
Attacking DBSCAN for Fun and Profit, Supplementary Material

Jonathan Crussell Philip Kegelmeyer

A-1 Data Mine Generation

In Section 5.4, we described generating data mines when
the apps have approximately equal number of features
and when MinPts = 2. In this Section, we describe
how to remove those assumptions and derive a new
equation for the number of mines required to bridge
the gap between two clusters based on T and MinPts.

A-1.1 Dissimilar Sizes AnDarwin detects cloned
apps on a large scale. It represents each app as a
set of features as follows: 1) it converts Android’s
DEX bytecode to Java bytecode, 2) it uses WALA [1]
to compute program dependency graphs (PDGs) for
methods found within the app, 3) it encodes the PDGs
as semantic vectors that it clusters to form features
and, finally, 4) it represents each app as a set of binary
features where a feature, f , is set if an app contains a
PDG whose semantic vector clusters into cluster f . This
may lead to some apps having many more features than
others. During the upper bound analysis, we made the
assumption that the two target points, p0 and pn, had
roughly the same number of features. However, if the
points had drastically different numbers of features, the
adversary would have to first generate an extra series
of points to scale the smaller point’s feature set to a
similar size as the larger point. Then, she may proceed
using the same approach outlined in Section 5.4. The
process of scaling up the smaller point requires creating
points in the following manner:

pi = pi−1 + xipn(A-1.1)

Where xi represents a portion of the features in pn.
In this case, xi must be selected based on T and the
relative sizes of pn and pi−1:

J(pi−1, pi) =
pi−1 ∩ (pi−1 + xipn)

pi−1 ∪ (pi−1 + xipn)
(A-1.2)

=
|pi−1|

|pi−1|+ |xipn|
= T(A-1.3)

⇒ xi =
(1− T)|pi−1|

T |pn|
(A-1.4)

Unlike Equation 5.7, xi is dependent on the size

of pi−1. This means that as we scale the original (and
smaller) point, p0, we can add larger and larger portions
of pn to the next mine. In fact, the total number of
mines to scale p0 to the same size as pn is logarithmic
in the size of pn

p0
. The base of the logarithm is 1

T as
the portion of pn that can be used for pi is inversely
dependent on the similarity threshold.

A-1.2 MinPts >= 3 During the analysis, we made
the assumption thatMinPts = 2. This effectively made
every point a core point which simplified the algorithm
to generate data mines. In fact, the original algorithm
works for MinPts values 2 and 3 (see Figure 1) since
the point, pi, and its predecessor and successor, pi−1

and pi+1, are in the T -neighborhood of pi.

T
√
T

√
T T

pipi−1pi−2 pi+1 pi+2

Figure A-1: Geometry for a five-point chain. This chain
shows how to generate datamines when MinPts = 5.

Figure A-1 depicts a geometry that the attacker can
use to make each pi a core point when MinPts is 5. For
odd values of MinPts, the attacker can generate similar
geometries with k = MinPts−1

2 equally spaced points on
both sides of pi. The distance between these points
should be such that:

∀i ∈ [k, n) : J(pi−k, pi) = T(A-1.5)

For the Jaccard distance, this means that:

SAND2015-0841C

∀i ∈ [0, n) : J(pi, pi+1) =
MinPts−1

2
√
T(A-1.6)

Then, the geometry of pi and its neighbors, pi−1

and pi+1, is the same as Figure 1 except that T has

been replaced with T ′ =
MinPts−1

2

√
T . Therefore, we can

substitute T ′ into Equation 5.9 to determine the number
of mines required to merge two clusters as a parameter
of both T and MinPts:

UBAC(T,MinPts) =
1 + T ′

1− T ′ − 1(A-1.7)

=
1 +

MinPts−1
2

√
T

1−
MinPts−1

2
√
T

− 1(A-1.8)

There is a caveat to the above approach: it requires
that both p0 and pn be core points in their respective
clustering. This can be accounted for by adding enough
data mines to the T -neighbors of p0 and pn such
that they are now core points. This requires at most
2 ∗ MinPts more data mines be added. This additive
constant is left out for simplicity.

A-2 Evaluation

In this section, we present additional results from our
evaluation. Specifically, we present the degradation
plots for two of the performance metrics, an inadvertent
merge that occurred when performing our attacks,
and, finally, additional results from our remediation
experiments.

A-2.1 Cluster Merging In Figure A-2, we plot the
values of two of the four clustering performance metrics
described in Section 5.2. Comparing these plots to
Figure 2 we can see that Adjusted Rand Index is much
more sensitive to our attacks than Homogeneity or
Adjusted Mutual Info.

A-2.2 Inadvertent Merges In our implementation
of the attacks, we split the stages of merge ordering
and data mine generation into two separate phases. We
compute the pairwise similarity matrix for the points
and the clustering before running the merge ordering
algorithms but we do not update the matrix or rerun
the clustering after each data mine is added. This could
lead to inadvertent merges where, when merging two
clusters, some of our data mines cause a third or more
cluster to be merged in with the two that we intended to
merge and could cause us to “overspend” as an attacker.

Rather than merge the two stages of the attack, we
instead post-process a pairwise similarity matrix that
contains all the original points and the data mines.

First, we record the number of clusters found when
clustering the original points. Then, we add a set of
data mines forming a bridge to the matrix, recompute
the clustering, and record the number of clusters. We
repeat this process for each of the bridges. Each bridge
should merge exactly two clusters so the number of
clusters should decrease by one for each bridge added.
If the number of clusters decreases by more than one,
an inadvertent merge has occurred.

We ran the methodology described above on all the
merge algorithms and found no inadvertent merges. The
chosen feature space for Android apps is very sparse so
these merges are unlikely to occur. For DBSCAN-based
tools in a more dense feature space, inadvertent merges
may help reduce an attacker’s cost.

A-2.3 Remediation In Figure A-3, we plot the pla-
giarism detection accuracy for the remediated dataset
when we train a classifier with varied levels presumed
tampering and test it on varied levels of actual tamper-
ing. These heatmaps show that as long as the defender
presumes a lower level of tampering than there actu-
ally is, remediation is effective. Surprisingly, training a
classifier with as few as five presumed merges leads to
near-perfect recovery.

In Figure A-4 and Figure A-5, we show similar
remediation results for an additional merge algorithm:
Decreasing Original Size. As described in Section 5.3,
this algorithm merges clusters based on the number
of original apps found in the cluster, in decreasing
order. From Figure A-4, we can see that the tampered
performance drops off much more quickly than it did in
Figure 3. Additionally, we can see that the remediation
was less stable at higher numbers of merges.

0 20 40 60 80 100
After merge

0.0

0.2

0.4

0.6

0.8

1.0

Pl
ag

ia
ris

m
 d

et
ec

tio
n

ac
cu

ra
cy

Tampered (Partition A)
Tampered (Partition B)
Remediated (Partition A)
Remediated (Partition B)

Figure A-4: The plagiarism detection accuracy with
and without remediation for partitions A and B. For
the outlier remediation curve, the presumed number
of merges in the training partition matched the actual
number of merges in the testing partition. Clusters
were ordered using the Decreasing Original Size merge
algorithm.

0 200 400 600 800 1000 1200
Number of mines

0.0

0.2

0.4

0.6

0.8

1.0

Random
N. Neighbor
Cluster Size, Dec
Cluster Size, Inc
Original Size, Dec
Author Size, Dec
Cluster Sim., Inc
Cluster Sim., Dec
G.P. Accuracy

(a) Homogeneity

0 200 400 600 800 1000 1200
Number of mines

0.0

0.2

0.4

0.6

0.8

1.0

Random
N. Neighbor
Cluster Size, Dec
Cluster Size, Inc
Original Size, Dec
Author Size, Dec
Cluster Sim., Inc
Cluster Sim., Dec
G.P. Accuracy

(b) Adjusted Mutual Info

Figure A-2: Cluster degradation plots. These show how two of the four clustering performance metrics degrade as
a function of the number of data mines the attacker has injected into the dataset. From an attacker’s perspective,
algorithms with less area under the curve are better since they drop the clustering performance quicker.

0 15 30 45 60 75 90 105
Actual number of merges

110

95

80

65

50

35

20

5

Pr
es

um
ed

 n
um

be
r o

f m
er

ge
s

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

(a) Using partition A for testing.

0 15 30 45 60 75 90 105
Actual number of merges

110

95

80

65

50

35

20

5

Pr
es

um
ed

 n
um

be
r o

f m
er

ge
s

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

(b) Using partition B for testing.

Figure A-3: Plagiarism detection accuracy for the various levels of presumed and actual tampering for the two
partition. Clusters were ordered using the Random merge algorithm.

Another interesting experiment to pursue in future
work is to train a classifier assuming one attacker merge
algorithm and test on another. This is a more realistic
scenario as we are unlikely to know the attacker’s
strategy ahead of time.

References

[1] IBM T.J. Watson Research Center. T.J. Watson Li-
braries for Analysis (WALA). http://wala.sourceforge.
net.

0 15 30 45 60 75 90 105
Actual number of merges

110

95

80

65

50

35

20

5

Pr
es

um
ed

 n
um

be
r o

f m
er

ge
s

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

(a) Using partition A for testing.

0 15 30 45 60 75 90 105
Actual number of merges

110

95

80

65

50

35

20

5

Pr
es

um
ed

 n
um

be
r o

f m
er

ge
s

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

(b) Using partition B for testing.

Figure A-5: Plagiarism detection accuracy for the various levels of presumed and actual tampering for the two
partition. Clusters were ordered using the Decreasing Original Size merge algorithm.

