated 30–60 m (100–200 ft.) above the 

structural spill point. Approximately 31–34% of the original oil in place has been recovered by 

primary and secondary methods, and CO2-EOR has the potential to increase reserves by up to 

20%. 

Structural contour maps of the dome demonstrate that the area of structural closure increases 

upward in section. Sandstone units providing prospective carbon sinks include the Massive and 

Pilot sands of the lower Tuscaloosa Group, as well as several sandstone units in the upper 

Tuscaloosa Group and the Eutaw Formation (Figure 8). Many of these sandstone units are 

characterized by high porosity and permeability with low heterogeneity. The Tuscaloosa-Eutaw 

interval is capped by up to 610 m (2000 ft.) of chalk and marine shale that are proven reservoir 

seals in nearby oil fields. Therefore, the Citronelle Dome can be considered a major geologic sink 

where CO2 can be safely stored while realizing the economic benefits associated with CO2-EOR 

(Esposito 2008). Citronelle field is the location for the anthropogenic CO2 Injection field test in 

southeast regional CO2 sequestration partnership. 
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Figure 8. Rodessa Oil and Saline Reservoirs (Left) - Tuscaloosa-Eutaw Saline Reservoirs (Right) 

 

Source for the CO2 capture is at Alabama Power's Barry Electric Generating Plant, located in 

Mobile County. Plant Barry is located approximately 10 miles from the Citronelle Oil Field, the 

ultimate destination of a pipeline that will link the coal-fired CO2 source and the saline formation 

that will be used for the demonstration project. Data confirms that the geology surrounding Plant 

Barry and within the area of the Citronelle Oil Field is regionally very similar to the geologic setting 

of the larger Gulf Coast area.  

Beginning in 2011, between 100,000 and 150,000 tons of CO2 per year – the equivalent of 

emissions from 25 megawatts of the plant’s generating capacity – was the source for the SECARB 

project. The CO2, after capture, is transported to the Citronelle Oil Field and injected into the 

Paluxy Formation, a saline sandstone reservoir that is located immediately above the oil field and 

is regionally significant as a safe sequestration target throughout the southeastern Gulf Coast. 

Based on the R&D objectives of a CO2 Injection test project, SECARB planned an extensive MVA 

program for its field activities. Each site was well instrumented with multiple sensor arrays. 

Standard off-the-shelf technologies were tested in carbon sequestration applications. In addition, 

novel new tools and techniques will be tested and evaluated (SECARB 2014). These MVA plans 

can very well be compared to the MVA technologies that is developed this project.  

Process of selecting a test site for injection pilot and detailed study of its geology, determination 

of oil-CO2 minimum miscibility pressure has been completed. The injection well is B-10-10#2 

which previously was a producer and was converted to a water injector in 2008. The Injector is 

located in a 5 spot with 4 producers (B-19-7, B-19-8,B-19-9 and B-19-11) developed in the upper 

Donovan 14-1 and 16-2 sandstone units. Well B-19-10 was initially considered in the 5 spot but 
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was replaced by B-19-11 because of operational problems (Figure 9). All relevant information for 

these wells was gathered through the Alabama Geological Survey website1. 

 

 

Figure 9. Map of the 5 spot CO2 – EOR 

Simulation results from University of Alabama at Birmingham were thoroughly studied. The 5 spot 

model is simulated for a water injection followed by a CO2 -EOR period. Results of these models 

simulated by both SENSOR (Coats Engineering, Inc.) and MASTER 3.0 simulator show an 

increase in oil recovery by CO2 injection. Another scenario of water alternating gas (WAG) 

recovery is also simulated by SENSOR and shows that this method might be preferred when the 

CO2 has a limited supply (Walsh 2010). 

Table 3. 5 Spot CO2 EOR Wells Information 

Well 
Name 

Type Latitude Longitude Spud Date Perfs 

B-19-7 Producer 31.12338 -88.2169 12/6/1962 
10863-11458; 11014-20; 11042-48; 

11416-24 

B-19-8 Producer 31.12373 -88.2127 4/29/1963 10904-11561 

B-19-9 Producer 31.12351 -88.2127 1/19/1963 
10962-68, 10984-11000, 11024-40, 

11394-401 

B-19-10 
#2 

Injector 31.12156 -88.2149 1/26/1982 10988-92, 11031-38, 11395-99 

B-19-11 Producer 31.11962 -88.2208 10/25/1962 
10784-795, 10840-862, 10954-11001,    

11012-046 

                                                
1 http://www.gsa.state.al.us 
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At the time this project was to be started, another pilot project in Citronelle, AL was about to start. 

This pilot was a CO2 storage project in saline aquifer (Paluxy formation) as part of the phase III 

South Eastern Carbon Sequestration Partnership. This was an anthropogenic test with large 

volume of CO2 injection into a saline aquifer with capture of CO2 from power plant Barry. Denbury 

Resources Incorporation participated in the early planning stages of the project to inject CO2 into 

the saline formation and to monitor CO2 containment. Alabama Power Company's Plant Barry, 

near Bucks, Alabama, was the source of CO2, approximately 12 miles from the Southeast 

Citronelle Unit.  

The project capability included capturing approximately 125,000 metric tons of anthropogenic CO2 

per year. A pipeline was constructed from Plant Barry to Denbury's Southeast Citronelle Unit, and 

the CO2 was injected into saline Paluxy sandstones at depths of approximately 10,000 feet. These 

sandstones are separated from the deeper Rodessa oil reservoir by the impermeable Ferry Lake 

Anhydrite. One new injection well and one new monitoring well were planned. Injection was 

planned to continue for four years at a rate of 125,000 tons per year. After finishing of injection, 

the sequestered CO2 would be monitored for an additional four years in order to determine how 

well the CO2 has been contained.  

A numerical model from this site was received from Advanced Resources International. An area 

of about 9000 acre with a 50 by 50 Cartesian grid (Grid Size = 400 ft. by 400 ft) was modeled. 

The model contained 17 sand bodies in 51 simulation layers. Average permeability was 88 md 

for the entire formation and average porosity was 19.3 %.  

The model has one injection well penetrating all 17 sand bodies with thickness of about 10 to 80 

ft. each. Total thickness of the paluxy formation is about 1100 ft. in southeast unit. All 17 sand 

bodies except for the number 14th are surrounded (at least partially) by Carter-Tracy (Limited 

extent) aquifers in the model. The injection target is the saline Paluxy sandstones at the depth of 

approximately 10,000 feet. The Paluxy formation represents a regressive sequence. Injection well 

is well D-9-7 which was previously plugged and abandoned on 09/12/08. 

Table 4 and Table 5 provide some detail information regarding the perforations of well D-9-7 and 

the formation tops used in the model. 

 

Table 4.  Anthropogenic test Injection Well Information 

Well 
Name 

Type Latitude Longitude Spud Date Perfs 

D-9-7 Injector 31.06519 -88.18172 11/19/1961 
10900-02, 10966-70, 10975-79, 

11027-40, 11069-80 
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Table 5. Formation Top and Thickness (Citronelle, Al) 
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RESERVOIR SIMULATION AND MODELING 

ARI SIMULATION MODEL 

The base model being used for simulation by the WVU team was received from Advanced 

Resources International. The model represents the injecting target-Paluxy, between the depths 

of 9,040 feet to 10,476 feet. The model that has an area of approximately 9000 acres, is built 

using a 50 x 50 x 51 Cartesian grid with a total number of grid blocks equal to 138,975. The size 

of each grid is 400 ft. x 400 ft. An average permeability 88 md and an average porosity 19.3% are 

used as constant parameters for the entire formation in the model. 

Table 6 and Table 7 provide more details on the information used in the ARI model.  

 

Table 6. Reservoir Components Data 

 

 

 

 

 

Table 7. Reservoir Characteristics Data 

Total blocks 50x50x51=138975 blocks 

Block size 400x400 feet 

Permeability(I.J.k) 88 md 

Porosity 20% 

Global Composition (C1,CO2) 0.01 

Aquifers There are 16 aquifers in which leakage is allowed 

 

 

 

 

 

 

 

 

Reservoir Pressure 230 F 

Water Properties Compressibility=3.2E-6 1/psi 

Components Critical Pressure, Psi Critical temperature, F Acentric  factor 

CO2 72.8 304.2 0.225 

C1 45.4 190.6 0.008 
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Relative Permeability Curves 

Relative permeability curves which are used in the model are shown in the following figures. 

 

Figure 10. Gas Relative Permeability (Red) - Oil Relative Permeability (Blue) 

 

Figure 11. Water Relative Permeability (Red) - Oil Relative Permeability (Blue) 
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The model has 51 simulation layers, which form 17 sand layers with thickness of about 10 to 80 

ft. each. A 3-D view of the simulation model is shown in the following graphs. 

 

Figure 12. Citronelle Model Structure 

 

Injection Scenarios and Simulation Results 

The WVU team has performed several simulation Scenarios with different injecting CO2 amount 

followed by a certain monitoring time to examine the extent of the CO2 plum after injection. The 

different scenarios are chosen based on the target amount of injection which is reported for this 

test project.  

The Gas saturation result shows how well the CO2 is contained after injection for each scenario. 

The figures below show the gas saturation plume around the injection well. 

 

Scenario 1 

In this scenario, CO2 is injected into the target formation with the amount of 100,000 tons per year 

for four years starting on January 2010. 

After injection, a period of 100 years monitoring is followed. The figures below show how CO2  

travels around the injection well along the entire formation, each figure shows the Gas (CO2) 

saturation before injection, end of injection, 50 years after injection, and at the end of 100 years 

of monitoring, respectively. 
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Figure 13. Gas Saturation around the injection well - Scenario 1 

 

Following graphs show the gas (CO2) rate and well pressure during the injection and the 

monitoring period.  
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Figure 14. Cumulative Gas Rate & Gas rate Standard Condition at the injection period 

          

 

Figure 15. Well Block Pressure at the injection period 
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Figure 16. Cumulative Gas Rate & Gas rate Standard Condition at the monitoring period 

 

Figure 17. Well Block Pressure at the monitoring period 
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Scenario 2 

In this scenario, CO2 is injected into the target formation with the amount of 125,000 tons per year 

for four years starting on January 2010. 

After injection, a period of 100 years monitoring is followed. The figures below show how CO2  

travels around the injection well along the entire formation, each figure shows the Gas (CO2) 

saturation before injection, end of injection, 50 years after injection, and at the end of 100 years 

of monitoring, respectively. 

 

Figure 18. Gas Saturation around the injection well - Scenario 2 

 

 

Following graphs show the gas (CO2) rate and well pressure during the injection and the 

monitoring period.  
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Figure 19. Cumulative Gas Rate & Gas rate Standard Condition at the injection period 

 

Figure 20. Well Block Pressure at the injection period 
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Figure 21. Cumulative Gas Rate & Gas rate Standard Condition at the monitoring period 

 

Figure 22. Well Block Pressure at the monitoring period 
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Scenario 3 

In this scenario, CO2 is injected into the target formation with the amount of 150,000 tons per year 

for four years starting January 2010. 

After injection, a period of 100 years monitoring is followed. The figures below show how CO2  

travels around the injection well along the entire formation, each figure shows the Gas (CO2) 

saturation before injection, end of injection, 50 years after injection, and at the end of 100 years 

of monitoring, respectively. 

 

 

Figure 23. Gas Saturation around the injection well - Scenario 3 

 

Following graphs show the gas (CO2) rate and well pressure during the injection and the 

monitoring period.  
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Figure 24. Cumulative Gas Rate & Gas rate Standard Condition at the injection period 

 

Figure 25. Well Block Pressure at the injection period 
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Figure 26. Cumulative Gas Rate & Gas rate Standard Condition at the monitoring period 

 

Figure 27. Well Block Pressure at the monitoring period 
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These simulation runs demonstrated that 100 years after the stop of injection, approximately 60 

to 70% of the CO2 plum penetrates mostly the upper part of the sand layers, while the remaining 

30% are distributed among the middle and bottom sand layers. 

 

DEVELOPING LATERAL HETEROGENEITY FOR THE FIELD (THE WVU MODEL) 

The WVU team continued the search for more geological data on the Citronelle Field. At the end 

of August 2010, the WVU team received a complete report on SECARB Phase III anthropogenic 

test project (Advance Resources International [ARI] Report). This report covers all the background 

studies that have been performed on this field by ARI. 

In line with the data gathering efforts, the WVU team started looking for any available well logs 

from the field, especially the closest wells to the injection well. These logs were ordered from the 

Alabama geological survey and were interpreted at WVU. Porosity values are interpreted from 

these well logs and the permeability is calculated based on an equation used in ARI report. The 

interpretation procedure will be covered later in this report. 

The simulation model which was received from ARI has an average value for porosity and 

permeability. However based on the ARI report these values are calculated from a well log at the 

well D-9-7. The WVU team decided to incorporate the vertical heterogeneity extracted from the 

well log into the numerical model in order to have a better understanding of the fate of CO2 in 

different depths of the reservoir. 

The data for the Citronelle field presented in the ARI report provided the porosity and permeability 

data for the injection well D-9-7.  Simulation of the injection with just this data would not present 

a very realistic picture of CO2 plum in the reservoir. Our simulation runs suggested that the CO2 

plum can be expected to reach as far as 1 mile away from the injection well. Thus to generate a 

realistic model that captures the heterogeneity of the formation in the lateral direction, the WVU 

team obtained well logs from wells up to 1 mile away from the injection well. 

The  wells whose logs were obtained for generating the heterogeneity were D-4-14,D-4-15,D-4-

16,D-9-2,D-9-3,D-9-6, D-9-8,D-9-10, D-9-10,D-10-5,D-10-12. The logs obtained were induction 

logs with formation resistivity values from 1400 ft to 11600 ft. The region of interest on the logs 

was the injection zone from about 9400 ft to about 10500 ft.  

All logs were digitized to be used for the calculation of porosity. To calculate the porosity 

corresponding to each resistivity, the Archie equation provided in the ARI report was used. 

 

∅ = (
𝑎

(
𝑅𝑡
𝑅𝑤) ∗ 𝑆𝑤𝑛

)

1/𝑚
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Where  

a = tortuosity factor = 1; default value 

m = cementation factor = 2.25; best match to Citronelle oilfield porosity logs 

n = saturation exponent = 2; common default value 

Rw = resistivity of the formation water = 0.045; best match to Citronelle oilfield porosity logs 

Sw = Water saturation =0.95; assume only residual gas saturation 

φ = porosity  

Rt = True formation resistivity = obtained from logs. 

 

The true formation resistivity for each of the injection zones was read from the digitized logs and 

the porosity at each data point was obtained by using the equation above. The digitized logs 

included the resistivity value every six inches, thus our porosities were calculated at six inch 

intervals. To find the porosity of each zone, the porosity thickness was calculated for each one of 

the injection zones and divided by the thickness of the zone using the following equation: 

∅𝑎𝑣𝑒 =
∑ ∅ℎ

∑ ℎ
 

Therefore, average porosities for each of the injection zones were calculated. The next step was 

generating the permeability for the injection zone.  The ARI report shows that for most of the logs 

obtained from the Citronelle field, the general relationship between porosity and permeability is 

given by the following equation:  

𝑘 = 0.013𝑒0.377∅ 

Once the permeability was calculated for each injection zone using the above equation, lateral 

heterogeneity in all injection zones were introduced into the geological model. Results of these 

calculations are shown in Table 8. 

 

Numerical Modeling 

The Simulation model was modified based on the parameters gathered from the document 

provided by ARI. This document, discusses the new changes that have occurred in the CO2 

sequestration plan. These changes were implemented in the model, the amount of permeability 

and porosity in sandstone layers were updated with the new values in the document (SECARB 

2010). The injection well in the model was completed and perforated in 11 sandstone layers. 

Other layers were closed to injection in the model.   
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The ARI document also states that the injection well has a maximum bottom hole pressure 

constraint of 6,300 psi to avoid of surpassing the fracture pressure during the CO2 injection. 

Another constraint that was imposed in the model was the maximum CO2 injection rate of 9.45 

million standard cubic feet per day. 

Preliminary results of the model are shown in following graphs (Figure 28and Figure 29). 

 

Table 8. Log Interpretation results for Citronelle 

 

Well Name

Sand Layer Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md)

9460 0.14 8.52 0.19 75.65 0.11 2.63 0.14 8.52 0.22 232.69 0.16 19.45

9520 0.16 19.45 0.11 1.95 0.12 3.14 0.11 2.25 0.24 617.53 0.13 4.81

9540 0.11 2.25 0.13 4.81 0.14 8.52 0.11 1.95 0.22 232.69 0.10 1.71

9570 0.11 2.25 0.15 12.33 0.13 4.81 0.11 1.95 0.10 1.49 0.11 2.63

9620 0.12 3.14 0.16 19.45 0.10 1.71 0.12 3.83 0.14 8.52 0.14 6.25

9670 0.12 3.14 0.19 75.65 0.14 8.52 0.14 8.52 0.12 3.14 0.13 4.81

9710 0.14 8.52 0.16 19.45 0.12 3.14 0.15 9.79 0.12 3.14 0.19 75.65

9740 0.14 8.52 0.19 75.65 0.10 1.71 0.11 1.95 0.15 9.79 0.12 3.83

9800 0.16 19.45 0.13 4.81 0.16 19.45 0.11 2.63 0.11 2.25 0.13 4.81

9900 0.13 4.81 0.12 3.83 0.12 3.83 0.14 6.25 0.11 2.63 0.14 6.25

9970 0.13 4.37 0.22 232.69 0.13 4.37 0.11 2.25 0.12 2.92 0.11 2.25

10060 0.13 4.37 0.12 3.83 0.12 4.00 0.14 6.25 0.12 3.83 0.13 4.37

10100 0.13 4.81 0.12 3.14 0.13 4.81 0.12 3.14 0.11 1.95 0.13 4.81

10130 0.13 4.81 0.12 3.14 0.13 4.81 0.12 3.14 0.11 1.95 0.13 4.37

10310 0.14 6.25 0.16 19.45 0.13 4.18 0.13 4.81 0.13 4.81 0.16 19.45

10370 0.12 3.14 0.14 8.52 0.14 8.52 0.13 4.81 0.15 13.40 0.15 11.38

10470 0.16 19.45 0.14 8.52 0.12 3.14 0.13 4.37 0.22 232.69 0.13 5.32

10500 0.13 4.81 0.11 2.25 0.26 1477.78 0.11 2.12 0.13 4.81 0.11 2.25

Well Name

Sand Layer Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md)

9460 0.14 7.68 0.19 77.81 0.10 1.24 0.14 7.08 0.11 1.95 0.14 8.50

9520 0.15 11.54 0.22 199.03 0.16 16.56 0.11 2.08 0.10 1.34 0.12 2.76

9540 0.14 8.08 0.16 21.38 0.11 2.05 0.12 2.76 0.12 2.90 0.11 2.25

9570 0.11 2.25 0.13 4.79 0.10 1.45 0.12 2.70 0.12 3.28 0.12 3.20

9620 0.14 6.61 0.18 38.43 0.12 2.91 0.13 6.05 0.10 1.40 0.12 2.82

9670 0.14 7.74 0.16 21.19 0.10 1.38 0.12 3.54 0.12 2.85 0.12 4.02

9710 0.13 5.28 0.26 1084.88 0.11 2.32 0.11 1.84 0.14 7.58 0.11 1.94

9740 0.22 282.02 0.19 57.30 0.11 2.33 0.11 2.34 0.10 1.40 0.12 3.06

9800 0.18 37.14 0.20 107.93 0.13 5.26 0.11 2.40 0.12 3.34 0.12 2.69

9900 0.15 13.86 0.13 5.15 0.14 7.39 0.13 5.95 0.10 1.37 0.12 3.79

9970 0.13 5.04 0.17 33.11 0.11 2.55 0.11 2.35 0.12 3.74 0.12 4.02

10060 0.12 3.76 0.12 3.45 0.10 1.68 0.12 3.27 0.10 1.36 0.12 3.23

10100 0.21 122.09 0.12 3.10 0.11 2.44 0.11 2.06 0.11 2.57 0.12 3.71

10130 0.13 4.98 0.13 4.07 0.11 2.25 0.11 2.41 0.14 6.23 0.12 3.18

10310 0.14 6.84 0.13 4.67 0.13 6.02 0.13 4.07 0.15 11.64 0.13 4.98

10370 0.14 6.81 0.17 24.80 0.12 2.97 0.11 1.99 0.10 1.68 0.15 11.30

10470 0.22 245.11 0.22 236.92 0.12 3.79 0.10 1.37 0.12 2.99 0.10 1.55

10500 0.13 5.13 0.14 6.79 0.15 9.70 0.14 6.21 0.12 3.47 0.12 3.38

D-4-14 D-9-8 D-9-2 D-9-10 D-5-7 D-9-11

D-9-6 D-4-15 D-10-5 D-10-12 D-4-16 D-9-3



48 

 

 

Figure 28. CO2 Gas mole fraction at the end of the injection 

 

Figure 29. CO2 Gas mole fraction after 10 years of monitoring 
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Permeability Realizations 

Following correlation between porosity and permeability was used by ARI, In order to generate 

the permeability map used in their model.  

k = 0.020e0.425∅               

The WVU team later added another correlation between porosity and permeability in order to 

make the trend lines more representative of the actual data. This new correlation is shown below. 

And the results of these correlations as trend lines and actual data is shown in Figure 30. 

k = 0.013e0.377∅ 

 

Figure 30.The porosity-permeability correlation proposed by ARI 

 

Base on the data presented in this figure, a large number of data points fall outside of the trend 

lines; moreover several other data points do not follow the trends identified by the correlations 

presented above. In order to rectify this, four different clusters were identified and ranked as the 
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best to the worst rock types. The correlation between the porosity and permeability for the four 

different realizations were defined. (Figure 31). The interpretation of the well logs and calculation 

of porosity and permeability based on the cluster analyses shown in Figure 31 are listed in Table 

9 and Table 10. 

 

 

Figure 31.The porosity-permeability correlation in different rock types 
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Table 9. Log Interpretation results for Citronelle 

 

 

 

 

 

Sand Layer Depth Range(ft) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md)

9460 9444-9476 0.116 3.931 0.124 6.620 0.130 5.913 0.116 6.179 0.105 2.241 0.131 5.955 0.121 7.143

9520 9513-9528 0.125 4.498 0.106 2.289 0.146 16.210 0.127 6.183 0.117 3.248 0.171 37.120 0.119 4.409

9540 9534-9549 0.108 3.103 0.116 4.747 0.128 5.578 0.142 10.217 0.098 1.302 0.142 9.574 0.093 1.081

9570 9562-9584 0.134 6.618 0.142 29.493 0.101 1.758 0.089 0.879 0.091 0.983 0.121 6.299 0.092 1.003

9620 9596-9638 0.139 12.302 0.104 5.651 0.125 5.696 0.148 23.149 0.117 6.016 0.110 2.470 0.101 3.400

9670 9660-9679 0.107 3.596 0.129 5.625 0.111 2.893 0.108 2.825 0.123 4.472 0.159 19.662 0.119 6.094

9710 9695-9717 0.124 5.337 0.092 1.102 0.090 1.113 0.080 0.636 0.089 0.927 0.113 2.745 0.107 3.583

9740 9730-9748 0.123 5.402 0.114 3.593 0.141 14.163 0.121 5.512 0.109 2.140 0.116 3.721 0.104 1.976

9800 9775-9806 0.098 2.653 0.116 4.090 0.108 3.254 0.115 6.712 0.101 2.166 0.123 5.540 0.103 3.122

9900 9886-9903 0.123 4.509 0.101 1.468 0.133 5.723 0.116 3.742 0.101 1.553 0.128 4.661 0.095 1.320

9970 9954-9977 0.097 1.527 0.136 6.550 0.102 1.884 0.108 2.650 0.098 1.392 0.135 7.043 0.106 2.898

10060 10055-10069 0.117 3.129 0.123 4.232 0.098 1.339 0.090 1.028 0.110 2.339 0.133 5.652 0.129 5.113

10100 10099-10113 0.088 0.891 0.106 1.922 0.132 5.702 0.114 3.293 0.120 3.373 0.137 7.099 0.132 5.493

10130 10121-10134 0.113 2.816 0.111 2.672 0.110 2.635 0.120 3.250 0.112 2.544 0.125 4.102 0.143 8.732

10310 10302-10318 0.128 4.696 0.147 11.876 0.106 1.850 0.127 4.477 0.138 7.413 0.118 3.018 0.137 6.751

10370 10362-10381 0.135 6.495 0.101 1.489 0.149 11.878 0.150 11.747 0.100 2.304 0.133 6.113 0.145 9.921

10470 10454-10484 0.091 1.646 0.093 1.236 0.131 5.529 0.124 5.966 0.122 3.742 0.133 5.873 0.087 1.053

10500 10491-10508 0.137 7.292 0.136 7.276 0.111 2.530 0.130 4.935 0.116 2.874 0.095 1.199 0.129 5.162

Sand Layer Depth Range(ft) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md)

9460 9444-9476 0.123 7.140 0.108 3.944 0.114 5.003 0.165 27.138 0.096 1.442 0.118 4.439 0.123 4.765

9520 9513-9528 0.103 2.516 0.101 1.570 0.128 8.996 0.147 10.560 0.090 1.375 0.113 2.715 0.099 1.377

9540 9534-9549 0.116 4.239 0.092 1.253 0.095 1.280 0.154 13.788 0.081 0.635 0.089 0.874 0.098 1.325

9570 9562-9584 0.092 1.086 0.150 15.780 0.101 2.110 0.141 8.076 0.100 1.755 0.094 1.121 0.146 11.307

9620 9596-9638 0.102 2.097 0.107 2.569 0.151 22.722 0.119 4.484 0.106 6.768 0.112 3.076 0.133 10.216

9670 9660-9679 0.143 10.573 0.103 2.617 0.122 7.468 0.125 4.668 0.122 7.249 0.114 3.187 0.104 2.505

9710 9695-9717 0.141 10.042 0.090 1.261 0.093 1.804 0.100 1.391 0.095 1.579 0.108 2.822 0.116 4.414

9740 9730-9748 0.082 0.688 0.136 6.755 0.086 0.796 0.101 1.456 0.087 0.877 0.086 0.832 0.092 1.705

9800 9775-9806 0.114 5.196 0.094 1.232 0.124 4.500 0.105 1.967 0.105 3.135 0.109 3.792 0.134 6.891

9900 9886-9903 0.116 3.139 0.126 4.256 0.085 1.113 0.112 2.347 0.100 1.540 0.106 1.885 0.082 0.787

9970 9954-9977 0.104 2.576 0.130 5.054 0.128 4.586 0.121 3.935 0.086 1.265 0.100 1.615 0.094 1.494

10060 10055-10069 0.121 3.418 0.116 2.950 0.118 3.072 0.114 2.535 0.098 1.568 0.108 2.310 0.098 1.498

10100 10099-10113 0.102 1.671 0.094 1.576 0.098 1.425 0.098 1.267 0.094 1.302 0.108 2.370 0.091 1.108

10130 10121-10134 0.115 2.859 0.102 2.066 0.119 3.263 0.134 9.475 0.085 0.928 0.121 3.556 0.097 1.567

10310 10302-10318 0.146 11.499 0.145 9.902 0.115 2.692 0.101 1.565 0.102 92.269 0.088 0.922 0.115 3.575

10370 10362-10381 0.156 16.247 0.103 2.369 0.125 4.235 0.095 1.147 0.090 1.711 0.109 2.427 0.136 6.865

10470 10454-10484 0.093 1.818 0.119 3.268 0.105 2.102 0.102 1.662 0.090 1.227 0.103 2.122 0.117 3.085

10500 10491-10508 0.125 4.728 0.114 2.696 0.117 3.260 0.117 3.502 0.070 0.406 0.079 0.575 0.101 1.549

Sand Layer Depth Range(ft) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md)

9460 9444-9476 0.119 5.304 0.119 6.876 0.115 3.989 0.132 15.867 0.083 0.705

9520 9513-9528 0.116 3.903 0.155 14.628 0.120 4.667 0.101 2.115 0.085 0.763

9540 9534-9549 0.131 6.561 0.092 1.036 0.118 4.241 0.155 15.834 0.121 4.527

9570 9562-9584 0.096 1.855 0.131 13.590 0.097 2.084 0.117 3.203 0.103 2.250

9620 9596-9638 0.130 7.717 0.102 2.977 0.105 2.078 0.125 5.830 0.092 1.448

9670 9660-9679 0.113 3.481 0.097 1.661 0.122 3.958 0.123 4.008 0.093 1.140

9710 9695-9717 0.073 0.455 0.115 3.453 0.127 6.185 0.095 1.256 0.107 2.329

9740 9730-9748 0.090 1.096 0.086 0.796 0.136 6.523 0.131 6.429 0.099 1.573

9800 9775-9806 0.103 2.799 0.101 2.204 0.115 3.908 0.117 3.537 0.107 2.576

9900 9886-9903 0.105 2.428 0.136 6.653 0.126 4.468 0.118 3.325 0.087 0.832

9970 9954-9977 0.105 1.886 0.132 5.619 0.108 2.806 0.116 3.337 0.113 3.334

10060 10055-10069 0.086 0.894 0.126 4.333 0.081 0.698 0.131 5.314 0.121 3.412

10100 10099-10113 0.117 2.939 0.116 3.211 0.127 4.570 0.124 3.962 0.107 2.038

10130 10121-10134 0.124 3.972 0.126 5.558 0.109 2.133 0.113 2.481 0.117 3.000

10310 10302-10318 0.143 8.856 0.110 2.307 0.122 3.717 0.137 7.314 0.141 8.235

10370 10362-10381 0.138 7.235 0.117 3.425 0.128 4.603 0.108 2.323 0.102 2.260

10470 10454-10484 0.104 2.556 0.119 3.775 0.108 3.228 0.096 1.930 0.110 2.256

10500 10491-10508 0.125 4.281 0.083 0.698 0.093 1.065 0.138 7.265 0.128 5.115

Well Name D-9-4

D-5-1

D-6-5 D-9-1 B-32-10

D-8-7

D-9-9

D-5-16 D-17-11 D-9-7 D-9-15

1127EL 1128El

1132El 1189EL 1174EL 1182EL 1149El

Well Name

994EL

Log Number 1075EL 1119EL 1120EL 1125El

D-8-1 D-5-9

Log Number 

1126EL

Well Name D-18-16 D-8-2 D-16-4 D-9-5

1047ELLog Number 1057EL 1059EL

B-33-13 D-10-4

1190EL 1204EL 1211EL
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Table 10. Log Interpretation results for Citronelle 

 

 

 

 

 

 

Sand Layer Depth Range(ft) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md)

9460 9444-9476 0.119 16.772 0.154 39.312 0.128 6.725 0.122 17.825 0.117 3.756 0.135 7.030 0.092 1.207

9520 9513-9528 0.084 1.469 0.112 7.820 0.135 6.775 0.122 8.601 0.088 1.232 0.169 26.918 0.112 4.423

9540 9534-9549 0.112 4.143 0.068 0.451 0.134 7.217 0.137 8.620 0.065 0.319 0.147 10.686 0.102 2.006

9570 9562-9584 0.117 5.100 0.129 7.788 0.142 9.347 0.089 2.659 0.085 2.970 0.148 11.509 0.106 2.708

9620 9596-9638 0.084 3.406 0.108 5.761 0.098 2.000 0.073 1.457 0.116 11.014 0.117 3.454 0.140 16.643

9670 9660-9679 0.075 0.929 0.094 3.892 0.112 2.448 0.081 2.492 0.096 2.173 0.093 2.096 0.083 0.700

9710 9695-9717 0.115 4.246 0.142 8.482 0.128 4.990 0.064 0.316 0.113 2.908 0.067 0.342 0.097 2.091

9740 9730-9748 0.140 7.887 0.065 0.321 0.103 2.600 0.079 1.135 0.070 0.467 0.070 0.393 0.077 0.531

9800 9775-9806 0.107 2.641 0.084 1.523 0.125 6.195 0.075 0.714 0.098 3.274 0.097 1.898 0.124 5.173

9900 9886-9903 0.093 1.898 0.118 3.651 0.115 3.013 0.062 0.277 0.110 2.224 0.070 0.511 0.099 2.331

9970 9954-9977 0.113 2.857 0.116 3.950 0.102 1.634 0.086 1.608 0.100 1.441 0.118 4.207 0.119 3.524

10060 10055-10069 0.128 4.709 0.130 5.015 0.129 4.920 0.130 5.619 0.119 3.494 0.078 0.825 0.118 2.977

10100 10099-10113 0.135 6.248 0.117 4.344 0.098 1.377 0.100 1.420 0.147 10.468 0.125 4.119 0.109 2.244

10130 10121-10134 0.085 1.478 0.128 4.771 0.110 2.137 0.113 2.844 0.141 8.321 0.133 5.663 0.101 1.558

10310 10302-10318 0.057 0.227 0.145 9.544 0.127 4.474 0.101 2.627 0.114 6.923 0.100 2.080 0.082 0.712

10370 10362-10381 0.092 1.985 0.143 8.737 0.111 2.432 0.143 9.141 0.067 0.402 0.126 4.910 0.138 7.148

10470 10454-10484 0.088 1.237 0.076 0.994 0.106 2.544 0.087 1.643 0.090 2.306 0.138 9.602 0.124 4.893

10500 10491-10508 0.121 3.468 0.083 1.543 0.101 3.325 0.135 6.324 0.091 2.430 0.110 2.403 0.115 2.754

Sand Layer Depth Range(ft) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md)

9460 9444-9476 0.135 7.030 0.175 39.115 0.091 1.067 0.128 9.712 0.121 4.788 0.136 12.735 0.158 21.412

9520 9513-9528 0.169 26.918 0.138 9.736 0.102 2.498 0.140 13.511 0.110 2.655 0.132 6.232 0.112 2.694

9540 9534-9549 0.147 10.686 0.175 35.558 0.084 0.730 0.154 14.663 0.114 3.207 0.083 0.959 0.129 5.334

9570 9562-9584 0.148 11.509 0.139 7.671 0.110 7.794 0.146 10.130 0.093 1.088 0.079 0.679 0.115 3.549

9620 9596-9638 0.117 3.454 0.116 5.276 0.101 2.789 0.107 3.993 0.111 4.084 0.095 2.591 0.142 9.361

9670 9660-9679 0.093 2.096 0.095 1.115 0.112 4.536 0.086 0.802 0.087 0.855 0.122 5.201 0.151 14.620

9710 9695-9717 0.067 0.342 0.156 26.523 0.106 2.737 0.136 23.358 0.084 0.749 0.104 2.173 0.123 3.769

9740 9730-9748 0.070 0.393 0.115 4.456 0.093 1.518 0.094 1.943 0.106 2.061 0.116 3.931 0.150 12.092

9800 9775-9806 0.097 1.898 0.147 14.127 0.112 3.221 0.087 1.035 0.103 2.091 0.097 2.115 0.132 6.289

9900 9886-9903 0.070 0.511 0.102 1.819 0.085 0.890 0.109 2.152 0.087 0.858 0.080 0.656 0.080 0.768

9970 9954-9977 0.118 4.207 0.142 9.052 0.100 1.897 0.120 3.441 0.127 5.278 0.135 6.273 0.123 4.121

10060 10055-10069 0.078 0.825 0.092 0.984 0.081 0.770 0.143 9.159 0.109 2.325 0.093 1.537 0.113 2.533

10100 10099-10113 0.125 4.119 0.082 0.729 0.127 4.511 0.096 1.228 0.120 3.323 0.122 3.627 0.117 3.038

10130 10121-10134 0.133 5.663 0.109 2.585 0.081 0.658 0.126 4.733 0.116 2.767 0.123 3.903 0.110 2.286

10310 10302-10318 0.100 2.080 0.107 2.198 0.136 6.720 0.127 4.513 0.147 11.009 0.118 3.241 0.146 11.328

10370 10362-10381 0.126 4.910 0.106 2.175 0.137 7.032 0.140 7.833 0.141 8.517 0.127 4.547 0.145 10.076

10470 10454-10484 0.138 9.602 0.110 2.390 0.127 7.016 0.128 5.146 0.104 2.399 0.099 2.317 0.108 3.275

10500 10491-10508 0.110 2.403 0.104 2.286 0.097 1.251 0.123 3.924 0.143 8.699 0.122 3.788 0.108 2.203

Sand Layer Depth Range(ft) Ф K(md) Ф K(md) Ф K(md) Ф K(md) Ф K(md)

9460 9444-9476 0.116 4.943 0.142 10.218 0.113 3.427 0.066 2.412 0.160 19.354

9520 9513-9528 0.118 3.392 0.138 7.359 0.121 4.234 0.068 0.669 0.091 1.184

9540 9534-9549 0.078 0.547 0.132 5.642 0.124 4.206 0.044 0.217 0.086 0.807

9570 9562-9584 0.085 0.761 0.137 8.641 0.110 2.462 0.086 0.800 0.136 8.258

9620 9596-9638 0.096 2.108 0.150 15.549 0.107 2.730 0.076 0.740 0.103 3.046

9670 9660-9679 0.114 4.963 0.125 4.353 0.136 6.668 0.062 0.389 0.164 21.921

9710 9695-9717 0.109 2.839 0.125 4.326 0.079 0.585 0.051 0.176 0.076 0.509

9740 9730-9748 0.072 0.440 0.119 3.494 0.113 3.353 0.056 0.303 0.108 3.344

9800 9775-9806 0.124 5.685 0.125 4.160 0.101 2.081 0.077 0.784 0.107 3.261

9900 9886-9903 0.081 0.676 0.107 1.890 0.093 1.139 0.045 0.136 0.114 2.968

9970 9954-9977 0.116 4.051 0.107 2.055 0.115 2.698 0.055 0.303 0.123 4.120

10060 10055-10069 0.114 2.575 0.110 2.380 0.091 1.092 0.068 0.488 0.131 5.308

10100 10099-10113 0.096 1.668 0.108 2.004 0.113 2.620 0.043 0.126 0.117 3.175

10130 10121-10134 0.112 2.386 0.120 3.556 0.110 2.134 0.039 0.107 0.129 4.886

10310 10302-10318 0.086 1.278 0.131 5.475 0.127 4.690 0.053 0.190 0.130 5.133

10370 10362-10381 0.126 4.293 0.128 4.693 0.146 10.123 0.047 0.148 0.126 5.131

10470 10454-10484 0.129 5.641 0.117 3.004 0.102 1.995 0.044 0.137 0.078 0.595

10500 10491-10508 0.110 2.329 0.108 2.033 0.130 5.207 0.092 1.007 0.133 6.034

Log Number 

Log Number 

Log Number 

1044EL

969EL 990EL 991EL 1014EL 1020EL

1032EL888EL 913EL 944EL 948EL 967EL 968EL

850EL 778EL 833EL 873EL 886EL 888EL
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NUMERICAL MODELING (PERMEABILITY REALIZATIONS) 

The original simulation model was modified based on the derived porosity and permeability from 

the well logs.  Preliminary results of the simulation runs are shown in the following figures. The 

new (revised) porosity and permeability distributions are shown in Figure 32 and Figure 33, 

respectively. 

The distribution of injected CO2 into saline formation is initially dominated by gravity segregation 

which is related to the permeability anisotropy of the saline formation. 

The CO2 mole fraction at the end of injection period in both heterogeneous and homogeneous 

models is shown in Figure 34 and Figure 35, respectively. Please note the major differences in 

CO2 plum distributions in the reservoir as the heterogeneities mentioned above are introduced in 

the model. Figure 36 and Figure 37 illustrate CO2 mole fraction after 30 years of monitoring in 

both models. The permeability in homogenous model is higher compared to the heterogeneous 

model, causing more rapid dispersion of injected CO2 over a wider area. This, in turn will cause 

wider plume and higher CO2 concentration in the homogenous model. 

Since CO2 is more mobile than brine, in the homogenous formation model, viscous fingering is 

dominant while in the heterogeneous formation gravity segregation has more substantial impact. 

Figure 37 demonstrates the change in the CO2 mole fraction over 30 years of monitoring in the 

heterogeneous model.  

Due to the density differences between CO2 and brine, buoyancy force has a significant influence 

on the CO2 gas distribution in the reservoir and causes the CO2 plume to migrate upward. This 

can be clearly seen in the simulation model results. 

Gas saturation in the area of review (AoR) after the injection period and at the end of the 

monitoring period is demonstrated in Figure 39 through Figure 42 . The layers with the higher 

permeable in the homogenous model have more gas saturation. The layers with the lower 

permeability in the heterogeneous model have smaller plume extent and higher saturation due to 

lower mobility of the CO2 Plume. The homogenous model with its higher permeability has a larger 

plume extent and lower saturation due to rapid dispersal of the gas from the injection zone. The 

change in gas saturation over the 30 years of monitoring period is shown in Figure 43. 
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Figure 32. New and revised porosity distribution 

 

Figure 33. New and revised permeability distribution 
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Figure 34. CO2 mole fraction at the end of the injection period in heterogeneous model 

 

Figure 35. CO2 mole fraction at the end of the injection period in homogenous model 
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Figure 36. CO2 Gas mole fraction after 30 years of monitoring in heterogeneous model 

 

Figure 37. CO2 Gas mole fraction after 30 years of monitoring in homogenous model 



57 

 

 

Figure 38. Change in CO2 Gas mole fraction over 30 years of monitoring in heterogeneous 

model 

 

Figure 39. Gas Saturation at the end of the injection in heterogeneous model 
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Figure 40. Gas Saturation at the end of the injection in homogenous model 

 

Figure 41. Gas saturation after 30 years of monitoring in heterogeneous model 
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Figure 42. Gas Saturation after 30 years of monitoring in homogenous model 

 

Figure 43. Change in gas saturation over 30 years of monitoring in heterogeneous model 
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The Area of Review (AoR) is defined as the farthest reach of the tangible CO2 plume. This value 

has been reported to be 1,200 ft. from the injection well. Based on the result of our models 

(homogeneous and heterogeneous models), CO2 will be extent approximately 1,800 ft. from the 

proposed injection well. This has been demonstrated in Figure 44. 

 

 

Figure 44. The distribution of CO2 around the injection well D-9-7 in both heterogeneous and 

homogenous models. 

 

The objective of this section of the report was to demonstrate the issues that the WVU team had 

identified with the original model. The conclusion of the study up to this point was that in order to 

have a realistic view of distribution of CO2 in this formation, a more serious effort need to be put 

forward in order to develop a robust numerical model for this project.  

Given the WVU team’s experience with the oil and gas industry, and the state-of-the-art static and 

dynamic model development, it became obvious that the existing numerical model will not pass 

the potential scrutiny by the oil and gas professionals. Therefore, to base this project on a solid 

foundation, the WVU team decided to develop a new and robust static model and use it as the 

basis for the dynamic flow model. What is covered in the next several sections is a summary of 

the efforts that resulted in the numerical model developed by the WVU team for this project for 

the Citronelle field.  
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GEOLOGICAL MODEL DEVELOPMENT 

In the original model the resistivity logs were used to calculate porosity. Then the porosity-

permeability correlations were utilized to generate the permeability maps.  Using induction log to 

calculated porosity results in large differences in porosity and consequently permeability vales. 

Results of such calculations for the injection well D-9-7 are shown in Table 11.  

This problem were investigated even further by incorporating the difference in the porosity and 

permeability calculations into multiple reservoir realizations. The differences between these 

realizations are shown in Table 12. The porosity and permeability maps based on the log data for 

different realizations were created and used to modify the simulation model. 

Table 11. Porosity and permeability values for the injection well D-9-7 based on different logs 

 

Table 12. Porosity and permeability for different reservoir realizations 

 

Well Name

Sand Layer Depth Range(ft) Ф K(md) Ф K(md)

9460 9444-9476 0.10 1.442 0.22 229.976

9520 9513-9528 0.09 1.375 0.20 98.295

9540 9534-9549 0.08 0.635 0.19 64.263

9570 9562-9584 0.10 1.755 0.18 42.013

9620 9596-9638 0.11 6.768 0.21 150.352

9670 9660-9679 0.12 7.249 0.16 17.957

9710 9695-9717 0.09 1.579 0.19 64.263

9740 9730-9748 0.09 0.877 0.18 42.013

9800 9775-9806 0.10 3.135 0.18 42.013

9900 9886-9903 0.10 1.540 0.18 42.013

9970 9954-9977 0.09 1.265 0.18 42.013

10060 10055-10069 0.10 1.568 0.19 64.263

10100 10099-10113 0.09 1.302 0.19 64.263

10130 10121-10134 0.09 0.928 0.18 42.013

10310 10302-10318 0.10 1.600 0.19 64.263

10370 10362-10381 0.09 1.711 0.18 42.013

10470 10454-10484 0.09 1.227 0.19 64.263

10500 10491-10508 0.07 0.406 0.19 64.263

Resistivity log Induction Log

D-9-7

log

D-9-7

Realization Porosity Log Permeability Correlation

R1 Homogenous Homogenous

R2 Resistivity 28.8185 * { Porosity } ** 1.1063

R3 Resistivity 0.0429 * EXP ( 37.3657 * { Porosity }  )

R4 Resistivity 5 * EXP10 ( 6 ) * { Porosity }  ** 7.682

R5 Resistivity 1.2582 * EXP ( 27.814 * { Porosity }  )

R6 Induction 28.8185 * { Porosity } ** 1.1063

R7 Induction 0.0429 * EXP ( 37.3657 * { Porosity }  )

R8 Induction 5 * EXP10 ( 6 ) * { Porosity }  ** 7.682

R9 Induction 1.2582 * EXP ( 27.814 * { Porosity }  )
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Based on the geological information which is provided in the report (SECARB 2010), two cross 

sections A-A’ and B-B’ had been considered for log analysis in order to build the original geological 

model. The wells which are located on these two cross sections are shown in Figure 45 and the 

target well in both cross sections is injection well D-9-7.  

By going through the well logs, it was noticed that the top and thickness of the sand layers in the 

original simulation model do not match those from the well logs. As it is shown in Figure 46, the 

sand layers in the injection well D-9-7 are picked based on the highest resistivity and highest SP 

values. Using the same logic in other wells located on the cross sections, logs and geological 

model are not compatible with each other.  

To demonstrate this problem clearly, the top and the bottom of first (from above) five sand layers 

in the geological model, Table 13, is displayed on the corresponding log in Figure 47 and Figure 

48 for well D-9-1 and D-4-14 respectively. Well D-4-14 is located near the injection well on cross 

section A-A’ and well D-9-1 has the same position on cross section B-B’. 

 

 

Figure 45. The location of cross section A-A’ and B-B’ and the wells on them, ARI report7 
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Figure 46. The sand layers of injection well D-9-7 and its corresponding well log, the report 

(SECARB 2010). 
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Table 13. Top and Bottom of well D-9-1 and D-4-14 based on Geological Model 

 

 

top bottom top bottom

9312.9 9323.6 9226.5 9231.6

9323.6 9334.3 9231.6 9236.7

9334.3 9345 9236.7 9241.8

9377.6 9380.767 9281.6 9287.567

9380.767 9383.933 9287.567 9293.533

9383.933 9387.1 9293.533 9299.5

9399.8 9403.9 9304 9308.433

9403.9 9408 9308.433 9312.867

9408 9412.1 9312.867 9317.3

9437.7 9440.633 9326.7 9328.733

9440.633 9443.567 9328.733 9330.767

9443.567 9446.5 9330.767 9332.8

9468.8 9478.167 9349.8 9370.167

9478.167 9487.533 9370.167 9390.533

9487.533 9496.9 9390.533 9410.9

D-9-1 D-4-14
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Figure 47. The location of top five sand layers on the resistivity and SP log based on the 

geological model, Well D-9-1 
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Figure 48. The location of top five sand layers on the resistivity and SP log based on the 

geological model, Well D-4-14 
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The core and well log data for well D-9-8 were obtained. This well is considered as the observation 

well and is close to the injection well. The new density log was interpreted for this well and was 

compared to the one that was already available. The latter interpreted values are different from 

the former ones (Table 14). The top and bottoms are not matching with the geological model 

either. The information from this well can be included in the previous maps in order to modify the 

top and thickness distribution. 

Considering the aforementioned observations, a new geological model was built. This new WVU 

geological model honors all the information obtained from the well log and the cores. 

 

Table 14. Porosity based on Resistivity and Induction log and Density Porosity for well D-9-8 

 

new log new log

top bottom φ(resistivity) φ(Induction) Dendity Porosity top bottom φ(resistivity) φ(Induction) Dendity Porosity

9300.5 9314.1 0.1357 0.1534 0.2227 9648.2 9658.1 0.1160 0.1596 0.1847

9314.1 9327.8 0.1487 0.1597 0.1217 9658.1 9667.9 0.1769 0.2139 0.1658

9327.8 9341.4 0.1524 0.1787 0.1986 9752.7 9759.1 0.0892 0.1711 0.1868

9359.2 9363.0 0.1038 0.1847 0.1860 9759.1 9765.6 0.0809 0.1774 0.1659

9363.0 9366.8 0.0864 0.1877 0.1867 9765.6 9772.0 0.0755 0.1669 0.2010

9366.8 9370.6 0.0866 0.1701 0.2303 9822.8 9829.9 0.1214 0.1313 0.2719

9391.2 9399.5 0.1170 0.1986 0.2593 9829.9 9836.9 0.1280 0.1272 0.2313

9399.5 9407.9 0.0964 0.2047 0.2095 9836.9 9844.0 0.1263 0.1237 0.2218

9407.9 9416.2 0.1011 0.2272 0.2242 9925.8 9929.3 0.1300 0.1259 0.2391

9432.1 9436.0 0.1030 0.3135 0.2292 9929.3 9932.9 0.1282 0.1313 0.1552

9436.0 9439.9 0.1492 0.3620 0.2121 9932.9 9936.4 0.1332 0.1578 0.1444

9439.9 9443.8 0.0997 0.1967 0.3000 9967.7 9969.7 0.1136 0.1745 0.1215

9462.4 9476.5 0.1535 0.1470 0.1798 9969.7 9971.6 0.1015 0.1785 0.1212

9476.5 9490.6 0.1347 0.1941 0.1266 9971.6 9973.6 0.0982 0.1765 0.1170

9490.6 9504.7 0.0952 0.1910 0.1858 9971.4 9972.9 0.0977 0.1781 0.2020

9503.6 9506.8 0.0914 0.2218 0.2053 9972.9 9974.4 0.0987 0.1746 0.1926

9506.8 9510.0 0.0931 0.2138 0.2059 9974.4 9975.9 0.0985 0.1734 0.1480

9510.0 9513.2 0.0854 0.2082 0.2111 10159.2 10162.3 0.0966 0.1464 0.1144

9561.8 9571.6 0.1415 0.1489 0.2003 10162.3 10165.3 0.0869 0.1242 0.4468

9571.6 9581.4 0.1141 0.2218 0.2591 10165.3 10168.4 0.0805 0.1178 0.2384

9581.4 9591.2 0.1009 0.2569 0.2294 10231.6 10241.3 0.1319 0.1425 0.0685

9599.0 9605.2 0.0829 0.1968 0.2419 10241.3 10251.1 0.1057 0.1590 0.2492

9605.2 9611.5 0.1074 0.2922 0.2542 10251.1 10260.8 0.1177 0.1291 0.2613

9611.5 9617.7 0.1150 0.2251 0.2101 10324.3 10341.2 0.1279 0.1374 0.1252

9638.4 9648.2 0.1499 0.1871 0.1449 10341.2 10358.2 0.1153 0.1755 0.1336

10358.2 10375.1 0.1044 0.1438 0.1230

D-9-8 D-9-8



68 

 

WVU NUMERICAL MODELING BASED ON POROSITY LOGS 

With incorporating the data obtained from well log interpretation, a vertically and laterally 

heterogeneous model was generated that honored all the detail information extracted from a large 

number of wells. The original simulation model was modified based on the derived porosity and 

permeability from the resistivity logs for nine different reservoir realizations.  

Preliminary results of the simulation runs are shown in the following figures. The porosity and 

permeability distributions are shown in Figure 49 to Figure 57. 

 
 

Figure 49. Porosity Distribution, Realization case number 1 
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Figure 50. Porosity Distribution, Realization case number 2 

 

Figure 51. Porosity Distribution, Realization case number 3 
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Figure 52. Porosity Distribution, Realization case number 4 

 

Figure 53. Porosity Distribution, Realization case number 5 
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Figure 54. Porosity Distribution, Realization case number 6 

 

Figure 55. Porosity Distribution, Realization case number 7 
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Figure 56. Porosity Distribution, Realization case number 8 

 

Figure 57. Porosity Distribution, Realization case number 9 

 

As mentioned before, the Area of Review is defined as the farthest reach of the tangible CO2 

plume. This value has been reported to be 1,200 ft. from the injection well. Based on the results 
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of the WVU models (9 realizations), CO2 will reach up to  a distance of approximately 1,800 ft. 

from the proposed injection well in the model with highest amount of injected CO2. This has been 

demonstrated in Figure 58.  The possibility of CO2 injection into reservoir has been studied in 

these cases as well. The result is illustrated in Figure 59.  

 

 

Figure 58. The distance of CO2 extension from the injection well D-9-7 in whole nine models 

 

Figure 59. Cumulative Gas against Time for all different realization cases 
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GEOLOGICAL MODEL-SAND LAYER DEVELOPMENT 

As it was mentioned before, two cross sections A-A’ and B-B’ have been considered for log 

analysis in order to build the geological model. The wells which are located on these two cross 

sections are shown in Figure 60 and the target well in both cross sections is injection well D-9-7. 

As it was mentioned in the previous section, going through the well logs of some of the existing 

wells it was noticed that the top and thickness of the sand layers in the original simulation model 

do not match those from the well logs. Since logs and geological model were not compatible with 

each other, a new geological model was created by the WVU team. 

Geographix software was used to accomplish the building of the new WVU geological model. For 

the WVU geological model three different cross sections A-A’, B-B’ and C-C’ were considered 

(Figure 61). The injection well D-9-7 is the well which was considered as a reference well in all 

three cross sections. Figure 61 shows the location of the wells on the cross sections. 

 

Figure 60. The location of cross sections A-A’ and B-B’ and the wells on them, ARI report 
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Figure 61. The location of cross section A-A’, B-B’ and C-C' and the wells on them, WVU Model 

 

As it is shown in Figure 46, in ARI Model the sand layers in the injection well D-9-7 are picked 

based on the highest resistivity and highest SP values. The same trend and also cutoff value have 

been used to pick exactly the same layers as shown in injection well D-9-7 (Figure 63). The 

template for resistivity and SP logs for the injection well has been applied for the rest well logs. 

By going through the same procedure in other wells on cross sections, the sand layers have been 

selected and structural as well as isopach maps were created. The guide for selecting the sand 

layers in each well was finding the same pattern of resistivity and SP logs seen in the injection 

well in other wells.  

To clearly demonstrate the work that has been done, the picked sand layers on the cross sections 

A-A’, B-B’ and C-C’ are shown in Figure 64, Figure 65 and Figure 66 respectively.  

Since there is not enough information available and GR log does not exist for all the wells, in 

creating the structural map, there is no option to calculate the shaliness of each layer. Hence the 

Net to Gross thickness value in the model has been set to one. 
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Figure 62. The sand layers of injection well D-9-7 and its corresponding well log, in the SECARB 

report (SECARB 2010). 
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Figure 63. The sand layers of injection well D-9-7 and its corresponding well log, the WVU Model 
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Figure 64. Sand layers on Cross section A-A', the WVU Model 

 

Figure 65. Sand layers on Cross section B-B', the WVU Model 

 

Figure 66. Sand layers on Cross section C-C', the WVU Model 

 

The final structural maps from Geographix have been imported into CMG. The Grid top and 

thickness are shown in Figure 67 and Figure 68 . 
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Figure 67. Grid tops in WVU Model 

 

Figure 68. Grid Thickness in WVU Model 
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Upon further comparison between the models from ARI and WVU, two main differences can be 

detected; namely: reservoir thickness and geological dip angle of the reservoir. Table 15 shows 

the sand layer thickness of the wells which are located on the cross sections for both models. The 

WVU model has thicker layers and the geological dip for the WVU model is less than what came 

in the report for the ARI model. Figure 69 shows the cross plots of both reservoirs. 

 

Table 15. Reservoir Thickness at the location of the wells in ARI and WVU Models 

 

 

 

Figure 69. Geological dip of the reservoir, the WVU Model (left) and the ARI Model (right) 
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Developing Lateral Heterogeneity for the Field: New Approach 

Figure 70, shows the proposed porosity-permeability correlation provided in the report (SECARB 

2010). Based on the data shown in this figure, a large number of outliers can be detected; 

moreover many of the data points are not following the trends identified (by straight lines) in the 

figure. There are new core data of Paluxy formation from the observation well D-9-8 which can 

be added to these points as well. In order to rectify the problem of the outliers and consider new 

points, five different clusters were determined and ranked as the best to the worst rock types.  

 

 

Figure 70. The porosity-permeability correlation proposed by ARI 

 

The porosity values coming from the log and the core analysis show a good match in well D-9-8. 

However, using the porosity-permeability correlation suggested in the report (SECARB 2010) and 

shown in the above figure, large differences between permeability calculated from the correlation 

and permeability from the core data can be observed (Figure 71). This issue arise the necessity 

of having a more reliable porosity-permeability correlation. 

The new correlations between the porosity and permeability for the five different rock types were 

defined and are shown in Figure 72. 
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Figure 71. Porosity - permeability relation between core and log in D-9-8 
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Figure 72. The porosity-permeability correlation in different rock types 

 

 

WVU NUMERICAL MODEL - INITIAL RESULTS 

The induction logs have been used to interpret the porosity values. The porosity-permeability 

correlations have been utilized to generate the permeability maps using the interpreted porosity 

values. Figure 73 illustrates the porosity distribution in WVU model. 

Cartesian grid has been used for the WVU model which has the same dimension as the ARI 

model. It has the dimension of 505051 with ∆x and ∆y equal to 400 ft. The same rock and fluid 

properties have been applied to the model. 

The first concern in the reservoir model is the extension of CO2 plume originating from the injection 

well. Three simulation models, the old and the new model from ARI2 and the WVU model, were 

examined for this purpose. The results of the simulation runs are shown in the following figures. 

The CO2 extension is shown in each graph in the first sand layer which has the most CO2 

saturation. Also the CO2 distribution in whole sand layers is depicted in both models, the WVU 

and the ARI Model. 

                                                
2 A modified model was later received from ARI. The modified model is referred to the “New” ARI Model. 
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Figure 73. Porosity distribution in the WVU Model 

 

Figure 74. The extension of CO2 plume in WVU Model 
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Figure 75. Gas Saturation in the WVU Model 

 

Figure 76. The Extension of CO2 Plume in the ARI New Model 
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Figure 77. Gas Saturation in the ARI New Model 

 

Figure 78. The extension of CO2 Plume in the ARI Old Model 



87 

 

GRIDDING SENSITIVITY ANALYSIS 

Three different grid geometries were considered in order to examine the effect of the number and 

size of the grid blocks on the accuracy of the Citronelle numerical model results. The first case 

(Figure 79) consisted of 50 grid blocks in i and j directions and 51 layers in k direction.  The size 

of each coarse grid block is 400ft by 400ft. The second case consisted of 2419 coarse grids and 

729 fine girds in the AoI (Area of Investigation). The size of the each fine grid in the second case 

is 133 ft. by 133 ft. (Figure 80).  In the 3rd case (Figure 81) the model included 4 different grid 

types where the size of grids changes from totally coarse (400 * 400 ft.) to tally fine (66.7*66.7ft). 

Table 16 lists the total number of each grid type. 

 

Table 16. Number of grid blocks in case 3 

Grid Type Coarse 1 2 Fine Total 

Number of Grids 2305 384 666 900 4255 

 

 

 

Figure 79. Citronelle model with all coarse grid-blocks (case 1) 
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Figure 80. Citronelle model with coarse and fine grid-blocks (case 2) 

 

 

Figure 81. Citronelle model having 4 types of grid-blocks (case 3) 

As the number of grid blocks increases, higher spatial resolution is achieved which leads to more 

accurate results. It should be mentioned that the run time for case 1(coarse grids) is much less 

than the case with 4 types of grid blocks. Figure 82 and Figure 83 illustrate the effect of number 

of grids in CO2 saturation profile in a grid close to the injection well and at the location of 

observation well.   
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Figure 82. CO2 Saturation at the location of the observation well 

 

 

Figure 83. CO2 Saturation at the a grid close to the injection well 
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DESIGNING DIFFERENT INJECTION SCENARIOS 

One hundred different scenarios were designed based on the duration of injection and cumulative 

amount of injection. Latin Hypercube algorithm was used in order to select only 10 out of these 

scenarios as representative simulation runs. Table 17 lists the criteria for the ten selected 

simulation runs. 

 

Table 17. Different predefined parameters for 10 different simulation runs based on cumulative 

injection and duration of injection 

Base base value for injection 3 10,348 36 

Run Latin Hypercube coefficients L (years) G (MM ft3) months of injection 

1 0.2249 0.3159 3.2 19,884 38.2 

2 0.1745 0.8746 2.8 45,900 33.7 

3 0.8494 0.7186 7.9 38,635 94.4 

4 0.9301 0.1756 8.5 13,351 101.7 

5 0.0109 0.0071 1.6 5,504 19.0 

6 0.4041 0.565 4.5 31,483 54.4 

7 0.3453 0.9803 4.1 50,821 49.1 

8 0.5861 0.4749 5.9 27,288 70.7 

9 0.6851 0.6384 6.6 34,901 79.7 

10 0.7742 0.2527 7.3 16,941 87.7 

 

The injection rate increases monthly for all the scenarios. The idea behind making these runs is 

to investigate the impact of change in cumulative injected CO2 and duration of injection on the 

reservoir pressure and CO2 saturation. These characteristics are also important for the 

investigation of Area of Review (AoR) and Post Injection Site Care (PISC).  

For example a comparison between pressure and saturation distribution for the base case run 

and Run#7 is shown in Figure 84, Figure 85, Figure 86 and Figure 87. 
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Figure 84. Pressure distribution for the base case 

 

Figure 85. Pressure distribution for Run7 (L=4years, G=5E10 ft3) 
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Figure 86. Saturation distribution for the base case 

 

 

Figure 87. Saturation distribution for Run7 (L=4years, G=5E10 ft3) 
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SENSITIVITY ANALYSIS ON RESERVOIR SIMULATION RESULTS 

Initial reservoir simulation runs showed that maximum extension of the CO2 plume takes place in 

the first (top) layer and sixth layer of the reservoir. This is mainly due to the fact that these layers 

represent sands with higher permeability values, which cause CO2 to migrate further from the 

injection well. As it is shown in Figure 88, the plume area has a major diameter of about 4,933 ft, 

500 years after the end of injection. CO2 plume extension in all the target layers (vertically) is 

shown in Figure 89. 

Two Pressure Down-hole Gauges (PDG) are installed in the project’s observation well (D-9-8#2). 

This observation well is located 820 ft. to the east of the injection well. These PDGs can provide 

real time pressure and temperature measurements. The actual pressure data can be used for 

reservoir monitoring (especially CO2 leakage detection) in addition to history matching. Therefore, 

the main focus of this section of the project is to analyze the reservoir simulation pressure 

behavior at the location of the PDGs in the observation well.  

Pressure in the observation well increases from 4,400 psi to 4,727 psi (maximum pressure) during 

the 3 years of injection (from 2012 to 2015).  After the injection stops, the pressure decreases 

gradually to 4,660 psi after 1 year (stabilized pressure). Finally the reservoir pressure in the 

observation well follows a gentle decline with a stable trend from 4,660 to 4,653 psi over 500 

years (Figure 90). 

 

 

Figure 88. CO2 Plume extension in the first layer 500 years after injection 
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Figure 89. CO2 Plume extension in all layers 500 years after injection 

 

 

Figure 90. Pressure behavior in the observation well (base case model) 
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SENSITIVITY ANALYSIS 

In this section, sensitivity of the numerical simulation model to several reservoir properties is 

presented. The procedure for the sensitivity analysis is as follows:  one parameter is modified at 

a time (within a given uncertainty range) and the corresponding impacts on the reservoir pressure 

(at the observation well) and the CO2 plume extension are investigated. Reservoir parameters 

that were analyzed in this study included permeability (rock type), gas relative permeability, 

maximum residual gas saturation (hysteresis), vertical to horizontal permeability ratio, boundary 

condition, brine compressibility, and density.  

Since the CO2 plume extension shape is elliptical, the magnitude of the major and minor axis 

(Figure 88) can characterize the CO2 plum distribution after 5, 50 or 500 years of injection. 

Additionally, to analyze the reservoir pressure behavior, we focused on maximum and stabilized 

pressures (at the end of injection). 

 

PERMEABILITY 

From here forward, the contribution of each of the parameters to reservoir pressure and plume 

extension are discussed. In this reservoir model, porosity originates from maps that are generated 

by the interpretation of 40 well logs. Figure 91 shows porosity-permeability cross-plots. As was 

mentioned before in this report, in order to have a reliable porosity-permeability correlation, the 

data points are clustered into 5 different rock types, ranging from “Very Tight” to “Very Conductive” 

rock types. The initial porosity-permeability data gathered from well D-9-8 (observation well) core 

analysis, represents a “Conductive Rock Type”. This correlation was used in the base model. 

During the sensitivity analysis, “Average Rock Type” (𝐾 = 0.64𝑒21.87𝜑) and Very Conductive (𝐾 =

9.964𝑒21.74𝜑) rock types are introduced to the reservoir simulation model.  

For the “Average Rock Type”, due to the lower permeability values, CO2 injectivity decreases. 

Thus, it is not possible to inject/store the all the CO2 according to planned target (Figure 92). 

Injectivity of CO2 is the same for both “Conductive” and “Very Conductive” rock types. We can 

see the results for pressure in Figure 93. Since the stabilized reservoir pressure changes very 

gently during the 500 years after the stop of the injection; we show the results for only the 20 

years after the injection. This is done so that more details can be observed in the figure.   

By decreasing the permeability (use of “Average Rock Type”), CO2 injectivity decreases to 60% 

of the target value, resulting in reduced reservoir pressure compared to the base case. For higher 

permeability (“Very Conductive Rock Type”), stabilized reservoir pressure is 42 psi less than the 

base case, due to the higher conductivity that prevents more pressure build up. Additionally, an 

increase in the permeability, enhances the CO2 and brine displacement, which leads to larger 

CO2 plume extensions. This can be seen in Table 18. 
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Figure 91. Porosity-permeability cross-plot 

 

Figure 92. CO2 injectivity for different rock types 
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Figure 93. Reservoir pressure in observation well for different rock types 

 

Table 18. CO2 Plume extension size over time (in the first layer) for different rock types 

      Permeability 

      

Base Case 

(K=0.824e^28.18 φ) 

Average 

(K=0.64e^21.87 φ) 

Very Conductive 

(K=9.964e^21.74φ) 

CO2 Plume 

Extension 

5 Years 

after 

Injection 

Minor 

Axis(ft) 2133 1600 2533 

Major 

Axis(ft) 2400 1733 3200 

50 Years 

after 

Injection 

Minor 

Axis(ft) 2533 1867 2800 

Major 

Axis(ft) 4000 2133 4667 

500 

Years 

after 

Injection 

Minor 

Axis(ft) 2667 2133 2667 

Major 

Axis(ft) 4933 3733 5067 
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PERMEABILITY RATIO 

Typically, vertical permeability is determined as a ratio to horizontal permeability. In this study, for 

the base case model, Kv/Kh is considered to be 0.1.  For the sensitivity analysis; we assigned 

values of 0.3, 0.5, and 0.7 to the Kv/Kh. As shown in Figure 94, an increase in the Kv/Kh generates 

less pressure build up during the injection. However, after the transition time, increase in the 

stabilized pressure value, corresponds to increase in vertical to horizontal permeability ratio. Also, 

the size of the CO2 plume slightly increases for higher Kv/Kh, especially for 5 and 50 years after 

injection (Table 19). 

 

Figure 94. Reservoir pressure in observation well for different permeability ratio 

 

Table 19. CO2 Plume extension size over time (in the first layer) for different permeability ratios 

      Vertical to Horizontal Permeability Ratio 

     

Base 

Case 
Kv/Kh=0.3 Kv/Kh=0.5 Kv/Kh=0.7 

CO2 Plume 

Extension 

5 Years after 

Injection 

Minor Axis(ft.) 2133 2133 2133 2267 

Major Axis(ft.) 2400 2533 2667 2800 

50 Years after 

Injection 

Minor Axis(ft.) 2533 2667 2667 2667 

Major Axis(ft.) 4000 4133 4267 4400 

500 Years 

after Injection 

Minor Axis(ft.) 2667 2667 2800 2800 

Major Axis(ft.) 4933 4933 5067 5067 
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GAS RELATIVE PERMEABILITY CURVES 

Four different gas (CO2) relative permeability curves were generated so that two of them represent 

higher and two represent lower values of relative permeability at any given gas saturation, 

compared with the base case (Figure 95).  

It is worth mentioning that the curves with the higher gas (CO2) relative permeability values have 

lower residual gas saturations and vice versa. The results are shown in Table 20 and Figure 96. 

Higher gas (CO2) relative permeability curves represent lower residual gas saturation that can 

mobilize CO2 phase earlier (at lower gas saturations). Therefore, CO2 moves further resulting in 

larger CO2 plume extension. Additionally, higher gas relative permeability increases the stabilized 

reservoir pressure. Reversely, lower gas relative permeability leads to less extensive plume and 

lower stabilized reservoir pressure. 

 

Table 20. Plume extension size over time in the first layer for different gas relative permeability 

curves 

      Gas Relative Permeability 

      

Base 

Case 
Krg Low2 Krg Low1 Krg High1 Krg High2 

CO2 Plume 

Extension 

5 Years after 

Injection 

Minor Axis(ft.) 2133 1867 2000 2133 2400 

Major Axis(ft.) 2400 2133 2266 2533 2800 

50 Years after 

Injection 

Minor Axis(ft.) 2533 2133 2267 2667 2933 

Major Axis(ft.) 4000 2800 3467 4267 4533 

500 Years 

after Injection 

Minor Axis(ft.) 2667 2400 2533 2800 2933 

Major Axis(ft.) 4933 4133 4533 5067 5467 
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Figure 95. Different gas relative permeability curves 

 

 

Figure 96. Reservoir pressure in observation well for different gas relative permeability curves 
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MAXIMUM RESIDUAL GAS SATURATION 

Generally, drainage relative permeability curves are provided for the reservoir simulation model. 

When the maximum residual gas saturation is introduced, the imbibition gas relative permeability 

curve can be determined based on the drainage curve. During CO2 movement in the reservoir, 

water imbibition causes a portion of gas phase to be trapped in the pores (residual trapping).  

Therefore, when the maximum residual gas saturation increases, more gas is trapped, resulting 

in less mobile CO2 and consequently a smaller CO2 plume extension (Table 21). Changing 

maximum residual gas saturation has no significant impact on the reservoir pressure. 

 

Table 21. CO2 Plume extension size over time in the first layer for different maximum residual 

gas saturations 

      

Maximum Residual Gas 

Saturation(Hysteresis) 

      

Base 

Case 
0.05 0.1 0.2 

CO2 Plume 

Extension 

5 Years after 

Injection 

Minor Axis(ft) 2133 2133 2133 2133 

Major Axis(ft) 2400 2400 2400 2400 

50 Years after 

Injection 

Minor Axis(ft) 2533 2533 2533 2400 

Major Axis(ft) 4000 4000 3867 3733 

500 Years after 

Injection 

Minor Axis(ft) 2667 2800 2533 2533 

Major Axis(ft) 4933 4933 4800 4533 
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BRINE COMPRESSIBILITY 

In a closed geologic system, the amount of CO2 that can be injected into the saline reservoir is 

mostly dependent on the availability of the additional pore space that can be provided due to brine 

compressibility. Additionally, compressibility determines how much injected fluid contributes to 

reservoir pressure build up or brine volume change (also can be referred to as a change in brine 

density).  

As observed in Figure 97, an increase in brine compressibility results in lowering the maximum 

and stabilized reservoir pressures. For higher brine compressibility, injected CO2 results in more 

changes in brine density rather than generating pressure build up in the reservoir. Changing brine 

compressibility shows no considerable influence on the CO2 plume extension. 

 

 

Figure 97. Reservoir pressure in observation well for different brine compressibility 
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BRINE DENSITY 

The impact of a change in brine density on the reservoir pressure can be analyzed by considering 

the fact that denser the brine is, the less compressible it is, allowing more pressure build up during 

and after CO2 injection. As it is illustrated in Figure 98, higher brine density contributes to more 

pressure gain for the reservoir (both maximum and stabilized pressures).   

The influence of the brine density on CO2 plume extension is addressed by the driving mechanism 

that governs fluid movement in the reservoir. During CO2 injection, viscous forces makes the CO2 

move forward, and after injection is completed, buoyancy would be the dominant driving force. 

The density difference between the brine and the CO2 determines the magnitude of the buoyant 

force. Higher brine density results in greater density differential and consequently, more buoyance 

force. Therefore an increase in brine density accounts for more buoyant force to be exerted to the 

CO2 plume resulting in larger extensions (Table 22). 

 

 

Figure 98. Reservoir pressure in observation well for different brine densities 
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Table 22. CO2 Plume extension size over time (in the first layer) for different brine densities 

      Brine Density(lb/ft3) 

      Base Case 52 57 67 72 

CO2 Plume 

Extension 

5 Years after 

Injection 

Minor Axis(ft) 2133 2133 2133 2133 2133 

Major Axis(ft) 2400 2267 2400 2533 2667 

50 Years after 

Injection 

Minor Axis(ft) 2533 2533 2533 2533 2667 

Major Axis(ft) 4000 3467 3733 4133 4133 

500 Years 

after Injection 

Minor Axis(ft) 2667 2533 2667 2800 2800 

Major Axis(ft) 4933 4667 4933 4933 5066 
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BOUNDARY CONDITION 

In this section, we assume that the saline reservoir in the Paluxy formation is not a closed system. 

A Fetkovich aquifer which keeps the reservoir pressure constant at the reservoir boundaries is 

assigned to the East, East- South and East-South-West edges of the reservoir (Figure 99). As 

shown in Figure 100, reservoir pressure behavior in the closed system (no flow boundaries at all 

edges) is significantly different compared to other cases. First, maximum reservoir pressure at 

the end of injection is high. Second, the stabilized pressure reaches a constant value at higher 

pressures. 

 

Figure 99. Different locations for constant pressure boundary (Fetkovich aquifer) – Presence of 

the aquifer is indicated by the pink line next to the boundary. 

 

Figure 100. Reservoir pressure in observation well for different boundary conditions. 
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Changing the boundary condition of the reservoir from closed to constant pressure, affects 

reservoir pressure behavior significantly. When Fetkovich aquifers are placed at the edges of the 

reservoir, maximum pressure build up decreases notably. In addition, stabilized reservoir 

pressure comes back to native reservoir pressure after a while when injection is ceased. Table 

23 summarize the impact of the reservoir boundary on the plum extension. 

Table 23. Plume extension size over time (in the first layer) for different boundary conditions 

     Reservoir Boundary (Fetkovich Aquifer) 

      

Base 

Case 
East 

East+ 

South 
East+ South+ West 

CO2 Plume 

Extension 

5 Years after 

Injection 

Minor Axis(ft) 2133 2133 2267 2267 

Major Axis(ft) 2400 2400 2667 2800 

50 Years after 

Injection 

Minor Axis(ft) 2533 2533 2667 2667 

Major Axis(ft) 4000 4000 4133 4133 

500 Years 

after Injection 

Minor Axis(ft) 2667 2800 2800 2800 

Major Axis(ft) 4933 5066 5066 5066 

 

In this section, all the steps for reservoir simulation model development for CO2 injection in the 

Paluxy saline reservoir of the Citronelle Dome were explained. The model was used to predict 

storage performance behavior. Sensitivity analyses was performed to study the impacts of 

reservoir uncertainty on the reservoir pressure in the observation well and CO2 plume extension. 

The results of sensitivity analysis can be considered for risk assessment in addition to history 

matching the reservoir simulation model while actual field measurements (pressure data) are 

available. The main findings can be summarized as follows: 

- Rock type (permeability) contribution to CO2 injectivity, reservoir pressure and CO2 plume 

extension is significant. Higher permeability represents more extensive CO2 plume and 

less reservoir pressure gain. Also an increase in vertical to horizontal ratio leads to higher 

stabilized pressure and CO2 plume extension. 

- It is observed that an increase in gas (CO2) relative permeability results in a higher 

stabilized pressure and a larger CO2 plume extension. Additionally, higher maximum 

residual gas (CO2) saturation results in more residual trapping, and therefore, lower CO2 

plume extension. 

- Brine compressibility plays a role in reservoir pressure build up, especially in a closed 

geologic system. When brine compressibility rises, we observe a decrease in stabilized 

reservoir pressure. 
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- Density of brine is the parameter that affects both reservoir pressure and CO2 plume 

extension. Denser brine causes more buoyancy force, which drives CO2 to move further 

and distributes in more area. Also higher brine density values contribute to more reservoir 

pressure build up. 

- Changing the boundary condition of the reservoir from closed to constant pressure, affects 

reservoir pressure behavior significantly. When Fetkovich aquifers are placed at the edges 

of the reservoir, maximum pressure build up decreases notably. In addition, stabilized 

reservoir pressure comes back to native reservoir pressure after a while when injection is 

ceased. 
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HISTORY MATCHING OF THE RESERVOIR SIMULATION MODEL 

COLLECTING INJECTION DATA 

The objective of carbon capture and sequestration in Citronelle filed is to inject 9.48MMcf/day of 

CO2 during three years (starting at the beginning of 2012). Due to some operational constrains, 

the injection started on August 20, 2012 with the rate of 918 Mcf/day. After that the CO2 injection 

rate increased with an oscillating trend (due to operational difficulties) until the 28th of September 

when it reached to 9 MMcf/day. From that time injection stopped for 14 days and then it started 

with almost stable trend(around 9 MMcf/day) up to the 29th of November(2012). During this 

3months period, the average CO2 injection rate was about 6.26 MMcf/day (66% of the injection 

target was achieved). The daily injection rate from the beginning up to end of the November is 

shown in Figure 101. These injection rates were used in the Reservoir Simulation Model as the 

input constrains. 

 

 

Figure 101. CO2 Injection rate history 
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COLLECTION OF PRESSURE DATA (DE-NOISING AND AVERAGING)  

As explained in previous sections, high frequency real time pressure data from two PDGs are 

available on a minute by minute basis from August 17th, 2012. These high frequency and noisy 

data should be processed in order to be used for history matching.  

In order to perform the history matching, first we de-noise the pressure data by Daubechies 

wavelets 10 in five levels. The de-noising results for 1 day pressure data (9/10/2012, 1440 

records) and the entire data (103,750 records) are illustrated in Figure 102 and Figure 103. 

 

Figure 102. Original (noisy) and De-noised Pressure data in one day (9/10/2012) 

 

Figure 103. Original (noisy) and De-noised Pressure data for the entire interval 
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After preprocessing (de-noising is referred to as a pre-processing procedure) the high frequency 

pressure data it is necessary to do data summarization over time. As it was mentioned earlier the 

pressure data from the PDGs is collected every minute. Therefore, for each day 1440 data points 

are available. For the history matching of the reservoir simulation model, it is possible to run the 

model by setting each time step equal to one minute, and then try to match the actual with the 

simulated pressure data. But this approach is computationally expensive and impractical. 

Therefore the pressure data is summarized by averaging over every day. The results of real time 

pressure data on a daily basis is illustrated in Figure 104. 

 

 

Figure 104. Daily averaged Pressure data from 2 PDGs 

 

A comprehensive explanation and analysis of the de-noising process has been included in this 

report as an appendix. Details of the de-noising analysis can be found in Appendix 2.  
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IN-SITU CO2 BEHAVIOR VALIDATION - EARLY INJECTION DATA 

The reservoir simulation model was built using Computer Modeling Group’s (CMG) software 

application called “GEM”. Geological structure of the model includes 17 sand layers representing 

51 simulation layers (Figure 105). The model is a 125x125x51 models having 125 grid blocks in 

X, and Y directions and 51 layers in Z direction. ∆x and ∆y equal to 133.3 ft.  

Well logs from 40 offset wells that are within the area of study have been acquired and interpreted 

in order to generate the porosity maps. The initial model was assumed to be homogeneous with 

the absolute permeability of 460 md (for the entire reservoir). Relative permeability curves from 

the history-match of the injection pilot test at the Mississippi Test Site were used (trapped gas 

saturation was considered to be 7.5 percent). For the reservoir simulation, the injection well was 

operated with maximum bottom-hole pressure limit of 6,300 psi and an injection rate constraint. 

The density of saline water was set to 62 lb/ft3 and its compressibility was set to 3x10-6 (psi-1) at 

14.7 psi. The reference pressure was set to be 4,393 psi at 4,015 ft. 

 

 

Figure 105. The Grid tops of the reservoir Simulation Model 
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In Figure 106 pressure result at the two PDGs location from the reservoir simulation model (the 

base model) is compared to the actual data. It should be mentioned that the average Block 

pressure for the corresponding grid blocks (101,56,1 and 101,56,3) with the exact coordinates of 

the  PDGs (5109, 5108) are compared with the actual data. 

 

 

Figure 106. Comparison between actual PDG data and simulation results –base case 

 

The objective of the history matching is to modify some of the reservoir parameters and 

characteristics in the reservoir simulation model such that the gap (dis-similarity in magnitude and 

behavior) of the model results and the actual pressure measurements reduces to a minimum. The 

first parameter modified is absolute permeability. As mentioned in the previous sections of this 

report, five different clusters were determined in the porosity-permeability cross plots that 

corresponded to five rock types. The rock types were identified as the best to the worst rock types 

(Figure 107) based on the data shown in Figure 107. We had selected the “Average Rock Type” 

for the base model.  
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Figure 107. Different rock types based relationship between porosity and permeability 

Table 24. Core porosity and Permeability from Core Data 

Sand 

Name 

Thickness 

(ft) 

Porosity 

(%) 

Hz Perm 

(md) 
V Perm (md) 

9460-1 15 18 290 180 

9460-2 5 22 1,830 1,100 

9460-3 5 17 220 130 

9460-4 1 20 1,340 810 

9460-5 4 18 280 170 

9460-6 1 21 1,040 630 

9520 15 18 170 80 

9540 13 18 170 80 

9570 22 19.3 90 90 

9620 41 21.8 1,230 1,140 

9710 15 18.2 190 90 

9740 15 17 100 40 

9800 28 18.4 210 110 

9900 12 16 60 20 
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The results of the pressure data when the “Conductive Rock Type” was considered in the model 

are shown in Figure 108. From here forward, most of the simulation runs are considered to have 

the permeability values corresponding to the “Conductive Rock Type”  (K=.825e28.1ɸ) 

 

Figure 108. Comparison between actual PDG data and simulation results –Modified 

Permeability 

An important point that was observed by analyzing the pressure behavior is the difference 

between actual initial pressure and the simulated initial pressure. To adjust the observed 

difference, the reference pressure at 9,416 ft was changed to 4,370 psi. Another observation is 

that the difference between pressure readings from PDGs (P @ 9,441 ft – P @ 9,416 ft = 4,385 -

4,370 = 15 psi) is not the same as the difference between the 2 corresponding grid blocks (P @ 

101, 56, 3 -  P @ 101, 56, 1 = 4,411 – 4,400 = 11psi) knowing the fact that both PDGs and Grid 

blocks are  exactly 25 ft apart. This means that the pressure gradient between the PDGs is 0.613 

psi/ft while it has the value of 0.428 psi/ft between the grids. This means that the brine density 

should be higher than what was set in the simulation model. Brine density at the reservoir 

conditions can be calculated by the following equation: 

  00 1~~ ppcbrbrbr  
 

In order to keep the brine compressibility the same as the initial value, new density of brine should 

be set as 87 lb/ft3. It should be mentioned that the brine compressibility can also be changed in 

order to have the same brine density at the reservoir level. The results for the case that reference 

pressure and brine density were changed are shown in Figure 109 and Figure 110 (it should be 

mentioned that since the PDGs depths are not exactly at middle of grid blocks a modification 

based on the elevation difference was performed so that the grids represent the same initial 
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pressure as PDGs). The results for modified Brine compressibility, reservoir boundary and 

horizontal permeability are shown in detail in Appendix 3. 

 

Figure 109. Comparison between actual PDG data and simulation results –Modified reference 

pressure and brine density 

 

 

Figure 110. Comparison between actual PDG data and simulation results –Modified reference 

pressure and brine density 
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The effect of vertical to horizontal perm ratio, rock -fluid compressibility, water viscosity, porosity 

and boundary of the reservoir was studied on simulation pressure results. By tuning the 

mentioned parameters, although simulation pressure results convert towards the actual 

measurements, but the mismatch between simulation and actual pressure remains high.  

The next step that improved the simulation results considerably was modification of vertical 

transmissibility in order to control vertical communications between the layers. The transmissibility 

multiplier was set to zero for the layers that are subject to no CO2 injection (due to either high 

shaliness or very high permeability that causes rapid gas movement). By making transmissibility 

modification, the trend in simulated pressure responses started to approach that of actual 

pressure (Figure 111). 

 

Figure 111. Comparison between actual PDG data and simulation results –modified 

transmissibility multiplier 

From here forward, we try to apply the changes on the simulation model with modified absolute 

permeability, initial pressure, brine density and more importantly vertical transmissibility multiplier. 

The next step was to investigate the effect of relative permeability curves on the simulation 

pressure results.  The original relative permeability curves (gas and water) that initially were used 

in the simulation model came from a Mississippi Storage pilot plan, located 70 miles from the 

Citronelle site.  

There are two important features that characterize relative permeability curves. The first feature 

is immobile or irreducible phase saturation below which, the corresponding phase (water or gas) 

cannot move. The other important characteristic of relative permeability curve is the curvature. 
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This feature has considerable influence on fluid movement in the reservoir model. To investigate 

the effect of these relative permeability features on the simulated pressure behavior, we defined 

ranges of relative permeability values in the vicinity of the original curves. Both irreducible phase 

saturation and curvature of relative permeability changed in a reasonable range. The generated 

curves are shown in Figure 112. 

 

 

Figure 112. Relative permeability curves (Right: water relative permeability, Left: gas relative 

permeability) 

 

We tested the effect of both gas and water relative permeability curves on the pressure behavior. 

Higher curvature and lower irreducible phase saturation increased the simulated pressure results. 

By adjusting the relative permeability curves, we obtained reasonably good match between 

simulated pressure results and actual field measurements.   

In Figure 113 the best history match results based on changing the gas relative permeability is 

illustrated.  Also in the Appendix 3, we show how simulation pressure history behaves with respect 

to different reservoir boundary conditions, absolute and relative permeability.   
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Figure 113. Comparison between actual PDG data and simulation results –modified gas relative 

permeability 

 

As these studies were ongoing, more field data became available including actual injection and 

pressure (coming from PDGs in observation well) from 8/19/2012 to 11/30/2012. The injection 

rate and pressure data were in daily and in per minute basis, respectively. In order to keep the 

consistency between to different available data and also decrease computational time and effort 

for reservoir simulation, minute-based pressure data was averaged to daily basis. Several 

reservoir parameters were tuned (as shown in Table 25) in order to minimize the mismatch 

between actual field data and simulation results. The best history matched results during the 

mentioned time interval are shown in Figure 114. 

Table 25. Reservoir parameters that tuned for history matching 

Matching Parameter 

Absolute Permeability 

Brine Density 

Reference Pressure 

Transmissibility Multiplier 

Reservoir  Boundary 

Relative Permeability 
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Figure 114. Comparison between actual PDG data and simulation results –modified gas relative 

permeability-best history matched results with no additional data 

 

Available field data for two more months (December2012 and January 2013) were considered for 

history matching. The reservoir simulation predicted the pressure data for the two new months 

using the best history matched model. The results for the reservoir pressure are overestimated 

by reservoir simulator model.  

Comparison between reservoir simulator and actual pressure data is shown Figure 115 
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Figure 115. Comparison between actual PDG data and simulation results –modified gas relative 

permeability-best history matched results with additional data 

 

Several reservoir parameters were tuned again, aiming to reduce the overall mismatch between 

the actual field data and simulation results (those recently acquired – the new two months of data). 

These parameters modified: absolute permeability, brine compressibility, brine viscosity, relative 

permeability, reservoir boundary condition and vertical to horizontal permeability ratio. In order to 

compare the mismatch between reservoir simulation predictions and actual field data, an objective 

function that measures the difference between simulated and actual data was used according to 

the following equation: 

𝑂𝐹 = √
∑ (𝑃𝑡

𝑠 − 𝑃𝑡
𝑚)2𝑁𝑡

𝑡=1

𝑁𝑡
 

Where 𝑃𝑡
𝑠𝑎𝑛𝑑𝑃𝑡

𝑚 are simulated and measured pressure values at each time step (day) and Nt is 

the total number of measurements. The values of the mismatch or the objective functions are 

shown in Table 26.  

Based on the results of the models we learned that higher brine compressibility (4e-6 1/psi) 

represents the lowest mismatch with actual data. The pressure results for this model are shown 

in Figure 116. All the history match results are illustrated in Appendix 3. 
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Table 26. Pressures mismatch values for changing different reservoir parameter 

Tuned Reservoir Parameter Pressure Mismatch Value(OF,Psi) 

Reduced μw 16.89 

New Boundary 20.01 

Reduced K(half of the base) 20.94 

Brine Compressibility=4e-6/psi 16.34 

Kv/Kh=0. 9 16.99 

Krw low 17.08 

Krw High2 18.75 

Krw High3 20.815 

Krg low 20.21 

Krg high 20.7 

 

 

Figure 116. Comparison between actual PDG data and simulation results –results with lowest 

mismatch (modified brine compressibility) 
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IN-SITU CO2 BEHAVIOR VALIDATION - ENTIRE INJECTION DATA  

In previous section, in-situ CO2 behavior validation was initiated for the reservoir simulation model 

based on the availability of the field data. The first set of available data (injection rate and pressure 

data from observation well) belonged to a time period from 8/19/2012 to 11/30/2012. A second 

set of data which covered two more months (December 2012 and January 2013) became 

available upon completion of the first set of history matching efforts. Once this new set of data 

was received it was considered for continuation of history matching. The history matching process 

of almost eleven months of injection rate and pressure data is presented in this section. Locations 

of injection and observation wells are shown in Figure 117. 

 

Figure 117. Location of the injection and observation well in the area of interest 

 

During the entire year the injection process was almost stable, although it experienced some 

periodic shutdown.  The daily injection rate from the beginning up to August, 2013 is shown in 
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Figure 118. These injection rates were used in the reservoir simulation model as the input 

constrains for the history matching process.  

 

 

Figure 118. CO2 injection history at Citronelle field 

 

In the observation well (D-9-8#2) at Citronelle field (Figure 117), two Pressure Down-hole Gauges 

(PDG-5108/5109) are installed at different depths (9,416 and 9,441 ft TVD) in order to provide 

real time pressure and temperature readings during and after the injection period. The pressure 

data is available from mid-August 2012 till the end of September 2013, recorded on one-minute 

basis (1,440 records per day). The pressure data was summarized by averaging over each day. 

The actual pressure data on a daily basis is illustrated in Figure 119. 

Initially a base case reservoir model was developed considering reservoir properties that are 

summarized in Table 27. Porosity maps for each simulation layer were acquired by interpretation 

of 40 well logs. In this model, operational constrains were the actual CO2 injection rates (Figure 

118). Furthermore, maximum bottom-hole pressure limit of 6,300 psi was also imposed as 

additional operational constraint. The solubility of CO2 in the brine was not considered in the base 

model. Block pressure for the grids corresponding to the PDGs were compared with the actual 

data. Simulated pressure data using the base model are plotted against actual pressure history 

in Figure 120.  
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Figure 119. Daily pressure data from PDGs @ observation well 

 

Table 27. Reservoir parameters and properties (base case model) 

Parameter Value Parameter Value 

Permeability(md) 460(all grids) Water density(lb/ft3) 62 

Temperature(◦F) 230 Water viscosity(cp) 0.26 

Salinity(ppm) 100000 Water compressibility(1/psi) 3.2E-6 

Residual gas saturation 0.35 Kv/Kh(permeability ratio) 0.1 

Residual water saturation 0.6 
Pressure 

reference@9415ft(psi) 
4393 
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Figure 120. Model’s pressure results and actual history for the base model 

 

A thorough sensitivity analysis was performed to study the effects of several reservoir parameters 

on pressure behavior in the observation well. As expected, the results of sensitivity analysis 

showed that permeability (rock type) contributed significantly to injectivity, CO2 plume extension 

and reservoir pressure. By use of Alabama’s southwestern Dataset, porosity-permeability cross-

plots (Figure 121) were generated for the Paluxy formation core data. Available data from the 

cores taken from injection well demonstrated the dominance of conductive rock type 

(k=0.824e28.18φ) in the vicinity of the injection area. Also, vertical to horizontal permeability ratio 

was calculated to be 0.58 using core data analysis.  

Modification of pressure references, brine density and permeability in addition to zero 

transmissibility between the sand and shale layers resulted in pressure predictions illustrated in 

Figure 122. 

Please note that a more thorough explanation of how this process was conducted (but for the first 

set of pressure and injection rate data) was provided in the previous section. Therefore, in this 

section we just mentioned the highlights and the corresponding results of the history matching 

process for the larger data set. 
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Figure 121. Porosity-permeability cross plot 

 

 

Figure 122. Model’s pressure results and actual history; modified, pressure reference, brine 

density and permeability 
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By Implementation of the modified parameters in the model, a closer match between the 

simulated and the actual pressure data as well as the pressure gradient was achieved. However, 

modeled pressure predictions did not follow PDGs pressure trend correctly.  As it is shown in 

Figure 122, reservoir simulation results underestimated actual data during first four months after 

the injection, and overestimated the rest of pressure history.  

Additionally, simulated pressure drawdowns reached a stable trend much faster, compared to the 

actual data. This behavior can be explained by the fact that higher permeability (in the model) 

resulted in lowering the time that pressure drawdown got to a steady trend. Therefore, it was 

necessary to decrease the permeability in the model to adjust pressure drawdown behavior. On 

the other hand, lowering the permeability led to CO2 injectivity reduction. As a result, reservoir 

model was divided into two regions:  

A. grids in the vicinity of the injection (zone 20*20 grids around the injection well), and 

B. grids outside the injection (zone-Figure 123).  

To correct model’s pressure drawdown trend, dual modification in reservoir permeability was done 

by decreasing permeability in region “a” and increasing permeability in region “b”. 

 

 

Figure 123. Two permeability regions in the reservoir 
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Figure 124. Model’s pressure results and actual history; modified permeability in different 

reservoir regions 

As it is shown in Figure 124, although modifications in the model’s permeability improved pressure 

drawdown behavior, pressure predictions were overestimated considerably (compared to the 

actual PDG data). To lower pressure results, solubility of CO2 in the brine (aqueous phase) was 

incorporated in the model. More importantly, volume modifier was assigned to the grids at the 

eastern boundary of the reservoir (Figure 125-left). This accounted for the fact that reservoir 

boundary and volume might be larger than what was assigned in the model.  

To develop geological model, top and thickness of sand layers were picked for log data of 14 

wells (crossing at injection well) and then correlated with one another as shown in Figure 125 -

right. Due to the limited amount of information (just two well logs) at the east side of the injection 

well, it was not possible to estimate the extension of the sand layer on that area. Therefore, it was 

probable to have more reservoir volume beyond the boundary of the geological model.  

Adding more volume to the reservoir (sand layers) resulted in lowering the modeled pressure 

behavior. After activating CO2 solubility in the brine phase and tuning the “volume modifier”, a 

good match between the model behavior and the actual pressure data, with less than 0.001% 

average error was achieved (Figure 126). 
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Figure 125. Increased volume modifier at the east boundary (left) and well cross sections (right) 

 

 

Figure 126. Model’s pressure results and actual history; final history match 
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HISTORY MATCHED MODEL VALIDATION 

As showed in the previous section, especially in Figure 126, the history matched model showed 

good precision in generating ten months of pressure results which resembled the actual field 

measurements. In order to study predictability of reservoir model, last three months (from August 

1rd to October 30th, 2013) of actual injection/pressure was set aside in advance during the history 

matching process and was utilized in order to validate the history matched model’s predictive 

capability.  

During these three months, CO2 was injected steadily according to targeted rate of 9.48 MMcf/day 

(Figure 127 and Figure 128). The Injection process experienced few shutdowns that resulted in 

average rate to be 7.98 MMcf/day. Consequently, reservoir pressure increased during August 

2013, followed by some drawdowns (due to no injections) in September 2013 and gentle buildup 

during the last month. 

 

 

Figure 127. Last three months of injection rate 
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Figure 128. Daily pressure data for last three months of injection 

The history matched model was deployed in forecast mode and the operational constraints 

(injection rates) were imposed. The model generated the corresponding pressure signals at the 

observation well. Model’s pressure prediction results were plotted versus actual measurements 

from the field (Figure 129). Model’s predictions have accurately captured the trend of the actual 

data as shown in this figure. The average error for the two permanent downhole gauges are 

0.12% and 0.073%, respectively.  

 

 

Figure 129. Model’s pressure result and actual data for prediction and history 
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Model Integrity Verification 

A time window of 500 years was considered to be investigated for the long term behavior of the 

reservoir based on the results of the latest validated history matched model (Figure 129). The 

results also used to verify if any CO2 leakage happens in the reservoir because of some numerical 

or non-physical effects. 

There are two main parameters to be considered for the long term monitoring of CO2 

sequestration, as reservoir pressure and CO2 plume extension.  The well bottom-hole pressure 

at well D-9-8#2 which is the observation well is shown in Figure 130. Reservoir pressure starts 

from the initial value of 4,380 psi and reaches to the maximum value of 4,628 psi at the end of 

the injection period. Then, it takes almost a year for the reservoir pressure to decline from the 

maximum value to 4,525 psi to the final, settled and almost constant value of 4,517 psi, 500 years 

after the injection is completed (Figure 130). 

CO2 plume extension in the first layer and 500 years after the injection (for all layers), are shown 

in Figure 131 and Figure 132. The maximum plume extension spreads almost 4,800 ft. in the 

East-West direction and almost 2,800 ft. in the south-north direction. 

 

Figure 130. Pressure behavior in observation well during 500 years post injection (latest history 

matched model) 
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Figure 131. CO2 plume extension in the first layer (500 years after injection-latest history 

matched model) 

 

 

Figure 132. CO2 plume extension in all the layers (500 years after injection-latest history 

matched model) 



134 

 

LEAKAGE MODELING  

Typically there are 3 main sources for the leakage in CO2 storages reservoirs; faults, wells and 

high permeability zones. Based on the geological report (SECARB 2010), no fault exists in the 

vicinity on CO2 injection well.  But there are different types of wells in the AOR (Area of 

Review).The most recent Citronelle numerical model (The model developed by the WVU team) 

shows that the distance of CO2 plume from the injection well will reach as far as 2,200 ft. away 

from the injection well. Therefore, abandoned wells in this extended area (around 34 water 

disposal, dry whole, injector, producer, and observation wells) would be candidates for potential 

leakage. The leakage can be determined by four parameters; leak radius, permeability, length 

and location. These parameters can be assigned to each candidate well and the effect of leakage 

on the reservoir behavior (especially pressure) can be investigated. 

High permeability zones can be formed by the reaction of the CO2 with specific type of clays which 

forms dehydrate clays in the cap rock. Also there is the possibility that increasing reservoir 

pressure cracks the cap rock and provides a conduit for CO2 to leak. Since the chemical reaction 

between CO2 and clay mineral was not considered in this model, only potential CO2-induced 

fractures are studied.  

First, the leakage was introduced to the reservoir model by adding a CO2 production well in the 

plume area of the homogeneous model for Citronelle field. Due to the high number of grids and 

complexity, the iterations did not converge and no results achieved in this trial. So it was decided 

to work on the simpler model to avoid convergence problems. A 2-D model with same properties 

of the Citronelle model was built (Figure 133). 

 

Figure 133. Saturation profile in 2-D model 
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below which there would be no flow of CO2. In this model if the reservoir pressure reaches 30,000 

kpa (4,351 psi) there would be no flow from the leakage well (Figure 134). 

Different leakage rates also were considered. As the amount of the leakage rate decreases, the 

duration of the CO2 production incrases until the reservoir pressure reaches to the minimum 

flowing pressure (Figure 135). 

 

 

Figure 134. Reservoir pressure and leakage rate at min BHP 25000kpa 

 

As pressures changes in the reservoir, the pressure on one side of the seal may differ more and 

more from pressures on the other side; that is, a pressure drop begins to appear across the cap 

rock. When this pressure drop becomes sufficiently large, the seal provided by the cap rock may 

be breached, and flow across the breach may occur. 

This type of leakage was simulated in the 2-D model. In this type of leakage CO2 starts flowing 

from production well when a specific pressure difference between the reservoir pressure and 

assigned minimum bottom-hole pressure is achieved. At this time there would be a jump in the 

CO2 rate. While CO2 is leaking through the cap rock, the reservoir pressure drops and the cap 

rock leak starts closing (Figure 136). 
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Figure 135. Reservoir pressure and leakage rate at Surface Gas rate 20SM3/day 

 

Figure 136. Leakage rate for Cap Rock leakage 
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In the next step the top layer of the final Citronelle model (that was history matched) was selected 

to model the leakage3. A total of 4 actual wells were identified to be in the plum extension area 

within the time domain of the interest in this project. These are: injection well (D-9-7), observation 

well (D-9-8) and 2 other existing wells (Figure 137).  

For this case, at first a cap rock leakage was assigned to Well-Leak 2. A jump of the gas rate in 

Figure 138 represents the leakage. Furthermore, the pressure decline in the observation well also 

is an indication of the presence of the leak. 

 

Figure 137. Location of the injection, observation and 2 leakage wells in the first layer of the 

Citronelle field 

 

The main objective of this section of the study was to determine the number of wells that are 

prone to leakage and investigate the characterization of the reservoir behavior when CO2 leakage 

occurs. To investigate the number of possible well locations that are disposed to leakage, it is 

necessary to know the extension of the CO2 plume. Based on the WVU and the ARI studies 

regarding the AoR (Area of Review), the maximum diameter of the CO2 plume ranges from 2,800 

ft. (ARI model) to 3,900ft (WVU model) as depicted in Figure 139. 

                                                
3 Working on the whole field requires a lot of run time and leads to numerical convergence issues. 
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Figure 138. Leakage rate at leak2 and pressure profile in observation well (D-9-8) 

 

Figure 139.The extension of CO2 plume in WVU Model 
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It should be mentioned that the maximum CO2 plume extension occurs in the first layer (Figure 

140). Therefore it is unlikely that CO2 reaches to the existing wells in the other layers. 

According to the Denbury Resources report (SECARB 2010) there are 34 wells in the radius of 

one mile from the injection well (12 oil producer, 5 water injection and 17 abandoned wells). Based 

on the realization which resulted in maximum CO2 extension, a total of 7 wells (D-9-1, D-9-2, D-

9-3, D-9-6, D-9-9, D-9-10, D-9-11) can be potential candidates for CO2 leakage as it is shown by 

red circle in Figure 141. 

 
 

 

Figure 140. Gas Saturation in different layers of the Citronelle aquifer (WVU Model) 

 

As mentioned before, the maximum extension of the plume exists in the first layer of the reservoir. 

Therefore, this layer (Figure 142) – including CO2 injection well (D-9-7), observation well (D-9-8) 

and 4 existing wells (D-9-1, D-9-3, D-9-9, D-9-11) - was considered for the simulation of the CO2 

leakage through the wells (cap rock fracture, fault and high permeability zone leakages are not 

addressed in this study).  
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Figure 141. Location of Wells within 1.0 Mile of the Proposed Injection Site 

 

The leakage rate is highly dependent on water production. The WVU team was able to model 

leakages due to the presence of an existing well and leakage due to cap rock fracturing (there is 

no fault in this reservoir) within the CMG software that is used for the numerical modeling in this 

project is able to. In the cap rock leakage, it is possible to assume that the water can also leak 

through the induced fractures. But this assumption cannot be valid for the well leakage because 

of the characteristics of the flow paths. The water rate in the well leakage should be restricted to 

very small values in order to represent the reality more accurately.  

First, it is necessary to investigate the effect of the water which is produced along with the CO2 

through a leakage from the well in the Citronelle Model. The leakage has been simulated by 

considering one of the wells as the leakage location. CO2 leakage rate has been set as the model 

constraint with the value of 175,000 ft3/d. Figure 143 shows the results of this simulation run. 

As it is shown in Figure 143 , water production begins after almost one and a half year in this 

case. Hence, the pressure behavior recorded in observation well is due to both gas and water 

production.  
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Figure 142. Location of the injection, observation and 4 leakage wells in the first layer of the 

Citronelle field 
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Figure 143. Pressure behavior of the reservoir during leakage of CO2 and water  

 

In order to minimize the effect of water production on the pressure behavior, its value has been 

set to be 1 bbl/day. The results of this situation are illustrated in Figure 144. In this case the well 

produces CO2 at a fixed rate for almost one and half year. After that, the CO2 leakage rate starts 

decreasing significantly since the water reaches to the leaking well. CO2 is trapped in the 

Citronelle geologic formation due to hydrodynamic mechanism in which formation water is 

compressed and displaced due to high injection pressure in order to provide pore space for CO2. 

When gaseous or supercritical CO2 phase is being produced, water finds its way back to the pores 

that have already been occupied by the gas. Once all the CO2 surrounding a leaky well escapes 

through the leakage well, water reaches to that well and starts production from the well in the 

model. This is not possible in reality. 

To determine the maximum and minimum leakage rate, the CO2 production for one leakage well 

was varied incrementally. Based on the results, maximum leakage rate for one well was 

determined to be about 1,750 MCFD (Figure 145). It should be mentioned that there is no lower 

limit for the leakage rate. 
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Figure 144. Pressure behavior of the reservoir during leakage of CO2 with 1 bbl/day water 

constraint 

 

Figure 145. Maximum leakage rate through one well 
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The most important subsurface indicator that can be used in order to determine the amount of 

CO2 leaking through a well is reservoir pressure. The effect of different leakage rates on the 

behavior of the observation well pressure (D-9-8) was investigated. To do so, the leakage rate 

was decreased incrementally from 175 MCFD to 50 MCFD. It is should be noted that “1 bbl/day” 

water production constraint was considered for the leakage well in order to prevent water leaking 

through the well and to maximize CO2 leakage.  Figure 146 and Figure 147 demonstrate the 

results of the leakage rate investigation. 

 

 

Figure 146. Pressure behavior in the observation well (D-9-8) for the leakage rate =175000 

scf/day 

 

For all the cases the value of cumulative produced leaked gas is the same. This means that for 

the high leakage rate scenarios, the duration that we can see a plateau in CO2 leakage 

(production) is less than lower rate scenarios. The maximum amount of pressure drop in the 

observation well due to the leakage is about 30 psi.  

For example for the leakage rate of 1,750 MCFD the pressure of the observation well decreases 

10 psi annually (the leakage takes 3 years). However, when the leakage rate is 50 MCFD, the 

pressure in the observation well declines only 3 psi per year. 
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Figure 147. Pressure behavior in the observation well (D-9-8) for the leakage rate =50000 

scf/day 

The effect of the leakage through 2 wells also was studied. Two existing wells were assigned as 

the probable sources of leakage. Different sets of leakage rates were considered for the wells. 

The results for the scenario that both wells leak at 175,000 scf/day, and the case that one well 

leaks at 175,000 scf/day and the other at 50,000 are shown in Figure 148 and Figure 149.  

It should be mentioned that in some cases the effect of the leakage from two wells is the same 

as leakage from a single well. Hence, it might not be possible to distinguish 1 or 2 leakages by 

just one sensor in the observation well. If additional sensors are placed in different locations, it 

would be possible to determine the location and the amount of the leakage more accurately by 

knowing the location of the sensors and the pressure profile recorded by each sensor. 

In the last case, effect of CO2 leakage from all 4 wells in the Citronelle field was studied. All of 

these wells (D-9-1, D-9-3, D-9-9, and D-9-11) were subject to CO2 leakage rate of 175,000 scf/day 

and water rate of 1 bbl/day.  Each well produces at the constant CO2 rate until all the CO2 which 

is surrounding the well is produced and water reaches the bore hole.  

When all the wells start leaking, the pressure in the observation well (D-9-8) drops at the maximum 

rate. As the leakage stops at any well (based on the location of the well in the plume area), the 

slope of the pressure decline in the observation well decreases. When all the wells stop leaking, 

there would be no further decline in the pressure of the observation wells.  
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Figure 148. Pressure behavior in the observation well (D-9-8) for the leakage rate = 175,000 

scf/day of two wells 

 

Figure 149. Pressure behavior in the observation well (D-9-8) for the leakage rate = 175,000 & 

50,000 scf/day in two wells. 



147 

 

 

Figure 150. Pressure behavior in the observation well (D-9-8) for the leakage rate = 175,000 & 

50,000 scf/day of 4 wells 
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DATA PREPARATION FOR THE INTELLIGENT LEAK DETECTION SYSTEM (ILDS) 

To implement the technology developed in this project in an actual CO2 storage site, the 

technology must be implemented in the form of a software application and put online and on-site. 

Development and demonstration of such a software application is presented in this report. The 

main engine of the ILDS software application includes a series trained data-driven models that 

are capable of de-convolving complex pressure signals from the PDGs into location and rate of 

the CO2 leakage in a sequestration site.  

Development of the Intelligent Leakage Detection System (ILDS) requires that following steps to 

be completed: 

1. A history matched model of the CO2 storage site be developed and validated.  

2. The validated, history matched model is used to generate a series of leakage scenarios. 

3. Real-time pressure data (from the modeled PDGs) due to a variety of leakage scenarios 

are collected.  

4. The collected pressure data are used to train a set of data-driven models, as the heart 

and main engine of the ILDS, using machine learning and pattern recognition technology. 

5. The data-driven models are tested and validated for accuracy, and are embedded in the 

ILDS. 

6. Pressure signals from the PDGs in the storage site are uploaded into the ILDS and passed 

through the trained data-driven models. 

7. ILDS response by identifying the location and the amount (rate) of the CO2 leakage in the 

system.  

In this report we demonstrate how a software implementation of the ILDS can be applied to the 

Citronelle storage site. Since use of pressure data that are received in high frequency streams 

from Permanent Down-hole Gauges (PDG) are required, a set of simulation runs are designed 

and executed and pressure behavior (signals) in the observation wells (D-9-7 and D-9-8) as a 

function different leakage scenarios (rates and locations) are generated.   

Total of nine wells (D9-7 or injection well, D-9-1, D-9-2, D-9-3, D-9-6, D-9-8, D-9-9, D-9-10 and 

D-9-11) are located in the Area of Investigation. There are pressure gauges in the wells D-9-8 

and D-9-7 (Figure 151). 

In this model CO2 is injected in 10 reservoir layers for 3 years with the rate of 500 ton/year 

(9,480,600 ft3/day). The maximum CO2 plume extension is about 3,800 to 4,000 ft. away from the 

injection well. The focus is on the different leakage scenarios. The leakage rates that have been 

used in the simulation scenarios are based on published observation (Loizzo 2010). The leakage 

rates considered in the simulation runs to generate pressure signal data are shown in Table 28. 
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Figure 151. Reservoir model with the existing wells in Area of Investigation 

  

Table 28 - Leakage rates observed in real cases (Loizzo 2010) 

 

 

 

 

 

 

 

 

 

Ton/year ft3/day 

35 1837.5 

100 5250 

210 11025 

800 42000 

1400 73500 

1900 99750 

2300 120750 

2500 131250 

10000 525000 

100000 5250000 
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Based on published data (Loizzo 2010) the leakage rates of the order of 35 - 100 tons/year are 

considered as small leakages. The rates that range from 100 to 800 tons/year are the ones that 

typically happen in the underground CO2 storage projects. 93% of the wells have a leak rate 

smaller than 1,400 ton/year.  A major event which may result in fatalities and extreme damages 

requires the leak rate of the order of 10,000 to 100,000 ton/year. 

We assigned the rates shown in Table 28 to all the wells. Figure 152 shows that the CO2 plum 

extension in this site (within 500 years) will only reach three of the wells (wells D 9-6, D 9-2 and 

D9-10). Therefore, the simulation runs and data generation in this project is concentrated around 

the potential leakage from these three wells.   

 

 

Figure 152. Location of the wells that represent leakage rates in Table 1. 

 

There are different types of Permanent Down-hole Gauges in the oil industry which represents 

various working specifications. One of the most reliable ones is named “reserve CQG crystal 

quarts gauge” which is designed for a wide range of pressure conditions (up to 15,000 psi) and 

the resolution of better than 0.004 psi. Based on the resolution of this down-hole pressure gauge 

we used the reservoir simulation pressure results for the observation and injection wells with the 

accuracy of 0.005 psi. 
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To start, pressure values in the observation and the injection wells are generated in the case with 

no leakage, to be used as reference.  For the observation well (D-9-8) the pressure rises from 

4,344 to 4,443 psi during 3 years of injection period (2012 to 2015). After the injection stops, the 

pressure decreases sharply from 4,443 to 4,395 psi. This change in pressure takes place in a 

period of three months. Finally, the reservoir pressure in the observation well follows a gradual 

and stable decline from 4,395 to 4,393 psi during 20 years (Figure 153). 

 

Figure 153. Pressure behavior in well D-9-8 in the case that no leakage happens 

 

From here forward, the difference between the reference pressure signals (when no leakage is 

occurring in the system) and pressure signals due to any given leakage scenario that is collected 

at the observation wells, are referred to as ΔP. In this section we present the case of leakage 

from a single well.  

As mentioned earlier, three wells showed potential to leak with the rates shown in Table 28. In all 

these cases the pressure behavior in the observation well and injection well show almost the 

same trend when the leakage duration increases. For brevity, we just show the results of the 

cases that well D-9-6 was subject to different leakage rates in Table 28. 
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For the first case, the leakage rate of 1,830 ft3/day was considered for well D-9-6. The leakage 

starts in 01/01/2017, two years after the end of injection. At this time we can assume that CO2 is 

in equilibrium with the reservoir and there is no sudden change in the pressure. The frequency of 

the pressure recordings is one day (this can be increased to hourly for high frequency data 

generation). As it is shown in Figure 154 and Figure 155, after the leak starts, there is a change 

in the pressure difference (ΔP). The magnitude of this change in ΔP is between -0.05 and 0.05 

psi.  

Based on the fact that the reservoir pressure decreases due to the leakage of CO2, it is expected 

that ΔP (Pleak – Pno leak) have a positive value, therefore, negative values are not acceptable. They 

are mainly because of numerical dispersion. These negative values should be disregarded and 

replaced with zero during the training of the data-driven models. This pressure behavior is almost 

the same for the leakage rate equal to 5,250 ft3/day. 

 

 

Figure 154. ΔP in well D-9-8 in the case that well D-9-6 leakage rate is 1,830 ft3/day. 

 

In the situation that leakage rate from the well D9-6 was set at 11,025 ft3/day no negative values 

for ΔP in the well D-9-8 were observed (Figure 156). The only fact is that during the post leakage 

time, some fluctuation in   ΔP behavior (ranging between 0 and 0.1 psi) is observed. This behavior 

may result in incorrect pattern recognition analysis.  The pressure behavior which can be 

measured in the injection well (D-9-7) is more reasonable after the leakage (Figure 157). The 
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pressure difference reaches 0.04 psi in a year and remains constant for almost 4,000 days. Then 

it gradually increases to 0.06 psi. 

 

Figure 155. ΔP in Injection well in the case that well D-9-6 leakage rate is 1,830 ft3/day. 

 

Figure 156. ΔP in well D-9-8 in the case that well D-9-6 leakage rate is 11,025 ft3/day. 
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Figure 157. ΔP in well D-9-8 in the case that well D-9-7 leakage rate is 11,025 ft3/day. 

 

Figure 158. ΔP in well D-9-8 in the case that well D-9-6 leakage rate is 42,000 ft3/day. 

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Δ
P

(p
si

a
)

Time(Days)

ΔP- Well D-9-7

-0.5

0

0.5

1

1.5

2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

D
el

ta
 P

(P
si

a
)

Time (Days)

ΔP- Well:D-9-8



155 

 

For the case that the assigned leakage rate for well D-9-6 is equal to 42,000 ft3/day, the pressure 

difference behavior in both injection (D-9-7) and observation wells (D-9-8) follows almost the 

same trend. ΔP in well D-9-8 increases sharply to 1.5 psi at the beginning of post leakage time 

for 2,000 days followed by a plateau (Figure 158). ΔP in the injection well (D-9-7) shows a similar 

behavior (Figure 159). 

 

Figure 159. ΔP in Injection well in the case that well D-9-6 leakage rate is 42,000 ft3/day. 

 

When the Leakage rate in well D-9-6 reaches to 73,500 ft3/day, pressure difference in both 

observation and injection wells follows the same logarithmic trend (Figure 160, Figure 161). It 

means that the rate of increase of the ΔP in the early times during the post leakage period is more 

than the later times. ΔP in the first 3 months after the leakage reaches to 0.54 psi in the injection 

well (D-9-7) and 0.67psia in the observation well (D-9-8) are shown in the following figures. 
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Figure 160. ΔP in well D-9-8 in the case that well D-9-6 leakage rate is 73,500 ft3/day. 

 

Figure 161. ΔP in injection well in the case that well D-9-6 leakage rate is 73,500 ft3/day 
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The leakage rates of 99,750, 120,750 and 131,259ft3/day were assigned for the well D-9-6. The 

trend of ΔP for the mentioned rate is also logarithmic. It should be noted that as the leakage rate 

increases, we can observe that ΔP in the observation and injection well raises proportional to the 

rate. For instance ΔP in the observation well (D-9-8), after 3 months of the leakage from well D-

9-6 at the rates of 99,750, 120,750 and 131,259 ft3/day are 0.94, 1.66 and 2.22 psi, respectively.  

It is worthy to mention that we cannot increase the leakage rates above 131,259 ft3/day since the 

amount of the CO2 around the well D-9-6 is not enough to support flow rates of the CO2. 
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LEAKAGE IN WELLS D-9-2 AND D-9-10 

The procedure for assigning different leakage rates to well D-9-2 and analyzing the ΔP in the 

injection and observation wells is the same as those of well D-9-6, but the pressure behavior is 

not the same.   

For the leakage rate of 42,000 ft3/day, we can see the logarithmic behavior for the ΔP trend (Figure 

162). Also the amount of ΔP during the same time interval when a leak happens in well D-9-2 is 

higher compared to D-9-6 leakages.  Another point is that the ΔP trend in the observation and 

injection down-hole gauges becomes linear instead of logarithmic when the well D-9-2 leaks with 

the rate of 99,750 ft3/day (Figure 163).   

For well D-9-10 we cannot see any logarithmic trend in ΔP behavior respect to time when the CO2 

leakages occurs. Most of the trends are considered linear. The results of the ΔP trends for all 

three wells are presented in Appendix 4.  

 

 

Figure 162. ΔP in well D9-8 in the case that well D-9-2 leakage rate is 42,000 ft3/day. 
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Figure 163. ΔP in well D9-8 in the case that well D-9-2 leakage rate is 99,750 ft3/day. 
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INTELLIGENT LEAKAGE DETECTION SYSTEM  

PROCESSING OF HIGH FREQUENCY DATA STREAMS – DATA SUMMARIZATION 

Citronelle reservoir simulation model was used to generate high frequency pressure data 

(pressure reading from observation and injection well). The injection scenario used to generate 

the pressure signals included 500 ton/year (9,480,600 ft3/day) into 10 reservoir layers of the Pluxy 

formation. Figure 164 demonstrates the extent of the maximum CO2 plume extension 4 years 

after the end of injection. Based on the extension of the CO2 plum, wells D-9-2, D-9-6 and D-9-

10 can be included within the reach of the CO2 plum, and therefore, are considered for the leakage 

study. 

 

In order to generate high frequency pressure data in observation and injection well, due to the 

leakage from the wells mentioned above, twenty different CO2 leakage rates- in the range of real 

leakage rates observed in actual cases- were assigned to the wells D-9-2, D-9-6 and D-9-10. 

These CO2 leakage rates are shown in Table 29. 

 

 

 
 

Figure 164.CO2 Plume Extension in the first layer of the Citronelle Field 4 years after the end of 

injection 
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Table 29. CO2 Leakage rates assigned for the wells D-9-2, D-9-6 and D-9-10 

Leakage rate 

Ton/year ft3/day Ton/year ft3/day 

286 15000 1333 70000 

381 20000 1429 75000 

476 25000 1524 80000 

571 30000 1619 85000 

667 35000 1714 90000 

762 40000 1810 95000 

857 45000 1905 100000 

952 50000 2000 105000 

1048 55000 2095 110000 

1143 60000     

1238 65000     

 

At each CO2 leakage scenario it is considered that leakage starts 2 years after the end of injection 

(1/1/2017). For each CO2 leakage rate, reservoir simulation run was performed at one hour time 

steps. The duration of leakage is 6 months. We also performed a simulation with no leakage. In 

this case the bottom-hole pressure in the observation well starts increasing during the injection 

until it reaches to its maximum at the end. After end of injection, the pressure drops until reservoir 

reaches the equilibrium. The typical time for this period is about 4 to 5 months. After that, the 

bottom-hole pressure becomes almost constant.   

When a CO2 leakage takes place in one of the wells, it creates a pressure change in the reservoir. 

This pressure change can be observed in the observation well. Therefore the difference between 

pressure in the observation well, in the case that no leakage exists and when a leakage happens, 

is considered as the leakage indicator.  This pressure difference (or ∆p) behavior can characterize 

the specifications of the leakage, specifically the location and the amount of CO2 being leaked.  

For example the magnitude of ∆p is directly proportional to the amount of the CO2 leakage rate. 

Also the shape of the ∆p as a function of time is related to the location of the leakage. As an 

example ∆p history (high frequency-hourly basis) in the observation well, for the case that well D-

9-6 leaks with the rate of 30,000 ft3/day is shown in Figure 165. For all the leakage rate scenarios 

in Table 29 (3 wells leak individually) high frequency ∆p values were generated for both injection 

and observation well.  
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Figure 165. ΔP in injection well in the case that well D-9-6 leakage rate is 30000ft3/day 

 

Data Summarization 

Normally the data that is transmitted from the PDG sensors include Noise. The First step in 

processing such data streams is removing the noise associated with the data. The next step is 

summarizing the high frequency PDG data and transforming the data into a format that can be 

used by the pattern recognition technology.  

Based on the characteristics of the ∆p extracted from the high frequency data streams, 

“Descriptive Statistics” was used for data summarization. Descriptive Statistics quantitatively 

describes the main features of a collection of data and provides simple summaries about the 

sample and about the observations that have been made. These summaries form the basis of the 

initial description of the data that will be used by the pattern recognition technology. 

The parameters that can represent and summarize a large amount of data can be listed as: Mean, 

Standard Error, Median, Mode, Standard Deviation, Sample Variance, Kurtosis, Skewness, 

Range, Maximum, Minimum and Sum. For example the descriptive statistics and summarization 

of 504 hourly ∆p data points in the observation well (D-9-8) for the case that well D-9-6 leaks with 

the rate of 110,000 ft3/day is listed in Table 30. 

http://en.wikipedia.org/wiki/Data
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Table 30. Descriptive statistics and summarization of 504 hourly ∆p data points in the 

observation well (D-9-8) 

Descriptive statistics 

Mean 0.05297658 

Standard Error 0.00344277 

Median 0.01220703 

Mode 0 

Standard 
Deviation 0.07729008 

Sample Variance 0.00597376 

Kurtosis 1.0883939 

Skewness 1.52563822 

Range 0.28369141 

Minimum -0.0004883 

Maximum 0.28320313 

Sum 26.7001953 

Count 504 

 

Another way to represent large numbers of data points that can also be implemented in the neural 

network training and pattern recognition is Curve Fitting. In this process a curve is constructed, 

providing a mathematical function that has the best fit to a series of data points. The shape of ∆p 

history curve is different respect to the location of the leakage. Therefore, it is not possible to 

determine a typical curve (linear, exponential…) to fit all the data points.  

The only curve that can provide a good fit for ∆p points is a “Polynomial” curve. In this project 4th 

degree polynomial curve was used to fit ∆p points for different leakage rates and leakage 

locations. For instance for the case that  well D-9-6 leaks with the rate of 30,000 ft3/day (Figure 

165), following polynomial function represents the best fit with the R2 = 0.9992 : 

∆p = - 7x10-14 t4 + 3x10-10 t3 – 3x10-07 t2 + 0.0001t - 0.0085     

The coefficients and intercept of the above mathematical relationship can be used for pattern 

recognition and Neural Network Training.  
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PREPARATION OF HIGH FREQUENCY DATA FOR PATTERN RECOGNITION  

Data Partitioning for Neural Network Modeling 

In order to make neural network model, first of all it is necessary to prepare the data set including 

input and output features. In this project, our aim is to determine the location and amount of 

leakage based on the data that is provided by PDGs reading. Therefore, latitude and longitude 

(X, Y) of the leaking well (D-9-2, D-9-6 and D-9-10) and the CO2 leakage rate are the output 

features of the Neural Network. The CO2 leakage rates are shown in Table 29. 

The actual input data that we receive directly from PDGs are pressure readings from observation 

well or in another word, the difference between pressure readings during the leakage and no 

leaking condition (∆p). As explained in the previous section, the ∆p readings at different times 

(hourly basis) are summarized using descriptive statistics. For initial study the pressure 

information (PDG readings) in observation after 1 week of leakage in hourly basis was selected.  

Prior to the input data selection, KPI4 or key performance indicator analysis should be completed 

in order to determine which parameters are more influential to be considered as inputs.  The first 

KPI test was performed on the location of leakage (coordinates of the possible leaking wells); to 

see which parameters are more effective. The results of the key performance indicator analysis 

for the location of the leakage are shown in Figure 166 and Figure 167. 

 

Figure 166. Key performance indicator analysis results for the latitude of the leakage. 

 

Based on the key performance indicator results, skewness, kurtosis and range (or maximum) 

have the most influence on identifying the location of the leakage and mean and median are in 

the least degree of importance. Therefore the median was not selected as the input data for 

Neural Network Training. 

                                                
4 These analysis were performed using IDEA™, a software application provided by Intelligent Solutions, Inc. 
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The same analysis was performed to see the effect of each parameter on the CO2 leakage rate. 

According to the results of the KPI (Figure 168), skewness, kurtosis and Maximum have the most 

effects on the CO2 leakage rate. Also it is concluded that the median has the least effect on the 

leakage rate. 

 

 

Figure 167. Key performance indicator analysis results for the longitude of the leakage. 

 

 

Figure 168. Key performance indicator analysis results for the CO2 leakage rate. 

 

According to the key performance indicator analysis results, we decided to select 10 inputs (Mean, 

Standard Error, Mode, Standard Deviation, Sample Variance, Kurtosis, Skewness, Range, 

Maximum, and Sum) for Neural Network training. In this case we assigned 20 different CO2 
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leakage rates to  3 leakage locations(wells D-9-2,D-9-6 and D-9-10).As a result totally 60 different 

records including 10 input parameters for each were considered for neural network training. For 

this data set, intelligent data partition was used for the segmentation of the records in which 80% 

of data were allocated for neural network training, 10% for network calibration and 10% for 

verification. Therefore 48 records will be used for training, 6 for calibration and 6 for verification. 
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NEURAL NETWORK ARCHITECTURE DESIGN 

Error Back-propagation is one of the popular learning algorithms that was used in this study. For 

this algorithm just one hidden layer was provided. Based on the 10 inputs - 3 outputs, 12 neurons 

in the hidden layer and one random seed number were allocated for the neural network (Figure 

169). The random numbers initialize the weights on the neural network prior to the training. 

 

 

Figure 169. Neural network architecture 

As shown in Figure 169 , there are two sets of synaptic connections in the network. First is the 

synaptic connections between the input layer and the hidden layer, and the second set of 

connections are those between the hidden layer and the output layer.  Since we used “Vanila “ 

and “Enhance “ networks5, for each connection set, 2 parameters as Momentum and  Learning 

rate are assigned. “Learning Rate” which is an indication of how fast the network learns the 

information presented. This is usually a moderate to low number (between 0 and 1). Small 

                                                
5 IDEA™, from Intelligent Solutions, Inc. 
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learning rate value may prolong the learning process and slow it down to a crawl. Momentum is 

an extra push to the learning process that serves two purposes. First, it may accelerate the 

learning process, and second, it has the potential to kick the solution out of the local minima, that 

usually exists in the search space and causes the solutions to converge pre-maturely. In this 

project Learning rate and Momentum are considered 0.3 and 0.8 respectively. Also Logistic 

activation function was used to connect input layers to the hidden layers. 

The next step is to identify how and when to save the trained network. It is recommended to save 

the network that has achieved the best training set, or the calibration set. Also the network can 

be saved after 1 epoch (or more) of training. Each epoch of training is completed when all the 

records in the training set have been visited by the network once.  
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NEURAL NETWORK TRAINING AND CALIBRATION  

In the first step it was decided to train a network that relates the location of the leakage (X and Y 

coordinates) to the summarized pressure readings (Table 30) from observation well (D-9-8). The 

results of the neural network training and calibration of the X coordinate of the leakage after 

15,000 epochs6 are shown in Figure 170 and Figure 171.  

 

Figure 170. Neural Network training results for the leakage location(X) 

 

Figure 171. Neural Network Calibration results for the leakage location(X) 

                                                
6 Each epoch is defined as an iteration of the training of the neural network with all available data. 
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The best results for the training set were achieved after 14,993 epochs with minimum average 

error of .00071. For calibration set data the best results were saved at Epoch 13,455 with the 

minimum average error of .0012.  The results for the CO2 leakage rate training and calibration are 

illustrated in Figure 172 and Figure 173. 

 

Figure 172. Neural Network training results for the leakage rate 

 

Figure 173. Neural Network calibration results for the leakage rate 

In order to investigate the effect of more data assimilation in neural network training, we prepare 

the summarized pressure data set (weekly basis) for 8 weeks after CO2 leakage happens.  The 

neural network training and calibration results for the week 1, 5 and 8 are shown in the next 

section. A comprehensive results are included in Appendix 5. 
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PATTERN RECOGNITION ANALYSIS  

Neural Network Validation 

In order to develop the Intelligent Leakage Detection System (ILDS), a set of high frequency 

pressure data was generated corresponding to different CO2 leakage characteristics. In the 

reservoir simulation model of the CO2 injection in the Citronelle field (Paluxy Formation), it was 

observed that CO2 plume extension would reach to the three existing wells (D-9-2, D-9-6 and D-

9-10) at the end of 2017.Twenty Different CO2 leakage rates ranging from 15 to 110 Mcf/day were 

assigned to each well in order to generate high frequency pressure data. The behavior of ∆P (the 

difference between pressure data in the case that no leakage is happening and when we have a 

leakage in the well) is the indicator of leakage characteristics as shown in Figure 174. 

For each leakage scenario, the pressure difference data (∆P) were collected from the observation 

well and summarized by descriptive statistics. By doing so, the data would be in proper format for 

pattern recognition. The hypothetical leakage started at the beginning of year 2017 and the 

pressure data were collected on hourly basis. The time window of one week was considered in 

order to summarize the pressure data (Figure 175). 

 

Figure 174. Pressure difference when no leakage happens compared to the case that leakage 

occurs 



172 

 

 

 

Figure 175. Pressure difference in Observation well and the corresponding descriptive statistics 

The data set for neural network Training and Calibration was generated based on 60 different 

leakage scenarios. For each scenario, specific CO2 leakage rate was assigned to one well (out of 

the three wells that are prone to the leakage). The aggregation of the descriptive statistics 

parameters of the high frequency pressure data for all the 60 scenarios formed the data set for 

pattern recognition.  

Table 31 . Verification Dataset 

Leakage Location, X Leakage Location, Y Leakage Rate, ft3/day 

1270184.28 11276221.98 30,000 

1270184.28 11276221.98 65,000 

1270359.36 11279158.24 70,000 

1270359.36 11279158.24 75,000 

1268902.52 11277566.74 55,000 

1268902.52 11277566.74 105,000 

 

It is worthy to note that summarized pressure data are the inputs for neural network and Leakage 

location and rates are the output. This input-output selection is due to the fact that real time 

pressure data (summarized) is going to be fed into neural network to determine the location and 

amount of CO2 leakage. The date set was partitioned to three sections for training, calibration and 

verification of neural networks.   
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For the verification of the predictive capabilities of the neural networks, 10 percent of the data 

were set aside for the final analysis. These data would be used to test the validity of the neural 

networks that were trained and calibrated. In other words, the verification data set, determines 

the power of the neural network for prediction. In this case 6 records out of the 60 records were 

set aside for verification. The data records used for verification are shown if Table 31. 

The verification results for the leakage location are shown in Figure 176 and Figure 177. Based 

on the results shown in these two figures, it can be concluded that neural networks for clean 

pressure data (including no associated noise) are well trained. The R2 for verification data records 

corresponding to latitude and longitude of leakage location is equal to 1. 

 

Figure 176. Verification results for leakage location(X) - clean data 

 

Figure 177 . Verification results for leakage location(Y) - clean data 
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The verification results for CO2 leakage rate are shown in Figure 178. There is only one point for 

leakage rate that lies out of the general trend for predictions. This leads to a R2 of about 0.4. It is 

worthy to mention that R2 for training and calibration are 0.94 and 0.99, respectively.  As a result, 

although we see a low value for R2 in verification section, higher values of R2 for training and 

calibration makes the overall predictability of the network to be reasonably high. The results for 

neural network verification are shown in Table 32. Detail results for overall neural network training, 

Calibration and verification are summarized in Appendix 5.  

 

 

Figure 178. Verification results for leakage rate 

Table 32. Results for neural network verification 

N.Net Leakage Location, X N.Net Leakage Location, Y N.Net Leakage Rate, ft3/day 

1270184.64 11276223.67 24770.36 

1270184.89 11276223.64 73583.62 

1270359.14 11279157.49 69651.10 

1270359.15 11279157.48 74652.59 

1268902.65 11277565.91 96394.92 

1268902.55 11277568.66 97346.52 

 



175 

 

Blind run Validation 

In order to validate the performance of the ILDS, 3 different CO2 leakage rates (not seen by the 

Neural Network before) were assigned to possible leakage location (wells D-9-2, D-9-6, D-9-10) 

as blind runs. Pressure data from these runs were applied to the ILDS. The ILDS predications for 

CO2 leakage location and rates are shown in Table 33 and Figure 179, respectively.  

The predictions of the ILDS for the Leakage location show high accuracy in a way that the results 

are almost the same as actual values. For the low Leakage rate (26MCf/day), Neural Network 

predictions demonstrate minor difference with the actual values, nevertheless, the range of 

predicted rates is reasonably correct.  For the higher leakage rates the ILDS prediction is 

noticeably precise. 

Table 33. Blind run ILDS predictions 

 
Run 

Leakage Location(X) 
Actual 

Leakage 
Location(X) ILDS 

Leakage Location(Y) 
Actual 

Leakage 
Location(Y) ILDS 

1 1268902.53 1268903.05 11277566.74 11277569.97 

2 1268902.53 1268902.78 11277566.74 11277565.13 

3 1268902.53 1268902.55 11277566.74 11277567.57 

4 1270359.37 1270359.03 11279158.24 11279157.46 

5 1270359.37 1270359.11 11279158.24 11279157.51 

6 1270359.37 1270359.17 11279158.24 11279157.44 

7 1270184.29 1270184.53 11276221.98 11276223.47 

8 1270184.29 1270185.16 11276221.98 11276224.14 

9 1270184.29 1270183.81 11276221.98 11276222.66 

 

 

Figure 179. Results for blind runs,  leakage rates 
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Neural Network Model Analysis 

The initial results of the neural network training are illustrated in Figure 179 and Table 33 which 

compare actual data (Leakage rate and locations) with neural network predictions.  

The neural network determines the location of the leaking well with high accuracy (R2 = 1). 

However, for Leakage rates, neural network results cannot represent a few of the actual data 

correctly (R2=0.92) specifically when the rates belongs to well D-9-6. In order to improve the 

results for CO2 leakage rates predictions, an individual Neural Network was trained for each 

hypothetical leaking well. This approach was successful to enhance the prediction performance 

of the Neural Network model for the Leakage rate which is shown in Figure 180 (R2=0.96). 

 

Figure 180. Neural Network pridiction for Leakage rate(network trained for each well 

individually) 

Based on the Neural Network Modeling results we would design the ILDS in following way. At first 

the summarized pressure data are fed to the main Neural Network that predicts the location of 

the CO2 leakage. Afterwards when the location is determined, the pressure data would be fed 

into the corresponding Neural Network that was designed for that specific location. Based on the 

initial results. Location and the amount of CO2 leakage are quantified, using continuous monitoring 

of the reservoir pressure. Pattern recognition capabilities of Artificial Intelligence and Data Mining 

may be used as a powerful de-convolution tool for pressure behavior analysis.  
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INTELLIGENT LEAKAGE DETECTION SYSTEM DEVELOPMENT- 

HETEROGENEOUS MODEL 

PATTERN RECOGNITION ANALYSIS  

What was covered in the previous section was the application of the pattern recognition 

technology to the simpler version of the Citronelle numerical model7. In this section we summarize 

the result of applying the pattern recognition technology to the actual history matched model of 

the Citronelle field. The history matched model was used for modeling high frequency pressure 

signal behavior subject to various CO2 leakage scenarios.  

 

Figure 181. Location of five wells in the CO2 plume area 

Five different wells are located in the area of interest (the extension of the CO2 plume - Figure 

181). Each well would be prone to the leakage if the integrity of the well is compromised. Since 

wells D-9-7 (injection well) and D-9-8 (observation well) were drilled recently specifically for CO2 

                                                
7 The model used in the previous section was essentially the non- history matched, base model. This was 

done to see the viability of the technology in a simpler case and learn from it when applying it to the real 

history matched model. 
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storage purposes, probability of CO2 leakage through these wells was neglected. Wells D-9-6, D-

9-7 and D-9-8 could experience some kind of leakage. When a leakage happens, a pressure 

change (∆P) signal can be observed in the observation well. The pressure change signal in the 

observation well for the leakage rate of 65,000 cuf/day, at well D-9-7 is illustrated in Figure 182.  

 

Figure 182. Reservoir Pressure in the observation Well (D-9-8) 

 

NEURAL NET DATA PREPARATION 

Intelligent Leakage Detection System (ILDS) consisted of a neural network that learned patterns 

that related the leakage characteristics (location and rate) to the corresponding pressure signals. 

In order to train the neural network, it was necessary to have pressure signals corresponding to 

each leakage scenario. Reservoir simulation was used to generate mentioned pressure signals. 

Each well that was prone to the leakage (wells D-9-6, D-9-7 and D-9-8) experienced different 

leakage rates (in the range of 15,000 - 105,000 ft3/day with 10,000 ft3/day increments). The 

synthetic leakage initiated at 1/1/2022 and 168 pressure signals (collected on hourly basis) were 

recorded from the observation well (D-9-8). Descriptive statistics were used to summarize the 

pressure signals and to develop the data set for the neural network training.  

Intelligent Data partitioning was used to divide the data set into Training (80%), Calibration (10%) 

and Verification (10%) portions. Then, data sets were analyzed by Key Performance Indicator 

(KPI) analysis in order to identify the relative impact of each input parameter (summarized 
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pressure data) on the output features. The results of KPI analysis (all the data points with 

maximum possible combinations) are shown in Figure 183. 

 

 

Figure 183. Key performance indicator for Leakage location (left) and rate(right) 

 

Neural Network Architecture Design 

Back-propagation method was used for training the networks using all the parameters that were 

analyzed in key performance indicator as the input variables. Leakage location (X coordinate) and 

rate were set as the output parameters. Based on input-output selection, 10 neurons with one 

hidden layer formed the structure of the neural network (Figure 184). Input layers were connected 

to the hidden layers by logistic activation function. Also one random seed number was used to 

start initialization of neural network weights. 

 

Figure 184. Neural Network architecture  
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NEURAL NETWORK TRAINING, CALIBRATION AND VERIFICATION 

Training is a process during which data is introduced to the neural network for the purposes of 

identifying the best set of weights for the synaptic connections between all processing elements. 

The training algorithm is the set of mathematical equations that are used to find the most 

appropriate weight. This is usually done through an optimization process. The training algorithm 

used in this project is known as error back propagation. During the training a correlation is 

established between a set of multiple inputs (summarized pressure signals) and the output 

(leakage characteristics). Training is an iterative process which tries to minimize the average error 

through multiple epochs. When the error does not decline anymore (while the number of epochs 

continues to increase), the training process is considered to be complete.  

Neural network training was stopped at epoch 112,693 when the minimum average error for the 

leakage locations and the leakage rate were 0.00043 and 0.000056, respectively (Figure 185 and 

Figure 186). 

 

  

Figure 185. Neural Network training results for the leakage location(X) 
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Figure 186. Neural Network training results for the leakage rate 

The calibration data was set aside in order to look over the training process and save the best 

training results. Additionally, calibration data set helped to avoid over training of the neural 

network models. In this neural network, three data points were considered for calibration (Table 

34). The results for neural network predictions for the calibration data are shown in Figure 187 

and Figure 188. 

 

Table 34: Calibration data set 

Leakage Location, X Leakage Rate, ft3/day 

1268829 25,000 

1271495 35,000 

1270562 75,000 
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Figure 187. Neural Network Calibration results for the leakage location(X) 

 

Figure 188. Neural Network calibration results for the leakage rate 
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NEURAL NETWORK VALIDATION 

Validity of neural network predictions was tested by different methods. In the first method, 10% of 

data was not used during training and calibration processes. When the neural network was trained 

and calibrated, verification data was applied to the neural network to see how predictive the neural 

network model is. The verification results for the leakage rate obtained by the first method are 

shown in Figure 189. 

 

Figure 189: Neural Network Verification results for the leakage rate 

Table 35: leakage rates and locations for ILDS validation 

Run Number Leakage Rate Leakage Location Well 

1 23,000 1268829 

D-9-6 2 72,000 1268829 

3 93,000 1268829 

4 32,000 1270562 

D-9-7 5 61,000 1270562 

6 87,000 1270562 

7 27,000 1271495 

D-9-8 8 48,000 1271495 

9 101,000 1271495 
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In the second method, 9 different simulation runs were performed to generate pressure signals 

corresponding to the leakage rates that were not seen by the neural network during the training 

process. Three different leakage rates were assigned to each well (Table 35) and the pressure 

signals were collected and summarized by descriptive statistics. The results of the neural network 

predictions were compared with the data originally used in the simulation runs, to investigate the 

predictability of ILDS.  Figure 190 and Figure 191 show the results of this exercise. 

 

Figure 190. Results for neural network validation-leakage locations 

 

Figure 191: Results for neural network validation-leakage rate 
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NEURAL NETWORK MODEL ANALYSIS 

The Neural Network prediction’s precision can be analyzed by looking at the error plots and R2 

values. As it is shown in Figure 192, the R2 for leakage location predictions is 0.99 which indicates 

high precision in neural network predictions. Additionally the error for leakage location prediction 

ranges between -5 to 7 ft. (actual leakage locations are: 1,268,829, 1,270,562, 1,271,495 ft). For 

leakage rate results (Figure 193); the R2 is equal to 0.98 which shows very good prediction 

capabilities for the neural network models. The maximum errors for leakage rate predictions range 

from -5 to 9 Mcf/day which is less than 10 %. 

 

 

Figure 192. Neural Network prediction errors for Leakage location 
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Figure 193. Neural Network prediction errors for Leakage rates 

 

ILDS ENHANCEMENT AND EVALUATION 

As part of a monitoring technique, an Intelligent CO2 Leakage Detection System (ILDS) was 

developed for CO2 storage project at Citronelle Dome. This system, which was designed based 

on Pattern Recognition Technology and Smart Wells, is able to identify the location and the 

amount of the CO2 leakage at the reservoir level using real-time pressure data from PDGs. 

The history matched reservoir simulation model (based on 11 months of actual injection/pressure 

data) was used for CO2 leakage modeling studies. High frequency real time pressure streams 

were processed with a novel technique to form a new data driven Real-Time ILDS (RT-ILDS) 

which was able to detect leakage characteristics in a short period of time (less than one day after 

the initiation of a leakage). RT-ILDS also demonstrated high precision in quantifying leakage 

characteristics subject to complex rate behaviors. The performance of RT-ILDS was examined 

under different conditions as multiple well leakage, availability of additional monitoring well, 

uncertainty in the reservoir model, leakage at different vertical locations along the well and cap-

rock leakage.  
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REAL-TIME INTELLIGENT LEAKAGE DETECTION SYSTEM (RT-

ILDS)  

Real-Time Intelligent Leakage Detection System (RT-ILDS) is a data driven monitoring package 

which receives real time pressure data and determines occurrence of a CO2 leakage, and 

consequently predicts location and amount of the leak. This system originally was designed (and 

discussed in detail in previous sections of this report) in a way that it would receive pressure 

signals for a time interval, one week of hourly signals - 168 records after the leakage.  

Summarized pressure data obtained by descriptive statistics was fed into trained neural networks 

to find leakage characteristics. In that system, it was necessary to wait till the end of the time 

interval to find leakage characteristics. A new method of data processing is discussed in this 

section for the development of Real-Time Intelligent Leakage Detection System (RT-ILDS). In this 

method the pressure data is analyzed in real-time considering the previous trend of the signals. 

By this method it is possible to determine leakage characteristics much faster in less than a day. 

In order to process the data and convert it to a format which is appropriate for the pattern 

recognition technology, pressure signal based on thirty different CO2 leakage scenarios were 

used. Each scenario was corresponded to a simulation run that modeled specific CO2 leakage 

rate (ranging from 15 to 105 Mcf/day with 10 Mcf/day increments) at one of the three leakage 

locations (wells D-9-6, D-9-7, and D-9-8).  

The specifications of the simulation runs and behavior of the pressure signal for each scenario 

was similar to those covered in detail in the previous sections. First, a threshold was assigned as 

.01 psi for the ∆P that is defined as: (PNo Leakage – PLeakage), as the leakage indicator.  

This threshold is actually equal to the precision of the PDGs that are currently used in the industry 

and that are currently installed in the observation well D-9-8. When this threshold is achieved, 

data processing starts by considering values of ∆P, pressure derivative, ∆P average, ∆P 

summation, ∆P standard deviation, ∆P skewness, and kurtosis for the past history of the data (in 

a given window of time – usually an hour).  

The hourly pressure data for one week for each CO2 leakage scenario were used to generate the 

data set for the neural network training, calibration and verification. The first 12 hours of the data 

after beginning of the leakage (∆P > 0.01 psi) were neglected from the data processing, since 

they proved not to be useful for our analysis. 

Neural Network Data Preparation 

Development of the RT-ILDS is mainly based on the training, calibration and verification of the 

neural networks that received the pre-processed real-time pressure data for each CO2 leakage 

scenario as the input and the corresponding leak rate and location as the output. Initially, a neural 

network was trained to find a pattern between leakage location (output) and the corresponding 

pre-processed pressure signals. The entire data set for leakage location neural network consisted 
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of 3,527 data records which were partitioned into 2821, 353, and 353 records for training, 

calibration, and verification, respectively.  

The influence of each input parameter on the output (leakage location) was determined by Key 

Performance Indicator (KPI) analysis. As it is illustrated in Figure 194, skewness, standard 

deviation and average of the ∆P are indicated to have the most impact on the output (leakage 

location).   

It is worth mentioning that descriptive statistics for ∆P (in Figure 194 and Figure 195) data at each 

time step is calculated on a cumulative basis after pressure threshold of 0.01 psi (leakage 

indicator) is observed.  For example, at time step 24 (after pressure threshold was detected), 

average, summation, standard deviation, skewness and kurtosis were calculated for 24 ∆P 

records (Cumulative). Derivative and ∆P are point values at time step 24. The last 12 data records 

and corresponding calculated parameters will be used in neural network training. 

 

 

Figure 194. Key performance Indicator for the Leakage Location 

 

For leakage rate determination, one neural network was trained for each well separately.  The 

number of input data records for each well is different due to implementing 0.01 psi threshold as 

the leakage indicator. For instance, 1,553 records were used to train leakage rate neural network 

for Well D-9-8. That data records were partitioned into 1243, 155, and 155 records for training, 

calibration, and verification, respectively. The results for Key Performance Indicator analysis for 

well D-9-8 which shows the impact of the input parameters on the CO2 leakage rate are shown in 

Figure 195. 
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Figure 195. Key performance Indicator for the leakage rate at well D-9-8 

 

Results and Validation 

Neural network training process attempts to calculate most proper weights that describes a 

pattern between leakage locations and the specified input data (pressure signals). The entire 

process consisted of number of epochs that attempts to minimize the error between actual and 

predicted results.  

It was necessary to calibrate the training process by looking over the training results and finding 

the best training outcomes. When the error in the calibration reached a minimum value, the 

training process is stopped and the training process is identified as completed. The results for all 

the training processes (training, calibration, and validation) are shown in Figure 196 (CO2 leakage 

location) and Figure 197 (CO2 leakage rate in well D-9-8). For both leakage location and results, 

R-square is more than 0.99 which represents high precision. 

In order to validate the performance of the RT-ILDS, a set of blind runs (not used for the neural 

network training) were designed, the simulation runs were performed and the appropriate data 

was collected and pre-processed to appropriate for mat for the application to the neural network 

models. 

As it is shown in Table 35 nine total simulation runs were performed considering assignment of 

three CO2 leakage rates at the possible locations of the leakage (wells: D-9-6, D-9-7, and D-9-8).  

Pressure signals which corresponded to each CO2 leakage scenario were processed by applying 

the leakage threshold (0.01 psi) and generating ∆P, pressure derivative, ∆P average, ∆P 

summation, ∆P standard deviation, ∆P skewness, ∆P kurtosis at each time step.  

For each leakage scenario, all the calculated parameters were fed to the RT-ILDS to get the 

prediction for leakage location and leakage rate. All the results for RT-ILDS prediction for each 

blind run are shown in Figure 198, Figure 199. All the details of the analysis are presented in 

Appendix 6. 
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Figure 196. Neural network results for leakage location 

 

Figure 197. Neural network results for leakage rate in well D-9-8 
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Figure 198. R-ILDS Leakage Location prediction, all blind runs 

 

Figure 199. R-ILDS Leakage rate prediction, all blind runs 
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The precision of the neural network predictions can be quantified by R2 parameter and the 

distribution of the errors. The neural network that was trained for leakage location, has an R2 

value that is practically equal to 1.  The prediction’s error histogram for locations of wells is shown 

in Figure 200.  

 

Figure 200. Histogram for the error in neural network’s location prediction 

 

Figure 201. Neural network prediction errors for Leakage rates in well D-9-8 
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The average error for the leakage location is 3 ft. with the maximum error of 46 ft. The R2 for the 

CO2 leakage rate predictions is 0.998 which represents a good precision. The percentage error 

plot for leak rate at well D-9-8 is shown in Figure 201. The maximum error for the leakage rate is 

less than 9 %. The average error for CO2 leakage rate predictions is less than 4% at well D-9-8.  

 

DETECTION TIME 

When CO2 leakage occurs in the reservoir (from the existing wells, D-9-6, D-9-7, and D-9-8), there 

is a delay until Pressure Down-hole Gauges receive the generated pressure signal. The time that 

takes to detect CO2 leakage depends on the Pressure Down-hole Gauge resolution and amplitude 

of the pressure signals.  Resolution of the PDGs that were installed in observation well is 0.01 

psi. Therefore, if the amplitude of an induced pressure signal due to CO2 leakage is less than 

PDG resolution, it wouldn’t be possible to detect the leak.   

Another important parameter related to leakage detection timing is the amplitude of the pressure 

signal. The signal amplitude is proportional to the inverse distance from the location of the leakage 

to the location of the observation well. The distances of each possible leakage location (wells D-

9-6, D-9-7, and D-9-8) to the observation well are shown in the Figure 2028.  

 

 

Figure 202. Distance of possible leakage locations to the observation well 

                                                
8 Please note that distance, as far as the transmission of the pressure transients are concerned, includes 

the impact of the permeability as well as the physical distance between two points. Furthermore, the 

accuracy of the permeability distribution is a function of the accuracy of the history matching process. 
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The induced pressure signal (as a result of the leakage in the reservoir) for the cases that each 

of three wells leak 55 Mcf/day is shown in Figure 203. As the leakage location gets closer to 

observation well, the amplitude of the pressure signal increases.  RT-ILDS was developed based 

on the fact that pressure change threshold of 0.01 psi can be detected by PDGs.  

 

 

Figure 203. Comparison of pressure signal amplitude when wells leaked with the same rate 

 

Also, the first 12 pressure data records (after reaching to ∆P=0.01 psi) were not included in RT-

ILDS development.  Based on mentioned criteria, detection times for different CO2 leakage rates 

at each leakage location are plotted versus CO2 leakage rate in  
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Figure 204. As the distance between the leakage source and the observation well decreases, 

pressure signal amplitudes increase and it takes less time to detect the leakage and provide valid 

results. 
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Figure 204. Detection time for each rate at different locations 

 

 

TESTING RT-ILDS FOR MULTIPLE GEOLOGICAL REALIZATION  

Reservoir simulation model for CO2 injection at Citronelle saline aquifer was developed and 

history matched with real field data. This model acknowledged “Lateral Heterogeneity” in different 

ways. The first reservoir characteristics that played important role in making the reservoir model 

heterogeneous was the top of sand layers.   

Structural maps for 17 sand layers (most extensive ones that were targeted for CO2 injection) 

were generated by interpretation and correlation of 14 well logs. The location of the well logs and 

three cross sections for correlating the wells are shown in Figure 61. Based on correlation 

between wells, 17 top maps were generated representing lateral heterogeneity in the reservoir. 

The top map for the first sand layer is shown in Figure 67.  

The same well logs were used to generate thickness (isopach) maps for all the layers. The 

example for grid thickness map (first sand layer) is shown in Figure 68. In order to make porosity 

maps, 40 well logs were analyzed and interpreted. Three different porosity maps were generated 
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for each sand layer (51 total porosity maps for the entire reservoir). The lateral heterogeneity for 

porosity is shown in Figure 73. In this model, permeability of the reservoir was obtained using 

porosity-permeability correlations from core analysis. This means that there are lateral 

heterogeneities for the permeability as well. 

Multiple reservoir characteristics realizations were generated aimed at changing the parameters 

that control lateral heterogeneity in the reservoir. Reservoir porosity, sand layer top/thickness and 

vertical to horizontal permeability ratio were the main parameters to be modified for generating 

lateral heterogeneity realizations. All these parameters varied compared with the original value 

according to Table 36. For each realization, leakage rates equal to 70, 60 and 50 Mcf /day were 

assigned to wells D-9-6, D-9-7, and D-9-8, respectively. 

 

Table 36. Changes in reservoir Property Parameter 

                                           Variation 

Reservoir Parameter 

2% 

UP 
2% low 5% low 10% up 10% low 

Porosity           

Sand Layer Top           

Sand Layer Thickness           

Vertical to Horizontal Permeability Ratio           

 

The corresponding pressure signals (due to leakage from the wells) at the observation well, were 

collected, processed and fed to the RT-ILDS. It should be mentioned that after changing reservoir 

characteristics (like porosity or thickness), initial reservoir pressure and stabilization pressure after 

end of injection varied (compare with the initial history matched model). This means that PNo leakage 

and consequently ∆P had to be recalibrated and recalculated.  

To recalibrated and recalculated the ∆P, for each realization, a “No-Leakage” scenario was 

modeled and relevant data was extracted. Reservoir pressure signals at the observation well were 

collected for each realization.  At this point, new ∆P values were calculated for each realization, 

having No-Leakage pressure data for all the cases.  

As an example, ∆P –Original and ∆P –New for the realization that porosity of the reservoir lowered 

10% and CO2 leakage rate equal to 60 Mcf/day was assigned to well D-9-7, are shown in Figure 

205. 

Pressure signals from different CO2 leakage rate scenarios and reservoir characteristic 

realizations were collected, processed and fed into the RT-ILDS. Detail results of all these 

exercises that demonstrated the robustness of the RT-ILDS are shown in Appendix 7.  
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Figure 205. Original and new ∆P, at observation well subject to lowering reservoir porosity 

 

First, the effect of each specific parameter on the RT-ILDS predictions for leakage location is 

explained. When the leakage (rate = 70 Mcf/day) took place at well D-9-6, RT- ILDS predicted the 

location for all the realization correctly except for the case that reservoir porosity decreased 10%. 

In this case, RT-ILDS prediction started deviating from the actual value (1,268,829 ft.) almost 35 

hours after detecting the leakage. The location prediction from that time showed 1000 ft deviation 

from the actual value and then it gradually moved back to the actual value. 

 For the case that well D-9-7 leaked (rate = 60 Mcf/day), RT-ILDS location prediction represented 

almost 20 ft. error. In the situation that reservoir porosity decreased 10%, prediction values 

showed 20 ft. error early after leakage detection. Then, the error for R-ILDS location prediction 

slightly increased to 80 ft.  This error is acceptable since the predicted location is still in the vicinity 

of the target leaking well (D-9-7).  

When well D-9-8 was leaking with the rate of 50 Mcf /day, changing the reservoir characteristics 

showed no effect in R-ILDS location prediction apart from the case that reservoir porosity 

increased 10%.  In this case, R-ILDS predicted the leakage location to be at well D-9-6. 

The impact of model’s specific parameters on RT-ILDS’s prediction for leakage rate is as follow.  

RT-ILDS’s predictions for CO2 leakage rate at well D-9-6 were almost precise excluding the cases 

that reservoir porosity varied. The R-ILDS’s results for CO2 leakage rate were 105 Mcf/day (actual 

value = 70 Mcf/day) while reservoir porosity was changed ±10%.  
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Once well D-9-7 was leaking, change of main reservoir parameters showed very little impact of 

RT-ILDS’s results for CO2 leakage rate. The maximum error of 10 Mcf/day in the results was 

caused by decreasing reservoir porosity for 10%. It should be mentioned that CO2 leakage rate 

for this well was 60 Mcf/day. 

Finally, for the case that well D-9-8 was leaking 50 Mcf/day, RT-ILDS’s results for CO2 leakage 

rate were consistent with the actual value with the exception of the realizations with reservoir 

porosity change. Lowering reservoir porosity for 10% led to R-ILDS prediction to be 15 Mcf/day 

while increasing reservoir porosity resulted in 70 Mcf/day predictions. 

All in all, the impact of models specific parameters was studied on the performance of RT-ILDS. 

For most of the cases, changes in the model’s parameter did not show significant impact on RT-

ILDS’s results.  The only parameter that impacted R-ILDS’s predictions considerably for both CO2 

leakage rate and location was reservoir porosity. In reservoir simulation model that was developed 

for CO2 injection at Citronelle filed, reservoir permeability was calculated by porosity-permeability 

correlation. Therefore, variation of reservoir porosity indirectly changes reservoir permeability. In 

other words, any change in reservoir porosity leaded to change in permeability as well.  

Reservoir permeability plays very important role in fluid flow in the reservoir and consequently 

pressure signals coming from the observation well. Porosity change caused different fluid flow 

behavior and consequently different pressure signal behavior. As a result, RT-ILDS’s results were 

impacted by variation of reservoir porosity. 

 

DETECTION OF LEAKS AT DIFFERENT VERTICAL LOCATIONS ALONG THE WELLS 

Based on the reservoir simulation results for CO2 distribution and extension, it was observed that 

CO2 plume reached to existing wells in reservoir mainly in layer 1 (Figure 206). Therefore all the 

synthetic leakages were assigned to the wells at layer 1 (the well was perforated just in that layer).   

More investigation showed that CO2 Plume was in contact with Well D-9-7 through 9 layers and 

Well D-9-8 in two layers. This means that CO2 leakage could take place at different vertical 

locations along the well D-9-7. For that reason, the changes in the vertical leakage location were 

applied to investigate if the system was capable of detecting the leak and the rate regardless of 

where (vertically) the leak was initiated within a well. 

It should be mentioned that two Pressure Down-hole Gauges were installed at well D-9-8 in the 

first layer of the reservoir. During the history matching process, based the reservoir pressure 

behavior in the observation well, it was concluded that the transmissibility of the shale layers that 

were inter-bedded in the sand layers was zero (Figure 207). This resulted in no communication 

between sand layers vertically. Therefore, if a leakage took place at well D-9-7 in layer 5, it would 

not be possible to observe the pressure change by the sensors located in layer 1.  The pressure 

change in PDG located in well D-9-8#2 when well D-9-7 was leaking from layer 5 (50Mcf/day) is 

shown in Figure 208. 
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Figure 206. CO2 plume extension in different layers 

 

Figure 207. Transmissibility multiplier for shale layers 



201 

 

 

Figure 208. Pressure change in observation well when leakage initiated at layer 5 

 

It was assumed that several Pressure Down-hole Gauges were installed at the observation well, 

at multiple sand layers in the reservoir. By making this assumption, it would be possible to 

measure pressure changes due to CO2 leakage at every layer. Therefore, the corresponding 

pressure changes (∆P), during a potential leakage at wells D-9-7 and D-9-8 were recorded, 

processed and provided to RT-ILDS. The RT-ILDS’s results for CO2 leakage location and rate are 
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shown In Figure 209, Figure 210 and 

 

Figure 211. 

Based on the results for leakage location (Figure 209), it can be concluded that RT-ILDS is able 

to detect CO2 location correctly when CO2 leakage took place in well D-9-8 at different vertical 

locations (assuming existence of PDG in every layer).  

When CO2 leakage took place at well D-9-7, RT-ILDS predicted the leakage location correctly 

specially within 80 hours after the leakage (except the cases that well leaked form layer 5 and 

layer 29). After 80 hours from the detection time, the results started deviating from actual location 

of well D-9-7.  
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Figure 209. Leakage location prediction; leakage took place at different vertical locations 

 

CO2 leakage rate of 50 Mcf/day was assigned to each leakage scenario (different vertical 

locations along the well). For the case that well D-9-7 was leaking (Figure 210); RT-ILDS’s 

leakage rate predictions were around 100 Mcf/day. When the leakage was from well D-9-8(at 

different layers), RT-ILDS predicted the rate for case that CO2 leakage was from layer 19 correctly 

(  
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Figure 211).  

However the results for CO2 leakage rate when leak was initiated from layer 5, was not 

satisfactory. The main reason for not having correct prediction for the cases that CO2 leakage 

initiated at different vertical locations is that pressure signals are coming from different layers with 

completely different reservoir characteristics.  

Therefore, these pressure signals cannot be exactly the same as the case the CO2 leakage 

initiated from layer 1 (the RT-ILDS was developed based on pressure signals for different CO2 

leakage scenarios at layer 1). 

 

 

Figure 210. Leakage rate prediction at well D-9-7 when leakage took place at different vertical 

locations 
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Figure 211. Leakage rate prediction at well D-9-8 when leakage took place at different vertical 

locations 

 

EFFECT OF GAUGE ACCURACY OR PRESSURE DRIFT ON RT-ILDS RESULTS 

One of the important parameters that affect the accuracy of the pressure measurements is 

Pressure Sensor Drift (PSD). Most of the Pressure Down-hole Gauges (PDGs) experience drift 

over their life time. PSD can be defined as a gradual malfunction of the sensor that may create 

offsets in pressure readings from the original calibrated form. Changes in reservoir temperature 

or pressure make the PDGs to respond differently depending on manufacturing characteristics.  

The scale of PSD changes according to working conditions and manufacturing specifications.   

PSD can be measured as how much pressure readings deviated from the original value in a year 

(psi/year).  Distributions of different PSD values are shown in Figure 212. For RT-ILDS, Pressure 

Sensor Drift (PSD) can act as a CO2 leakage indicator. When ∆P of greater than 0.01 is recorded 

by the pressure sensor, RT-ILDS reports a leakage and starts processing the data to quantify 

leakage characteristics. For example PSD equal to 1 psi/year generates ∆P=0.01, almost 88 

hours after the initiation of the drift.  
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Figure 212. PSD distribution for the sensors 

 

Based on the different values of reported PSDs (Figure 212), the times that RT-ILDS reports a 

leakage mistakenly are shown in Figure 213. This leakage is due to pressure gauge drift and not 

actual induced pressure change. PSD trends (are substitute for ∆P for actual leakage) over 168 

hours were generated and applied to RT-ILDS. The RT-ILDS prediction results for CO2 leakage 

location and rate are shown in Figure 214. RT-ILDS results for the leakage location at early times 

oscillate between wells D-9-6 and D-9-7. After 80 hours, all the results converge to Well D-9-6. 

This means that PSD makes ILDS to reports inaccurately that well D-9-6 is leaking. 
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Figure 213. Time to report a leak based on different PSD values 

 

Figure 214. R-ILDS prediction for leakage location based on different drift values 
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USE OF WELL HEAD PRESSURE AT INJECTION WELL 

Typically, there are three different reservoir pressure regimes during the injection and post 

injection. The first period refers to the start of the CO2 injection until it ends (We refer to this time 

period as T1).  At this Injection time (T1), reservoir pressure increases proportional to the amount 

of CO2 injected and reaches to a maximum value at the end of injection period.  

When the CO2 injection ends, there would be a transition time (We refer to this time period as T2) 

when the reservoir pressure decreases until the brine and injected CO2 reach a semi-equilibrium 

point. At the end of the transition time (T2), reservoir pressure remains almost constant (or 

decrease with a very slow trend) which can be referred to a steady state period (We refer to this 

time period as T3).   

These three time cycles are shown in Figure 215. The objective of this study was to develop RT- 

ILDS for time cycle T3 when there had been no injection in the field and reservoir pressure 

reached to steady state trend. During this time period, since CO2 injection is stopped, there is no 

fluid flow in the well and well head pressure would not change (it is possible to have well head 

pressure during the injection-T1). Therefore it is not possible to use well head pressure at the 

injection well for leakage detection in this study. 

 

 

Figure 215. Different time cycles during and after CO2 injection 
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The wells can be equipped with a pressure gauge that measures casing pressure (Figure 216). 

When there is only steady state production from tubing and no leakage occurs, the gauge 

measuring the casing pressure will show zero. Sometimes due to heating of the casing and 

completion fluids, the gauge measuring the casing pressure may not read zero.  

By closing a needle valve, casing pressure should get back to zero. Otherwise, the casing 

represents Sustained Casing Pressure (SCP) which is an indicator for leakage; analysis of SCP 

can lead to determination of leakage pathway characterization on the same well (no other wells 

in that area). This is outside of the scope for this Study. 

 

 

Figure 216. Sustained Casing Pressure  

 

 

 

 

  



210 

 

RT-ILDS FOR VARIABLE CO2 LEAKAGE RATES 

In previous sections, it was demonstrated that RT-ILDS is capable of incorporating pressure 

signals that were generated by CO2 leakage rates with step function behavior (Figure 217). CO2 

leakages were initiated with a specific rate that remained constant as the time passed.  In order 

to investigate the effect of variable CO2 leakage on the performance of RT-ILDS, a set of 

simulation runs was designed to assimilate different CO2 leakage rate behaviors such as linear, 

exponential and logarithmic.  

The corresponding pressure signals for each variable rate function were included in leakage 

detection system development.  Exponential and logarithmic CO2 leakage rate functions are 

shown in Figure 218. Additionally, 20 different linearly changing CO2 leakage rates were assigned 

to each possible leakage locations (well D-9-6, D-9-7, and D-9-8) in the reservoir simulation model 

(60 total simulation runs). Linear CO2 leakage rates are shown in the Figure 219.  The 

corresponding pressure signals for each CO2 leakage scenario were collected, processed and 

sorted to form a data set which is appropriate for pattern recognition technology.  

 

 

Figure 217. Step function CO2 leakage rate 
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Figure 218. Logarithmic and exponential CO2 leakage rates 

 

Figure 219. Linear CO2 leakage rates 
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For CO2 leakage location detection (with different leakage rate functions) all the pressure signals 

(coming from 60 simulation runs) as function of time and their calculated time-based descriptive 

statistics were lumped together to form input data set. Therefore, input data set included 10,950 

data records that were partitioned into training, calibration and verification sets (80%, 10% and 

10%, respectively). The outputs for this network were three leakage locations (wells D-9-6, D-9-

7, and D-9-8).  

Back-propagation neural network with 50 neurons in hidden layers was selected for training 

process. Neural network results (virtual versus actual) for CO2 leakage location are shown in 

Figure 220. Neural network was able to find the pattern between leakage location and pressure 

signals with high precision (R2 = 0.998) 

 

 

Figure 220. Neural network results for leakage location 

 

Three neural networks were trained for each well individually to detect the leakage rate. The input 

data was the same as what was used for the leakage location training. However the output is CO2 

leakage rate at each specific time. It is different from that case the leakage rate remained constant 

as function on time.  
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The neural network architecture was almost the same as previous ones except the number of 

neurons in hidden layers. The results for CO2 leakage rate (well D-9-8) are shown in Figure 221 

(results for other wells are included in Appendix 4). Neural networks were able to determine a 

pattern between 32 different CO2 leakage rate functions (as function of time) and corresponding 

pressure signals quite accurately (R2 = 0.999). 

 

 

Figure 221. Neural network results for leakage rates at well D-9-8 

 

In order to further validate the performance of the RT-ILDS, a complex CO2 leakage rate as 

function of time was considered for the blind test of the system. This rate function represented 

logarithmic behavior at the beginning followed by a linear trend. The end part of the rate function 

showed exponential characteristic.  

The rate function for the blind run is shown in Figure 222.  This rate function was assigned to 

each of the leakage locations (D-9-6, D-9-7, and D-9-8) as the rate constraints and corresponding 

pressure signal from observation well (D-9-8) was collected. The pressure signals were 

processed to determine real time ∆P and calculated descriptive statistics values to be applied to 

the RT-ILDS and find the CO2 leakage location and the rate. RT-ILDS predictions for leakage 
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location and rate (at well D-9-8) are shown in Figure 223 and Figure 224. (Details of all the results 

of this portion of the study are included in Appendix 8). 

 

Figure 222. Rate function for the blind test of the ILDS. 

 

Figure 223. R-ILDS prediction for leakage location (variable rate) 
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Figure 224. R-ILDS prediction for leakage rate in well D-9-8 (variable rate) 

 

RT-ILDS predictions for the CO2 leakage locations were reasonably accurate. RT-ILDS was able 

to predict the location of each well correctly. For the CO2 leakage rate in well D-9-8, RT-ILDS 

prediction represented the actual rate especially at the early times.  

RT-ILDS predicted just one value for rate at each time. In order to have range of rates rather than 

a single value, “Monte Carlo” simulation was used. Monte Carlo method is a computerized 

mathematical technique designed for explanation of risk in quantitative analysis and decision 

making. 

Following steps are included in Monte Carlo simulation process: 

1. Identification a range for possible inputs. 

2. Generate random inputs from a probability distribution over the range. 

3. Perform a large number of simulations with determined inputs 

4. Collect, combine and analyses the results  

The domain of the input parameters was defined by having Key Performance Indicator (KPI) 

analysis for leakage rate in Well D-9-8 (Figure 225). 
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Figure 225. KPI for CO2 leakage rate in well D-9-8 

As it is shown in Figure 225, cumulative summation (∆P), average (∆P), standard deviation (∆P) 

and skewness indicated the most impact on CO2 leakage rate in well D-9-8. Based on the “±20%” 

rectangular probability distribution, 1000 random variables for each mentioned   parameter were 

generated. Then, the trained neural network computed CO2 leakage rate 1000 times based on 

combinations of the generated input variables. 

 Calculated leakage rates were sorted according to their relative frequency and cumulative 

probability. As an example at time 162 hr after leakage, the actual rate was 83 Mcf/day while RT-

ILDS prediction showed 67.4 Mcf/day. Monte Carlo results provided a leakage rate range (Figure 

226) that includes the actual rate. 

 

Figure 226. Relative frequency & cum. probability for the leakage rate at time 162 hr  
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USE OF PRESSURE DOWN-HOLE GAUGE (PDG) IN INJECTION WELL  

Two Pressure Down-hole Gauges were installed in the well D-9-8 to measure and transfer real-

time pressure data (Figure 227) to the surface. So fare, all the studies were performed based on 

the presence of PDG at observation well. At this section, it is assumed that a pressure down-hole 

gauge is installed in the Injection well (D-9-7) rather than observation well. This may reduce the 

need for drilling an observation well in the system.  

All the reservoir simulations runs that addressed 30 different CO2 leakage scenarios were 

repeated in order to generate high frequency pressure data at the injection well. The same 

procedure was used to apply this new sets of data (high frequency pressure data collected at the 

injection well) as the new engine of the RT-ILDS.  The results for the RT-ILDS with new processing 

engine based on the presence of the PDG at the injection well are included in details in Appendix 

9.  

 

Figure 227. Location of the injection and observation well in the area of interest 

 

According to the training results, RT-ILDS was able to predict the CO2 leakage rates with good 

precision (CO2 leakage rate R2 were more than 0.99 for all three wells, D-9-6, D-9-7, and D-9-8). 

For the CO2 leakage location, the RT-ILDS results were not representing the actual locations (CO2 

leakage location R2 was 0.49).  The reason for not having good results is that injection well is 

located approximately in the middle of wells D-9-6 and D-9-8 as shown in Figure 227 (Almost 

equal distance from both wells).  

This symmetric characteristics of well locations, led to having the same pressure signals, when 

well D-9-6 or D-9-8 leaked (Figure 228).  Since the injection well is located in the middle of CO2 

plume (based on reservoir characterization), it receives the same pressure signals from different 

leakages that are at the same distance to the well. Therefore it is not possible to detect the exact 

location correctly. PDG should be installed in location that represents distinct pressure signals 

from different leakage location. Otherwise the presence of second monitoring well is necessary 

to be able to detect CO2 leakage location correctly. 
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Figure 228. Pressure signals subject to leakages at well D-9-6 and D-9-8 

 

LEAKAGE FROM THE CAP-ROCK  

Initially, the reservoir was assumed to have a continuously sealed cap-rock that prevented any 

communication between the reservoir and formations above it.  After the injection period, pressure 

on one side of the seal (in the target zone) would increase leading to a pressure difference across 

the cap-rock. When the pressure difference across the cap rock exceeds the fracture pressure, 

the seal layer breaches and provides a path for CO2 to migrate to the other layers.   

In order to model cap-rock leakage in the reservoir simulator, the pressure in the Dantzler sand 

located on top of the seal ( 

 

 

Table 5) was estimated by having the pressure gradient in the formation and its average depth. 

This pressure was assigned as the constraint for the cap rock leakage in the model. The pressure 

difference between two layers is the main driving force for CO2 flow through the leakage path.  

As an example, the reservoir pressure (in the observation well) and CO2 leakage rate behavior 

for the case that cap rock leakage occurs (at 01/01/2022) in the North of the injection well (Figure 

229) is shown in Figure 230. When the cap-rock fracture is initiated, large amount of CO2 is 

released and leaked to the upper layer in very short period of time (less than a day). This high 

flow rate of CO2 leakage causes sharp decline in the reservoir pressure.  
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As the reservoir pressure decreases, the driving force (pressure difference between reservoir and 

top sand layer) declines and less CO2 leakage rate is observed. Typically ,the pressure signal 

that is created due to cap rock leakage represents higher amplitudes compare with the well 

leakages signals (that were studied in previous sections). Therefore a different RT-ILDS 

implementation was used to detect and quantify the characteristics of cap rock leakage. 

 

 

Figure 229. Cap-rock leakage location 
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Figure 230. Pressure behavior in the observation well and CO2 rate due to cap rock leakage 

 

In order to develop the new implementation of the RT-ILDS for detecting the cap-rock leakage, 9 

different simulation runs were designed based on the location of the leakage (Figure 231). The 

only constrain for cap-rock leakage was pressure in the upper layer (Dantzler sand) which was 

assigned as the bottom–hole pressure for a synthetic well that was drilled in the leakage location. 

As mentioned earlier, there is a sharp increase in the CO2 leakage rate. To eliminate this peak in 

the CO2 leakage rate behavior, cumulative amount of leaked CO2 was used instead of rate. The 

training process is exactly the same as what was explained before. For each leakage scenario, 

the corresponding pressure signals were processed in real time by descriptive statistics to be 

used as the input for neural network.  

The outputs for the neural network were the leakage location (x and y) and the cumulative leaked 

CO2. Details results for the neural network training are shown in Appendix 10. The neural network 

results for cumulative leaked gas and x coordinate of leakage location were precise with R2 equal 

to 0.97, and 0.99, respectively. For leakage location “y” coordinate the neural network predictions 

were not as accurate as the other ones (cumulative leaked gas and x coordinate).  This might be 

due to the symmetric locations of cap-rock leakages respect of observation well in “y” direction.   
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Figure 231. 9 different locations for cap-rock leakages and 3 blind runs 

 

The final part for the verification of cap-rock R-ILDS was to design a set of blind runs that were 

not used during the neural network training process. Three cap-rock leakage locations were 

considered in the reservoir simulation model (Figure 231). Two cap-rock leakage locations (out 

of three) were inside the range of the locations used for neural network training. The results for 

blind run verification are shown in Appendix 10.  

It can be observed that for cumulative leaked rate, RT-ILDS results are almost the same as actual 

values for the first two blind run cases (were located in the range of locations). For the third blind 

run which was located outside the range, RT-ILDS results overestimated the actual value 

considerably. X-coordinate results were almost the same as actual locations except blind runs 2. 

For the Y coordinate results there were noticeable difference between actual values and RT-ILDS 

prediction.  Overall, location of cap-rock leakage can be predicted as accurate as well-leakage 

due to symmetry of the location and impulsive and uncertain behavior of the leakage.  

 

  

Blind Run 1 

Blind Run 2 

Blind Run 3 

Cap rock location 
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MULTI-WELL LEAKAGE 

In the previous sections, a single well leakage was studied and analyzed. Since it possible that 

leakages take place from multiple locations, simultaneously, this section covers the capabilities 

of the RT-ILDS in detecting multiple leakages. To investigate multi-well leakage, combination of 

rates for two and three well leakages were assigned to the wells in the reservoir model according 

to Table 37.  

Table 37. CO2 leakage rates for multi-well leakage 

Two Well Three Well 

Leakage Rate(Mcf/day) Leakage rate(Mcf/day) 

D-9-6 D-9-7 D-9-8 D-9-6 D-9-7 D-9-8 

15 15 0 15 15 15 

15 60 0 15 15 60 

15 105 0 15 15 105 

60 15 0 15 60 15 

60 60 0 15 60 60 

60 105 0 15 60 105 

105 15 0 15 105 15 

105 60 0 15 105 60 

105 105 0 15 105 105 

15 0 15 60 15 15 

15 0 60 60 15 60 

15 0 105 60 15 105 

60 0 15 60 60 15 

60 0 60 60 60 60 

60 0 105 60 60 105 

105 0 15 60 105 15 

105 0 60 60 105 60 

105 0 105 60 105 105 

0 15 15 105 15 15 

0 15 60 105 15 60 

0 15 105 105 15 105 

0 60 15 105 60 15 

0 60 60 105 60 60 

0 60 105 105 60 105 

0 105 15 105 105 15 

0 105 60 105 105 60 

0 105 105 105 105 105 

 

After performing simulation runs (start of leakage was at 1/1/2022) based multi-well leakage 

scenarios and processing all the corresponding pressure signals, it was required to train a neural 

network to differentiate between various combinations of well leakages. In this regard, a “Leakage 

Index” was defined based on the distance of each well from the observation well. Longer distances 

from the observation well resulted in selecting lower values for leakage index. The index values 
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ranged from 1 to 7 (higher values represent higher pressure signal amplitudes) according to 

distance to observation well and number of the leaking wells. All the scenarios can be divided into 

three classes as: single well leakages (indices: 1, 2, and 3), two well leakages (indices: 4, 5, and 

6) and three well leakage (index: 7). The leakage index values are shown in Table 38 

Table 38. Leakage Index for different single and multi-well leakage scenarios 

Leaking Well Leakage Index 

D-9-6 1 

D-9-7 2 

D-9-8 3 

D-9-6 & D-9-7 4 

D-9-6 & D-9-8 5 

D-9-7 & D-9-8 6 

D-9-6 & D-9-7 & D-9-8 7 

 

Several neural networks were trained considering different leakage indices as the output and 

processed pressure signals (∆P) as the input. Detail results for this section are shown in Appendix 

11. As it can be seen, it was not possible to get reasonable results for the neural networks. The 

main reason for not getting acceptable neural network training is that convolution of several 

pressure signals (generated by different combinations of well leakages) makes it very difficult for 

the networks to catch specific patterns out of final pressure signals. 

 

Figure 232. Neural network results for two-well leakage 
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 In order to de-convolve mixed pressure signals (generated by multi-well leakages), existence of 

an additional pressure down-hole gauge was considered in the injection well (in addition to the 

observation well). The problem also was simplified in a way where only two well leakages were 

subject to investigation (leakage index values of 4, 5, and 6). Addition of one more pressure down-

hole gauge brought in more information about pressure signals and the time that signals were 

observed by the gauges. For this case, a neural network was trained by Generalized Regression 

Neural Network GRNN, algorithm. The results for neural network training are shown in Figure 

232. 

By use of this new approach (adding more pressure gauge in the injection well), the results for 

neural network training improved significantly (R2 equal to 0.9935). As a result, it became possible 

to differentiate which two wells were leaking by having pressure signals coming from two pressure 

down-hole gauges.  The final step was to verity the practicality of the RT-ILDS which was devolved 

for multi well leakage. To do so, six simulation runs considering combinations of two-well leakages 

(Table 39) were performed.  

 

Table 39. CO2 leakage rates for the blind runs-two well leakages 

Run 

Two Well 

Leakage Rate(Mcf/day) 

D-9-6 D-9-7 D-9-8 

1 40 80 0 

2 80 40 0 

3 40 0 80 

4 80 0 40 

5 0 40 80 

6 0 80 40 

 

 

The results for blind run verifications are shown in Figure 233. RT-ILDS was able to predict the 

leakage index correctly except for few hours at the early times after the leakages. Although the 

probability of two wells leak simultaneously is low, but with use of two pressure gauges installed 

in two distinct wells, it was possible to say which wells leak at the same time. 
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Figure 233. R-ILDS predictions for two-well leakages 
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ANALYSIS TO DEMONSTRATE THE PROJECT TECHNOLOGY’S ABILITY TO SUPPORT 

DOE’S GOAL OF LESS THAN 1% CO2 LEAKAGE OVER 100 YEARS 

The objective of CO2 sequestration in the Citronelle dome was to inject 9.4 MMcf/day (500 

tons/day) of CO2 into the saline aquifer at Paluxy formation for duration of three years. Therefore, 

the total injected value will be 10,293 MMcf or 547.5 Mton.    

One percent of total injected value is 102.93 MMcf (5.47 ton). If 102.93 MMcf of CO2 leak from 

the reservoir over 100 years, the corresponding daily leakage rate from one will be 2.85 Mcf/day 

or 0.15 ton/day.  Three different reservoir simulation runs were performed by assigning 2.85 

Mcf/day of CO2 leakage rate to the three wells that were located in the CO2 plume area. For each 

leakage location, the pressure change in the observation well was recorded.  As it is shown in 

Figure 234 it takes 281 hours to detect the leakage from wells D-9-6, it takes 79 hours to detect 

the leakage from wells D-9-7, and it takes 12 hours to detect the leakage from wells D-9-8. 

Therefore RT-ILDS technology is able to detect leakages correspond to 1% on total injected value 

over 100 years within a reasonable time.  

After the leakage is detected, remediation activities must be implemented to rectify the situation. 

Remediation activities are outside of the scope of this project. 

 

Figure 234. Pressure change in the observation well when leakage rate is 2850 ft3/day or 1% of 

the total injected volume. 
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CONCLUSIONS 
An Intelligent Leakage Detection System (ILDS) was developed. This modeling technology was 

implemented using Citronelle field, a saline aquifer reservoir, located in the U.S. The process 

included development and history matching a reservoir simulation model for CO2 sequestration 

in the Citronelle field. The modeling and history matching included installed PDGs at the injection 

well and an observation well. High frequency pressure data from PDGs were generated using the 

history matched numerical model using different CO2 leakage scenarios. ILDS incorporates 

machine learning technology for deconvolution of pressure signals.  

It was demonstrated that the ILDS is able to detect leakage characteristics in less than a day from 

its occurrence. The performance of ILDS was examined under different conditions such as 

multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of 

pressure drift and noise in the pressure sensor and uncertainty in the reservoir model. 

It is concluded that if there are impermeable (shale) layers between the sand (or carbonate) layers 

that are host of the CO2 injection, then, in order to have a system that can pick up leakage at any 

layer in the reservoir, all layers must have PDGs. 

  



228 

 

APPENDICES 
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APPENDIX1 

CITRONELLE FIELD 

The approximate surface area of the Citronelle oilfield is 16,380 acres which is located in Mobile 

County. The oilfield surrounds the city of Citronelle and covers portions of Township 2 North, 

Ranges 2 West and 3 West; and Township 1 North, Ranges 2 West and 3 West. This giant oil 

reservoir has 524 wells which 414 of the m are active now. The production rate of 50000 bbl/month 

has been reported. 

The CO2 captured from Alabama Power’s Plant Barry, is transferred with a short pipeline to 

Citronelle field to be injected and stored into the brine saturated Paluxy formation at the depth of 

9400-10500 ft. The location of the proposed injection well and observation well is shown in in 

Figure 235. Information about these two well can be found in Table 40. 

The proposed storage area, southeast unit, is located more than 8000 ft. below the underground 

source of drinking water.  It occupies about 1520 acres.  

There are multiple thick layers with low permeability (shale intervals) in the formation of the 

proposed injection area that act as a barrier and help to stop the upward movement of buoyant 

fluid and brine.  

The start of CO2 injection will be 2011 and injection will be continued for up to three years. The 

total injection is up to 547,500 tons of CO2 during these three years. The maximum bottom hole 

pressure constraint of 6300 psi is based on considering the pressure gradient of 0.6 psi/ft at 10500 

ft. 

Different porous and permeable sandstones layers in the Paluxy formation improve the CO2 

injectivity. Net sandstone layers thickness (11 sandstone flow units) is about 287 ft which is about 

%60 of the net sandstone thickness. The average porosity for the Paluxy sands is %19 and a 

thickness-weighted average permeability of 88 md was reported.  So the high transmissibility of 

the Paluxy formation causes a little pressure gain during the injection. The maximum pressure 

difference for the injection well grid block is 520 psi at the top sand layer.  

As the structure dip is so low (about 1.25 degree) at the proposed storage area, there is just a 

little post-injection up-dip migration.  

The maximum plume extend based on the primary simulation results is 1200 ft. This value is 

defined as an “Area of Review”. Two wells, the abandoned well D-9-7 and also an active injection 

well D-9-8 exist in this area. The migration of CO2 toward the drinking water source is very unlikely 

as these two wells are constructed properly. Outside the area of review, in 0.8 mile there is shallow 

water well at the depth of 529 ft. No faulted or fractured zone within the Citronelle dome structure 

was found. So all in all, this proposed area is safe to consider as a suitable site for storage. 
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Table 40. Basic Wells Information 

 

Proposed Injection Well no. 1 

survey, 
Abstract Section 9, Township 1 North, Range 2 West   

well location  

latitude 31.06486° N  (NAD27) 

longitude 88.18201° W  (NAD27) 

spud date Dec., 2010 

completion date Jan., 2011 

total well depth 11800 ft below GL 

elevation 

Ground Level 161.36 ft 

Rig Floor 172 ft 

injection zone Paluxy Formation 9415-10520 ft 

Injection 
Interval 

Upper Paluxy Sandstone 9415-9810 ft 

Basal Paluxy Sandstone  10455-10520 ft 

Proposed Observation Well no. 1 

survey, 
Abstract Section 9 Township 1 North, Range 2 West   

well location  

latitude 31.06163° N  (NAD27) 

longitude 88.17822° W  (NAD27) 

spud date Jan., 2011 

completion date Jan., 2012 

total well depth 11800 ft below GL 

elevation 

Ground Level 147.83 ft 

Rig Floor 158 ft 

injection zone Paluxy Formation 9400-10530 ft 
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Figure 235 - survey plot showing the location of the proposed injection well, and the proposed 

observation 
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APPENDIX 2 

THE DE-NOISING PROCESS 

DE-NOISING OF PERMANENT DOWN HOLE GAUGE DATA USING WAVELETS 

Permanent downhole gauges have been installed in more than 1000 wells worldwide. The 

continuous pressure measurement allows the operator to make adjustments to the well to 

optimize recovery. Past experience indicates that permanent down hole gauges are cost-effective 

even for the single use of well monitoring to assist operational management (Athichanagorn3). 

Additional value could be derived by analyzing the pressure data for reservoir information or using 

it during history matching. 

An operator will attempt to maximize the value from the investment in a permanent downhole 

gauge acquisition system. However, in practice lots of permanent downhole gauge data have 

been archived or even discarded because of the lack of tools to process the data. This is because 

permanent downhole long term measurements are prone to different kinds of errors than data 

from a short well test. In the traditional well test, the pressure response of the reservoir is 

measured carefully under a strictly controlled environment. In the case of long term reservoir 

monitoring using permanent pressure gauges, the well and the reservoir and its fluid composition 

may undergo dynamic changes. The well may be stimulated or worked over causing the gauge 

to record invalid measurements.  

The pressure data may also be stored at low precision or the system may malfunction creating 

superfluous outliers and noise. Flow rate data are often not available in the permanent downhole 

gauge acquisition system. Athichanagorn3 developed an interpretation methodology for long-term 

pressure data records from permanent downhole gauges. This methodology is useful when flow 

rates data are not available or not complete. If flow rates prior to a transient are available, a 

transient can be analyzed using conventional well testing methods but the data may still be 

preprocessed using the data processing tools developed by Athichanagorn (Athichanagorn  2002) 

implemented algorithms to remove outliers and noise from a data set using wavelet transform 

signal processing. Since the amount of data collected by the permanent downhole gauges is very 

large, an algorithm to reduce the number of data to a manageable size by eliminating redundant 

information was also implemented. In order to interpret the permanent long-term data, a complete 

history of flow rates and the time of flow rate changes are needed, and these records are often 

unavailable. So Athichanagorn (Athichanagorn  2004) developed algorithms to detect the times 

at which flow rate changes occur (the break points) and to reconstruct unknown or uncertain flow 

rates from the pressure data. 

Guan et al (Guan 2004) described wavelets as mathematical functions which are used to separate 

a given function into different components. These components however retain the basic 

information about the original signal thus allowing the original signal to be reconstructed.  There 

are in existence different types of wavelets, which lend themselves to different applications, there 

is the Haar wavelet, which is the first wavelet proposed and there is the Daubechies wavelet, 

which has been the most widely used wavelets in signal processing(de-noising and compression), 

image compression to name a few processes. Guan et a l. also report the use of thresholding 
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methods to filter the data from PDG’s, a soft thresholding method for the discontinuous regions 

of the data, and a hard thresholding method for the continuous regions of the chart. 

Unlike Fourier transforms which are limited to signals that do not change over time, Wavelet 

transforms are well suited for transient data such as those we receive from PDG’s.  

With respect to data compression, Bernasconi et al. (Bernasconi  1999) reported that by using a 

Wavelet transform algorithm, data compression ratios of 15:1 were achieved without any data 

degradation upon decompression. Higher compression ratios of up to 50:1 have been reported 

without significant deterioration of the original data upon decompression 

Althichanagorn et al. proposed a 7 step process for data processing data from PDG’s. The first 

steps involves using the wavelet transform to remove outliers from the collected data and then to 

de-noise the data. We can obviously determine outliers by merely observing the data trend and 

observing those points that do not follow the general trend of the data. 

Kikani et al. (Kikani  1998)report that data is reduced at each level by a factor of 2. Thus by using 

a DB wavelet to decompose to a level of 10, a stream of data with 12000 points can be reduced 

to 6 points. Obviously this is an extreme case and we will probably stop at level 7 with 47 points 

so that the general trend of the data. But this highlights the power of the Wavelet transform in the 

compression of data. 

 Dr. Stark (Stark 2005) describes wavelets transforms and how to compute them using the Matlab 

software. He presented several exercises showing the merits of the wavelet transforms over the 

Fourier transform. In one such exercise, the two methods are used to represent an “attack” signal 

and the Fourier transform misses several peaks of the original signal while the wavelet captures 

all the significant portions of the original signal. Thus a lot of people in literature have described 

compression using Fourier transform as “lossy” data compression as part of the original signal is 

typically lost during the transformation. 

Two methods of wavelet analysis are presented in Dr. Stark’s book; Dicrete Wavelet analysis and 

Continuous Wavelet analysis. The names imply that the continuous wavelet analysis deals with 

transforms of continuous time signals, and vice versa with the discrete wavelet analysis. 

Dr. Stark discusses transforming signals into wavelets and the subsequent reconstruction of the 

original signal. This is of interest to our research as after de-noising our signal we would like to 

reconstruct the original signal we started with before we proceed to compression of the data. 

The Wavelet Toolbox in MATLAB allows one to perform a number of analyses on either 1 

dimensional or 2 dimensional data. For our Research we only deal with 1 dimensional data. Figure 

236 shows a flow chart of how one would expect to de-noise the data using the transform. 



234 

 

 

Figure 236. Wavelet Transform and Inverse Wavelet Transform Flow Chart 

 

There are sample signals saved in the toolbox to serve as demos and we have focused on the 

signal for electrical consumption with time. Figure 237 below shows the original demo signal.  

 

 

Figure 237. Original Noisy Signal for Electrical Consumption 

There are a number of operations which can be performed on the original signal such as de-

noising, compression and decomposition. The software also presents the user with a number of 

wavelets to use for the analysis, such the Haar wavelet, the DB wavelet, the orthogonal wavelet.  

For this analysis the DB wavelet has been used. The reason for choosing this wavelet was simply 

to follow the examples in the book. The first analysis was in de-noising the signal provided. After 
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selecting the de-noise button, there is a default thresholding of the signal performed by the 

software. The user can go in and manually reduce the threshold and clean up the signal more or 

simply use the default settings of the software. Following de-noising, the signal is saved. Figure 

238  is a comparison of the original signal to the de-noised signal. 

 

 

Figure 238. De-noised Signal Using Wavelets 

Looking at the comparison of the two signals above, a reduction in the noise can be noted when 

comparing the original signal to the de-noised signal  

The objective of this part of work is to illustrate the feasibility of using wavelets in de-noising data 

obtained from permanent downhole gauges. Once de-noised, the data will then be summarized 

and ready for further analysis. 

METHODOLOGY OF DE-NOISING USING WAVELET 

To accomplish the stated objectives, the following steps are taken. 

1. Read the data pressure data into Matlab 

2. Perform Wavelet De-noising using Matlab 

3. Write and summarize the data into Microsoft excel 

 

Reading Pressure Data into Matlab 

To generate the data used for de-noising, a reservoir model was generated using a reservoir 

simulator (CMG IMEX). The data was imported into excel and noise was simulated and added to 
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it. A function was generated to add noise to the data from the simulator to simulate a real injection 

case. 

Noise = 2.5*Randbetween (-20,20) 

Figure 239 shows the comparison between the original data and noisy data. 

 

 

Figure 239. Comparison of Noisy and Simulated Data 

A code was generated to read the data into Matlab. The code is shown below. 

C = xlsread('filename.xls') 

 

Figure 240 shows a screen shot of data being read into Matlab. 
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Figure 240. Screenshot of data reading 

 

 PERFORM WAVELET DE-NOISING USING MATLAB 

The code to de-noise the data is shown below and makes use of wavelet transforms of the sym 

family. We use this wavelet due to the fact that it is able to provide useful surface texture features. 

The code used to de-noise is shown below 

sig = C; 

[sden,cfs] = cmddenoise(sig,'sym4',5,'s'); 

subplot(2,1,1); plot(sig,'r'); axis tight 

hold on; plot(sden,'k'); 

title('Original and denoised superimposed signals') 

subplot(2,1,2); plot(sden,'k'); axis tight 
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title('Denoised signal') 

A screen shot of the program upon executing is shown below in Figure 241. 

 

Figure 241. Application of code to noisy data 

 

To Write data into Excel 

To write data into excel, the following code was used 

xlswrite('Denoiseddata.xls', sden') 

A snapshot of this is shown in Figure 242. 
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Figure 242. Screen shot of de-noised data in excel 

 

The results of application of the wavelets can be seen in Figure 243 where the data obtained after 

De-noising is compared to the noisy data and the original data from the reservoir simulator. 

 

 

Figure 243. De-noising data comparison 
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It was observed that different decomposition levels of the wavelets could be used, but the higher 

the level of decomposition, the better the noise removal. The smaller the level of decomposition 

the more artifacts of the noisy signal remain. 

The maximum error between the de-noised data obtained and the original data was 0.27%. This 

shows a good applicability of wavelets to noise reduction. 

 

HIGH FREQUENCY DATA GENERATION 

Reservoir Modeling 

The main objectives of this work were generating high frequency data from flow model, simulating 

noise by distorting the data and finally pre- processing and summarizing high frequency distorted 

data for the next step (Pattern Recognition).  

For this study the grid geometry of WVU reservoir simulation model was changed to provide high 

resolutions data for pattern recognition analysis. This model consists of 150 by 150 grids in I and 

J direction (Figure 244) with the size of 133*133 ft. Totally 51 layers in the vertical direction was 

considered for modeling this reservoir.  

 

Figure 244. Totally fine grid model with heterogeneous permeability 

Also in this model a correlation between porosity and permeability was considered to introduce 

heterogeneity to the reservoir. Based on available core and log data from the same layer (Paluxy) 

of the Citronelle surrounding Fields, a core plot of permeability versus porosity was generated.  
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Because the data was so scattered, it was not possible to find an appropriate and unique pattern 

that relates permeability to the porosity. Therefore the data was divided to 5 different categories 

based on the magnitude of permeability and R2 (Figure 245). These 5 categories represent very 

poor, poor, average, good and excellent rock conductivity respect to CO2 plume extension in the 

reservoir. 

 

Figure 245. 5 different permeability realizations based on the rock conductivity 

 

In the case that “Excellent” permeability was assigned to the reservoir (Figure 244) maximum CO2 

plume extension (about 4000 ft.) was observed in the top layer (Figure 246). The second largest 

CO2 plume was observed in the 19th vertical layer.   
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Figure 246. CO2 Plume extension in different layers of the reservoir 

The maximum extension of the plume can be seen in the first layer of the reservoir. This layer 

(Figure 247 and Figure 247) ,which includes CO2 injection well (D-9-7), observation well (D-9-8) 

and 3 existing wells (D-9-2, D-9-6, D-9-10,) - was considered for the simulation of the CO2 leakage 

through the well (permeability and injection were increased to enlarge plume extension in South 

–North direction and consequently CO2 reaches to well D-9-2 and D-9-10 for high frequency data 

generation based on different leakage scenarios).The extension of the plume is different from the 

previous study because here the heterogeneity affects the shape and extension of the CO2 

plume(in previous model the permeability for all the grids in the reservoir were set to 400 md).  

 

Figure 247.CO2 Plume extension in first layer of the reservoir and location of the wells 
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HFD Generation 

Totally 12 different leakage scenarios were studied based on the leakage rate and combinations 

of the wells that experience the leakage. For each scenario, the pressure behavior in the 

observation well (D-9-8) was recorded from the simulation results to generate high frequency data 

with noise and outlier  

The next step was to generate high frequency data for pressure in the observation well (D-9-8) 

during the injection and equilibrium period (post injection). In order to do so, reservoir simulation 

run was performed based on “1-day” time step. The daily pressure results were converted to 

hourly results by using linear interpolation. Therefore high frequency (hourly based) pressure 

records were generated for well D-9-8 during 3 years of injection and 20 years after the end of 

injection (Totally 201623 data points were recorded for pressure). 

 

Adding Noise and Outliers 

There are in general, two types of measurement errors when managing long-term data, Noise is 

a group of data points that scatter around the trend of the overall data but lie in the same 

neighborhood as the true data and Outliers, that are data points that lie away from the trend of 

data. Because the data outlier is isolated, it causes a discontinuity in the data stream. Both of 

them can be identified from their misalignment with the rest of the data.  

The raw data in the hourly base are coming from the numerical simulator which here is CMG.  

The data include 23 years of pressure data at the observation well (D-9-8). In the real case these 

data are coming from the Permanent Down-hole Pressure Gauges installed at the D-9-8. Since 

in the real case these data are including the noise and outliers, these items have been added 

artificially. The noise generation process includes adding maximum two percent of the pressure 

range to the data. For the outlier points maximum pressure of 30 psi has been considered. The 

noise and outliers were distributed in a randomly manner to the different points (Figure 248, Figure 

249 and Figure 250).  White noise has been used to generate distorted pressure data.  



244 

 

 

Figure 248. Pressure data for 2 years (year 2014 to 2016) without any noise 

 

 

Figure 249. Pressure data for 2 years (year 2014 to 2016) after adding the noise and outlier 
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Figure 250. Histogram Pressure data for 2 years (year 2014 to 2016) after adding the noise and 

outlier 

 

DE-NOISING AND DATA SMOOTHING 

In order to extract the most representative features from the data and reduce fluctuations, a 

procedure called de-noising is commonly applied. Most of the de-noising methods tend to smear 

out sharp features in the data. The method being used in this project is denominated the Wavelet 

Thresholding Method which generally preserves most of these features.  

Wavelets are mathematical functions that divide or separate data into different frequency 

components, and then study each component with a resolution matched to its scale, basically 

provides a multi-resolution framework for data representation.  They have advantages over 

traditional Fourier methods in analyzing physical situations where the data contains discontinuities 

and sharp features. 

The general de-noising procedure consists of 3 different steps. First of all the noisy data should 

be divided to N levels, following by decomposition of the data at level N. After that for each level 

from 1 to N, a threshold should be considered and then soft thresholding should be applied to the 

detail coefficients. Finally the data is reconstructed using the original approximation coefficients 

of level N and the modified detail coefficients of levels from 1 to N.   

The important step in de-noising data is threshold selection method for each level. Three 

threshold selection rules are implemented in this study as: Rigorous SURE, Heuristics SURE and 

Fixed form threshold. The results of de-noising the data implementing 3 mentioned thresholding 

methods for the case that no leakage occurs in the reservoirs are depicted in Figure 251, Figure 

252 and Figure 253. 
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Figure 251. Rigorous SURE thresholding method 

 

 

 

Figure 252.Heuristics SURE thresholding method 
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Figure 253.Fixed form threshold method 

 

Comparison between the results shows that by using Fixed form Threshold method, noise and 

outliers can be removed more effectively. Hence Fixed form Threshold was used for de-noising 

pressure results for all different leakage scenarios. 

Also several methods have been developed regarding wavelet shrinkage and thresholding. The 

main two thresholding methods are the soft-thresholding and hard-thresholding method. The main 

difference between them is that the soft-thresholding method consists on analyzing the difference 

between the wavelet coefficients and the chosen threshold smoothing the data once the wavelet 

transform is applied. In the hard-thresholding method, wavelets coefficients whose absolute 

values are less than the threshold are set to zero. Depending on the scale and particular 

characteristics of the data either method can be used and the result is a cleaned-up data that will 

still show important details. Based on the results, the soft thresholding shows better effectiveness 

in removing outliers. This method (soft) is applied for de-noising in this study. 
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Figure 254. Soft thresholding (red: noisy data, black: de-noised data) 

 

Figure 255. Hard thresholding (red: noisy data, black: de-noised) 

After first time of de-nosing the data it can be seen that still some outliers were converted to the 

small noises. If the de-noising process is repeated for the de-noised data, it is possible to 

decrease the magnitude of the remaining noises a little bit. This can be seen in Figure 256 where 

the de-noised data reprocessed again. 
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Figure 256. Reprocessing the de-noised data (red: noisy data, black: de-noised data) 

 

Finally we performed the de-noising process for 12 different leakage scenarios that occurs in the 

first layer of the Citronelle field. Different combination of leaking wells and leakage rates for the 

wells D-9-2, D-9-6 and D-9-10 were considered according to  

Table 41. The pressure in the observation well converted to high frequency data with added noise 

and outliers. At the end the noises and outliers removed by Soft-Fixed Form Threshold method. 

The results of de-noising the pressure data in all the scenarios is shown in figure 14 to 26. The 

results represent the pressure in the observation well during the post injection period.  

Table 41. Different combination of leaking wells 

  Scenario Well Status 
Constraints Injection Gas Rate, 

ft3/d 

  D-9-2 D-9-6 D-9-10 D-9-2 D-9-6 D-9-10 

1 "OPEN" "OPEN" "OPEN" 2.00E+06 2.00E+06 2.00E+06 

2 "OPEN" "OPEN" "OPEN" 1.00E+06 1.00E+06 1.00E+06 

3 "OPEN" "OPEN" "OPEN" 1.50E+06 1.50E+06 1.50E+06 

4 "CLOSE" "OPEN" "OPEN" - 1.00E+06 1.00E+06 

5 "CLOSE" "CLOSE" "OPEN" - - 1.00E+06 

6 "CLOSE" "OPEN" "CLOSE" - 1.00E+06 - 

7 "OPEN" "CLOSE" "CLOSE" 1.00E+06 - - 

8 "CLOSE" "OPEN" "CLOSE" - 2.00E+06 - 

9 "OPEN" "CLOSE" "OPEN" 2.00E+06 - 2.00E+06 

10 "OPEN" "CLOSE" "CLOSE" 2.00E+06 - - 

11 "CLOSE" "CLOSE" "OPEN" - - 2.00E+06 

12 "CLOSE" "OPEN" "CLOSE" - 1.00E+06 - 
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DETERMINATION OF NOISE DISTRIBUTION AND LEVEL  

There are two pressure down-hole Gauges (PDG) installed in the observation well (D-9-8#2) in 

Citronelle field. These gauges are located at the depth of 9416ft and 944 ft) with the intention of 

providing real time pressure and temperature data during and after injection period. The pressure 

data is available from 8/17/2012 to 11/29/2012 at every minute. It should be mentioned that there 

are some gaps in the pressure records due to onsite computer failure. The pressure trends from 

the PDGs are illustrated in Figure 257. 

 

 

Figure 257. Monitoring Well (D-9-8#2) PDG data 

Up to this point it has been assumed that associated random noise have continuous uniform 

distribution (or rectangular distribution), since we did not have access to actual data; which means 

that in the interval of the assigned noise (2% of pressure value) the chance of picking any random 

value is equally probable. Having access to actual pressure data enables us to analyze the 

characteristics of the noise in a practical way. 

In order to prepare high frequency data for pattern recognition (and also de-noising process) it is 

necessary to evaluate the noise behavior. There are two main features in the noisy pressure data 

that requires a more detailed analysis, namely: Noise distribution and Noise level. 

The noise level can be determined by knowing the difference between actual data and the fitted 

curve of the same data over a predefined time interval (with no fluctuation in the data). 

𝑁𝑖 = 𝑃𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑓𝑖𝑡𝑡𝑒𝑑 → 𝑁𝑜𝑖𝑠𝑒 𝐿𝑒𝑣𝑒𝑙 = (
1

𝑛 − 1
∑ 𝑁𝑖

2

𝑛

𝑖=1

)

1/2
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6,500 pressure records in the interval of 26th to 29th of September, when the pressure trend has 

no sharp transients, were selected. Generalized Regression Neural Network (GRNN) was used 

to determine the fitted curve of the selected data. The results of curve fitting are shown in Figure 

258. 

 

Figure 258. GRNN results for fitted pressure curve 

 

According to the abovementioned formula the noise level is 0.08 Psi. The maximum and minimum 

value of the Ni is equal to 0.185 and -0.282 respectively. The frequency distribution of the noises 

was generated as well. Based on the results it can be concluded that the noises represent Normal 

or Gaussian distribution (Figure 259).  Therefore the noise with the mentioned characteristics will 

be added to the pressure data acquired from different realization built and run using reservoir 

simulation. The noisy and de-noised data would be preprocessed to be transformed into a format 

that is suitable for pattern recognition analysis.   
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Figure 259.  Noise distribution for actual PDG data (6500 records, Normal Distribution) 

 

ADDING NOISE TO THE SIMULATION DATA, DE-NOISING AND DATA SUMMARIZING 

Three wells (D-9-2, D-9-6 and D-9-10) were considered as the possible locations of the CO2 

leakage in the reservoir simulation model. For each of these candidates, twenty CO2 leakage 

rates- in the range of real leakage rates observed in actual cases- were set as the constraint and 

corresponding pressure changes in the observation well were recorded (representing PDG data). 

Those pressure data was considered to be clean with no noise or outlier. The noise with the same 

characteristic (mentioned earlier) was added to the pressure data. The data was processed 

afterward in order to perform data cleansing. Based on the characteristic of the noise in this case, 

“Daubechies wavelets 10” in five levels were used to decompose the noisy data. After 

decomposition to 5 levels, a threshold was assigned to each level to remove the outliers. Then 

the processed data from each level were combined to reconstruct the De-noised data.  It is worthy 

to mention that for each leakage scenario (leakage location and rate) the corresponding pressure 

difference readings (∆p=P(No leakage) – P(Leakage)) were summarized over a predefined period of time 

by descriptive statistics in order to extract the main and most important features of real time data. 

In this case we also summarize noisy and De-noised  pressure data over three time periods (1,2 

and 3 weeks after leakage - pressure readings are hourly basis) to prepare data for pattern 

recognition technology and Neural Network development. An example of pressure data from 

simulator, the same data with normal distributed noise and cleansed (De-noised) data when CO2 

leakage occurs in well D-9-6 leaks with the rate of 30 Mcf/day are shown in Figure 260. The results 

of pressure data summarization for both noisy and de-noised records are listed in  
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Table 42. 

 

Figure 260. Presure data from simulator(red),added noise(green) and denoised (black) when 

well D-9-6 leaks with the rate of 30Mcf 

 

Table 42 Data Sumerization of noisy and De-noised ∆P for 3 weeks after the leakage 

 Noisy ∆P De-noised ∆P 

 Week1 Week2 Week3 Week1 Week2 Week3 

Mean 0.001 0.003 0.005 0.001 0.003 0.005 

Standard Error 6.00E-04 4.44E-04 3.79E-04 1.81E-04 1.88E-04 1.75E-04 

Median 0.001 0.003 0.005 0.000 0.004 0.006 

Mode -0.022 -0.022 -0.022 -0.003 -0.003 -0.003 

Standard Deviation 0.008 0.008 0.009 0.002 0.003 0.004 

Sample Variance 6.05E-05 6.61E-05 7.24E-05 5.52E-06 1.18E-05 1.55E-05 

Kurtosis 2.936 2.934 2.881 2.083 1.820 1.992 

Skewness 0.070 -0.044 -0.114 0.487 -0.111 -0.480 

Range 0.043 0.051 0.053 0.008 0.013 0.014 

Minimum -0.022 -0.022 -0.022 -0.003 -0.003 -0.003 

Maximum 0.021 0.030 0.031 0.005 0.010 0.011 

Sum 0.138 1.149 2.670 0.123 1.142 2.663 

Count 168 336 504 168 336 504  

PERFORMING PATTERN RECOGNITION ANALYSIS 

NEURAL NETWORK ARCHITECTURE DESIGN 
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The Neural Networks architecture for Noisy and De-noised ∆P data are designed as explained 

previously.  In one case all the parameters from Descriptive statistics were selected as the input. 

In other Case the Number of inputs was decreased to 6, namely:  Kurtosis, Skewnes, Maximum, 

Sum, Standard deviation and Mean. Since the number of outputs is three (Leakage location X, 

Leakage location Y and Leakage Rate), the number of hidden layers are designed to be ten 

(Figure 261). 

 

Figure 261. Neural Network architecture 

  

NEURAL NETWORK TRAINING AND CALIBRATION  

The actual input data consists of 60 set of CO2 leakage scenarios (20 different leakage rates for 

each leaking well). By using intelligent data partitioning 48 cases are assigned for training and 6 

cases for calibrating the Neural Networks. The outputs in all the neural networks are CO2 leakage 

coordinates (X, Y) and rate. The results of the neural network training for the leakage location (Y) 

and leakage rate with de-noised pressure data after 3 weeks of leakage are shown in Figure 262 

and Figure 263. 

 

 



255 

 

 

Figure 262. Neural network training results for the leakage location; de-noised pressure data 

after 3 weeks of leakage 

 

Figure 263. Neural network training results for the leakage Rate; de-noised pressure data after 

3 weeks of leakage 
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The maximum errors in the training the leakage rate mostly happens in low leakage rates. The 

results of the neural network calibration for the Leakage location (Y) and leakage rate when de-

noised pressure data after 3 weeks of leakage are shown in Figure 264 and Figure 265. 

 

Figure 264. Neural network calibration results for the leakage location Y; de-noised pressure 

data after 3 weeks of leakage 

 

 

Figure 265. Neural network calibration results for the leakage rate; de-noised pressure data 

after 3 weeks of leakage 
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NEURAL NETWORK VALIDATION FOR NOISY DATA 

In previous section, it was proved that Intelligent Leakage Detection System (ILDS) performs 

precisely when the real time pressure data is clean. There is some noise associated with real time 

pressure data. In order to investigate the robustness of the ILDS performance while noisy 

pressure data are transmitted from the observation well, the actual noise are added to the clean 

pressure data (generated by reservoir simulator for each Leakage scenario). The clean and noisy 

pressure records from observation well, when well D-9-6 leaks with rate of 35Mcf/day, are shown 

in Figure 266. 

 

 

Figure 266. Clean (blue) and Noisy (red) high frequency pressure data from observation well 

 

The first step for processing high frequency noisy pressure records is data cleansing. There are 

some accepted de-noising methods that have been widely used in the industry and academia. 

Initially we used Wavelet threshold method. In de-noising process generally the noisy data should 

be divided to different levels (decomposition). After that for each level, a threshold should be 

considered in order to remove the data that lies out of the threshold. Finally the data is 

reconstructed using the modified data from each level. An example of distorted pressure data 

which goes under de-noising process is depicted in Figure 267. 
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Figure 267. Noisy and De-noised pressure data using Wavelet threshold method 

The main concern for using Wavelet threshold method for data cleansing is that, the de-noised 

data generally follows the trend of noisy data. This is mostly the case when leakage rates are low 

and corresponding real time pressure signal changes in the observation well are in a narrow 

range. This oscillating pattern of de-noised data changes the parameters that we got by data 

summarization of clean data. Especially the parameters like skewness and kurtosis that play 

important role in leakage location detection.  In order to alleviate the effect of noise and clean the 

data in a way that represent behavior of pressure trend, we used GRNN (General Regression 

Neural Networks). GRNN is a type of probabilistic neural networks that requires just some small 

portion of data records for training. That specification of GRNN is advantageous since it would be 

able to capture the underlining trend and functionality of the large amount of data with few 

samples.  When we are dealing with high frequency noisy pressure data, it would be better to use 

GRNN rather than Wavelet threshold method. Because the GRNN uses smaller portion of data, 

the presence of the noise cannot generally affect the calculated trend. This would be the case 

especially when the frequency of data increases.  Therefore GRNN can be considered to be a 

very useful tool to de-noise high frequency pressure data. The results for de-noising pressure 

records by GRNN are shown in Figure 268.  By comparing the resulted trends from Wavelet 

threshold de-noising method and GRNN with the original clear data, it can be concluded that 

GRNN method performs better. 
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Figure 268. Noisy and De-noised pressure data using GRNN 

In order to facilitate ILDS with the capability of receiving noisy pressure data, we added noise to 

the clean pressure data (generated by reservoir simulator for each leakage scenario). Then the 

noisy pressure data was cleansed by GRNN and summarized using descriptive statistics. Finally 

neural network was trained based on GRNN de-noised pressure data.  The verification results for 

leakage location are shown in Figure 269 and Figure 270. 

 

 

Figure 269. Verification results for leakage location(X)-noisy data 
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Figure 270. Verification results for leakage location(Y)-noisy data 

 

As we can see from the abovementioned figures the R2 value for X and Y coordinates for 

verification results are 0.5 and 0.94, respectively. Although the prediction ability of the neural 

networks verification decreases due to existence of the noise, but still it is able to predict the 

location with reasonable accuracy.  The results for Leakage rate verification are shown in Figure 

271. For verification of leakage rate when the pressure data is noisy, the R2 is 0.77 which 

represents decent accuracy. 

 

 

Figure 271. Verification results for leakage Rate(Y)-noisy data 
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Figure 272. De-noising pressure data for leakage scenario#1 (red: noisy data, black: de- noised 

data) 

 

 

Figure 273. De-noising pressure data for scenario 1 during post injection (red: noisy data, black: 

de-noised data) 



262 

 

 

Figure 274. De-noising pressure data for scenario 2 during post injection (red: noisy data, black: 

de-noised data) 

 

 

Figure 275. De-noising pressure data for scenario 3 during post injection (red: noisy data, black: 

de-noised data) 
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Figure 276. De-noising pressure data for scenario 4 during post injection (red: noisy data, black: 

de-noised data) 

 

 

Figure 277. De-noising pressure data for scenario 5 during post injection (red: noisy data, black: 

de-noised data) 
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Figure 278. De-noising pressure data for scenario 6 during post injection (red: noisy data, black: 

de-noised data) 

 

 

 

Figure 279. De-noising pressure data for scenario 7 during post injection (red: noisy data, black: 

de-noised data) 
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Figure 280. De-noising pressure data for scenario 8 during post injection (red: noisy data, black: 

de-noised data) 

 

 

Figure 281. De-noising pressure data for scenario 9 during post injection (red: noisy data, black: 

de-noised data) 
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Figure 282. De-noising pressure data for scenario 10 during post injection (red: noisy data, 

black: de-noised data) 

 

 

 

Figure 283. De-noising pressure data for scenario 11 during post injection (red: noisy data, 

black: de-noised data) 
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Figure 284:De-noising pressure data for scenario 12 during post injection (red: noisy data, 

black: de-noised data) 
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APPENDIX 3 

THE HISTORY MATCHING PROCESS 

 

 

Figure 285. Comparison between actual PDG data and simulation results –Modified reservoir 

boundary (smaller boundary) 
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Figure 286. Comparison between actual PDG data and simulation results –Modified vertical 

permeability (Kv=.1*kh) 

 

Figure 287. Comparison between actual PDG data and simulation results –Modified brine 

compressibility (Cbr=1e-6) 
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Figure 288. Comparison between actual PDG data and simulation results –Modified reservoir 

boundary (with updated reservoir parameters) 

 

 

Figure 289. Comparison between actual PDG data and simulation results –Modified reservoir 

water relative permeability (with updated reservoir parameters) 
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Figure 290. Comparison between actual PDG data and simulation results –Base Case 

 

 

Figure 291. Comparison between actual PDG data and simulation results –Krg high  
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Figure 292. Comparison between actual PDG data and simulation results –Krg low 

 

 

Figure 293. Comparison between actual PDG data and simulation results –Kv/Kh=.9 
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Figure 294. Comparison between actual PDG data and simulation results –K is half of the base 

case 

 

 

Figure 295. Comparison between actual PDG data and simulation results –Krw high 
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Figure 296. Comparison between actual PDG data and simulation results –reservoir with 

smaller boundary 

 

 

Figure 297. Comparison between actual PDG data and simulation results –reservoir with 

smaller boundary 
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APPENDIX 4 

LEAKAGE RATES 

 

Figure 298. ΔP in well D-9-8 well in the case that well D-9-6 leakage rate is 99750ft3/day 

 

Figure 299. ΔP in well D-9-8 well in the case that well D-9-6 leakage rate is 120750ft3/day. 
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Figure 300. ΔP in well D-9-8 and Injection well in the case that well D-9-6 leakage rate is 

131250ft3/day. 

 

Figure 301. ΔP in well D-9-8 well in the case that well D-9-2 leakage rate is 1830ft3/day. 
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Figure 302. ΔP in well D-9-8 well in the case that well D-9-2 leakage rate is 5250ft3/day. 

 

Figure 303. ΔP in well D-9-8 well in the case that well D-9-2 leakage rate is 11250ft3/day. 
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Figure 304. ΔP in well D-9-8 and Injection well in the case that well D-9-2 leakage rate is 

42000ft3/day 

 

 

Figure 305. ΔP in well D-9-8 and Injection well in the case that well D-9-2 leakage rate is 

73500ft3/day. 
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Figure 306. ΔP in well D-9-8 and Injection well in the case that well D-9-2 leakage rate is 

99750ft3/day. 

 

Figure 307. ΔP in well D-9-8 well in the case that well D-9-10 leakage rate is 1830ft3/day. 
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Figure 308. ΔP in well D-9-8 well in the case that well D-9-10 leakage rate is 5250ft3/day. 

 

 

 

Figure 309. ΔP in well D-9-8 well in the case that well D-9-10 leakage rate is 

11025ft3/day.  
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APPENDIX 5 

NEURAL NETWORK RESULTS 

Results for the case that Neural Network training and calibration use hourly pressure data in one 

week after CO2 leakage are shown below (Homogenous Model). 

 

Figure 310.Actual Leakage Location(X) - Neural Network training results -1 week after leakage 

 

Figure 311. Actual Leakage Location(Y) - Neural Network training results -1 week after leakage 
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Figure 312. Actual Leakage Rate - Neural Network training results -1 week after leakage 

 

 

Figure 313. Errors in Leakage Rate (Neural Network training results) -1 week after leakage 
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Results for the case that Neural Network training and calibration use hourly pressure data in 5 

weeks after CO2 leakage are shown below.  

 

 

Figure 314. Actual Leakage Location(X) - Neural Network training results -5 weeks after leakage 

 

Figure 315. Actual Leakage Location(Y) -  Neural Network training results -5 week after leakage 
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Figure 316. Actual Leakage Rate -  Neural Network training results -5 weeks after leakage 

 

Figure 317. Errors in Leakage Rate (Neural Network training results) -5 weeks after leakage 
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Results for the case that Neural Network training and calibration use hourly pressure data in 8 

weeks after CO2 leakage are shown below.  

 

 

Figure 318. Actual Leakage Location(X) - Neural Network training results -8 weeks after leakage 

 

Figure 319. Actual Leakage Location(Y) - Neural Network training results -8 weeks after the 

leakage 



286 

 

 

Figure 320. Actual Leakage Rate - Neural Network training results -8 weeks after leakage 

 

 

Figure 321. Errors in Leakage Rate (Neural Network training results) -8 weeks after leakage 
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Results for the case that Neural Network training and calibration use hourly pressure data in one 

week after CO2 leakage are shown below (Heterogeneous Model). 

 

Figure 322. Leakage location(X) - Neural Network results for all steps (training, calibration and 

verification)-clean pressure data 

 

 

Figure 323. Leakage location(Y) -  Neural Network results for all steps (training, calibration and 

verification)-clean pressure data 
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Figure 324. Leakage rate - Neural Network results for all steps (training, calibration and 

verification)-clean pressure data 

 

Results of Neural Network training, calibration and verification, using Noisy pressure data 

 

 

Figure 325. Leakage location(X)- Neural Network results for all steps (training, calibration and 

verification)-noisy pressure data 
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Figure 326. Leakage location(Y)- Neural Network results for all steps (training, calibration and 

verification)-noisy pressure data 

 

 

Figure 327. Leakage rate- Neural Network results for all steps (training, calibration and 

verification)-noisy pressure data 
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APPENDIX 6  

INTELLIGENT LEAKAGE DETECTION SYSTEM (ILDS) RUNS 

Blind run verification for RT-ILDS  

 

Figure 328. R-ILDS leakage location prediction, run1: well D-9-6 leaks 23 Mcf/day 

 

Figure 329. R-ILDS leakage location prediction, run2: well D-9-6 leaks 72 Mcf/day 
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Figure 330. R-ILDS leakage location prediction, run3: well D-9-6 leaks 93 Mcf/day 

 

 

Figure 331. R-ILDS leakage location prediction, run4: well D-9-7 leaks 32 Mcf/day 
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Figure 332. R-ILDS leakage location prediction, run5: well D-9-7 leaks 61 Mcf/day 

 

 

Figure 333. R-ILDS leakage location prediction, run6: well D-9-7 leaks 87 Mcf/day 
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Figure 334. R-ILDS leakage location prediction, run7: well D-9-8 leaks 27 Mcf/day 

 

 

Figure 335. R-ILDS leakage location prediction, run9: well D-9-8 leaks 101 Mcf/day 
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Figure 336. R-ILDS leakage location prediction, run9: well D-9-8 leaks 101 Mcf/day 

 

 

Figure 337. R-ILDS leakage rate prediction, run1: well D-9-6 leaks 23 Mcf/day 
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Figure 338. R-ILDS leakage rate prediction, run2: well D-9-6 leaks 72 Mcf/day 

 

 

Figure 339. R-ILDS leakage rate prediction, run3: well D-9-6 leaks 93 Mcf/day 
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Figure 340. R-ILDS leakage rate prediction, run4: well D-9-7 leaks 32 Mcf/day 

 

 

Figure 341. R-ILDS leakage rate prediction, run5: well D-9-7 leaks 61 Mcf/day 
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Figure 342. R-ILDS leakage rate prediction, run6: well D-9-7 leaks 87 Mcf/day 

 

 

 

Figure 343. R-ILDS leakage rate prediction, run7: well D-9-8 leaks 27 Mcf/day 
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Figure 344. R-ILDS leakage rate prediction, run8:well D-9-8 leaks 48 Mcf/day 

 

 

Figure 345. R-ILDS leakage rate prediction, run9: well D-9-8 leaks 101 Mcf/day 
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APPENDIX 7  

ILDS SENSITIVITY ANALYSIS 

Impact of reservoir parameters on R-ILDS Results (Section 6-3) 

 

Figure 346. Sensitivity analysis of the reservoir parameters on R-ILDS leakage location 

prediction Well D-9-6 

 

Figure 347. Sensitivity analysis of the reservoir parameters on R-ILDS leakage location 

prediction Well D-9-7 
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Figure 348. Sensitivity analysis of the reservoir parameters on R-ILDS leakage location 

prediction Well D-9-8 

 

Figure 349. Sensitivity analysis of the reservoir parameters on R-ILDS leakage rate prediction 
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Figure 350. Sensitivity analysis of the reservoir parameters on R-ILDS leakage rate prediction 

Well D-9-7 

 

 

Figure 351: Sensitivity analysis of the reservoir parameters on R-ILDS leakage rate prediction 
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APPENDIX 8  

RT-ILDS RESULTS FOR VARIABLE RATES 

 

Figure 352. R-ILDS prediction for leakage rate in well D-9-6 (variable rate) 

 

Figure 353. R-ILDS prediction for leakage rate in well D-9-7 (variable rate) 
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APPENDIX 9  

NEURAL NETWORK BLIND RUNS 

Results for RT-ILDS neural network and blind runs-PDG in injection well  

 

Figure 354. Neural network predictions for the leakage rate for the case that PDG is in Injection 

well,   D-9-6 results 

 

Figure 355. Neural network predictions for the leakage rate for the case that PDG is in Injection 

well,     D-9-7 results 
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Figure 356. Neural network predictions for the leakage rate for the case that PDG is in Injection 

well, D-9-8 results 

 

 

Figure 357. Neural network predictions for the leakage location for the case that PDG is in 

Injection well 
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Figure 358. R-ILDS Leakage location prediction for well D-9-6, PDG in Injection well 

 

 

Figure 359. R-ILDS Leakage location prediction for well D-9-7, PDG in Injection well 
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Figure 360. R-ILDS Leakage location prediction for well D-9-8, PDG in Injection well 
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APPENDIX 10  

CAP-ROCK LEAKAGE RESULTS 

 

Figure 361. Neural network results for Cumulative leaked gas -cap-rock leakage 

 

Figure 362. Neural network results for leakage location(X) -cap-rock leakage 
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Figure 363. Neural network results for leakage location(Y) -cap-rock leakage 

 

 

Figure 364. R-ILDS prediction for cumulative leaked gas, Blind Run 1(Cap-rock Leakage) 
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Figure 365. R-ILDS prediction for cumulative leaked gas, Blind Run 2(Cap-rock Leakage) 

 

Figure 366. R-ILDS prediction for cumulative leaked gas, Blind Run 3 (Cap-rock Leakage) 
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Figure 367: R-ILDS prediction for cumulative leaked gas, Blind Run 3 (Cap-rock Leakage) 

 

Figure 368: R-ILDS prediction for cumulative leaked gas, Blind Run 3 (Cap-rock Leakage) 
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APPENDIX 11  

MULTI-WELL LEAKAGE RESULTS 

 

Figure 369. Neural network training results for Leakage Index (one, two and three-well leakage)  

 

Figure 370. Neural network training results for Leakage Index (one and three-well leakage) 
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APPENDIX 12 

THE SOFTWARE APPLICATION 

INTELLIGENT LEAKAGE DETECTION SYSTEM (ILDS) 

 

Installation instruction of the ILDS: 

1. Run the Setup File 

2. The Setup procedure will create a file called “ILDS.exe” in the following folder: “C:\Program 

Files (x86)\WVU\Intelligent Leakage Detection System” 

3. Run the “ILDS.exe” as administrator by right clicking on the file and selecting “run as 

administrator”. 

 

 

The Intelligent Leakage Detection System (ILDS) is a software application that has been 

developed as part of this project and is delivered according to the instructions provided by DOE.  

ILDS is designed such that it receives the pressure data from the permanent downhole gauges, 

processes them and connects the data to a series of trained neural networks for analysis. Upon 

receipt and process of the real-time data, the Software System (ILDS) will determine the 

possibility of a leak in the system. The ILDS will communicate its finding to the user through the 

following three conditions: 

1. “All is well” or “No Leak is Being Detected”. Green Radar Screen 

2. “There is the Possibility of a Leak in the System”. Orange Radar Screen (Transitional 

Phase)  

3. “A Leak has been detected in the System”. Red Radar Screen 

ILDS communicates its finding using a “radar” screen. A green moving radar screen on top of the 

map of the field, indicates that “All Is well” or “No Leak is Being Detected”. Alternatively, the 

system may detect the possibility of a leak. Since the system will not remain in this state for too 

long and will eventually converge into one of the other two states, this is called a “Transitional 

Phase”. In this “Transitional Phase” the radar screen will change to the orange color indicating 

that some unusual pressure activities have been detected in the system. ILDS continues its 

survey of the reservoir behavior in order to be able to make some conclusions regarding the 

nature of the unusual pressure behavior in the system. One of the two things may happen at this 

point: 

a. The unusual behavior proves to be nothing (a drift in the gauge or some other nuances) 

in which case the radar screen will return to green indicating “No Leak is Being Detected” 
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b. The unusual behavior persists and eventually results in detection of a leak in the system. 

In this case the orange radar screen will turn red indicating “A Leak has been detected in 

the System”.  

 

 

Figure 371. Identify the time step for pressure data. 

 

And finally, if and once “A Leak has been Detected in the System”, the radar screen will turn red. 

Furthermore, once a leak is detected in the system, ILDS will provide two more pieces of 

information: 

1. It estimates the location of the leak. 

2. It estimates the amount of the leak. 
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For cap-rock leakage detection, cumulative leaked gas and coordinates of leakage locations are 

the output of the ILDS.  

Figure 371 shows the main interface of the ILDS. The main ILDS interface includes three sections. 

The main section (top-left) includes the map of the field (the map of the Citronelle field for this 

project). The color and the caption of the button on top of this section identify the status of the 

leak detection. In Figure 371 the color is green and the caption reads “No Leakage Detected”. 

The color of the button and the caption will change accordingly during the transition phase or if a 

leak is detected in the system. 

On the right hand side of the interface a figure identifies the locations of the permanent downhole 

pressure gauges in the observation well. In the observation well, two pressure downhole gauges 

were installed at depths of 9416 ft. and 9441 ft. below surface. And finally a panel on the bottom 

left provides means for identifying the time-step for the analysis. Upon identification of the time 

step, the information is communicated to “ILDS” by clicking on the “OK” button. This action will 

open a dialog box shown in Figure 372 where the user can identify the location of the file 

containing the real-time pressure data. Use of a data historian for the collection and preparation 

of the real-time data is covered in a separate section of this report. 

 

 

Figure 372. Dialog box for identification of the location of real-time pressure data. 
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Once the real-time pressure file is selected, IDLS connects to this file and continuously reads and 

then process the imported pressure data. The real-time pressure data from the permanent down-

hole gauges is usually noisy, therefore in order to make the analysis more accurate the noisy data 

must first be de-noised. The de-noising process takes place in the background without any 

interaction from the user.  

The clean (de-noised) data is forwarded to a module to calculate the change in pressure. If the 

change in pressure is above a certain threshold, the statistical module is invoked to calculate the 

required statistics of the data series. The complete data set is then introduced to a series of 

trained, intelligent systems to detect the leak.  

At this point in time the system (ILDS) reacts by generating an “Orange” radar screen, while 

identifying whether an actual leak has been detected or not. If an actual leak is detected, the 

system will generate a “red” radar screen and estimates the location and the amount of the leak. 

The flow chard of the system described above is shown in Figure 373. 

 

 

Figure 373. Flow Chart describing the Intelligent Leak Detection System. 

 

Figure 374 shows the interface of ILDS when it is reading the pressure data. In the upper right 

hand corner of the interface the real-time pressure is displayed (represented by a line chart). This 

is to let the user observe (in real-time) the pressure behavior at the observation well. The value 

of p (change in pressure, delta pressure) is also calculated and plotted in this interface (located 

in the bottom right hand side).  
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The p chart shows the difference between pressure measurements at the observation well with 

the expected pressure values at this location when no leakage is expected (the reference 

pressure9). ILDS analyzes each new pressure data to determine the status of the leakage. A 

green moving radar screen on the map of the field indicates that “No Leak is Being Detected” (as 

shown in Figure 374).  

 

Figure 374. Software is reading pressure data. No leakage is detected. 

 

Once the behavior of the pressure is calculated to be unusual (p passes a certain threshold), 

the information is passed to a statistics module so that certain statistics of the signals can be 

calculated. Upon calculation of the required statistics, values of ∆p, pressure derivative, ∆p 

average, ∆p summation, ∆p standard deviation, ∆p skewness and kurtosis for each time step are 

organized and passed to the trained, intelligent systems for leakage detection. All these 

calculations are performed in the background and the process is completely hidden from the user. 

In this stage, the status of the system changes to “Possibility of Leakage” and the color of the 

radar screen and the background color of the pressure charts are changed to orange in order to 

                                                
9 Please note that the values of the reference pressure can be modified if new information becomes 

available identifying what the reference pressure should be. Values of the reference pressure for this 

version of ILDS was calculated based on history matched model generated for this project. 
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attract the attention of the person in charge of this system10. Figure 375 shows the interface in 

“Transitional Phase”. In this phase the system is trying to identify (estimate) the location of the 

leakage. Each time step a location is determined by ILDS and shown in the field map by a red 

circle (Figure 376). As time goes on, and more data is collected, and transmitted through the data 

historian to the ILDS, the estimation of the location becomes more accurate, until the estimated 

location will stop moving. This is the final estimated location of the leakage by the ILDS. 

 

 

Figure 375. Pressure behavior is unusual and there is a possibility of leakage. 

 

When ILDS has converged to the final leakage location, the status of the interface changes to 

“Leakage Has Been Detected” and the color of the radar screen and the background color of the 

pressure charts turn to the color “red”. The system continues to process the data in order to 

estimate the amount of leakage. Once the amount of the leakage (that is a function of the severity 

of pressure change) is estimated, the location of the leakage, the amount of the leakage, as well 

                                                
10 Please note that an automatic system can be developed at this point to generate an alert in the form of 

Email or Text Message in order to alert the responsible parties. Development of such a facility eliminates 

the need of a person continuously attending to the leakage detection system. 
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as the amount of time that has passed from the start of the leakage is shown in bottom left of the 

interface (Figure 376). 

 

 

Figure 376. Leakage is detected. Leakage location and amount is shown in the form. 

 

CONNECTING THE ILDS TO A DATA HISTORIAN 

The design of ILDS is such that it will read the real-time pressure data from an excel file. 

Therefore, in order for the real-time pressure data to be communicated to ILDS it must go through 

the following process: (Please note that this process is reasonably standard for recording real-

time data from the instruments in the field) 

1. Data is transmitted from the downhole pressure gauge to a data collection center on the 

surface. 

2. The surface data collection center stores the transmitted data into a data historian. 

3. The data historian is capable of reformatting the historical (real-time) data into the required 

format (This format of ILDS is CSV or any format recognizable by Excel). 

4. The real-time pressure data in the form of a excel spreadsheet is continuously updated 

and made available to the ILDS. 

Figure 377 shows a screen shot of the excel spreadsheet that include the real-time pressure data 

that is used as input to the ILDS. Please note that the data includes headers on the first row. 
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Figure 377. Input excel file format 
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APPENDIX 13 

PUBLICATIONS RESULTED FROM THIS PROJECT 

 

"Pressure History Matching for CO2 Storage in Saline Aquifers: Case Study for Citronelle Dome". 

Haghighat, S. A., Mohaghegh, S. D., Gholami, V., Shahkarami, A. Manuscript #P306522, 2013 

Carbon Management Technology Conference. Alexandria, Virginia, 21-23 October, 2013. 

"Using Big Data and Smart Field Technology for Detecting Leakage in a CO2 Storage Projects". 

Haghighat, A., Mohaghegh, S. D., Gholami, V., Shahkarami, A., Moreno, D. SPE 166137, SPE 

Annual Technical Conference and Exhibition. New Orleans, Louisiana, September 30 - October 

2, 2013.  

"Reservoir Simulation of CO2 Sequestration in Deep Saline Reservoir, Citronelle Dome, USA". 

Haghighat, S., Mohaghegh, S. D., Borzouie, N., Moreno, D. and Shahkarami, A. Twelfth Annual 

Conference on Carbon Capture, Utilization and Sequestration. Pittsburgh, PA, MAY 13-16, 2013. 
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