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Abstract: We develop a computationally efficient and robust algorithm to automatically extract
the coefficients of doublet resonances and apply this technique to 418 resonances in ring resonator

transmission data with a mean RMS deviation of 7.28 x 107*,
OCIS codes: (130.0130) Integrated optics devices; (070.5753) Resonators.

1. Introduction

The transmission function of a microphotonic resonator is uniquely dependent on intracavity loss mechanisms and
the characteristics of the interaction region used to couple light into and out of the resonator. Fitting to this
transmission function enables extremely accurate estimation of the round-trip propagation loss and coupling
coefficients of the resonator; this information can be used to improve the design process in fabricating future
versions of resonator-based devices, or to estimate propagation loss of the component waveguide system.

We demonstrate a novel algorithm for automatically extracting the six parameters of a doublet resonance in a
computationally efficient and robust manner. The algorithm was successfully applied to 418 resonances from 11
devices with a mean RMS deviation of 7.28 x 10™* including the common, perilous case of misidentification of an
unresolved doublet as a singlet resonance. From these parameters we can accurately determine waveguide losses,
coupling efficiencies, and quality factors in automated fashion sans an a priori estimate of the extracted parameters.

2. Resonator Transmission Functions

In the presence of roughness induced intracavity contradirectional coupling[1], the transmission function is well
described as a coherent linear sum of the two singlet resonance transmission functions corresponding to the standing
wave modes arising from interference of the forward and backward travelling optical modes of the resonator[1].
Using spatial coupled mode theory[2], a model for the transmission function (T) of a laterally coupled, four-port
resonator may be derived in terms of the round-trip loss coefficient («), phase coefficient (¢) and the field
transmission coefficient of the coupling region (t); ¢ = 2mnyL where ng is the group index and L is the resonator
path length (Eqg. 1). Identification of the standing wave modes is accomplished by addition of the subscripts ¢ and s
corresponding to the modes of cosinusoidal and sinusoidal azimuthal dependence, respectively.
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3. Distillation of the Transmission Function
The transmitted intensity is essentially a measurement of the transmission function corrupted by a smoothly varying
insertion loss envelope and transmitted intensity noise; fidelity is restored by accounting for these additive signals.
Estimation of the loss envelope is achieved here via application of morphological erosion whereby exponential
moving average (EMA) filters are applied to the signal in leading and trailing configurations with the maximum
value of these filtered signals kept as the local estimate of the loss envelope. This algorithm is then applied in
iterative fashion until the resonances are completely eroded and only the underlying loss envelope remains.
Transmitted intensity noise is accounted for in fitting the estimated transmission function (T) to the
experimentally observed data (T'); here, experimental results indicate that the noise is correlated and heteroskedastic
thus invalidating the use of ordinary least squares (OLS) in optimally estimating the parameter set associated with a
given resonance. Detailed analysis of the behavior of transmitted intensity noise in measurements of this type have
shown that the local variance is greatest off-resonance with a minimum contribution to the signal seen on-resonance
[3]. This allows for use of weighted least squares (WLS) whereby the squared error elements are weighted by an

estimate of the local variance with the error function given by wSSE = ¥ N_, Wn(T - T‘)Z.



4. Fitting the Transmission Function

The interplay between the six parameteric variables of Eq. 1 leads to a large number of local minima in the 6D space
subtended by wSSE. In the case of the doublet resonance, typical approaches such as simulated annealing and
genetic algorithms fail to guarantee convergence to the globally optimum solution[4] while the brute force method
potentially requires a prohibitive number of initial estimates to produce the desired accuracy.

Explored here is a perturbative approach whereby the 6D estimation problem is decomposed into a set of 3D fits
to alternating halves of T. Initially, the left and right halves are separately fit to singlet resonances with the better of
the two fits retained. Further iterations consist of estimating the parameters of one singlet by those obtained in the
previous iteration with the parameters of the other singlet left as parameteric variables in the current iteration. This
alternating fitting scheme perturbatively erodes the total fitting error and eventually converges to some optimal fit
assumed to lie within the same basin of attraction[5] as the optimal solution. A final solution is obtained via
application of a gradient-descent solver to the full 6D problem starting from the previously obtained result.

5. Experimental Method and Results

Two port SOI ring resonators with 50um diameters, 400nm widths, a 3um bottom oxide, and 230nm thick device
layer were fabricated at Sandia National Laboratories’[6] MESA facility using a silicon photonics process developed
therein. In total, 418 resonances from eleven devices were analyzed; example application of our algorithm is
demonstrated in Fig. 1with the fits to several resonance types presented in Fig. 2.
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Fig. 1. Application of fitting algorithm to doublet resonance data (black dots) with weighting function (green line) and current fit (red

line). Shown (from left to right) are initial fits to the left and right halves of the resonance, iterative fits to the left, then right resonances,
and the final fit to the transmission function.
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Fig. 2. From left to right: singlet, apparent singlet, unresolved doublet, asymmetric doublet, and symmetric doublet resonances.
Experimental data (black dots), left resonance (blue line), right resonance (green line), and transmission function fit (red line) shown.
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