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Executive Summary

Under this DOE award (award number DE-SC0008716; dates of performance
9/1/2012 - 8/31/2015), the Dynax Project conducted collaborative and
multidisciplinary research on Innovations in Programming Models, Compilers
and, Runtime Systems for Dynamic Adaptive Event Driven Execution Models.
Much of the material presented here has already been submitted separately
to the DOE in three annual reports and twelve quarterly reports. Therefore,
this report is a summary of R&D accomplishments based on these reports.
The reports of the NCE period of each participating Institutions are provided
as separate reports, and this report includes links to these reports accordingly.

As we stated in our original Dynax proposal 3+ years ago: although
present-day software can largely rely on minimally invasive operating systems
and system libraries to provide its execution environment, these underlying
layers of software — as well recognized by now — are inefficient and
insufficient for exascale computing. Instead, the Dynax proposal identifies and
addresses a critical technology gap in the system software stack of current
high-end computing platforms that must be filled to meet the DOE's exascale
system challenges. That critical technology is a dynamic adaptive runtime
coupled with underlying parallel architecture features, which is vital for
achieving the cost-effectiveness, power efficiency, desirable level of
performance and scalability, and resiliency needed to fully exploit the
heterogeneous exascale systems of the next decade.

To this end, the Dynax proposal is based on a novel codelet execution model,
first described by the Pl and his associates in a CAPSL Technical Memo dated
April, 2011". It also leverages a commercial runtime, called SWift Adaptive
Runtime Machine (SWARM), and associated programming technology
enhancement as well as compiler tools’. SWARM allows the programmer to
express concurrency, synchronization, data locality, and resource needs; and
at runtime uses this information to dynamically map and execute
computational tasks to available resources. Activities under the DynAX’s
proposal are focused on large scale parallelism and addresses the issues of
high-level programming models, compilers, and runtime systems in the

! Toward an Execution Model for Extreme-Scale Systems-Runnemede and Beyond , Guang R. Gao, Joshua
Suetterlein and Stephane Zuckerman, April, 2011.
2 http://www.etinternational.com/downloads/swarm_docs/swarm/
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context of the codelet based execution model. The key features of these
components include scalability, programmability, portability, resilience, and
energy efficiency. The research in this proposal is to be verified and tested on
benchmark programs leveraging DOE PNNL work on NWChem application and
programming environment as they become available.

The Brandywine team contains a number of institutions that have decades of
research and development experience in HPC. The industry partners (ETI,
Reservoir) utilize product knowledge to extend their base products with
research and development in revolutionary execution models as well as the
software stack to support them. The research partners (UIUC and PNNL) bring
experience in scientific applications and domain specific languages to bear on
the research. The result of this work has brought significant technology
advancements that will move research and development towards feasible
solutions for DOE at exascale. The industry partners have used the results of
this work to build and extend commercial products for DOE and the industry.

Exascale Challenges and the Dynax Project

Future generation HPC systems comprising many-core sockets and GPU
accelerators will impose increasingly difficult challenges in programming,
efficiency, heterogeneity, and scalability for exascale computing. Emerging
execution models using event-driven task-based parallelism, dynamic
dependency and constraint analysis, locality-aware computation, and
resource-aware scheduling show promise in addressing these challenges and
meeting the needs of the future of supercomputing. Applications employing
these innovative runtime systems have shown significant gains in
performance and utilization of computational resources in comparison with
conventional methodologies3.

The Dynax project has described and implemented solutions to the challenges
exascale systems pose, including new programming models that allow
developers to express concurrency, locality, and synchronization in a concise
manner. There are fundamental challenges in developing applications that
successfully utilize modern petascale systems, and these difficulties will only
be exacerbated on future exascale systems. First, current MPI programming
models are based on the communicating sequential processes (CSP) model

3 Swarm Graph500. http://www.graph500.0rg/nov2011.html
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which, although have been a dominant parallel programming model for
parallel supercomputing applications, the research community has
increasingly recognized the difficulty in expressing dynamic parallelism under
MPI as it does not take advantage of the dynamic availability of resources.
This in turn makes it extremely difficult for programs with irregular or global
data accesses, or with non-uniform computational needs, to fully exploit
available hardware resources with high and smooth scalability. Second, use of
heterogeneous systems requires multiple languages and programming
models. For example, MPI is commonly used to distribute work across a
computing cluster, while OpenMP distributes work across threads within a
node, and OpenCL distributes work to GPUs within a node. This incongruous
mixture impedes development of new applications and adaptation of existing
applications to new platforms or hardware configurations. Synchronization
provides other challenges for application developers. CSP programs typically
resort to frequent use of barrier and collective constructs, which require
centralization of communications and control, thereby increasing contention
and delaying program advancement. These constructs may not always be
necessary, however, and are often used to broadly oversimplify what could
otherwise be much more fine-grained parallelism. This constrains flexibility of
resource management by forcing long idle periods during synchronization
when portions of the program could otherwise be completing useful work.
Finally, the debugging and performance tuning of parallel programs written in
traditional parallel programming models (such as the CSP based model or
beyond) can be exceedingly difficult because synchronization and data locality
are implicit in the message-passing semantics and not always intentional.

Accomplishment

Under the DOE XStack award for the DynAX project, we have accomplished
the objectives presented in our proposal that have addressed the above
challenges. The accomplishment of this project are summarized in the rest of
this report.

Accomplishments

Overview

Overall, we have reached our objectives as stated in our Dynax proposal.



The accomplishments are summarized below for each of the three years (Y1,
Y2, and Y3). Further details are summarized in the 12 quarterly reports
Q1-Q1i2.

As mentioned during the negotiations with the program manager, each
institution provided a separate report for the no-cost extension period. These
are available as hyperlinks on the modelado wiki under the DynAX project (see
the NCE Reports section of this document). Additionally, ETI's report is
attached to this document in Appendix C. Reservoir provided their final report
directly to the program manager on October 31st for the end date approved
for their NCE. PNNL provided their report directly to the program manager on
December 23rd for the end date approved for their NCE. UIUC provided their
report on August 31st. UIUC did not additional work after this date and will not
be using the remaining funds.

Appendix_A includes the list of the hyperlinks to the full year reports of all
three years, as well as links to the 12 Quarterly Reports.

Appendix B includes tasks that were described in the proposal. Note that due
to the budget constrains, the original tasks have been adjusted and there has
been an agreement reached for the final statement of work (SOW). These
adjustments are highlighted in the appendix.

Appendix C contains a verbatim copy of the NCE report submitted by ETI to
the DOE program manager.

Year 1

ETI Accomplishments

In year 1, ETI focused on studying Cholesky Decomposition and Self-Consistent
Field) codes. The subsequent discussion provides a brief summary of our
activities and more detailed discussion can be found in the Y1 report as well
as the Q1, Q2, Q3, and Q4 reports.

We used Cholesky to study issues of tiling, scheduling, and memory
management at scale. We started with a basic implementation within SWARM
and made significant scalability improvements. We note that simple
round-robin assignment of work leads to significant workload imbalance and
found methods to produce a more even distribution of work. We additionally

5



found that a priority scheme for task prioritization that encourages compute
nodes to traverse the matrix in a particular order causes parallelism to be
much better exposed. We implemented a form of prefetching to reduce data
starvation for nodes needing remote data at scale. The results are discussed in
detail in the Q1 report. For SCF, we optimized the code provided by PNNL.
Specifically, we improved the twoel kernel of the application by implementing
multi-node versions for twoel using MPlI and SWARM and providing several
serial optimizations to the kernel. The results can be found in the Q2 and Q3
reports.

PNNL Accomplishments

In year 1, PNNL focused on application and performance studies. Specifically,
we identified two NWChem modules: Self-Consistent Field (SCF) and Coupled
Cluster Method (CCM) as representative benchmarks for Exascale chemistry
applications. The subsequent discussion provides a brief summary of our
activities and more detailed discussion can be found in the Y1 report as well
as the Q1, Q2, Q3, and Q4 reports.

The SCF method is generally the central and most time consuming
computation in ab initio quantum chemistry methods. Of the SCF method, the
twoel module is the most computationally intensive piece of code. The CCM
module is interesting in that the code is generated automatically from tensor
equations supplied by the user. Our Y1 report discusses these two methods in
detail.

Reservoir Labs Accomplishments

In year 1, Reservoir Labs looked at some of the more impactful optimizations
performed by ETlI on the SCF code and defined how to implement these
optimizations within a compiler supporting both polyhedral loop optimization
and more traditional SSA analysis. The subsequent discussion provides a brief
summary of our activities and more detailed discussion can be found in the Y1
report as well as the Q1, Q2, Q3, and Q4 reports.

To this end, we demonstrated how known symmetries in input data can used
to automate optimizations to reduce the number of evaluations in input data
by up to 2". Additionally, we showed how to automate pre-computation of
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heavily-reused sub-expressions in loop codes by combining polyhedral scope
analysis with traditional subexpression analysis. We defined an algorithm to
detect large sub-expressions and operates at the intersection in trading off
subexpression size for number of the number of loop indices subexpressions
dependent on. Finally, we implemented generic support for parallelization of
codelet-based codes into R-Stream. The details of this can be found in the Y1
report.

UIUC Accomplishments

In year 1, UIUC implemented various enhancements to the Parallel
Intermediate Language (PIL) from which SWARM code can be generated.
Enhancements include tiled array data representation, structured PIL (SPIL)
extensions, and SPMD PIL. The subsequent discussion provides a brief
summary of our activities and more detailed discussion can be found in the Y1
report as well as the Q1, Q2, Q3, and Q4 reports.

To evaluate the overhead of PIL programs and our new extensions we began a
study of Cholesky decomposition using PIL and compared the execution time
to a hand-coded SWARM implementation. PIL codes targeting both SWARM
and OpenMP showed scalability. One of the primary usability enhancements
to PIL is the ability to write library functions as a collection of PIL nodes
promoting reuse of code and allowing kernels to be self-contained within
larger PIL programs. We implemented Hierarchically Tiled Arrays (HTAs) using
this facility. Support for a data structure for creating and manipulating tiled
arrays using parallel operations was incorporated into the design.
Additionally, we completed the design of SPIL which provides syntactic sugar
for common operations in the PIL programming language. Finally, for
distributed systems, a we designed SPMD PIL targeting distributed SCALE. This
allows PIL code be implemented in a SPMD fashion (i.e. all processing
elements execute the same program concurrently with different data).

Publications

e [SuetterleinEtAl13] J. Suetterlein, S. Zuckerman, G. Gao. “An
Implementation of the Codelet Model,” In Proceedings of 19th
International European Conference on Parallel and Distributed
Computing (Euro-Par 2013), Aachen, Germany. August 26th, 2013.



e [LandwehrEtAl13] A. Landwehr, S. Zuckerman, G. Gao. “Toward a
Self-aware System for Exascale Architectures.” In Proceedings of
Euro-Par 2013: Parallel Processing Workshops; the 1st Workshop on
Runtime and Operating Systems for the Many-core Era (ROME 2013),
Aachen, Germany. August 26th, 2013.

e [ChenEtAl13A] C. Chen, Y. Wu, J. Suetterlein, L. Zheng, Minyi Guo, G.
Gao. “Automatic Locality Exploitation in the Codelet Model.” In
Proceedings of 11th IEEE International Symposium on Parallel and
Distributed Processing with Applications (ISPA-13), Melbourne, Australia,
July 2013.

e [ChenEtAl13B] C. Chen, Y. Wu, S. Zuckerman, G. Gao. “Towards
Memory-Load Balanced Fast Fourier Transformations in Fine-grain
Execution Models.” In Proceedings of Workshop on Multithreaded
Architectures and Applications (MTAAP 2013), May 24, 2013, Boston,
Massachusetts USA.

e [GarciaGaol3] E. Garcia, G. Gao. “Strategies for improving Performance
and Energy Efficiency on a Many-core.” In Proceedings of 2013 ACM
International Conference on Computer Frontiers (CF 2013), May 14-16,
Ischia, Italy, ACM, 2013.

Additional Activities

Additional accomplishments including delivered technologies and
presentations may be found the Other Accomplishments section of this
document.

Year 2

ETI Accomplishments

In year 2, ETI studied LULESH and TCE, and extended SCALE. The subsequent
discussion provides a brief summary of our activities and more detailed
discussion can be found in the Y2 report as well as the Q5, Q6, Q7, and Q8
reports.

As written, LULESH 2.0 demonstrated workload imbalance in terms of loop
counts for certain regions (i.e. regions with high loop factors have more work
than other regions). We proposed a few serial performance improvements for
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the application and during study came to the conclusion that the performance
characteristics of the applications would result in similar performance
between the MPI+X version and a SWARM adaptation. As such, we suggest
rebalancing the static workload instead. Furthermore, we produced a
standalone version of the Tensor Contraction Engine (TCE) with reference
input and output data. We additionally, incorporated the ability to produce
OCR and SWARM code on a function-by-function and block-by-block basis and
studied the performance characteristics of the application. We additionally
extended the SCALE syntax to support basic object-oriented-programming
techniques in order to ease programmer burden with developing with
SWARM. This enables programmers to more easily interact with SWARM
while avoiding some of complexities of the underlying runtime and language.

PNNL Accomplishments

In year 2, PNNL studied two application codes: the Coupled Cluster Method
(CCM) in NWChem, and LULESH. The subsequent discussion provides a brief
summary of our activities and more detailed discussion can be found in the Y2
report as well as the Q5, Q6, Q7, and Q8 reports.

For CCM, we provided sets of tensor equations, a driver program, as well as,
an input deck used to to develop and evaluate an automatic code generator.
We additionally, developed a CnC control and data flow diagram and ported
the code for execution within the simulator. We then refactored the code into
a CnC program and evaluated the algorithm within Intel’s CnC framework and
Rice’s CnC-OCR framework. Finally, we created the Architected Composite
Data Types (ACDT) conceptual framework to exploit opportunities w.r.t.
access patterns, data composition, dynamic range, etc.

Reservoir Labs Accomplishments

In year 2, Reservoir Labs worked on a number of aspects of the DynAX project.
Given that the efficiency of exascale systems is strongly influenced by efficient
communications we focused on this. We collaborated with PNNL, ETI, and the
University of Delaware on adaptive sparse data structure transfer
optimization techniques. The subsequent discussion provides a brief summary
of our activities and more detailed discussion can be found in the Y2 report as
well as the Q5, Q6, Q7, and Q8 reports.



During this period, we identified scalability issues in the synchronization
constructs within SWARM, CnC, and OCR. As a result, we proposed
modifications to count dependencies within SWARM which would provide
optimal scalability in terms of sequential overhead of task creation, in-flight
tasks, and the space used by synchronization objects and their garbage
collection. These extensions were implemented in the R-Stream runtime layer
for SWARM and are used by the codes generated by R-Stream. Additionally,
we developed a communication library for x86 platforms that provides virtual
DMA operations by leveraging the x86 vector cache. We then modified
R-Stream to produce SWARM code using the virtual DMA library. Finally, in
order to devise an approach to support a class of unstructured codes, we
looked at existing art. We studied structured adaptive mesh refinement and
looked at an approach that uses Legion as a task graph programming API.

UIUC Accomplishments

In the prior year, UIUC made various enhancements to the Parallel
Intermediate Language (PIL) in terms of incorporating tiled array data
representations, providing Structured PIL (SPIL) extensions, and designing
SPMD PIL. In year 2, we implemented and evaluated benchmark programs in
the HTA notation, and extended HTA to support irregular tiles as well as
distributed computing environments. The subsequent discussion provides a
brief summary of our activities and more detailed discussion can be found in
the Y2 report as well as the Q5, Q6, Q7, and Q8 reports.

In Q5, we implemented six NAS Parallel Benchmarks using HTA and the results
can be executed using OpenMP and SCALE. A detailed discussion is provided
in the Y2 report. In Q6, we designed a strategy for expanding HTA programs to
support SPMD execution, thus, allowing an efficient mapping to distributed
memory SCALE. In Q7, we extended HTA to support irregular tile partitioning,
thus, allowing applications to create and manipulate irregular tiles.

Publications

e [WeiEtAl13] H. Wei, G. Gao, W. Zhang, J. Yu. “COStream: A Dataflow
Programming Language and Compiler for Multi-Core Architecture.” In
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Proceedings of Data-Flow Models (DFM) for extreme scale computing
Workshop 2013 in conjunction with Parallel Architectures and
Compilation Technologies (PACT 2013), Edinburgh, Scotland, September
8 of 2013.

[SolinasEtAl13] M. Solinas, R. Badia, F. Bodin, A. Cohen, P. Evripidou, P.
Faraboschi, B. Fechner, G. Gao, A. Garbade, S. Girbal, D. Goodman, B.
Khan, S. Koliai, F. Li, M. Lujan, L. Morin, A. Mendelson, N. Navarro, A.
Pop, P. Trancoso, T. Ungerer, M. Valero, S. Weis, I. Watson, S.
Zuckermann, R. Giorgi. “The TERAFLUX Project: Exploiting the DataFlow
Paradigm in Next Generation Teradevices.” In Proceedings of the 16th
Euromicro Conference on Digital System Design, Santander, Spain,
September 4-6, 2013.

[ZuckermanEtAl14] S. Zuckerman, A. Landwehr, K. Livingston, G. Gao.
“Toward a Self-Aware Codelet Execution Model.” In proceedings of 4th
Workshop Data-Flow Execution Models for Extreme Scale Computing
(DFM’14), August 24, 2014, Edmonton, Alberta, Canada.

[DennisGaol4] J. Dennis, G. Gao. “On the Feasibility of a Codelet Based
Multi-core Operating System.” In the 4th Workshop on Data-Flow
Execution Models for Extreme Scale Computing (DFM'14), August 24,
2014, Edmonton, Alberta, Canada.

[ArteagaEtAl14] J. Arteaga, S. Zuckerman, E. Garcia, G. Gao. “Position
Paper: Locality-Driven Scheduling of Tasks for Data-Dependent
Multithreading.” In Proceedings of Workshop on Multi-Threaded
Architectures and Applications (MTAAP 2014), May 2014.
[MeisterEtAl14] B. Meister, N. Vasilache, M. Baskaran, T. Henretty, R.
Lethin. “RStream experiments with hierarchical iteration tiling.” 16th
SIAM Conference on Parallel Processing for Scientific Computing,
February 2014, Portland, Oregon, USA.

[VasilacheEtAl14] N. Vasilache, M. Baskaran, T. Henretty, B. Meister, R.
Lethin, “A tale of three runtimes.” Arxiv preprint # 1409.1914.
http://arxiv.org/abs/1409.1914

[StlohnEtAl14] T. St John, B. Meister, A. Marquez, J. Manzano, G. Gao, X.
Li. “ASAFESSS: A Scheduler driven Adaptive Framework for Extreme
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Scale Software Stacks.” In proceedings of The 4th International
Workshop on Adaptive Self-tuning Computing Systems, ADAPT ‘14,
Vienna, Austria, January 2014. Recipient of the best paper award.

Additional Activities

Additional accomplishments including delivered technologies and
presentations may be found the Other Accomplishments section of this
document.

Year 3

ETI Accomplishments

In year 3, ETI finished study of the TCE application provided by PNNL.
Additionally, throughout the year ETI incorporated and studied resilience
technigues within SWARM and how to achieve MPI interoperability. The
subsequent discussion provides a brief summary of our activities and more
detailed discussion can be found in the Y3 report as well as the Q9, Q10, Q11,
and Q12 reports.

In Q9 and Q10, we completed a block-parallel implementation of TCE within
OCR and a task-parallel version within SWARM. Additionally, we began
research into resilience and fault tolerance using containment domains. We
implemented a prototype implementation within SWARM and began
implementing Cholesky wusing it. We also began investigating MPI
interoperability within SWARM and reached a number of conclusions
highlighted in our Q9 and Q10 reports. In Q11, we produced a report
summarizing our studies of MPI interoperability as well as another report
detailing the feasibility of a containment domain based Cholesky within
SWARM. In Q12, we continued design studies of the Cholesky and published a
full paper to the Mini-Symposium on Energy and Resilience in Parallel
Programming (ERPP2015). Additionally, we created a practical matrix
multiplication example showcasing MPI interoperability with SWARM and
conducted a comparative study of MPI+X within the field.
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PNNL Accomplishments

In year 3, PNNL focused on improving the management of data movement
and resource underutilization within our Group Locality framework. We also
introduced a data restructuring framework within the Group Locality
framework. The subsequent discussion provides a brief summary of our
activities and more detailed discussion can be found in the Y3 report as well
as the Q9, Q10, Q11, and Q12 reports.

Our group locality framework creates scattering functions to increase
resource utilization and data locality at compile time. Additionally, we
introduced two novel tiling techniques, named jagged and diamond jagged
tiling that introduces additional tile shapes to expose inner parallelism at the
lower levels of tiling hierarchies. Moreover, we developed a data restructuring
framework that uses a Polyhedral formulation to restructure and move data
while considering thread access patterns. The contribution of our
methodology is a low overhead transformation technique that exploits locality
and additionally incorporates a collaborative restructuring of data for group
reuse.

Reservoir Labs Accomplishments

In year 3, Reservoir Labs identified block-sparse computations as a significant
subset of unstructured codes. We incorporated support for block-sparse
computations for distributing computing into R-Stream. We also worked with
UIUC to integrate PIL generated code and R-Stream optimized code. The
subsequent discussion provides a brief summary of our activities and more
detailed discussion can be found in the Y3 report as well as the Q9, Q10, Q11,
and Q12 reports.

We developed support for distributed computing and block-sparse
computation in R-Stream as well as UIUC’s HTA/PIL. We first began developing
a backend runtime to use R-Stream for the parallelization of dense array
computations on clusters based on a PGAS abstraction. We then moved to
implementing an R-Stream mapping path (backend and runtime) to produce
block-sparse computations on clusters. Additionally, we completed support
for HTA and PIL as a front-end to R-stream.
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UIUC Accomplishments

In year 3, UIUC worked on implementing SPMD execution of PIL and HTAs
within the the SWARM runtime and implemented in the HTA notation a dense
Cholesky factorization to analyze the execution behavior (in year 1 a version
of cholesky was implemented in PIL. The HTA version accomplishes the same
goal in an array notation that enables task parallelism). Additionally, as
discussed above, we worked with Reservoir labs to integrate PIL generated
code and R-Stream optimized code. The subsequent discussion provides a
brief summary of our activities and more detailed discussion can be found in
the Y3 report as well as the Q9, Q10, Q11, and Q12 reports.

In Y1 and Y2, We developed a strategy to map HTA program executions into
SWARM in a fork-join fashion; however, this restricts parallelization by forcing
global synchronization via barriers. To this end, we began experimenting with
an SPMD mode implementation that supports point-to-point synchronization
to reduce overheads and promote load-balancing. We chose a dense Cholesky
factorization because the computation is an irregular task graph and allows
simple modification of input parameters. The results of our study are
discussed in the quarterly reports. Finally, we integrated PIL generated code
and R-Stream optimized code allowing the user to write more intuitive parallel
program code in PIL and use the R-Stream compiler to optimize the
computation kernels.

Publications

e [LiEtAI15] X. Li, J. Dennis, G. Gao, W. Lim, H. Wei, C. Yang, R. Pavel.
“FreshBreeze: A Data Flow Approach for Meeting DDDAS Challenges.” In
proceedings of the International Conference On Computational Science
(ICCS2015). Reykjavik, Iceland, June 2, 2015.

e [KaplanEtAl15] S. Kaplan, S. Pino, A. Landwehr, G. Gao. “Landing
Containment Domains on SWARM: Toward a Robust Resiliency Solution
on a Dynamic Adaptive Runtime Machine.” To Appear in the proceedings
of the 2015 international Parallel Computing conference (ParCo’15).
Edinburgh, Scotland, UK, September 1 -4, 2015.
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[ShresthaEtAlI14A] S. Shrestha, J. Manzano, A. Marquez, and G. R. Gao. “A
Framework for Resource Aware Multithreading.” Poster presented at the
International Conference for High Performance Computing, Network,
Storage and Analysis (SC 14). New Orleans, LA, USA, November 16 — 21,
2014. Best poster nominee.

[ShresthaEtAl4B] S. Shrestha, J. Manzano, A. Marquez, J. Feo and G. R.
Gao. “Jagged Tiling for Intra-tile Parallelism and Fine-Grain
Multithreading.” In the 27th International Workshop on Languages and
Compilers for Parallel Computing, Hillsboro, OR, USA, September 15 - 17,
2014.

[ShresthaEtAlI15A] S. Shrestha, J. Manzano, A. Marquez, S. Zuckerman, S.
L. Song and G. Gao. “Gregarious Data Re-structuring in a Many Core
Architecture.” Invited paper to the 17" international conference on High
Performance Computing and Communication (HPCC 2015). New York,
USA, August 24 — 26, 2015.

[ShresthaEtAI15B] S. Shrestha, J. Manzano, A. Marquez, J. Feo and G. R.
Gao. “Locality Aware Concurrent Start for Stencil Applications.” In the
2015 International Symposium on Code Generation and Optimization, San
Francisco, CA, USA, February 7-11, 2015.

[Shresthal5] PhD Thesis Sunil Shrestha “A framework for Group Locality
Aware Multithreading.” Fall 2015.

[TavarageriEtAl15] S. Tavarageri, B. Meister, M. Baskaran, B. Pradelle, T.
Henretty, A. Konstantinidis, A. Johnson, R. Lethin. “Automatic Cluster
Parallelization and Minimizing Communication via Selective Data
Replication.” In proceedings of the 2015 IEEE High Performance Extreme
Computing conference (HPEC'15), 15-17 September 2015, Waltham, MA.
[MarquezEtAl14] A. Marquez, J. Manzano, S. Song, B. Meister, S. Shrestha,
T. St. John and G. R. Gao. “ACDT: Architected Composite Data Types
Trading-in Unfettered Data Access for Improved Execution.” In the 20th
IEEE International Conference on Parallel and Distributed Systems,
Hsinchu, Taiwan, December 16 — 19, 2014.
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e [YangEtAl14] C. Yang, J. Pichel, A. Smith, D. Padua. “Hierarchically Tiled
Array as a High-Level Abstraction for Codelets.” In the Fourth Workshop
on Data-Flow Execution Models for Extreme Scale Computing, 2014.

e [Smith15] A. Smith. “The Parallel Intermediate Language.” Ph.D.
dissertation, Computer Science Dept., University of lllinois at
Urbana-Champaign, September 2015.

Additional Activities

Additional accomplishments including delivered technologies and
presentations may be found the Other Accomplishments section of this
document.

Other Accomplishments

Technologies Delivered

Additional information on deliverables can be found on the DynAX page of the
XStack wiki:
https://xstackwiki.modelado.org/DynAX#Deliverables

Q1-Q3
e NWChem SCF module:
o Serial C version (PNNL Q2)
o Optimized C version (ETI Q2)
o OpenMP Version (ETI Q2)
o MPI Version (ETI Q2)
o SWARM single and multi-node Version (ETI Q2-Q3)
e NWChem TCE module:
o Serial C Version (PNNL Q3)
o OpenMP Version (PNNL Q3)
o CUDA Version (PNNL Q3)
o Fortran99 Version (PNNL Q3)
e Cholesky Decomposition optimization for scheduling, memory
management and self-awareness (ETI Q1)
e Stencil framework for CnC and SWARM (Reservoir Q3)
e Single-node untuned automatic mappable C = SWARM parallelization
with R- Stream (Reservoir Q3)
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e Parallel Intermediate Language (PIL) — SCALE translator
o Single Node (UIUC Q1-Q2)
o Multinode (UIUC Q3)

e PIL API Document (UIUC Q2-Q3)

Q4
e NWChem TCE Module:
o SWARM single node version (ETI)
o Basic single-node parallelization to SWARM using R-Stream
e R-Stream (Reservoir):
o Basic R-Stream tuning for single-node mappable C = SWARM
parallelization
o Simplified domain computation (Improvement of compiler engine
tractability) in R-Stream
e Sparse data representation in PIL (UIUC)

Q5-Q6
e NWChem TCE module:
o Standalone application (ETI Q5-Q6)
o Function-level parallel OCR version (ETI Q6)
e Tuned SWARM R-Stream backend - autodecs (Reservoir Q5-Q6)
e Tuned SWARM R-Stream backend - virtual DMA, preliminary (Reservoir
Qs6)
e NAS Parallel Benchmark Implementation with PIL HTA (for Shared
Memory SCALE) (UIUC Q5)
e HTA-to-PIL-to-SCALE interface design changes for supporting SPMD
(UIUC Q6)
e Coupled Cluster equation, driver program, and input sets (PNNL Q5)
e C++ version of CnC based LULESH application code (PNNL Q6)

Q7-Q8
e NWChem TCE module:
o Function-level parallel SWARM version (ETI Q7)
o Block-level parallel OCR and SWARM versions (ETI Q7-Q8)
e Tuned SWARM backend - virtual DMA, advanced (Reservoir Q7-Q8)
e Research on leveraging communication layer and asynchronous task
graph execution model to target mesh computations (Reservoir Q7-Q8)
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e PILHTA (Shared Memory) Performance Evaluation with NAS Parallel
Benchmarks (UIUC Q7-Q8)

e Support for irregular tiles (UIUC Q7)

e NAS Parallel Benchmark support for Distributed Memory SCALE (UIUC

Qs)

Q9-12

Prototype of nested containment domains within SWARM (ETI Q9-Q11)

Case study of CD based cholesky decomposition within SWARM (ETI Q12)

Case study of MPI+X (ETI Q12)

NWChem TCE module:
o Block-level parallel OCR (ETI Q9-Q10)

e R-Stream cluster backend based on PNNL’s Global Arrays (Reservoir
Q9-Q10)

e R-Stream block sparse cluster runtime (Reservoir Q11-Q12)

e PIL compiler and HTA SPMD execution mode implementation (UIUC
Q9-Q10)

e HTA SPMD performance evaluation using NAS Parallel Benchmark and
task parallel Block Cholesky Factorization (UIUC Q11-Q12)

e PIL SCALE backend integration with R-Stream (UIUC & Reservoir Q12)

e New loop tiling technique for parallel start applications [CGO'15] (PNNL

Q11)
e Data restructuring framework for affine applications codes [HPCC'15]
(PNNL Q12)

Presentations

e Project overview presentation: Pl Kickoff meeting in September 2012.

e Project overview presentation: DOE ASCR meeting in October 2012.

e Presentation on Cholesky Decomposition enhancements in December
2012.

e Presentation to TACC on SCF optimizations in February 2013.

e Progress-to-date presentation: 6-month Pl meeting in March 2013.

e X-StackProject overview and results: EXaCT all-hands meeting in May
2013.

e Extreme scale technical review on TCE as a proxy app in December 2013
(audience includes Traleika Glacier project teams and a broader
audience).
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Presentation on an implementation of the codelet model at Europar’13
[SuetterleinEtAl13].

Presentation discussing a path forward to a self-aware system for
exascale architectures at ROME’13 [LandwehrEtAl13].

Presentation on automatic locality exploitation within the codelet model
at ISPA’13 [ChenEtAlI13A].

Presentation on a memory-load balanced FFT for fine-grained execution
models at MTAAP’13 [ChenEtAl13B].

Presentation on strategies to improve performance and energy efficiency
in many-core architectures at CF’13 [GarciaGao13].

Presentation on COStream at DFM’13 [WeiEtAI13].

Presentation on TERAFLUX at DSD’13 [SolinasEtAl13].

Extreme scale technical review on the adaptive task-centric runtime
framework in February 2014.

Presentation on distributed scheduling challenges in Cholesky to OCR
core team in March 2014.

Presentation on Virtual DMA optimization to Extreme scale technical
review audience in April 2014.

Presentation on a Self-Aware Codelet Model at DFM’14
[ZuckermanEtAl14].

Presentation on the feasibility of codelet based operating systems at
DFM’14 [DennisGao14].

Presentation on locality-driven scheduling of tasks for data-dependent
multithreading at MTAAP’14 [ArteagaEtAl14].

Presentation on R-Stream experiments with hierarchical iteration tiling at
SIAM’14 [MeisterEtAl14].

Presentation on a scheduler driven adaptive framework for
extreme-scale software stacks at ADAPT’14 [StlohnEtAl14].

Presentation on a framework for resource aware multithreading at SC’'14

[ShresthaEtAl14A].

Presentation on jagged tiling for intra-tile parallelism and fine-grained
multithreading at LCPC’14 [ShresthaEtAl14B].

Presentation on ACDT: architectured composite data types at ICPADS’14
[MarquezEtAl14].

Presentation on Resilience and containment domains presentation given
by Sam Kaplan in May 2015.
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Deepdive on group locality and gregarious data restructuring given to
projects collaborators in July 2015.

Deepdive on containment domains within SWARM given to project
collaborators in August 2015.

Presentation on FreshBreeze at ICCS’15 [LiEtAI15].

Presentation containment domains within SWARM at ParCo’15
[KaplanEtAl15].

Presentation on Gregarious data restructuring within many-core
architectures at HPCC’15 [ShresthaEtAl15A].

Presentation on locality aware concurrent start of stencil applications at
CGO’15 [ShresthaEtAl15B].

Presentation on automatic cluster parallelization and minimizing
communication via selective data replication at HPEC'15
[TavarageriEtAl15].

Presentation on hierarchically tiled arrays as a high level abstraction for
codelets at DFM’14 [YangEtAl14].

Presentation on hierarchically tiled arrays for exascale computing at
PADAL’15.

Ph.D dissertation defense on ‘A Framework for Group Locality Aware
Multithreading’ [Shresthal5].

Note: The participants in this award have made various other presentations
not listed here. A list can be provided on demand.

Websites

The URLs listed below contain STI delivered during the course of the DynAX
project or software or methods relevant to delivered STI.

Deliverables of DynAX project:
https://xstackwiki.modelado.org/DynAX#Deliverables
Scalapack’s two dimensional block-cyclic distribution:
http://netlib.org/scalapack/slug/node75.html
NWChem:
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http://netlib.org/scalapack/slug/node75.html

http://www.nwchem-sw.org/index.php/Main_Page

TCE correlation models:
http://www.nwchem-sw.org/index.php/TCE#CCSD.2CCCS
DT.2CCCSDTQ.2CCISD.2CCISDT.2CCISDTQ.2C_MBPT2.2CM

BPT3.2CMBPT4.2C etc. -- the correlation models
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Appendix A: Reports

Quarterly Reports

Brandywine XStack Report Q1

Brandywine XStack Report Q2

Brandywine XStack Report Q3

Brandywine XStack Report Q4

Brandywine XStack Report Q5

Brandywine XStack Report Q6

Brandywine XStack Report Q7

Brandywine XStack Report Q8

Brandywine XStack Report Q9

Brandywine XStack Report Q10

Brandywine XStack Report Q11

Brandywine XStack Report Q12

Annual Reports

Brandywine XStack Report Y1

Brandywine XStack Report Y2

Brandywine XStack Report Y3

NCE Reports

ETI NCE Report

PNNL NCE Report

Reservoir Labs NCE Report
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https://xstackwiki.modelado.org/images/2/20/Q1.pdf
https://xstackwiki.modelado.org/images/b/b3/BrandywineXStackReportQ2.pdf
https://xstackwiki.modelado.org/images/9/9d/BrandywineXStackReportQ3.pdf
https://xstackwiki.modelado.org/images/4/46/BrandywineXStackReportQ4.pdf
https://xstackwiki.modelado.org/images/e/ea/BrandywineXStackReportQ5.pdf
https://xstackwiki.modelado.org/images/7/77/BrandywineXStackReportQ6.pdf
https://xstackwiki.modelado.org/images/3/39/DynAXXStackQ7Report.pdf
https://xstackwiki.modelado.org/images/a/ab/DynAXXStackQ8Report.pdf
https://xstackwiki.modelado.org/images/c/c3/DynAXXStackQ9Report.pdf
https://xstackwiki.modelado.org/images/c/ca/DynaxXStackQ10Report.pdf
https://xstackwiki.modelado.org/images/d/d7/DynAX-XStackQ11Report.pdf
https://xstackwiki.modelado.org/images/6/6a/DynAX-XStackQ12Report.pdf
https://xstackwiki.modelado.org/images/e/ee/BrandywineXStackReportY1.pdf
https://xstackwiki.modelado.org/images/e/e8/DynAXX-StackYear2report.pdf
https://xstackwiki.modelado.org/images/1/1e/DynAXYear3.pdf
https://xstackwiki.modelado.org/images/6/6d/ETI_NCE.pdf
https://xstackwiki.modelado.org/images/7/72/PNNL_NCE.pdf
https://xstackwiki.modelado.org/images/0/03/Reservoir_NCE.pdf

Appendix B: List of Tasks

Number Information

1.1 |Research scheduling policies

1.2 |Research scheduler linkages such as tree hierarchies or other graphs
2.1 [Research compiler hints/directives for runtime scheduling

2.2 [Research data placement topologies

2.3 [Research memory access semantics

2.4 [Research compiler code generation for data placement and movement
3.1 [Target codelet execution model

3.2 |Generate SWARM codelet code

3.3 [Improve scalability of polyhedral mapping

3.4 [Optimize unstructured mesh computations

3.5 |[Optimizestructure-based-codes

4.1 |Representation of sparse arrays.

4.2 |Irregular tiles

5.1 [Design of the PIL API

5.2 [Implementation of the PIL API

5.3 [Evaluation of the PIL implementation and API

5.4 |Locality-ofenhancementand-taskparallelization
5.5 [Removalefbarriers

6 b e intin imolificati > el X
5.7 [SCALE and R-Stream code generation

5.8 [Optimize dense PIL loop codes

5.9 |Optimize-denseChapelHoop-codes

6.1 [Develop list of compact application kernels

6.2 [Evaluate baseline performance and energy requirements

6.3 [Design codelet-based version of compact applications

6.4 [Research algorithm and solution stack improvements

6.5 [Further study of performance and energy requirements

66 —h izati ;

7.1 [Define intermediate representation
8.1 |Research integration of containment domain execution and recovery with codelet
scheduling

8.2 |Research-integration-of CD-persistence-infrastructure APFwith- SWARM

9.1 |Research multi layered power optimized data representations
9.2 |Investigate initial and static data placement at each memory level
10.1 [Study MPI interoperability

10.2 [StudyOpenMPinteroperability
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Appendix C: ETI NCE Report

Note: The following pages contain the attached no-cost extension report from
ETI. PNNL and Reservoir Labs reports are available on the DynAX wiki.

NCE Project Progress Report for
ET International Inc.

DynAX: Innovations in Programming Models,
Compilers and Runtime Systems for Dynamic
Adaptive Event Driven Execution Models

Award Number; DESC0008716
Dates of Performance: 9/1/2015 to 12/31/2015
Report Date: 12/31/2015

Principal Investigator
Guang Gao, ET International. Inc.

CoPls:
Benoit Meister, Reservoir Labs, Inc.
David Padua, University of lllinois Urbana Champaign
Andres Marquez, Pacific Northwest National Laboratories

24


https://xstackwiki.modelado.org/DynAX

Introduction

ETI sent an NCE request letter on August 14th. This report outlines the work performed by ET
International Inc. during the no-cost extension period granted. During the period we worked on
two types of tasks: (1) tasks related to the dissemination of STI, and (2) tasks related to
coordination and organization.

Summary

To summarize our STI dissemination efforts, (1) ETI presented our work on containment
domain based resiliency within SWARM at the 2015 International Parallel Computing
Conference (ParCo’15) in Edinburgh, Scotland*, and (2) based on feedback from the
community, we revised and extended our paper which is to be included in the primary
ParCo’15 proceedings.

To summarize our coordination and organization efforts, (1) ETl as the lead institution
coordinated with other Pl institutions for the completion of their NCE, (2) organized completion
of the Y3 report, and (3) put together the final report.

Dissemination of STI

The following sections discuss CD based resilience and contain improvements based off of
feedback from the community following our presentation at ParCo’15. These changes are also
reflected in our extended paper.

Containment Domain Based Resilience

For completions sake we will repeat that at a high-level, a containment domain contains four
components: data preservation, to save any necessary input data; a body function which
performs algorithmic work; a detection function to identify hardware and software errors; and a
recovery method, to restore preserved data and re-execute the body function. The detection
function is a user defined function that will be run after the body. It may check for hardware
faults by reading error counters, or for software errors by examining output data (e.g. using a
checksum function). Since containment domains can be nested, the recovery function may
also escalate the error to its parent. Since no coordination is needed, any number of

4 8. Kaplan, S. Pino, A. Landwehr, G. Gao. “Landing Containment Domains on SWARM:
Toward a Robust Resiliency Solution on a Dynamic Adaptive Runtime Machine.” To
Appear in the proceedings of the 2015 international Parallel Computing conference
(ParCo’15). Edinburgh, Scotland, UK, September 1 — 4, 2015.
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containment domains may be in existence, with multiple preserves and recoveries taking
place simultaneously.

Containment Domains API within SWARM

The containment domain API has been modified from what we initially reported to allow for
additional features. Specially, the preservation calls have an additional parameter called type
allowing the user to specify into which domain to preserve data. Additionally, we have clarified
the language used in the API descriptions. The API's are now as follows:

swarm_Containment_Domain create(parent): Create a new containment domain as a child
of the specified parent domain.

swarm_Containment_Domain begin(THIS, body, body ctxt, check, check cxt, done,
done ctxt): Begin execution of the current containment domain denoted by THIS by
scheduling the codelet denoted by body ctxt. When the codelet finishes execution, the codelet
denoted by check ctxt is scheduled to verify results. If the result of the execution is TRUE then
the codelet denoted by done cxt is scheduled.

swarm_Containment_Domain preserve(THIS, data, length, id, type): In the containment
domain denoted by THIS, do a memory copy of length bytes from data into a temporary
location inside the CD. We support multiple preservations per CD (e.g. to allow preservation of
tiles within a larger array, such that the individual tiles are non-contiguous in memory), by
adding a user-selected id field. For each containment domain in SWARM, a boolean value is
set based on its execution status.On the first execution, data is preserved normally. On
subsequent executions, data is copied in reverse (i.e. from the internal preservation into the
data pointer). The CD in which the data is preserved is denoted by type. This can either be the
currently activated CD or the parent CD.

swarm_Containment_Domain finish(THIS): Close the current containment domain denoted
by THIS, discard any preserved data, and make the parent domain active.

Experimental Results

We've expanded upon and clarified the results we initially obtained and provided a more
thorough discussion from that of the quarterly reports. We evaluate our CD based approach
through three primary means: feasibility, efficiency, and resilience and make a number of key
observations. To show that our prototype implementation has sufficient functionality, we
instrument a Cholesky decomposition program in SWARM to use containment domains. For
the experiments, the program was run on a dual-processor Intel Xeon system, using 12
threads. The workload sizes were confirmed to not exhaust the physical memory of the
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machine.Though we found insignificant variance between runs, we have averaged all times
over 5 program runs due to the natural variation in run time due to extraneous system factors
(such as scheduling differences).

Execution Time vs. Tile Size Overhead vs. Tile Size
(matrix size: 400007?) (matrix size: 400002)
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Figure 1: Execution Time of Cholesky Figure 2: Percentage overhead

The Cholesky program has three main codelets, one for each linear algebra routine run on a
tile (POTRF, TRSM, and GEMM/SYRK), and each of these is called a number of times for
each tile. For our purposes, each of these is considered a containment domain. In our model,
we only considered faults similar to arithmetic errors; that is, incorrectly calculated results. For
this reason, we did not need to preserve input data unless it would be overwritten by an
operation (e.g. the input/output tile for a POTRF operation). In order to simulate arithmetic
errors, rather than relying on error counters from actual faulty hardware, a probabilistic
random number generator is used. If a random number is below the specified configurable
threshold, a fault is deemed to have occurred. Fault generation occurs within the check
codelets causing checks to fail at random and the subsequent re-execution of the entire failed
containment domain.
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Execution Time with Injected

Failures
(matrix size: 400002, Tile size: 2002)
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Figure 3: Execution time with simulated errors

Firstly, through the implementation of our framework in SWARM, and the working Cholesky
application using said framework, we observe that it is feasible to adapt a codelet-based
application to use containment domains. Secondly, Our implementation shows very low
overhead. Figure 1 shows the execution time for various tile sizes executing Cholesky of size
40000x40000. Base denotes the Cholesky kernel runtime without containment domains or
data preservation. CD denotes the time spent within CD related API calls without preservation.
Preserve denotes the time spent preserving data. One can see that the API itself adds
negligible overhead and that the only significant overhead comes from actual preservation of
data. As with many tile based approaches to computation, choosing an inappropriate tile size
will cause performance degradation due to inefficient use of caches or by limiting parallelism.
In this particular case, tile sizes above 1600 limit the core utilization to 10 or 5 threads
respectively, yielding the U-shape shown in the graph. Figure 2 shows the total overhead
(preservation+API calls)relative to the base cholesky code without containment domains. The
trends indicate that as tile sizes (workload per codelet) increase the overhead is mitigated and
eventually becomes negligible.This trend is unsurprising given that the runtime overhead per
API call is relatively constant and as the tile size increases less and increasingly larger data
sized preservation calls are made to the runtime. Additionally, the cost of preservation (i.e. for
data movement) increases at a much slower rate than the cost of the Cholesky computation
as tile sizes are increased. Overall, this trend shows that there is a sweet spot in terms of
granularity and that proper decomposition is key to mitigate preservation overheads and
maximize performance.

Figure 3 shows simulated injected failures that result in codelet re-execution within the
SWARM framework.The idealized case is computed by taking the average execution time
without faults for a Cholesky of size 40000x40000 and tile size of 200x200, and computing the
expected execution time for various fault rates using the geometric distribution. In order to
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accurately access the overhead of our implementation, this projected base execution time
includes neither CD or preservation overhead.The actual case shows the execution times
actually obtained from running SWARM with injected failures. We note that there is around
11% overhead without failures and that this overhead decreases to 6% at a failure rate of
75%. This is because some allocation and API overheads are not present upon re-execution.
Trend wise, we note that maximal overhead occurs when faults are not present in the system.
We additionally note that the execution time follows reasonably well to that of the idealized
case and that it is possible to project with reasonable accuracy the execution time in the event
of failures using data from actual runs without failure.

Coordination and Organization Efforts

During the NCE period, we prepared the Y3 and Final reports to be submitted to the DOE.
Activities included coordinating and communicating with each collaborating institution for the
content and publications to submit as well as interfacing with the other institutions to make
sure that the final report contained a smooth interface referencing the NCE reports by each
institution which were submitted to the program manager as well as ETI. With respect to this,
we received Reservoir Lab’s NCE report dated 10/31/2015; PNNL’s NCE report dated
12/23/2015. UIUC provided their report directly to the DOE on 8/31/2015. UIUC did not
additional work after this date and will not be using the remaining funds. Additionally, we
posted the NCE reports to the XStack Project Wiki. Direct Links to reports are included at the
end of this document.

Status

We have completed the Y3 and Final reports and are in the process of submitting all
documentation to the DOE and placing all documentation on the XStack Modelado wiki.

Report Links

The following URLs lead directly to other reports that have been submitted directly to the DOE
for the DynAX project:

e PNNL NCE Report
e Reservoir Labs NCE Report
e Year 3 Report
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