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Executive Summary 
 

Under this DOE award (award number DE-SC0008716; dates of performance          
9/1/2012 - 8/31/2015), the Dynax Project conducted collaborative and         
multidisciplinary research on Innovations in Programming Models, Compilers        
and, Runtime Systems for Dynamic Adaptive Event Driven Execution Models.          
Much of the material presented here has already been submitted separately           
to the DOE in three annual reports and twelve quarterly reports. Therefore,            
this report is a summary of R&D accomplishments based on these reports.            
The reports of the NCE period of each participating Institutions are provided            
as separate reports, and this report includes links to these reports accordingly.  
 
As we stated in our original Dynax proposal 3+ years ago: although            
present-​​day software can largely rely on minimally invasive operating systems          
and system libraries to provide its execution environment, these underlying          
layers of software – as well recognized by now – are inefficient and             
insufficient for exascale computing. Instead, the Dynax proposal identifies and          
addresses a critical technology gap in the system software stack of current            
high-end computing platforms that must be filled to meet the DOE's exascale            
system challenges. That critical technology is a dynamic adaptive runtime          
coupled with underlying parallel architecture features, which is vital for          
achieving the cost-effectiveness, power efficiency, desirable level of        
performance and scalability, and resiliency needed to fully exploit the          
heterogeneous exascale systems of the next decade. 
 

To this end, the Dynax proposal is based on a novel codelet execution model,              
first described by the PI and his associates in a CAPSL Technical Memo dated              
April, 2011 ​. It also leverages a commercial runtime, called ​SWift Adaptive           

1

Runtime Machine (SWARM)​, and associated programming technology       
enhancement as well as compiler tools ​. SWARM allows the programmer to           

2

express concurrency, synchronization, data locality, and resource needs; and         
at runtime uses this information to dynamically map and execute          
computational tasks to available resources. Activities under the DynAX’s         
proposal are focused on large scale parallelism and addresses the issues of            
high-level programming models, compilers, and runtime systems in the         

1 Toward an Execution Model for Extreme-Scale Systems-Runnemede and Beyond , Guang R. Gao, Joshua               
Suetterlein and Stephane Zuckerman, April, 2011. 
2  ​http://www.etinternational.com/downloads/swarm_docs/swarm/  
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context of the codelet based execution model. The key features of these            
components include scalability, programmability, portability, resilience, and       
energy efficiency. The research in this proposal is to be verified and tested on              
benchmark programs leveraging DOE PNNL work on NWChem application and          
programming environment as they become available. 
 
The Brandywine team contains a number of institutions that have decades of            
research and development experience in HPC. The industry partners (ETI,          
Reservoir) utilize product knowledge to extend their base products with          
research and development in revolutionary execution models as well as the           
software stack to support them. The research partners (UIUC and PNNL) bring            
experience in scientific applications and domain specific languages to bear on           
the research. The result of this work has brought significant technology           
advancements that will move research and development towards feasible         
solutions for DOE at exascale. The industry partners have used the results of             
this work to build and extend commercial products for DOE and the industry. 
 

Exascale Challenges and the Dynax Project 
 
Future generation HPC systems comprising many-​​core sockets and GPU         
accelerators will impose increasingly difficult challenges in programming,        
efficiency, heterogeneity, and scalability for exascale computing. Emerging        
execution models using event-​​driven task-​​based parallelism, dynamic       
dependency and constraint analysis, locality-​​aware computation, and       
resource-​​aware scheduling show promise in addressing these challenges and         
meeting the needs of the future of supercomputing. Applications employing          
these innovative runtime systems have shown significant gains in         
performance and utilization of computational resources in comparison with         
conventional methodologies ​. 

3

 

 

The Dynax project has described and implemented solutions to the challenges           
exascale systems pose, including new programming models that allow         
developers to express concurrency, locality, and synchronization in a concise          
manner. There are fundamental challenges in developing applications that         
successfully utilize modern petascale systems, and these difficulties will only          
be exacerbated on future exascale systems. First, current MPI programming          
models are based on the communicating sequential processes (CSP) model          

3  Swarm Graph500. ​http://www.graph500.org/nov2011.html 
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which, although have been a dominant parallel programming model for          
parallel supercomputing applications, the research community has       
increasingly recognized the difficulty in expressing dynamic parallelism under         
MPI as it does not take advantage of the dynamic availability of resources.             
This in turn makes it extremely difficult for programs with irregular or global             
data accesses, or with non-​​uniform computational needs, to fully exploit          
available hardware resources with high and smooth scalability. Second, use of           
heterogeneous systems requires multiple languages and programming       
models. For example, MPI is commonly used to distribute work across a            
computing cluster, while OpenMP distributes work across threads within a          
node, and OpenCL distributes work to GPUs within a node. This incongruous            
mixture impedes development of new applications and adaptation of existing          
applications to new platforms or hardware configurations. Synchronization        
provides other challenges for application developers. CSP programs typically         
resort to frequent use of barrier and collective constructs, which require           
centralization of communications and control, thereby increasing contention        
and delaying program advancement. These constructs may not always be          
necessary, however, and are often used to broadly oversimplify what could           
otherwise be much more fine-​​grained parallelism. This constrains flexibility of          
resource management by forcing long idle periods during synchronization         
when portions of the program could otherwise be completing useful work.           
Finally, the debugging and performance tuning of parallel programs written in           
traditional parallel programming models (such as the CSP based model or           
beyond) can be exceedingly difficult because synchronization and data locality          
are implicit in the message-​​passing semantics and not always intentional. 
 

Accomplishment 
 
Under the DOE XStack award for the DynAX project, we have accomplished            
the objectives presented in our proposal that have addressed the above           
challenges. The accomplishment of this project are summarized in the rest of            
this report. 

Accomplishments 
Overview 
 
Overall, we have reached our objectives as stated in our Dynax proposal. 
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The accomplishments are summarized below for each of the three years (Y1,            
Y2, and Y3). Further details are summarized in the 12 quarterly reports            
Q1-Q12. 

As mentioned during the negotiations with the program manager, each          
institution provided a separate report for the no-cost extension period. These           
are available as hyperlinks on the modelado wiki under the DynAX project (see             
the ​NCE Reports section of this document). Additionally, ETI’s report is           
attached to this document in Appendix C. Reservoir provided their final report            
directly to the program manager on October 31st for the end date approved             
for their NCE. PNNL provided their report directly to the program manager on             
December 23rd for the end date approved for their NCE. UIUC provided their             
report on August 31st. UIUC did not additional work after this date and will not               
be using the remaining funds. 

Appendix A ​includes the list of the hyperlinks to the full year reports of all              
three years, as well as links to the 12 Quarterly Reports. 

Appendix B includes tasks that were described in the proposal. Note that due            
to the budget constrains, the original tasks have been adjusted and there has             
been an agreement reached for the final statement of work (SOW). These            
adjustments are highlighted in the appendix. 
 
Appendix C contains a verbatim copy of the NCE report submitted by ETI to             
the DOE program manager. 

 

Year 1 

ETI Accomplishments 
 
In year 1, ETI focused on studying Cholesky Decomposition and Self-Consistent           
Field) codes. The subsequent discussion provides a brief summary of our           
activities and more detailed discussion can be found in the Y1 report as well              
as the Q1, Q2, Q3, and Q4 reports. 
 
We used Cholesky to study issues of tiling, scheduling, and memory           
management at scale. We started with a basic implementation within SWARM           
and made significant scalability improvements. We note that simple         
round-robin assignment of work leads to significant workload imbalance and          
found methods to produce a more even distribution of work. We additionally            
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found that a priority scheme for task prioritization that encourages compute           
nodes to traverse the matrix in a particular order causes parallelism to be             
much better exposed. We implemented a form of prefetching to reduce data            
starvation for nodes needing remote data at scale. The results are discussed in             
detail in the Q1 report. For SCF, we optimized the code provided by PNNL.              
Specifically, we improved the twoel kernel of the application by implementing           
multi-node versions for twoel using MPI and SWARM and providing several           
serial optimizations to the kernel. The results can be found in the Q2 and Q3               
reports. 
 

PNNL Accomplishments 
 
In year 1, PNNL focused on application and performance studies. Specifically,           
we identified two NWChem modules: Self-Consistent Field (SCF) and Coupled          
Cluster Method (CCM) as representative benchmarks for Exascale chemistry         
applications. The subsequent discussion provides a brief summary of our          
activities and more detailed discussion can be found in the Y1 report as well              
as the Q1, Q2, Q3, and Q4 reports. 
 
The SCF method is generally the central and most time consuming           
computation in ab initio quantum chemistry methods. Of the SCF method, the            
twoel module is the most computationally intensive piece of code. The CCM            
module is interesting in that the code is generated automatically from tensor            
equations supplied by the user. Our Y1 report discusses these two methods in             
detail.  

 

Reservoir Labs Accomplishments 
 
In year 1, Reservoir Labs looked at some of the more impactful optimizations             
performed by ETI on the SCF code and defined how to implement these             
optimizations within a compiler supporting both polyhedral loop optimization         
and more traditional SSA analysis. The subsequent discussion provides a brief           
summary of our activities and more detailed discussion can be found in the Y1              
report as well as the Q1, Q2, Q3, and Q4 reports. 
 
To this end, we demonstrated how known symmetries in input data can used             
to automate optimizations to reduce the number of evaluations in input data            
by up to 2​n​. Additionally, we showed how to automate pre-computation of            
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heavily-reused sub-expressions in loop codes by combining polyhedral scope         
analysis with traditional subexpression analysis. We defined an algorithm to          
detect large sub-expressions and operates at the intersection in trading off           
subexpression size for number of the number of loop indices subexpressions           
dependent on. Finally, we implemented generic support for parallelization of          
codelet-based codes into R-Stream. The details of this can be found in the Y1              
report. 

 

UIUC Accomplishments 
 
In year 1, UIUC implemented various enhancements to the Parallel          
Intermediate Language (PIL) from which SWARM code can be generated.          
Enhancements include tiled array data representation, structured PIL (SPIL)         
extensions, and SPMD PIL. The subsequent discussion provides a brief          
summary of our activities and more detailed discussion can be found in the Y1              
report as well as the Q1, Q2, Q3, and Q4 reports. 
 
To evaluate the overhead of PIL programs and our new extensions we began a              
study of Cholesky decomposition using PIL and compared the execution time           
to a hand-coded SWARM implementation. PIL codes targeting both SWARM          
and OpenMP showed scalability. One of the primary usability enhancements          
to PIL is the ability to write library functions as a collection of PIL nodes               
promoting reuse of code and allowing kernels to be self-contained within           
larger PIL programs. We implemented Hierarchically Tiled Arrays (HTAs) using          
this facility. Support for a data structure for creating and manipulating tiled            
arrays using parallel operations was incorporated into the design.         
Additionally, we completed the design of SPIL which provides syntactic sugar           
for common operations in the PIL programming language. Finally, for          
distributed systems, a we designed SPMD PIL targeting distributed SCALE. This           
allows PIL code be implemented in a SPMD fashion (i.e. all processing            
elements execute the same program concurrently with different data). 
 

Publications 
 
● [SuetterleinEtAl13] J. Suetterlein, S. Zuckerman, G. Gao. ​“An        

Implementation of the Codelet Model,​” In Proceedings of 19th         
International European Conference on Parallel and Distributed       
Computing (Euro-Par 2013), Aachen, Germany. August 26th, 2013. 
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● [LandwehrEtAl13] A. Landwehr, S. Zuckerman, G. Gao. ​“Toward a         
Self-aware System for Exascale Architectures.” In Proceedings of        
Euro-Par 2013: Parallel Processing Workshops; the 1st Workshop on         
Runtime and Operating Systems for the Many-core Era (ROME 2013),          
Aachen, Germany. August 26th, 2013. 

● [ChenEtAl13A] C. Chen, Y. Wu, J. Suetterlein, L. Zheng, Minyi Guo, G.            
Gao. “​Automatic Locality Exploitation in the Codelet Model.” In         
Proceedings of 11th IEEE International Symposium on Parallel and         
Distributed Processing with Applications (ISPA-13), Melbourne, Australia,       
July 2013. 

● [ChenEtAl13B] C. Chen, Y. Wu, S. Zuckerman, G. Gao. ​“Towards          
Memory-Load Balanced Fast Fourier Transformations in Fine-grain       
Execution Models.” In Proceedings of Workshop on Multithreaded        
Architectures and Applications (MTAAP 2013), May 24, 2013, Boston,         
Massachusetts USA. 

● [GarciaGao13] E. Garcia, G. Gao. ​“Strategies for improving Performance         
and Energy Efficiency on a Many-core.” In Proceedings of 2013 ACM           
International Conference on Computer Frontiers (CF 2013), May 14-16,         
Ischia, Italy, ACM, 2013. 

 

Additional Activities 
 
Additional accomplishments including delivered technologies and      
presentations may be found the ​Other Accomplishments section of this          
document. 

 

Year 2 

ETI Accomplishments 
 
In year 2, ETI studied LULESH and TCE, and extended SCALE. The subsequent             
discussion provides a brief summary of our activities and more detailed           
discussion can be found in the Y2 report as well as the Q5, Q6, Q7, and Q8                 
reports. 
 
As written, LULESH 2.0 demonstrated workload imbalance in terms of loop           
counts for certain regions (i.e. regions with high loop factors have more work             
than other regions). We proposed a few serial performance improvements for           
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the application and during study came to the conclusion that the performance            
characteristics of the applications would result in similar performance         
between the MPI+X version and a SWARM adaptation. As such, we suggest            
rebalancing the static workload instead. Furthermore, we produced a         
standalone version of the Tensor Contraction Engine (TCE) with reference          
input and output data. We additionally, incorporated the ability to produce           
OCR and SWARM code on a function-by-function and block-by-block basis and           
studied the performance characteristics of the application. We additionally         
extended the SCALE syntax to support basic object-oriented-programming        
techniques in order to ease programmer burden with developing with          
SWARM. This enables programmers to more easily interact with SWARM          
while avoiding some of complexities of the underlying runtime and language. 

 

PNNL Accomplishments 
 
In year 2, PNNL studied two application codes: the Coupled Cluster Method            
(CCM) in NWChem, and LULESH. The subsequent discussion provides a brief           
summary of our activities and more detailed discussion can be found in the Y2              
report as well as the Q5, Q6, Q7, and Q8 reports. 
 
For CCM, we provided sets of tensor equations, a driver program, as well as,              
an input deck used to to develop and evaluate an automatic code generator.             
We additionally, developed a CnC control and data flow diagram and ported            
the code for execution within the simulator. We then refactored the code into             
a CnC program and evaluated the algorithm within Intel’s CnC framework and            
Rice’s CnC-OCR framework. Finally, we created the Architected Composite         
Data Types (ACDT) conceptual framework to exploit opportunities w.r.t.         
access patterns, data composition, dynamic range, etc. 

 

Reservoir Labs Accomplishments 
 
In year 2, Reservoir Labs worked on a number of aspects of the DynAX project.               
Given that the efficiency of exascale systems is strongly influenced by efficient            
communications we focused on this. We collaborated with PNNL, ETI, and the            
University of Delaware on adaptive sparse data structure transfer         
optimization techniques. The subsequent discussion provides a brief summary         
of our activities and more detailed discussion can be found in the Y2 report as               
well as the Q5, Q6, Q7, and Q8 reports. 
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During this period, we identified scalability issues in the synchronization          
constructs within SWARM, CnC, and OCR. As a result, we proposed           
modifications to count dependencies within SWARM which would provide         
optimal scalability in terms of sequential overhead of task creation, in-flight           
tasks, and the space used by synchronization objects and their garbage           
collection. These extensions were implemented in the R-Stream runtime layer          
for SWARM and are used by the codes generated by R-Stream. Additionally,            
we developed a communication library for x86 platforms that provides virtual           
DMA operations by leveraging the x86 vector cache. We then modified           
R-Stream to produce SWARM code using the virtual DMA library. Finally, in            
order to devise an approach to support a class of unstructured codes, we             
looked at existing art. We studied structured adaptive mesh refinement and           
looked at an approach that uses Legion as a task graph programming API. 
 

UIUC Accomplishments 
 
In the prior year, UIUC made various enhancements to the Parallel           
Intermediate Language (PIL) in terms of incorporating tiled array data          
representations, providing Structured PIL (SPIL) extensions, and designing        
SPMD PIL. In year 2, we implemented and evaluated benchmark programs in            
the HTA notation, and extended HTA to support irregular tiles as well as             
distributed computing environments. The subsequent discussion provides a        
brief summary of our activities and more detailed discussion can be found in             
the Y2 report as well as the Q5, Q6, Q7, and Q8 reports. 
 
In Q5, we implemented six NAS Parallel Benchmarks using HTA and the results             
can be executed using OpenMP and SCALE. A detailed discussion is provided            
in the Y2 report. In Q6, we designed a strategy for expanding HTA programs to               
support SPMD execution, thus, allowing an efficient mapping to distributed          
memory SCALE. In Q7, we extended HTA to support irregular tile partitioning,            
thus, allowing applications to create and manipulate irregular tiles. 
 

Publications 
 
● [WeiEtAl13] H. Wei, G. Gao, W. Zhang, J. Yu. ​“COStream: A Dataflow            

Programming Language and Compiler for Multi-Core Architecture.” In        
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Proceedings of Data-Flow Models (DFM) for extreme scale computing         

Workshop 2013 in conjunction with Parallel Architectures and        

Compilation Technologies (PACT 2013), Edinburgh, Scotland, September       

8 of 2013. 

● [SolinasEtAl13] M. Solinas, R. Badia, F. Bodin, A. Cohen, P. Evripidou, P.            

Faraboschi, B. Fechner, G. Gao, A. Garbade, S. Girbal, D. Goodman, B.            

Khan, S. Koliai, F. Li, M. Luján, L. Morin, A. Mendelson, N. Navarro, A.              

Pop, P. Trancoso, T. Ungerer, M. Valero, S. Weis, I. Watson, S.            

Zuckermann, R. Giorgi. ​“The TERAFLUX Project: Exploiting the DataFlow         

Paradigm in Next Generation Teradevices.” In Proceedings of the 16th          

Euromicro Conference on Digital System Design, Santander, Spain,        

September 4-6, 2013. 

● [ZuckermanEtAl14] S. Zuckerman, A. Landwehr, K. Livingston, G. Gao.         

“Toward a Self-Aware Codelet Execution Model.” In proceedings of 4th          

Workshop Data-Flow Execution Models for Extreme Scale Computing        

(DFM’14), August 24, 2014, Edmonton, Alberta, Canada. 

● [DennisGao14] J. Dennis, G. Gao. ​“On the Feasibility of a Codelet Based            

Multi-core Operating System.” In the 4th Workshop on Data-Flow         

Execution Models for Extreme Scale Computing (DFM'14), August 24,         

2014, Edmonton, Alberta, Canada.  

● [ArteagaEtAl14] J. Arteaga, S. Zuckerman, E. Garcia, G. Gao. ​“Position          

Paper: Locality-Driven Scheduling of Tasks for Data-Dependent       

Multithreading.” In Proceedings of Workshop on Multi-Threaded       

Architectures and Applications (MTAAP 2014), May 2014. 

● [MeisterEtAl14] B. Meister, N. Vasilache, M. Baskaran, T. Henretty, R.          

Lethin. ​“R​Stream experiments with hierarchical iteration tiling.” 16th        

SIAM Conference on Parallel Processing for Scientific Computing,        

February 2014, Portland, Oregon, USA.  

● [VasilacheEtAl14] N. Vasilache, M. Baskaran, T. Henretty, B. Meister, R.          

Lethin, ​“A tale of three runtimes.” Arxiv preprint # 1409.1914.          

http://arxiv.org/abs/1409.1914 

● [StJohnEtAl14] T. St John, B. Meister, A. Marquez, J. Manzano, G. Gao, X.             

Li. ​“ASAFESSS: A Scheduler ​driven Adaptive Framework for Extreme         
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Scale Software Stacks.” In proceedings of The 4th International         

Workshop on Adaptive Self​-tuning Computing Systems, ADAPT ‘14,        

Vienna, Austria, January 2014. Recipient of the best paper award.  

 

Additional Activities 
 
Additional accomplishments including delivered technologies and      
presentations may be found the ​Other Accomplishments section of this          
document. 

 

Year 3 

ETI Accomplishments 
 

In year 3, ETI finished study of the TCE application provided by PNNL.             
Additionally, throughout the year ETI incorporated and studied resilience         
techniques within SWARM and how to achieve MPI interoperability. The          
subsequent discussion provides a brief summary of our activities and more           
detailed discussion can be found in the Y3 report as well as the Q9, Q10, Q11,                
and Q12 reports. 

 
In Q9 and Q10, we completed a block-parallel implementation of TCE within            
OCR and a task-parallel version within SWARM. Additionally, we began          
research into resilience and fault tolerance using containment domains. We          
implemented a prototype implementation within SWARM and began        
implementing Cholesky using it. We also began investigating MPI         
interoperability within SWARM and reached a number of conclusions         
highlighted in our Q9 and Q10 reports. In Q11, we produced a report             
summarizing our studies of MPI interoperability as well as another report           
detailing the feasibility of a containment domain based Cholesky within          
SWARM. In Q12, we continued design studies of the Cholesky and published a             
full paper to the Mini-Symposium on Energy and Resilience in Parallel           
Programming (ERPP2015). Additionally, we created a practical matrix        
multiplication example showcasing MPI interoperability with SWARM and        
conducted a comparative study of MPI+X within the field. 
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PNNL Accomplishments 
 
In year 3, PNNL focused on improving the management of data movement            
and resource underutilization within our Group Locality framework. We also          
introduced a data restructuring framework within the Group Locality         
framework. The subsequent discussion provides a brief summary of our          
activities and more detailed discussion can be found in the Y3 report as well              
as the Q9, Q10, Q11, and Q12 reports. 
 
Our group locality framework creates scattering functions to increase         
resource utilization and data locality at compile time. Additionally, we          
introduced two novel tiling techniques, named jagged and diamond jagged          
tiling that introduces additional tile shapes to expose inner parallelism at the            
lower levels of tiling hierarchies. Moreover, we developed a data restructuring           
framework that uses a Polyhedral formulation to restructure and move data           
while considering thread access patterns. The contribution of our         
methodology is a low overhead transformation technique that exploits locality          
and additionally incorporates a collaborative restructuring of data for group          
reuse. 
 

Reservoir Labs Accomplishments 
 
In year 3, Reservoir Labs identified block-sparse computations as a significant           
subset of unstructured codes. We incorporated support for block-sparse         
computations for distributing computing into R-Stream. We also worked with          
UIUC to integrate PIL generated code and R-Stream optimized code. The           
subsequent discussion provides a brief summary of our activities and more           
detailed discussion can be found in the Y3 report as well as the Q9, Q10, Q11,                
and Q12 reports. 
 
We developed support for distributed computing and block-sparse        
computation in R-Stream as well as UIUC’s HTA/PIL. We first began developing            
a backend runtime to use R-Stream for the parallelization of dense array            
computations on clusters based on a PGAS abstraction. We then moved to            
implementing an R-Stream mapping path (backend and runtime) to produce          
block-sparse computations on clusters. Additionally, we completed support        
for HTA and PIL as a front-end to R-stream. 
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UIUC Accomplishments 
 
In year 3, UIUC worked on implementing SPMD execution of PIL and HTAs             
within the the SWARM runtime and implemented in the HTA notation a dense             
Cholesky factorization to analyze the execution behavior (in year 1 a version            
of cholesky was implemented in PIL. The HTA version accomplishes the same            
goal in an array notation that enables task parallelism). Additionally, as           
discussed above, we worked with Reservoir labs to integrate PIL generated           
code and R-Stream optimized code. The subsequent discussion provides a          
brief summary of our activities and more detailed discussion can be found in             
the Y3 report as well as the Q9, Q10, Q11, and Q12 reports. 
 
In Y1 and Y2, We developed a strategy to map HTA program executions into              
SWARM in a fork-join fashion; however, this restricts parallelization by forcing           
global synchronization via barriers. To this end, we began experimenting with           
an SPMD mode implementation that supports point-to-point synchronization        
to reduce overheads and promote load-balancing. We chose a dense Cholesky           
factorization because the computation is an irregular task graph and allows           
simple modification of input parameters. The results of our study are           
discussed in the quarterly reports. Finally, we integrated PIL generated code           
and R-Stream optimized code allowing the user to write more intuitive parallel            
program code in PIL and use the R-Stream compiler to optimize the            
computation kernels. 
 

Publications 
 

● [LiEtAl15] X. Li, J. Dennis, G. Gao, W. Lim, H. Wei, C. Yang, R. Pavel.               

“FreshBreeze: A Data Flow Approach for Meeting DDDAS Challenges.” In          

proceedings of the International Conference On Computational Science        

(ICCS2015). Reykjavík, Iceland, June 2, 2015. 

● [KaplanEtAl15] S. Kaplan, S. Pino, A. Landwehr, G. Gao. ​“Landing          

Containment Domains on SWARM: Toward a Robust Resiliency Solution         

on a Dynamic Adaptive Runtime Machine.” To Appear in the proceedings           

of the 2015 international Parallel Computing conference (ParCo’15).        

Edinburgh, Scotland, UK, September 1 – 4, 2015. 
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● [ShresthaEtAl14A] S. Shrestha, J. Manzano, A. Marquez, and G. R. Gao. ​“A            

Framework for Resource Aware Multithreading.” Poster presented at the         

International Conference for High Performance Computing, Network,       

Storage and Analysis (SC 14). New Orleans, LA, USA, November 16 – 21,             

2014. Best poster nominee. 

● [ShresthaEtAl4B] S. Shrestha, J. Manzano, A. Marquez, J. Feo and G. R.            

Gao. ​“Jagged Tiling for Intra-tile Parallelism and Fine-Grain        

Multithreading.” In the 27th International Workshop on Languages and         

Compilers for Parallel Computing, Hillsboro, OR, USA, September 15 – 17,           

2014. 

● [ShresthaEtAl15A] S. Shrestha, J. Manzano, A. Marquez, S. Zuckerman, S.          

L. Song and G. Gao. ​“Gregarious Data Re-structuring in a Many Core            

Architecture.” Invited paper to the 17​th international conference on High          

Performance Computing and Communication (HPCC 2015). New York,        

USA, August 24 – 26, 2015. 

● [ShresthaEtAl15B] S. Shrestha, J. Manzano, A. Marquez, J. Feo and G. R.            

Gao. ​“Locality Aware Concurrent Start for Stencil Applications.” In the          

2015 International Symposium on Code Generation and Optimization, San         

Francisco, CA, USA, February 7-11, 2015. 

● [Shrestha15] PhD Thesis Sunil Shrestha ​“A framework for Group Locality          

Aware Multithreading.”​ Fall 2015. 

● [TavarageriEtAl15] S. Tavarageri, B. Meister, M. Baskaran, B. Pradelle, T.          

Henretty, A. Konstantinidis, A. Johnson, R. Lethin. ​“Automatic Cluster         

Parallelization and Minimizing Communication via Selective Data       

Replication.” In proceedings of the 2015 IEEE High Performance Extreme          

Computing conference (HPEC’15), 15-17 September 2015, Waltham, MA. 

● [MarquezEtAl14] A. Marquez, J. Manzano, S. Song, B. Meister, S. Shrestha,           

T. St. John and G. R. Gao. ​“ACDT: Architected Composite Data Types            

Trading-in Unfettered Data Access for Improved Execution.” In the 20th          

IEEE International Conference on Parallel and Distributed Systems,        

Hsinchu, Taiwan, December 16 – 19, 2014. 
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● [YangEtAl14] C. Yang, J. Pichel, A. Smith, D. Padua. ​“Hierarchically Tiled           
Array as a High-Level Abstraction for Codelets.” In the Fourth Workshop           
on Data-Flow Execution Models for Extreme Scale Computing, 2014. 

● [Smith15] A. Smith. ​“The Parallel Intermediate Language.” Ph.D.        
dissertation, Computer Science Dept., University of Illinois at        
Urbana-Champaign, September 2015. 

 

Additional Activities 
 
Additional accomplishments including delivered technologies and      
presentations may be found the ​Other Accomplishments section of this          
document. 
 

Other Accomplishments 
Technologies Delivered 
 
Additional information on deliverables can be found on the DynAX page of the             
X​Stack wiki: 
https://xstackwiki.modelado.org/DynAX#Deliverables 

Q1-Q3 
● NWChem SCF module: 

○ Serial C version ​(PNNL Q2) 
○ Optimized C version ​(ETI Q2) 
○ OpenMP Version ​(ETI Q2) 
○ MPI Version ​(ETI Q2) 
○ SWARM single and multi-node Version ​(ETI Q2-Q3) 

● NWChem TCE module: 
○ Serial C Version ​(PNNL Q3) 
○ OpenMP Version ​(PNNL Q3) 
○ CUDA Version ​(PNNL Q3) 
○ Fortran99 Version ​(PNNL Q3) 

● Cholesky Decomposition optimization for scheduling, memory 
management and self-awareness ​(ETI Q1) 

● Stencil framework for CnC and SWARM ​(Reservoir Q3) 
● Single-node untuned automatic mappable C → SWARM parallelization 

with R- Stream ​(Reservoir Q3) 
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● Parallel Intermediate Language (PIL) → SCALE translator 
○ Single Node ​(UIUC Q1-Q2) 
○ Multinode ​(UIUC Q3) 

● PIL API Document ​(UIUC Q2-Q3) 
 

Q4 
● NWChem TCE Module: 

○ SWARM single node version ​(ETI) 
○ Basic single-node parallelization to SWARM using R-Stream 

● R-Stream ​(Reservoir)​: 
○ Basic R-Stream tuning for single-node mappable C → SWARM 

parallelization 
○ Simplified domain computation (Improvement of compiler engine 

tractability) in R-Stream 
● Sparse data representation in PIL ​(UIUC) 

 

Q5-Q6 
● NWChem TCE module: 

○ Standalone application ​(ETI Q5-Q6) 
○ Function-level parallel OCR version ​(ETI Q6) 

● Tuned SWARM R-Stream backend - autodecs ​(Reservoir Q5-Q6) 
● Tuned SWARM R-Stream backend - virtual DMA, preliminary ​(Reservoir 

Q6) 
● NAS Parallel Benchmark Implementation with PIL HTA (for Shared 

Memory SCALE) ​(UIUC Q5) 
● HTA-to-PIL-to-SCALE interface design changes for supporting SPMD 

(UIUC Q6) 
● Coupled Cluster equation, driver program, and input sets​ (PNNL Q5) 
● C++ version of CnC based LULESH application code ​(PNNL Q6) 

 

Q7-Q8 
● NWChem TCE module: 

○ Function-level parallel SWARM version ​(ETI Q7) 
○ Block-level parallel OCR and SWARM versions​ (ETI Q7-Q8) 

● Tuned SWARM backend - virtual DMA, advanced ​(Reservoir Q7-Q8) 
● Research on leveraging communication layer and asynchronous task 

graph execution model to target mesh computations ​(Reservoir Q7-Q8) 
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● PIL HTA (Shared Memory) Performance Evaluation with NAS Parallel 
Benchmarks​ (UIUC Q7-Q8) 

● Support for irregular tiles​ (UIUC Q7) 
● NAS Parallel Benchmark support for Distributed Memory SCALE​ (UIUC 

Q8) 
 

Q9-12 
● Prototype of nested containment domains within SWARM ​(ETI Q9-Q11) 
● Case study of CD based cholesky decomposition within SWARM​ (ETI Q12) 
● Case study of MPI+X ​(ETI Q12) 
● NWChem TCE module: 

○ Block-level parallel OCR ​(ETI Q9-Q10) 
● R-Stream cluster backend based on PNNL’s Global Arrays​ (Reservoir 

Q9-Q10) 
● R-Stream block sparse cluster runtime ​(Reservoir Q11-Q12) 
● PIL compiler and HTA SPMD execution mode implementation ​(UIUC 

Q9-Q10) 
● HTA SPMD performance evaluation using NAS Parallel Benchmark and 

task parallel Block Cholesky Factorization ​(UIUC Q11-Q12) 
● PIL SCALE backend integration with R-Stream ​(UIUC & Reservoir Q12) 
● New loop tiling technique for parallel start applications [CGO'15] ​(PNNL 

Q11) 

● Data restructuring framework for affine applications codes [HPCC'15] 

(PNNL Q12) 

 

Presentations 
● Project overview presentation: PI Kickoff meeting in September 2012. 
● Project overview presentation: DOE ASCR meeting in October 2012. 
● Presentation on Cholesky Decomposition enhancements in December 

2012. 
● Presentation to TACC on SCF optimizations in February 2013. 
● Progress-to-date presentation: 6-month PI meeting in March 2013. 
● X-StackProject overview and results: EXaCT all-hands meeting in May 

2013. 
● Extreme scale technical review on TCE as a proxy app in December 2013 

(audience includes Traleika Glacier project teams and a broader 
audience). 
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● Presentation on an implementation of the codelet model at Europar’13 
[SuetterleinEtAl13]. 

● Presentation discussing a path forward to a self-aware system for 
exascale architectures at ROME’13 [LandwehrEtAl13]. 

● Presentation on automatic locality exploitation within the codelet model 
at ISPA’13 [ChenEtAl13A]. 

● Presentation on a memory-load balanced FFT for fine-grained execution 
models at MTAAP’13 [ChenEtAl13B]. 

● Presentation on strategies to improve performance and energy efficiency 
in many-core architectures at CF’13 [GarciaGao13]. 

● Presentation on COStream at DFM’13 [WeiEtAl13]. 
● Presentation on TERAFLUX at DSD’13 [SolinasEtAl13].  
● Extreme scale technical review on the adaptive task​-centric runtime 

framework in February 2014.  
● Presentation on distributed scheduling challenges in Cholesky to OCR 

core team in March 2014.  
● Presentation on Virtual DMA optimization to Extreme scale technical 

review audience in April 2014. 
● Presentation on a Self-Aware Codelet Model at DFM’14 

[ZuckermanEtAl14]. 
● Presentation on the feasibility of codelet based operating systems at 

DFM’14 [DennisGao14]. 
● Presentation on locality-driven scheduling of tasks for data-dependent 

multithreading at MTAAP’14 [ArteagaEtAl14]. 
● Presentation on R-Stream experiments with hierarchical iteration tiling at 

SIAM’14 [MeisterEtAl14]. 
● Presentation on a scheduler driven adaptive framework for 

extreme-scale software stacks at ADAPT’14 [StJohnEtAl14]. 
● Presentation on a framework for resource aware multithreading at SC’14 

[ShresthaEtAl14A]. 

● Presentation on jagged tiling for intra-tile parallelism and fine-grained 

multithreading at LCPC’14 [ShresthaEtAl14B]. 

● Presentation on ACDT: architectured composite data types at ICPADS’14 

[MarquezEtAl14]. 

● Presentation on Resilience and containment domains presentation given 

by Sam Kaplan in May 2015. 
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● Deepdive on group locality and gregarious data restructuring given to 

projects collaborators  in July 2015. 

● Deepdive on containment domains within SWARM given to project 

collaborators in August 2015. 

● Presentation on FreshBreeze at ICCS’15 [LiEtAl15]. 

● Presentation containment domains within SWARM at ParCo’15 

[KaplanEtAl15]. 

● Presentation on Gregarious data restructuring within many-core 

architectures at HPCC’15 [ShresthaEtAl15A]. 

● Presentation on locality aware concurrent start of stencil applications at 

CGO’15 [ShresthaEtAl15B]. 

● Presentation on automatic cluster parallelization and minimizing 

communication via selective data replication at HPEC’15 

[TavarageriEtAl15]. 

● Presentation on hierarchically tiled arrays as a high level abstraction for 

codelets at DFM’14 [YangEtAl14]. 

● Presentation on hierarchically tiled arrays for exascale computing at 

PADAL’15. 

● Ph.D dissertation defense on ‘A Framework for Group Locality Aware          
Multithreading’ [Shrestha15]. 

 

Note: The participants in this award have made various other presentations           
not listed here. A list can be provided on demand. 
 

Websites 
 
The URLs listed below contain STI delivered during the course of the DynAX             
project or software or methods relevant to delivered STI. 
 
● Deliverables of DynAX project: 

https://xstackwiki.modelado.org/DynAX#Deliverables 
● Scalapack’s two dimensional block-cyclic distribution: 

http://netlib.org/scalapack/slug/node75.html 
● NWChem: 
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http://www.nwchem-sw.org/index.php/Main_Page 
● TCE correlation models: 

http://www.nwchem-sw.org/index.php/TCE#CCSD.2CCCS 
DT.2CCCSDTQ.2CCISD.2CCISDT.2CCISDTQ.2C_MBPT2.2CM 
BPT3.2CMBPT4.2C_etc._--_the_correlation_models 
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Appendix A: Reports 

Quarterly Reports 
● Brandywine X​Stack Report Q1 

● Brandywine X​Stack Report Q2 

● Brandywine X​Stack Report Q3 

● Brandywine X​Stack Report Q4 

● Brandywine X​Stack Report Q5 

● Brandywine X​Stack Report Q6 

● Brandywine X​Stack Report Q7 

● Brandywine X​Stack Report Q8 

● Brandywine X​Stack Report Q9 

● Brandywine X​Stack Report Q10 

● Brandywine X​Stack Report Q11 

● Brandywine X​Stack Report Q12 

Annual Reports 
● Brandywine X​Stack Report Y1 

● Brandywine X​Stack Report Y2 

● Brandywine X​Stack Report Y3 

NCE Reports 
● ETI NCE Report 

● PNNL NCE Report 

● Reservoir Labs NCE Report 
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https://xstackwiki.modelado.org/images/3/39/DynAXXStackQ7Report.pdf
https://xstackwiki.modelado.org/images/a/ab/DynAXXStackQ8Report.pdf
https://xstackwiki.modelado.org/images/c/c3/DynAXXStackQ9Report.pdf
https://xstackwiki.modelado.org/images/c/ca/DynaxXStackQ10Report.pdf
https://xstackwiki.modelado.org/images/d/d7/DynAX-XStackQ11Report.pdf
https://xstackwiki.modelado.org/images/6/6a/DynAX-XStackQ12Report.pdf
https://xstackwiki.modelado.org/images/e/ee/BrandywineXStackReportY1.pdf
https://xstackwiki.modelado.org/images/e/e8/DynAXX-StackYear2report.pdf
https://xstackwiki.modelado.org/images/1/1e/DynAXYear3.pdf
https://xstackwiki.modelado.org/images/6/6d/ETI_NCE.pdf
https://xstackwiki.modelado.org/images/7/72/PNNL_NCE.pdf
https://xstackwiki.modelado.org/images/0/03/Reservoir_NCE.pdf


Appendix B: List of Tasks 
 
Number Information 

1.1 Research scheduling policies 
1.2 Research scheduler linkages such as tree hierarchies or other graphs 
2.1 Research compiler hints/directives for runtime scheduling  
2.2 Research data placement topologies 
2.3 Research memory access semantics 
2.4 Research compiler code generation for data placement and movement 
3.1 Target codelet execution model 
3.2 Generate SWARM codelet code 
3.3 Improve scalability of polyhedral mapping 
3.4 Optimize unstructured mesh computations 
3.5 Optimize structure based codes 
4.1 Representation of sparse arrays.  
4.2 Irregular tiles 
5.1 Design of the PIL API 
5.2 Implementation of the PIL API 
5.3 Evaluation of the PIL implementation and API 
5.4 Locality of enhancement and task parallelization 
5.5 Removal of barriers 
5.6 Aggressive inlining and simplification of data parallel operations 
5.7 SCALE and R-Stream code generation 
5.8 Optimize dense PIL loop codes 
5.9 Optimize dense Chapel loop codes 
6.1 Develop list of compact application kernels 
6.2 Evaluate baseline performance and energy requirements 
6.3 Design codelet-based version of compact applications 
6.4 Research algorithm and solution stack improvements 
6.5 Further study of performance and energy requirements 
6.6 Iterative optimization of codelet based version of compact applications 
7.1 Define intermediate representation 
8.1 Research integration of containment domain execution and recovery with codelet 

scheduling 
8.2 Research integration of CD persistence infrastructure API with SWARM 
8.3 Research language and compiler integration of coarse-grained and fine-grained 

checkpointing operations  
9.1 Research multi layered power optimized data representations 
9.2 Investigate initial and static data placement at each memory level 

10.1 Study MPI interoperability 
10.2 Study OpenMP Interoperability 
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Appendix C: ETI NCE Report 
 
Note: The following pages contain the attached no-cost extension report from           
ETI. PNNL and Reservoir Labs reports are available on the ​DynAX wiki​. 

 

NCE Project Progress Report for 
ET International Inc. 

 

 
 

DynAX: Innovations in Programming Models, 
Compilers and Runtime Systems for Dynamic 
Adaptive Event ​Driven Execution Models 

 

 
 

Award Number​: DE​SC0008716 
Dates of Performance​: 9/1/2015​ to 12/31/2015 

Report Date​: 12/31/2015 
 
 

 

 

Principal Investigator 
Guang Gao, ET International. Inc. 

 
 
 

 
 

Co​PIs​: 
Benoit Meister, Reservoir Labs, Inc. 

David Padua, University of Illinois Urbana Champaign 
Andres Marquez, Pacific Northwest National Laboratories 
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Introduction 
ETI sent an NCE request letter on August 14th. This report outlines the work performed by ET                                 
International Inc. during the no­cost extension period granted. During the period we worked on                           
two types of tasks: (1) tasks related to the dissemination of STI, and (2) tasks related to                                 
coordination and organization.  

Summary 
To summarize our STI dissemination efforts, (1) ETI presented our work on containment                         
domain based resiliency within SWARM at the 2015 International Parallel Computing                     
Conference (ParCo’15) in Edinburgh, Scotland , and (2) based on feedback from the                       4

community, we revised and extended our paper which is to be included in the primary                             
ParCo’15 proceedings. 
 
To summarize our coordination and organization efforts, (1) ETI as the lead institution                         
coordinated with other PI institutions for the completion of their NCE, (2) organized completion                           
of the Y3 report, and (3) put together the final report.  

Dissemination of STI 
The following sections discuss CD based resilience and contain improvements based off of                         
feedback from the community following our presentation at ParCo’15. These changes are also                         
reflected in our extended paper. 
 

Containment Domain Based Resilience 
 
For completions sake we will repeat that at a high­level, a containment domain contains four                             
components: data preservation, to save any necessary input data; a body function which                         
performs algorithmic work; a detection function to identify hardware and software errors; and a                           
recovery method, to restore preserved data and re­execute the body function. The detection                         
function is a user defined function that will be run after the body. It may check for hardware                                   
faults by reading error counters, or for software errors by examining output data (e.g. using a                               
checksum function). Since containment domains can be nested, the recovery function may                       
also escalate the error to its parent. Since no coordination is needed, any number of                             

4 ​S. Kaplan, S. Pino, A. Landwehr, G. Gao. ​“Landing Containment Domains on SWARM:                           
Toward a Robust Resiliency Solution on a Dynamic Adaptive Runtime Machine.” To                       
Appear in the proceedings of the 2015 international Parallel Computing conference                     
(ParCo’15). Edinburgh, Scotland, UK, September 1 – 4, 2015. 
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containment domains may be in existence, with multiple preserves and recoveries taking                       
place simultaneously.  
 
Containment Domains API within SWARM 
 
The containment domain API has been modified from what we initially reported to allow for                             
additional features. Specially, the preservation calls have an additional parameter called ​type                       
allowing the user to specify into which domain to preserve data. Additionally, we have clarified                             
the language used in the API descriptions. The API’s are now as follows: 
 
swarm_Containment_Domain create(parent): Create a new containment domain as a child                   
of the specified parent domain. 
 
swarm_Containment_Domain begin(THIS, body, body ctxt, check, check cxt, done,                 
done ctxt): Begin execution of the current containment domain denoted by THIS by                         
scheduling the codelet denoted by body ctxt. When the codelet finishes execution, the codelet                           
denoted by check ctxt is scheduled to verify results. If the result of the execution is TRUE then                                   
the codelet denoted by done cxt is scheduled. 
 
swarm_Containment_Domain preserve(THIS, data, length, id, type): In the containment                 
domain denoted by THIS, do a memory copy of length bytes from data into a temporary                               
location inside the CD. We support multiple preservations per CD (e.g. to allow preservation of                             
tiles within a larger array, such that the individual tiles are non­contiguous in memory), by                             
adding a user­selected id field. For each containment domain in SWARM, a boolean value is                             
set based on its execution status.On the first execution, data is preserved normally. On                           
subsequent executions, data is copied in reverse (i.e. from the internal preservation into the                           
data pointer). The CD in which the data is preserved is denoted by type. This can either be the                                     
currently activated CD or the parent CD. 
 
swarm_Containment_Domain finish(THIS): Close the current containment domain denoted               
by THIS, discard any preserved data, and make the parent domain active. 
 

Experimental Results 
 
We’ve expanded upon and clarified the results we initially obtained and provided a more                           
thorough discussion from that of the quarterly reports. We evaluate our CD based approach                           
through three primary means: feasibility, efficiency, and resilience and make a number of key                           
observations. To show that our prototype implementation has sufficient functionality, we                     
instrument a Cholesky decomposition program in SWARM to use containment domains. For                       
the experiments, the program was run on a dual­processor Intel Xeon system, using 12                           
threads. The workload sizes were confirmed to not exhaust the physical memory of the                           
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machine.Though we found insignificant variance between runs, we have averaged all times                       
over 5 program runs due to the natural variation in run time due to extraneous system factors                                 
(such as scheduling differences). 
 

 
           ​ Figure 1: Execution Time of Cholesky                               Figure 2: Percentage overhead 
 
The Cholesky program has three main codelets, one for each linear algebra routine run on a                               
tile (POTRF, TRSM, and GEMM/SYRK), and each of these is called a number of times for                               
each tile. For our purposes, each of these is considered a containment domain. In our model,                               
we only considered faults similar to arithmetic errors; that is, incorrectly calculated results. For                           
this reason, we did not need to preserve input data unless it would be overwritten by an                                 
operation (e.g. the input/output tile for a POTRF operation). In order to simulate arithmetic                           
errors, rather than relying on error counters from actual faulty hardware, a probabilistic                         
random number generator is used. If a random number is below the specified configurable                           
threshold, a fault is deemed to have occurred. Fault generation occurs within the check                           
codelets causing checks to fail at random and the subsequent re­execution of the entire failed                             
containment domain. 
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  ​ ​Figure 3: Execution time with simulated errors  
 
Firstly, through the implementation of our framework in SWARM, and the working Cholesky                         
application using said framework, we observe that it is feasible to adapt a codelet­based                           
application to use containment domains. Secondly, Our implementation shows very low                     
overhead. Figure 1 shows the execution time for various tile sizes executing Cholesky of size                             
40000x40000. Base denotes the Cholesky kernel runtime without containment domains or                     
data preservation. CD denotes the time spent within CD related API calls without preservation.                           
Preserve denotes the time spent preserving data. One can see that the API itself adds                             
negligible overhead and that the only significant overhead comes from actual preservation of                         
data. As with many tile based approaches to computation, choosing an inappropriate tile size                           
will cause performance degradation due to inefficient use of caches or by limiting parallelism.                           
In this particular case, tile sizes above 1600 limit the core utilization to 10 or 5 threads                                 
respectively, yielding the U­shape shown in the graph. Figure 2 shows the total overhead                           
(preservation+API calls)relative to the base cholesky code without containment domains. The                     
trends indicate that as tile sizes (workload per codelet) increase the overhead is mitigated and                             
eventually becomes negligible.This trend is unsurprising given that the runtime overhead per                       
API call is relatively constant and as the tile size increases less and increasingly larger data                               
sized preservation calls are made to the runtime. Additionally, the cost of preservation (i.e. for                             
data movement) increases at a much slower rate than the cost of the Cholesky computation                             
as tile sizes are increased. Overall, this trend shows that there is a sweet spot in terms of                                   
granularity and that proper decomposition is key to mitigate preservation overheads and                       
maximize performance. 
 
Figure 3 shows simulated injected failures that result in codelet re­execution within the                         
SWARM framework.The idealized case is computed by taking the average execution time                       
without faults for a Cholesky of size 40000x40000 and tile size of 200x200, and computing the                               
expected execution time for various fault rates using the geometric distribution. In order to                           
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accurately access the overhead of our implementation, this projected base execution time                       
includes neither CD or preservation overhead.The actual case shows the execution times                       
actually obtained from running SWARM with injected failures. We note that there is around                           
11% overhead without failures and that this overhead decreases to 6% at a failure rate of                               
75%. This is because some allocation and API overheads are not present upon re­execution.                           
Trend wise, we note that maximal overhead occurs when faults are not present in the system.                               
We additionally note that the execution time follows reasonably well to that of the idealized                             
case and that it is possible to project with reasonable accuracy the execution time in the event                                 
of failures using data from actual runs without failure. 

Coordination and Organization Efforts  
During the NCE period, we prepared the Y3 and Final reports to be submitted to the DOE.                                 
Activities included coordinating and communicating with each collaborating institution for the                     
content and publications to submit as well as interfacing with the other institutions to make                             
sure that the final report contained a smooth interface referencing the NCE reports by each                             
institution which were submitted to the program manager as well as ETI. With respect to this,                               
we received Reservoir Lab’s NCE report dated 10/31/2015; PNNL’s NCE report dated                       
12/23/2015. UIUC provided their report directly to the DOE on 8/31/2015. UIUC did not                           
additional work after this date and will not be using the remaining funds. Additionally, we                             
posted the NCE reports to the XStack Project Wiki. Direct Links to reports are included at the                                 
end of this document. 

Status 
We have completed the Y3 and Final reports and are in the process of submitting all                               
documentation to the DOE and placing all documentation on the XStack Modelado wiki. 

Report Links 
The following URLs lead directly to other reports that have been submitted directly to the DOE                               
for the DynAX project: 
 
● PNNL NCE Report 
● Reservoir Labs NCE Report 
● Year 3 Report 
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https://xstackwiki.modelado.org/images/7/72/PNNL_NCE.pdf
https://xstackwiki.modelado.org/images/0/03/Reservoir_NCE.pdf
https://xstackwiki.modelado.org/images/1/1e/DynAXYear3.pdf

