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Abstract. We present a new explicit algorithm for linear elastodynamic problems with
material interfaces. The method discretizes the governing equations independently on
each material subdomain and then connects them by exchanging forces and masses across
the material interface. Variational flux recovery techniques provide the force and mass
approximations. The new algorithm has attractive computational properties. It allows
different discretizations on each material subdomain and enables partitioned solution of
the discretized equations. The method passes a linear patch test and recovers the solution
of a monolithic discretization of the governing equations when interface grids match.

1 INTRODUCTION

This paper focusses on the numerical solution of elastodynamic problems with inter-
faces. Such problems arise in multiple modeling and simulation contexts involving elastic
bodies with discontinuous material properties. We present a new explicit scheme for such
problems, which uses variational flux recovery techniques [2] to enable partitioned solution
of the interface problem. Specifically, we restrict the governing equations to material sub-
domains to obtain boundary value problems coupled through unknown surface traction
and then approximate the latter through variational flux recovery.

The resulting algorithm has some attractive computational properties. It allows to use
different discretizations on each material subdomain and enables partitioned solution of
the discretized equations. This makes it possible to also use the algorithm as a coupling
tool for different codes operating in different material regions. The method passes a
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National Nuclear Security Administration under contract DE-AC04-94AL85000.
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linear patch test and recovers the solution of a monolithic discretization of the governing
equations when interface grids match

To present the method it suffices to consider small displacements and linear elastic
models. Our main focus is on enabling explicit solution of the elastodynamic problem by
solving independent problems on each material subdomain. Thus, we restrict attention to
subdomain partitions which induce non-matching but spatially coincident interface grids.
This is in contrast to many of the existing works on elliptic problems with interfaces, which
focus primarily on capturing weak and strong discontinuities of the solution on unfitted
grids. Such methods often combine Nitsche’s method with extended finite elements [1, 3,
4], or define a suitable modified or enriched basis set on cut elements [6, 5].

2 NOTATIONS

We consider a bounded region Q2 € RY, d = 2,3 with a material interface o. The
interface splits {2 into non-overlapping subdomains €2; and {25 with Dirichlet boundaries
[, = 0Q;/o, i = 1,2. We assume that the interface unit normal n, coincides with the
outer unit normal to J€2;. The Sobolev space for the displacements on ; is H(2;) and
Hr, (€2;) is its subspace of functions that vanish on I';. Each subdomain is endowed with
a finite element partition Q. The set of all mesh vertices {z;} is V() and V(QP) are
the interior mesh vertices. The subdomain partitions induce finite element partitions o
and o of the interface o, which are not required to match but are assumed to be spatially
coincident. The set V(o) contains the vertices on ol.

St is a conforming ﬁmte element subspace of H(Qz) defined on the mesh QF and
{N;} is its standard Lagrangian basis. The interface part S!', is the span of all basis
functions associated with V(o) and S ho is the spaces associated with the interior vertices

V(QM. Sl'v is a conforming subspace of Hr,(€;). The coefficient vector of u; € S}
as u; = (uw,ulyo) where 4, , and 4, are the interface and interior coeflicients of wu;,
respectively. The operator II; : S5, — S}, interpolates uy, € S}, in ST,. We have that

Mi(uze) = Y Upo(@i)Nig(@) = ) [ >, (ﬁz,o)sz,k(@‘l,i)]Nl,z‘(w)- (1)

iEV(O’l) eV ( o'l) keV(Ka3® ;)

where V(K 3 x;;) are the vertices of element K, € ol containing vertex x;; from o
The coefficient vector of II; (us,,) is given by Py, where Py is a |V (of)| x [V (o4)] sparse
matrix. The row of this matrix corresponding to vertex @;, contains the values Ny (xy ;)
for k € V(K3 > x1;). Similar representation holds for I, : S+ S .
3 Governing equations
We write the model elastodynamic problem as a pair of governing equations
w;,—V-o(u;) = £ inQ;x[0,7T] u;(0,) = wuo(x) inQy
u;, = g onl;x[0,7] w;(0,2) = wo(x) inQ;
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for displacements u;(t,x), i = 1,2 in €);, and a pair of interface conditions
ui(x,t) = ui(x,t) and oy(x,t) - n, =os(x,t) -n, onox][0,7T] (3)

expressing continuity of the displacement and the traction across the interface. We restrict
attention to linear elastodynamic problems for which

1
o(u;) = N(V-u) I +2ue(u;), e(u;) = §(Vui + Vaul),
and the Lame coefficients \; and p; are allowed to have a discontinuity along o.

4 Formulation of the method

A formal splitting of (2)—(3) into two “independent” mixed boundary value subdomain
equations is the starting point in the formulation. This partitioning is formal because it
imposes the unknown traction value on the interface as a Neumann boundary condition
and resulting solutions satisfy a weak continuity relation in terms of an operator that
is not available in closed form. Using variational flux recovery ideas we eliminate the
unknown traction from the subdomain equations. In so doing we obtain two fully de-
coupled subdomain equations which implicitly incorporate appropriate discrete notions
of the interface conditions (3).

4.1 Formal partitioning of the governing equations

Let u;, i = 1,2 denote the exact solutions of (2)—(3) and
v =o1(x,t) - n, =os(x,t) - n,

be the corresponding exact interface traction. If v is known exactly then the displacement
u; on €); can be determined by solving the following mixed boundary value problem:

i, —V-0;, = f in ©; x [0,7] . .
u;(0,2) = wup(x) inQ; and t u; : g onl; x EO,T ] )
UZ(O, d)) = ’U,Q(Cl:) in Qz Ui<m7 ) ‘N, = 7y onoX [ , ]

The exact traction 7 specifics a Neumann boundary condition on o, which closes the
subdomain problems and makes it possible to solve them independently from each other.
By the uniqueness of the solutions to (2)—(3) and (4) it follows that the solutions of the
latter necessarily satisfy the first interface condition in (3), i.e., u; = uy on o.

The weak form of the equations in (4) are: seek u; € H(Y;), i = 1,2 such that

(t1,v1)q, + (01,€(v1))a, = (f,v1)a, + (7,v1)s Yv1 € Hp, (1)

(g, v2)a, + (02, £(v2))s = (F,v2)ey — (,02)s Voo € Hpy() ©)

Solutions of (5) necessarily satisfy the first interface condition in (3), i.e., u; = us on o.
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4.2 Spatial discretization

The finite element spatial discretization of (5) is to seek u; € S x [0, T], which satisfies
the initial and boundary conditions in (4) and is such that

(1, v1)q, + (0(u1),e(v1))a, = (£, v1)q, + (7,v1)s Yv1 € Sfr
(tha, 2)0, + (0(u1),e(v2))a, = (f,v2)0, — (V,02)0 Vvy € Shp

(6)

Since in general of and o} are non-matching finite element partitions of o, solutions of
(6) can only satisfy a “weak” notion of displacement continuity

w1, =1 (uw)us, and us, = Is(u)uy, (7)

where Iy (u) : S +— SI and Ty(w) : S — S} are some unknown operators.

4.3 Elimination of the surface traction

The unknown interface traction v and the weak continuity condition (7) couple the
discrete subdomain equations (6). This section explains the elimination of the surface
traction from the equations. We rewrite (6) in a block form corresponding to the par-
titioning of S} into an interfacial part S}, and a zero trace part SJ';, along with the
appropriate weak continuity equation. This form is given by

(1,0, N1i)a, + (0(wr),e(N1y))a, = (F, Nii)a, + (7, Niy)o Vie V(o})
(1,0, N1g)o, + (0(u1),e(N1;))o, = (£, Nii)e, Vi € V(Qh) (8)
w1, = 11 (u)us,

on the first subdomain and
(9,05 Noi)a, + (0(u2), £(Noyi))o, = (£, Naji)a, — (v, Noy)y Vi € V(0})
(2,0, Noji)o, + (0(u2),£(Nai))a, = (£, Nai)a, Vi € V(%) (9)
Uz, = Ihh(w)u

is the analogous form on the second subdomain. We use (9) to eliminate the unknown
traction «y from (8) and vice versa. Solving the interface equations in (9) for v yields

(7, Nai)e = (£, Naji)a, — (0(u2),e(Noyi))a, — (ting, Nogo, VieV(oy).  (10)

Equation (10) defines a finite element approximation s (ts, us) € SQU of the interface
traction in terms of iy, and ws. It can be interpreted as variational recovery [2] of 7 from
a finite element solution. Then we approximate ~ in (8) by the interpolant IT;y, € ST,
This yields the following system of equations on the first subdomain:
(1,0, N15)0y + (0(u1),e(N14))a, = (F, Nii)o, + (Iive(tieq, u2), N1i)e Vi€ V(U?)
(ﬁl,O,Nl,z‘)Ql + (U(Ul),E(Nl,i))Ql = (f,Nl,i)Ql Vi e V(Q?) (11)

U1, = I (w)us »
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Conversely, using (8) to eliminate v from (9) we obtain an analogous equation on :

(ti2,0, No i), + (0(u2),e(Nai))a, = (£, Nai)a, — (Ioy1 (ti1,0,w1), Noi)o Vi € V(oh)
(ti2,0, N2,i)a, + (0(u2),e(N2,i))a, = (f, N2,i)a, Vi e V(Qh) (12)

U2 = s (u)us »

Let F; = (F;,U, é,o) be the vector with elements

FF = (£, Nip)o, — (0(w;), e(Nig))oy Yk € V(). (13)
Then, the interface equation in (11) can be written as

My i = Fr o + Mo Prys(iis.e, us) (14)
whereas the matrix form of equation (10), which defines 7,, is given by
M,y = ﬁ?,a — M sty .
Solving the latter for 7, yields
Yo (tho,p, Ug) = M;jfﬁza — M;Mzaﬁz,a .
The algebraic form of (11) follows by substituting this result into (14):
My i g + My g PiMy My g iis, = Fiy+ My PiM,,F,

Myginy = Fig (15)

Ui = Pl(u>u2,a

)

Proceeding along the same lines we obtain an analogous algebraic form for (11):

My, uy 5 + M2,0P2M£L1,M1,a Uy, = ﬁQ,a + MQ,UPQM;iﬁI,J
Msotiag = ﬁz,o (16)

U2 s = PQ(U)ULJ

4.4 Elimination of displacement continuity equations

Equations (15)—(16) remain coupled through their dependence on interface states from
both subdomains. Under some additional assumptions on the matrix structure P;(u;)
can be effectively approximated by the interface interpolant P; in which case the weak
continuity equations in (15)—(16) are replaced by

Uy o = P1u2,a and U206 = P2u1,aa (17)
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respectively. The key factor that enables such an approximation is to work with diagonal
mass matrices. Thus, from now on we assume that (i) assembly is performed using node-
based quadrature rules, which result in

M;, = diag(mf,) and M,;, = diag(m},); i=1,2,

and (ii) displacement continuity conditions are given by (17). For clarity we explain
elimination of interface states in a two-dimensional setting. In this case matrix forms
of interface transfer operators II; assume a particularly simple form with at most two
non-zero elements per row. We explain the structure of P. Let x;; € of be an arbitrary
vertex on the interface of 2y and Ky, € 03 be the element from the interface of €25, which
contains? x1,;. Since o is one-dimensional, element Ky, is an interval with endpoints
Xap,—1 and @y, respectively. As a result, (1) reduces to the following sum

> Nop(@,) = w5 Nog,1 (1) + G, No, (01,7) (18)
keV(Ka,k,)

Since basis functions form a partition of unity on every element, No y, 1 (1) +Nog, (1) =
1 and so, there exists 0 < ; < 1 such that Noy, 1(21;) = ar; and Noyg, (1) =1 — aq;
It follows that the matrix P, is given by

a1 ifj =k —1
(Pl)ij = ]_ — 06171‘ lfj = kz (19)
0 otherwise

where Kok, = [Tok,—1,Tak,] is the element from the interface on {2y containing vertex ; ;
from the interface on €2;. Repeating the same arguments for Il; shows that

Qg lfj = kl —1
(PQ)Z‘]‘ = 1-— Qg ; lfj = ]{Zz (20)
0 otherwise

where Kk, = [@1k,—1, %1, is the element from the interface on €2; containing vertex o ;
from the interface on Qs and ag; = Ny g,—1(22;) and 1 — ag; = Ny, (2,).

Since interior equations are fully decoupled from the interface equations we focus solely
on the structure of the latter. Their right hand sides are given by

Fk‘j—l k;

Fiy+ M\ ,P\M,,F,,) =Fl, +m] 2 (1 - ag) =2
Lo+ MigPIM, o Fog ) = F o+, |an—— + (1 — o) —
J mZ,a mZ,a

2If @1 ; is also a vertex in ol then it is shared by two elements in 0,21. In this case we can take Ko,
to be either one of these two elements.
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Figure 1: Assumption (23) holds provided (A; + As)/(As + As) ~ (E1 + E2)/(Es + E3) and (By +
B5)/B5 ~ (E4 + E5)/E5

for the interface equation on €2; and

kj—1 k;

Foy+ Moo PM, F,) =Fi +m), |a -F17—"+(1—a <)F1"’
2,0 2,042 15410 ) — 420 2,0 20 ;1 29/ _k; |

J ml,a ml,a

for the interface equation on €2,.
Consider the terms involving displacements from the opposite sides of the interface,

that is, M170—P1M2_7(17M2,0—ﬁ270— in (15) and MQVO—PQMI_’}TMLO—&LO— in (16). We have that

kj—1 kj

J
— —1 .. i my wki—1 Moy .k,
_ =) e J e J
(M170'P1M270M270u270> . ml,a OéLj_kjfl Uy 5 + (1 - al,j)_kj ,u’2,a (21>
J m2,cr mQ,cr
and
mi1 m
— —1 .. i 1o . kj—1 1,0 - k;
_ =] ; ,
<M2,UP2M1,UM1,JULU> =T, |, + (1= ) —=d ), | (22)
J ml,a 1,0

For shape-regular grids it is not unreasonable to expect that

kj—1 kj kj—1 k;

J
m2,0’ ~ m2,0' ) nd ml,a ml,cr ) (23)
_k-].,l ~ _kj T #270' a _kj,]_ ~ _kj T ’ulyo' :
m2,o m2,cr ml,o‘ ml,o

This allows to exchange the order of interpolation and matrix multiplication in (21):
—-— -1 . g i o ki— ks —q i .
(Ml,alez,aMz,ouz,a) =T, [alﬂ»u’;jg Y- al,j)u’;ﬁ,] = 1) o (Prii2,q);
J
Likewise, exchanging the order of operators in (22) gives
1

— —1 .. C ki ok P ..
= ] = ]
(M 2.0 P2 M, MLJuLU) =My, [agyjulfg +(1- ag,j)uljo,} = mQVmuLU(PQULJ)j .
J

From (17) it follows that ujla = (Pyty,); and uéa = (Potly,); . Using these identities
we can eliminate iy, from (21) and 4, , from (22) to obtain

(M170'P1M2_7;—M2,U) ,&’2,0 ~ (M170M270> IU’LU

7
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and - . -
(Moo PV, My s o) 2 (Vo pin o) i

respectively. This decouples (15)—(16) into an independent equation

{ (Mo + Migpos) B, = Fio+ M1,0P1M;3,ﬁ2,a (24)
Mgt = Fig
on €2, and another independent subdomain equation
{ (MQ,J + MQ,JMLU) Uy = ﬁQ,U + M2,0P2M;iﬁ1,a (25)
Mygiing = Fhy

on €)y. The interface equations in each subdomain have the following component form:

r ki1 ki T
. PR A . . > ‘
(mjl,a + mjl,mu%,a) ujl,a = Flj,a + m{,a ald_kjfl + (1 - 0[17]')__]{;’ S V(O_?) (26>
L m2,cr m2,o_
and
| o | N Fl7 ]
J— .. —_— 7()' 7()' .
(mia + mé,a/ﬁi,a) uéﬂ = Fia + m%va g~ +(1-— 0427]-)_]% . jeViah) (27
L 1,0 ml,a_

Modification of subdomain mass matrices in (26)—(27) can be interpreted as their com-
pletion to bulk mass matrices on S}, U S} ..

4.5 Fully discrete partitioned equations
We discretize (26)—(27) in time using second central difference
u;(t + At, ) — 2u;(t, ) + u;(t — At, x)
At? '

Let ul™! € SP, u? € St and u]™! € St denote finite element approximations of u; at
t, + At, t, and t,_; = t, — At, respectively, D" (w;) = (ul™! — 2u? + u})/At?, and
(F;)™ be the force vector (13) evaluated at u?. Then, for given u? and w! ', the fully

K
discrete partitioned formulation is to find u™! such that

{ (Mio + Magiing) DM wre) = (R + T P (B
Ml,ODn+1(u1,0) = (ﬁl,o)n
and u}™! such that
{ (MQ,U + MQ,U,MLU) Dn“(uQ,a) = (ﬁza)n + M2,0P2M;(1,(ﬁ1,a)n (29)
Mo D™ (ugg) = (Fap)"

+

for the finite element approximations u] "', i = 1,2 of the subdomain solutions at , ;.

8
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5 Equivalence to a monolithic discretization on matching interface grids

If Qf and Qf are such that interface grids match then ©; U is a conforming partition of
Q and S" = SPUSY is a conforming finite element subspace of H(£2). The corresponding
monolithic formulation of (2) is

MDDy = (F)".

where M and F are a diagonal mass matrix and force vector assembled using S". Par-
titioning of mesh nodes into interface and subdomain nodes induces partitioning of the
solution vector v into coefficient vectors v,, v1 and vy corresponding to interface and
interior subdomain nodes, respectively. As a result, we can write the monolithic problem
in the following block diagonal form:

M, D™ (v,) = (F,)"
MigD"H(v1g) = (Fio)" (30)
Moo D" (vgg) = (Fopo)"

Theorem 1 Assume that interface grids o and o are matching and interface displace-
ments at all previous time steps coincide:

(U1,)" = (Uap)” v=12,....n—1n. (31)

Then the partitioned solution (U ,,U1p), (Use,Uszo) coincides with the solution v =
(ﬁg, 1717(), 17270) Of the monolithic p’f’Oble.’ 60 = ’l_l:LJ = 1_1,‘27(7, ﬁl,() = ’l__)'l,() and 1_1,‘270 =, 17270 .

Proof. For clarity we present the proof for the two-dimensional formulation (24)—(25).
Owing to the assumption that interface grids on €2; and €2y match, it follows that the
area mass matrices MLU and Mla are identical, i.e., they have the same dimension and
with proper renumbering of their elements we can write

m, =my, VjeV(el)=V(oh)

Nea

For matching interface grids we also have that P, = P, = I. As a result, the interface
equations assume the form

(Ml +mi,)ul, =Fl,+F, VjeV()

and ' . . . '
(mé,a + mjl,a) ’u’JZ,cr - FZJ,U + Flj,a vj € V(O-g)a

respectively. Thus, for matching interface grids (28)—(29) has the form

{ (MLO' + MQ,U)ﬁl,U = ﬁl,a + ﬁ2,a { (MQU + Mla)ﬁZ,a = ﬁ2,0 + ﬁl,a (32)

M1,ou1,o = Fl,O M2,0u2,0 = F2,0

9
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Figure 2: Left: uniform partitions of 2; and )5 into triangles with a vertical interface at x = 0.6 cm.
Right: nonuniform partitions of €; and € into triangles with an interface having a slope of tan(110°)
and passing through (0.6,0.5).

It immediately follows that ;¢ = ¥1 and s = U . On the other hand, it is easy to
see that for matching interface partitions, the monolithic volume interface mass matrix
is sum of the volume interface mass matrices on €; and €, ie., M, = My, + M, .
Furthermore, if (31) holds, a direct calculation shows that the monolithic interface force
vector is sum of the interface force vectors on €2; and (2s: ﬁg = F"LJ + ﬁgvg. Therefore,
U, and Uy, solve an identical equation, which coincides with the monolithic interface
equation and so, U , = Uz, = Uy . U

6 Convergence rates

We use the manufactured solution
T
u = (sin(57rx) cos(3my) log(1 + t); 4a* cos(4my)V/t + 2) (33)

to estimate numerical convergence rates of the algorithm. We assume linear homogenous
isotropic solid with = 0.01, A = 0.02 dyne/cm? and density 1 g/ecm3. Substitution of
(33) into the governing equations yields the problem data. The domain Q = [0, 1]* is
divided into two subdomains using a vertical and a slanted interface; see Fig. 2. Each
subdomain is meshed independently and the interface grids are non matching.

Error/Rate
Mesh 1 12 x 20 24 x 40 48 x 80
Mesh 2 20 x 20 40 x 40 80 x 80

lu—ulloqn, 7.97e-03/-  2.06e-03/1.95 5.12e-04/2.01
lu—ullon, 2.58¢-02/-  6.42e-03/2.01  1.59e-03/2.01
|u—ul|1q, 56le0l/-  2.59-01/1.11  1.30e-01/1.00
lu—ublloq, 211e+00/- 1.06e+00/1.00 5.29¢-01/1.00

Table 1: Errors and convergence rates using a vertical interface and uniform meshes at t = 0.25 s.

10
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Error/Rate
Mesh 1 14 x 20 28 x 40 56 x 80 48 x 80
Mesh 2 26 x 20 52 x 40 104 x 80 48 x 80
lu—ulllo, 8.19e-03/- 2.07e-03/1.98 5.16e-04/2.01  1.37e-04/1.92
lu—ubllo, 1.52e-02/- 3.79e-03/2.00 9.58e-04/1.99  2.48e-04/1.95
lu—ulll1,0, 5.64e-01/-  2.78e-01/1.02 1.39e-01/1.00  6.94e-02/1.00
lu—ubll1,0, 1.63e+00/- 8.22e-01/0.99 4.12e-01/1.00  2.06e-01/1.00

Table 2: Errors and convergence rates using a slanted interface and non uniform meshes at ¢ = 0.25 s.

We observe in Tables 1 and 2 that by using a coincidental interface with nonmatching
vertices and temporal step sizes on the order of h, the rate of convergence is second order
regardless of the interface orientation.

6.1 Equivalence to a monolithic solution for matching interface grids

To confirm numerically Theorem 1 we use the same interface configurations as before,
but consider grids with matching interface nodes. In this case the union QF U Q? defines
a conforming mesh partition of 2. The difference in solutions, shown in Table 3, left, are

Interface Vertical Slanted Interface Vertical Slanted

Mesh 1 24 %20 24 x20 Mesh 1 6x3 6x3

Mesh 2 24 %20 24 %20 Mesh 2 34x11  34x11
luth —ullo0, 3.38e-17 9.43e-17 lw—ulloq, 3.45e-15 3.54e-15
lus® —ullo,0, 1.07e-15 1.05e-15 lu—ubllo, 4.00e-15 4.1le-15
luih —uh|1q, 24915 7.74e-15 lu—ubl10, 1.16e-14 1.59¢-14
lua® —uh|l1,0, 9.92e-14 1.23e-13 lu—ub|l1,0, 6.42e-14 7.85e-14

Table 3: Left: Comparison of the monolithic solution u” with subdomain solutions u/ and w%. Right:
patch test errors at time ¢t = 0.05 s

equivalent up to roundoff whether computed through the monolithic formulation or using
the algorithm based on variational flux recovery.

6.2 Preservation of linear displacements

The patch test [7] requires a method to recover a certain class of solutions. This section
verifies that our method is capable of reproducing exactly linear displacement fields. We
consider Q = [—1,1]? with a vertical and a slanted interface and non matching interface
grids; see Fig.3. The exact solution is

u = (—bz + 50y, 33z — 22y) (34)

We assume linear homogenous isotropic solid with p = 1.5, A = 7 dyne/cm? and density
1 g/cm3. As before, substitution of (34) into the governing equations yields the problem
data. Table 3, right, confirms that the new algorithm recovers the linear displacement
field up to machine precision, i.e., it passes a patch test for non matching interface grids.

11
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Figure 3: Uniform and non uniform domain discretizations on which to recover a linear solution.

CONCLUSIONS

We have presented a new explicit method for elastodynamic problems with interfaces.

The method enables partitioned solution of the equations on each material subdomain,
passes a linear patch test and is second order accurate. If the interface grids have matching
nodes then the method recovers a solution of the monolithic discretization.
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