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Outline

• Some solid-state lighting history.

• Efficiency comparison and projections for blue LEDs and 
laser diodes (LDs).

• White light from LDs.

• LD system benefits.

• Economically is ultra-efficient solid-state lighting worth 
pursuing?
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Some solid-state lighting history
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LED efficiency and cost over time
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Ultra-
efficient 
SSL ???

Beginning



Nick Holonyak, Jr.

 First visible laser in Oct of 1962.

 Made from Gallium Arsenide Phosphide 
(GaAsP).

 A working laser diode suggested light 
producing efficiency was high.

 Further suggests efficient LED. 
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1965 Allied Radio Catalog

:inventor, visible LED

http://invention.smithsonian.org/centerpieces/quartz/technology/diodes.html


Light of Hope – Or Terror
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Efficiency comparison and projections 
of LEDs and LDs
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III-nitride blue LEDs vs. LDs

MQWs
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MQWs core
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GaN substrate

contact
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Blue LD: edge-emitter

Valley of droop

450 nm
80°C

Lumileds LED

Osram LD

LD more 
efficient

LED more 
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• After threshold LDs are not affected by 
efficiency droop.

• LDs are more efficient at higher input 
power densities. 

J. J. Wierer, Jr., D. S. Sizov, and J. Y. Tsao, “Comparison 
between Blue Laser and Light-Emitting Diodes for Future 
Solid-State Lighting”, Laser and Photonics Review (2013).
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Physics

 Recombination processes 
determine efficiency.

 Rtotal= RSHR+RSp+RAuger+Rstim

 LED:
 ηrad=Rsp/(RSRH+Rsp+RAu�er)

 Rstim=0

 LD:
 RSHR+RSp+Rauger are fixed, and 

Rstim grows after threshold.

 Method to circumvent 
efficiency droop.
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Potential LED improvements
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• Increased active layer thickness:

MQWs MQWs
p-GaN
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n-GaN n-GaN

• Reduced series resistance:

MQWs
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air

• Increased extraction efficiency:

• Change crystal orientations:

c-plane



Potential LD improvements
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Decreasing optical loss:

MQWs core
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GaN substrate
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Projection of efficiency improvements
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LD

 Blue LD has the potential to have similar peak efficiencies as LEDs, 
but at much higher output powers. 



White light from LDs
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Phosphor converted LD (PC-LD) white

 Commercial blue LD + ceramic phosphor.

 Color temperature and rendering are 
comparable to PC-LED.

 Blue LDs can be used to produce white 
light.

14



Laser white color rendering
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A. Neumann, J. J. Wierer, Jr., W. Davis, Y. Ohno, S. R. J. Brueck, and 
J.Y. Tsao, Optics Express, 19, A982, 2011. 

• Only slight preferences when comparing LD and 
traditional sources.

• LD white is a good color rendering source. Why?
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A. Neumann, J. J. Wierer, Jr., W. Davis, Y. Ohno, S. R. J. Brueck, and 
J.Y. Tsao, Optics Express, 19, A982, 2011. 

Laser white color rendering



Color rendering over large data sets

 Color rendering maps for five 
sources and three large data sets.

 Data sets:

 r: real world

 SVD: synthetic/expanded

 MC: Monte Carlo randomly 
generated.

 In general, spectra without gaps 
have good color rendering over a 
wider gamut.

 So does this exclude lasers from 
solid-state lighting?

17
A. David, “Color fidelity of light sources evaluated over large 
sets of reflectance samples”, LEUKOS, 10, 59, 2014.



Violet pumped PC-LD

 Simulation of 415nm LD pumping 3 phosphors
 450 nm, 518 nm, and 637 nm

 Just like violet PC-LED solution, the violet PC-LD could also 
produce high color rending white light.

 Phosphor converted solutions cannot chromaticity tune.
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Direct emitters to produce white
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Krames, et al., IEEE J. Display Tech., June 2007.
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 Both LEDs and LDs suffer from the “green gap” problem.

 This limits the progress in white sources produced from direct 
emitters. 

J. Wierer & J. Tsao., PSSA, 2015.



LD system benefits
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Radiance of blue LEDs and LDs
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LED LD
Blue LED Blue LD

Power (W) 1 1

Emitting area (cm2) 1.00E-02 1.50E-07

Emitting half angle (°) 45 15

Radiance, Le, (W/sr/cm2) 54 3E+07

 LD benefits:
 Irradiance (power density) is much higher in LDs.
 Emission is directional
 Emission is from a small aperture.
 Superior for ètendue limited optical systems (i.e. projectors).

 These LD benefits produce a higher radiance source and advantages when 
creating a white source. 

Ee

Ie



Luminance of PC-LEDs and PC-LDs
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PC-LED PC-LD

Power (lm) 250 250

Phosphor emitting area (cm2) 0.09 0.01

Emitting half angle (°) 45 45

Luminance, Lv (lm/sr/cm2) 1500 14000

 PC-LD benefits:
 Beam can be focused and a much 

smaller phosphor volume can be used.
 Smaller phosphor leads to higher 

luminance.
 Smaller luminaires.

PC-LED

Blue LED

Reflector 
cup

Phosphor

PC-LD

Blue 
LD

lens

Phosphor
aperture



Comparison of LED and LD luminaires

 What are the sizes of luminaires for PC-LD and PC-LED?

 Need to avoid total internal reflection from lens (Weierstrass condition):

 R>rn, where n is index of the lens.

 For the PC-LD

 Lens is 9 times smaller: microluminaire!

23

PC-LED PC-LD

Phosphor emitting area (cm2) 0.09 0.01

Radius of lens (cm) 0.225 0.075

Area of the lens (cm2) 0.16 0.018



Market waves of LED lighting
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Economically is ultra-efficient SSL 
worth pursuing?

25



Is ultra-efficient SSL worth pursuing? 
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Light is an economic factor 
of production, and 
consumption isn’t saturated

J.Y. Tsao, H.D. 
Saunders, J.R. 
Creighton, M.E. 
Coltrin and J.A. 
Simmons, “Solid-
state lighting: an 
energy-
economics 
peerspective,” J. 
Physics D 43, 
354001 (2010).
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A qualified yes:
more light = more productivity

J.Y. Tsao and P. Waide, “The World’s Appetite for Light: Empirical Data
and Trends Spanning Three Centuries and Six Continents,” LEUKOS 6, 

259-281 (2010).

J.V. Henderson, A. Storeygard, and D.N. Weil, “Measuring Economic Growth 
from Outer Space,” Amer. Economic review 102, 994-1028 (2012).
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Ultra-efficient SSL:
two approaches
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J. J. Wierer, Jr., D. S. Sizov, and J. Y. Tsao, “Comparison between Blue Laser and Light-
Emitting Diodes for Future Solid-State Lighting”, Laser and Photonics Review (2013).



Conclusion

29
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• LDs are not affected by efficiency droop after threshold.

• LDs have higher efficiencies at higher input powers.

• Modeling suggests LD peak efficiency could match LEDs.

• PC-LDs produce white light with color rendering and temperature 
similar to LEDs.

• LDs white sources have higher illuminance and could enable novel 
luminaires.

• Ultra-efficient SSL could lead to cost savings and/or increased 
productivity.


