

Computing the Largest Entries in a Matrix Product via Sampling

Grey Ballard, Tamara G. Kolda, Ali Pinar (Sandia National Labs)
and C. Seshadhri (UC Santa Cruz)

U.S. Department of Defense
Defense Advanced Research Projects Agency

Matrices and Graphs

Simple Undirected Graph

V = set of vertices, $n = |V|$

E = set of undirected edges

$G = (V, E)$ = graph

Matrices and Graphs

Simple Undirected Graph

V = set of vertices, $n = |V|$

E = set of undirected edges

$G = (V, E)$ = graph

Adjacency Matrix

$A = n \times n$ symmetric matrix

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E, i \neq j \\ 0 & \text{otherwise} \end{cases}$$

Matrices and Graphs

Simple Undirected Graph

V = set of vertices, $n = |V|$

E = set of undirected edges

$G = (V, E)$ = graph

Adjacency Matrix

$A = n \times n$ symmetric matrix

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E, i \neq j \\ 0 & \text{otherwise} \end{cases}$$

Vertex Degree

$$d_i = \sum_{j=1}^n a_{ij} = \text{degree of node } i$$

Matrices and Graphs

Simple Undirected Graph

V = set of vertices, $n = |V|$

E = set of undirected edges

$G = (V, E)$ = graph

Vertex Degree

$$d_i = \sum_{j=1}^n a_{ij} = \text{degree of node } i$$

Adjacency Matrix

$A = n \times n$ symmetric matrix

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E, i \neq j \\ 0 & \text{otherwise} \end{cases}$$

Cycles and Paths

P_K = set of paths of length K
 C_K = set of cycles of length K

Matrix Computations for Graphs

Key Well-Known Result

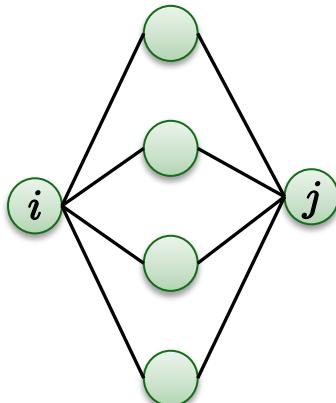
$(A^K)_{ij}$ = number of paths of length K
between vertex pair (i,j)

Matrix Computations for Graphs

Key Well-Known Result

$(A^K)_{ij}$ = number of paths of length K
between vertex pair (i,j)

$(A^2)_{ij}$ = number common nghbrs
for vertex pair (i,j)

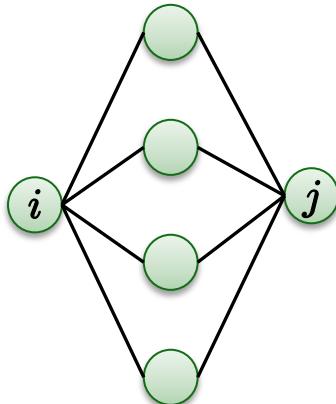


Matrix Computations for Graphs

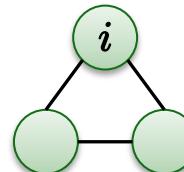
Key Well-Known Result

$(A^K)_{ij}$ = number of paths of length K
between vertex pair (i,j)

$(A^2)_{ij}$ = number common nhbrs
for vertex pair (i,j)



$$|C_3| = \frac{1}{6} \sum_{i=1}^n (A^3)_{ii} = \# \text{ of triangles}$$

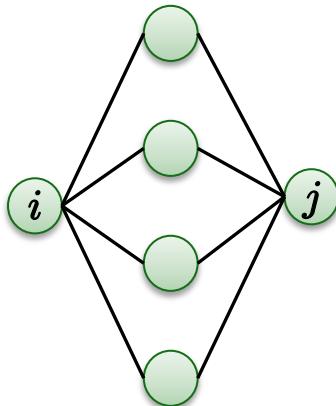


Matrix Computations for Graphs

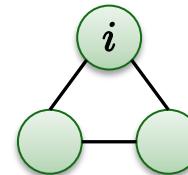
Key Well-Known Result

$(A^K)_{ij}$ = number of paths of length K between vertex pair (i,j)

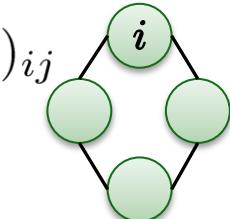
$(A^2)_{ij}$ = number common nhbrs for vertex pair (i,j)



$$|C_3| = \frac{1}{6} \sum_{i=1}^n (A^3)_{ii} = \# \text{ of triangles}$$



$$|C_4| = \frac{1}{8} \sum_{i=1}^n (A^4)_{ii} - \frac{1}{4} \sum_{i,j=1}^n (A^2)_{ij} = \text{number of 4-cycles}$$



Computing matrix products is too expensive in computation and memory!

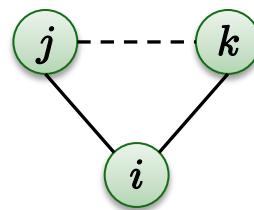
Counting Triangles Exactly

```

1:  $x \leftarrow 0$ 
2: for  $(j, i, k) \in P_2$  do
3:   if  $(j, k) \in E$  then
4:      $x \leftarrow x + 1$ 
5:   end if
6: end for

```

- Basic idea
 - Check each wedge to see if it forms a triangle
 - Counts each triangle 3X



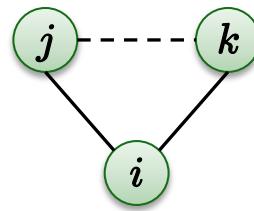
Counting Triangles Exactly

```

1:  $x \leftarrow 0$ 
2: for  $(j, i, k) \in P_2$  do
3:   if  $(j, k) \in E$  then
4:      $x \leftarrow x + 1$ 
5:   end if
6: end for

```

- Basic idea
 - Check each wedge to see if it forms a triangle
 - Counts each triangle 3X
- Cost
 - Proportional to number of wedges $|P_2|$



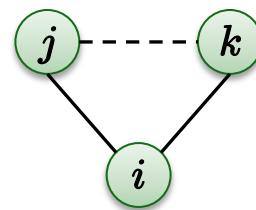
$$|P_2| = \sum_{i=1}^n d_i(d_i - 1)/2$$

Counting Triangles Exactly

```

1:  $x \leftarrow 0$ 
2: for  $(j, i, k) \in P_2$  do
3:   if  $(j, k) \in E$  then
4:      $x \leftarrow x + 1$ 
5:   end if
6: end for

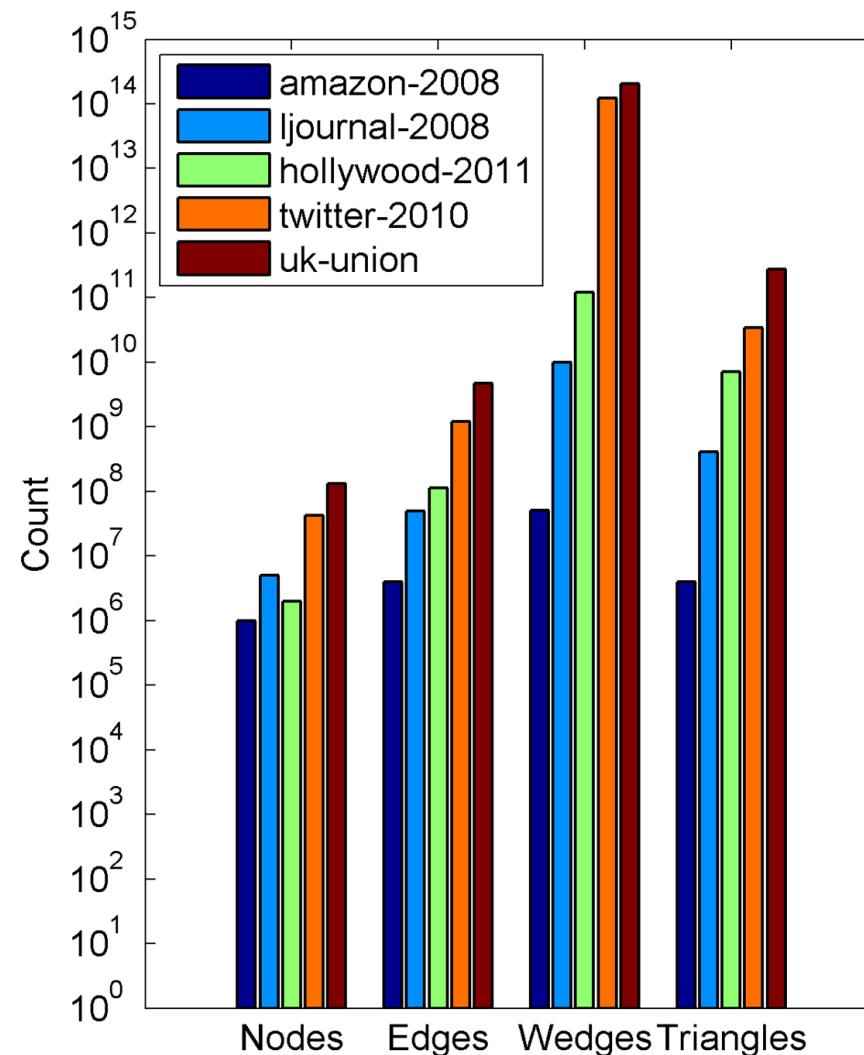
```



$$|P_2| = \sum_{i=1}^n d_i(d_i - 1)/2$$

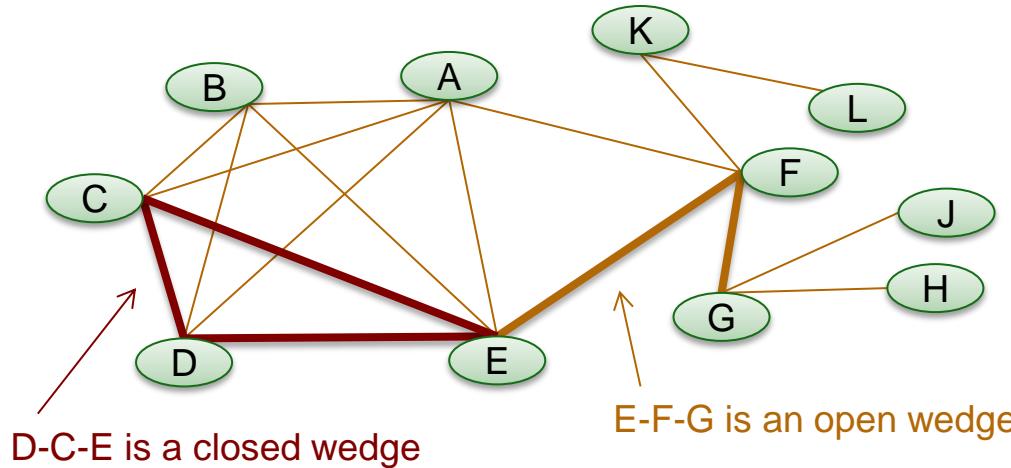
- Basic idea
 - Check each wedge to see if it forms a triangle
 - Counts each triangle 3X
- Cost
 - Proportional to number of wedges $|P_2|$
- Improvements
 - Reject wedges $i > j$ or $i > k$
 - Count each triangle 1X
 - Eliminates many wedges
 - Order nodes by incr. degree
 - Even fewer wedges

Example Wedge & Triangle Counts



Wedge Polling

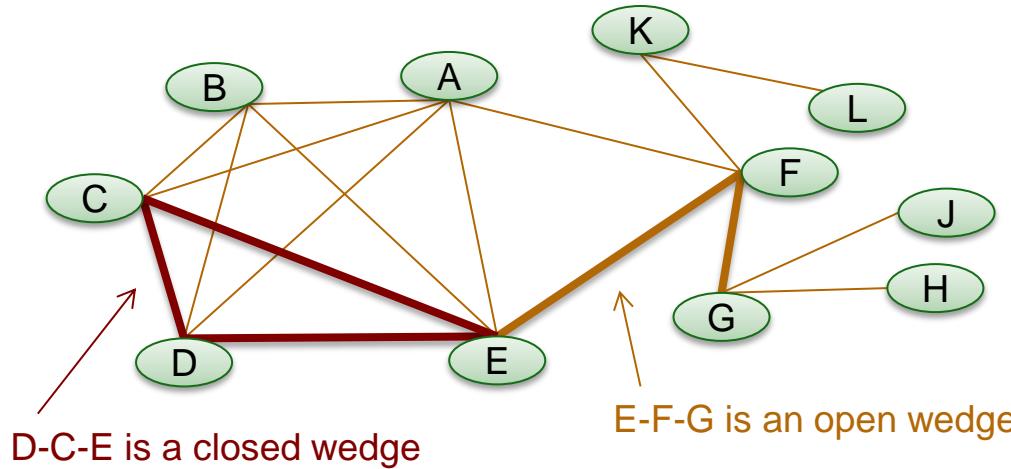
Define $\tau = \frac{3|C_3|}{|P_2|}$ = proportion of wedges that are *closed*.



Enumeration: Find *every* wedge. Check if each is closed.
 $\tau = \# \text{ closed wedges} / \# \text{ wedges}$

Wedge Polling

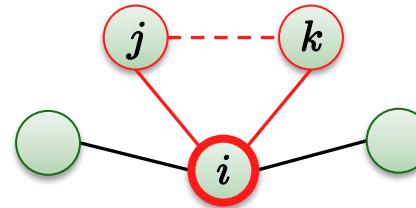
Define $\tau = \frac{3|C_3|}{|P_2|}$ = proportion of wedges that are *closed*.



Enumeration: Find *every* wedge. Check if each is closed.
 $\tau = \# \text{ closed wedges} / \# \text{ wedges}$

Sampling: Sample a few wedges (uniformly). Check if each is closed.
 $\tau \approx \# \text{ closed sampled wedges} / \# \text{ sampled wedges}$

Counting Triangles via Sampling



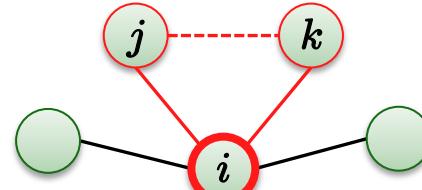
- Basic Idea
 - $s = \#$ wedge samples
 - $x = \#$ closed sample wedges
 - $x/s =$ estimate of τ
 - Pick uniformly random wedge *without explicit enumeration*

Counting Triangles via Sampling

Algorithm Compute degrees

```

1:  $d \leftarrow 0$ 
2: for  $(i, j) \in E$  do
3:    $d_i \leftarrow d_i + 1, d_j \leftarrow d_j + 1$ 
4: end for
  
```



- Basic Idea
 - $s = \#$ wedge samples
 - $x = \#$ closed sample wedges
 - $x/s =$ estimate of τ
 - Pick uniformly random wedge *without explicit enumeration*

Counting Triangles via Sampling

Algorithm Compute degrees

```

1:  $d \leftarrow 0$ 
2: for  $(i, j) \in E$  do
3:    $d_i \leftarrow d_i + 1, d_j \leftarrow d_j + 1$ 
4: end for

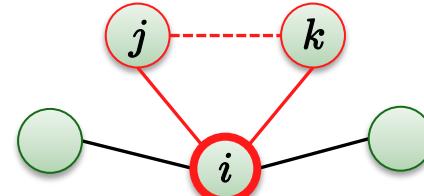
```

Algorithm Sample

```

1:  $x \leftarrow 0$ 
2: for  $\alpha = 1, \dots, s$  do
3:   Choose  $i \propto d_i(d_i - 1)/2$ 
4:   Choose  $j \in \mathcal{N}(i)$ 
5:   Choose  $k \in \mathcal{N}(i) \setminus \{j\}$ 
6:   if  $(j, k) \in E$  then
7:      $x \leftarrow x + 1$ 
8:   end if
9: end for
10:  $x \leftarrow (|P_3|/3) \cdot (x/s)$ 

```



- **Basic Idea**
 - $s = \#$ wedge samples
 - $x = \#$ closed sample wedges
 - $x/s =$ estimate of τ
 - Pick uniformly random wedge *without explicit enumeration*

Counting Triangles via Sampling

Algorithm Compute degrees

```

1:  $d \leftarrow 0$ 
2: for  $(i, j) \in E$  do
3:    $d_i \leftarrow d_i + 1, d_j \leftarrow d_j + 1$ 
4: end for

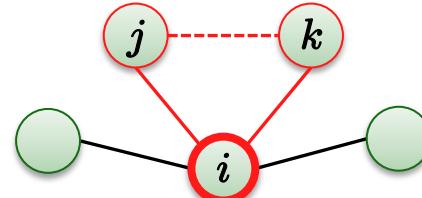
```

Algorithm Sample

```

1:  $x \leftarrow 0$ 
2: for  $\alpha = 1, \dots, s$  do
3:   Choose  $i \propto d_i(d_i - 1)/2$ 
4:   Choose  $j \in \mathcal{N}(i)$ 
5:   Choose  $k \in \mathcal{N}(i) \setminus \{j\}$ 
6:   if  $(j, k) \in E$  then
7:      $x \leftarrow x + 1$ 
8:   end if
9: end for
10:  $x \leftarrow (|P_3|/3) \cdot (x/s)$ 

```



- **Basic Idea**
 - $s = \#$ wedge samples
 - $x = \#$ closed sample wedges
 - $x/s =$ estimate of τ
 - Pick uniformly random wedge *without explicit enumeration*
- **Cost**
 - Preprocess: $O(|E|)$
 - Sample: $O(s \log(n))$

Counting Triangles via Sampling

Algorithm Compute degrees

```

1:  $d \leftarrow 0$ 
2: for  $(i, j) \in E$  do
3:    $d_i \leftarrow d_i + 1, d_j \leftarrow d_j + 1$ 
4: end for

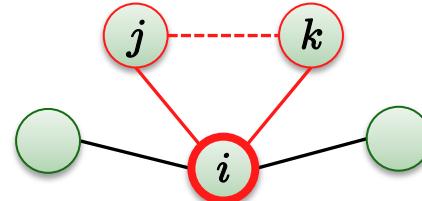
```

Algorithm Sample

```

1:  $x \leftarrow 0$ 
2: for  $\alpha = 1, \dots, s$  do
3:   Choose  $i \propto d_i(d_i - 1)/2$ 
4:   Choose  $j \in \mathcal{N}(i)$ 
5:   Choose  $k \in \mathcal{N}(i) \setminus \{j\}$ 
6:   if  $(j, k) \in E$  then
7:      $x \leftarrow x + 1$ 
8:   end if
9: end for
10:  $x \leftarrow (|P_3|/3) \cdot (x/s)$ 

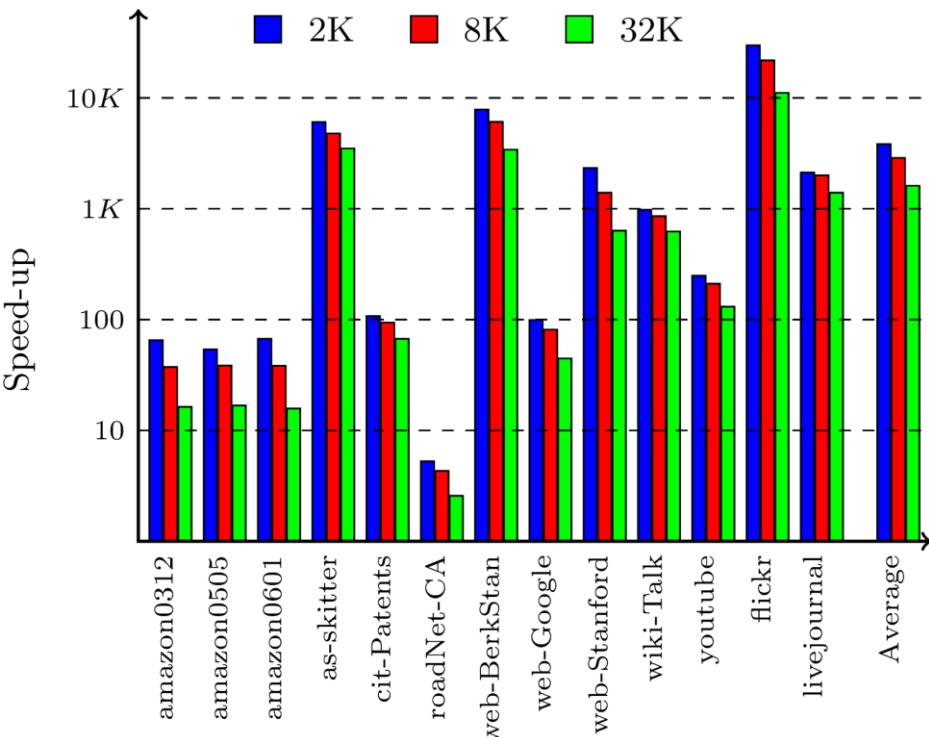
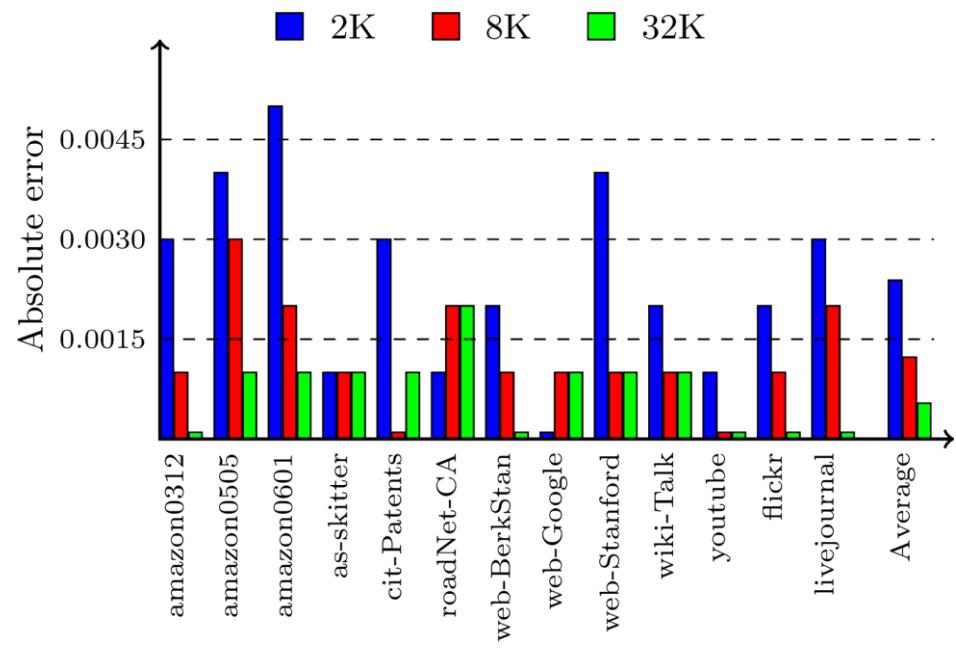
```



- **Basic Idea**
 - $s = \#$ wedge samples
 - $x = \#$ closed sample wedges
 - $x/s = \text{estimate of } \tau$
 - Pick uniformly random wedge *without explicit enumeration*
- **Cost**
 - Preprocess: $O(|E|)$
 - Sample: $O(s \log(n))$

Linear with “alias” method

Sampling gives 1000X Speed-up with High Accuracy



Sampling Theory

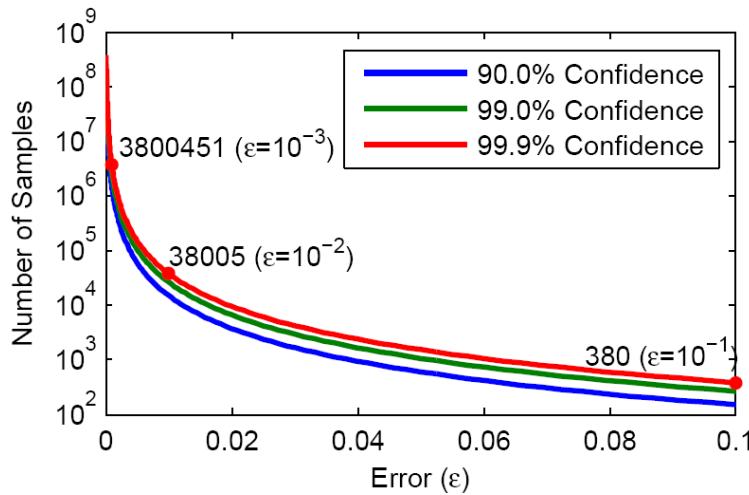
Bounded Error: Hoeffding's Inequality

Theorem: (Hoeffding 1963) Let $X_1, X_2, \dots, X_k \in [0,1]$ be independent random variables. Define the sample mean: $\bar{X} = \frac{1}{k} \sum_{i=1}^k X_i$

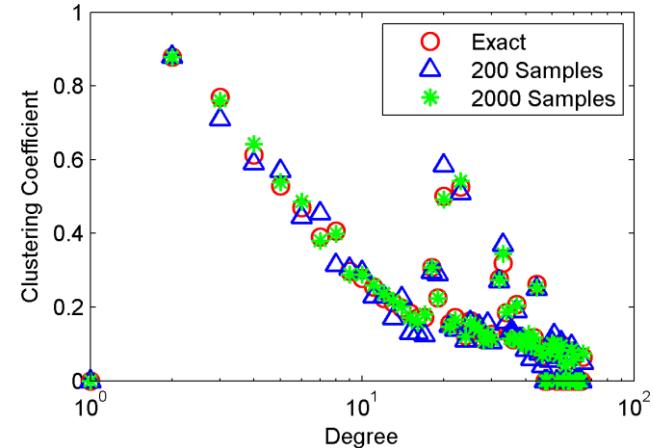
Let μ be the true mean. Then for $\epsilon \in (0, 1-\mu)$,

$$\text{Prob} \{ |\bar{X} - \mu| \geq \epsilon \} \leq \delta \equiv 2 \exp(-2k\epsilon^2)$$

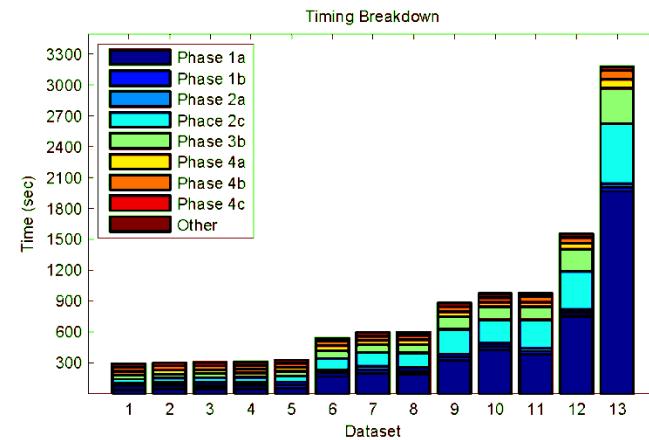
Hence, for a given error ϵ and confidence $1-\delta$, we just need to set $k = \lceil 0.5\epsilon^{-2} \log(2/\delta) \rceil$



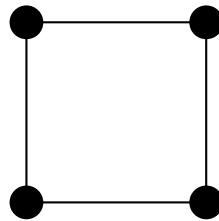
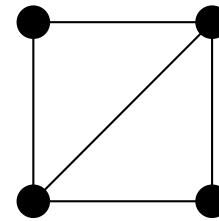
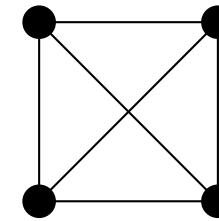
Degree-wise Computation



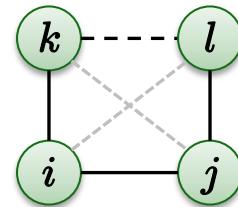
We also have a MapReduce implementation: Kolda, Pinar, Plantenga, Seshadri, Task, SISC 2014.



Counting 4-Cycles

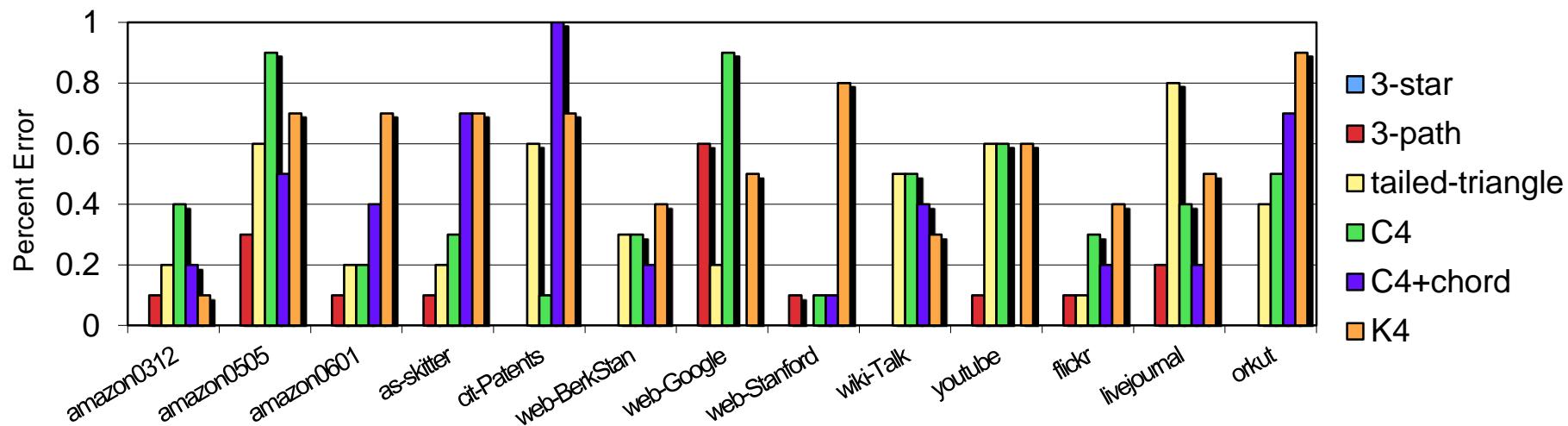

 C_4

 $C_4 + \text{chord}$

 K_4

- Basic idea
 - For each 3-path (k, i, j, l) , if edge (k, l) exists, increment count appropriately



- *Each 4-cycle is counted multiple times, depending on 4-vertex pattern*
- Reduce work by just considering “centered 3-paths”

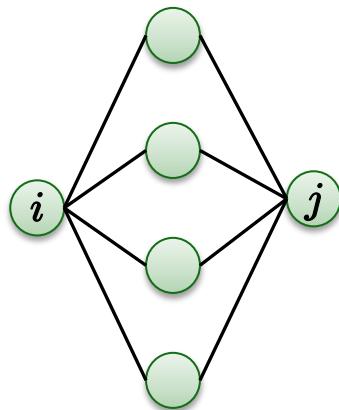
New 3-path sampling algorithm is fast and accurate



Graph	Time (exact)	Path-sampling
Web-Berk	2 hrs	3 sec
Flickr	60 hrs	2 sec
Orkut	19 hrs	16 sec

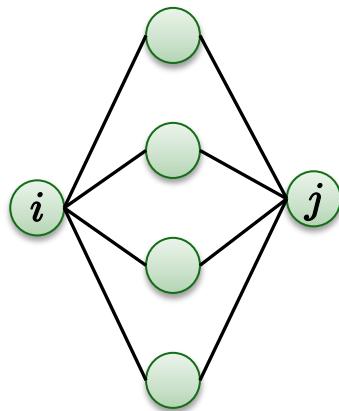
Jha, Seshadhri, Pinar, *WWW'15*

Finding Large Entries of A^2 (Binary)



$(A^2)_{ij}$ = number common nghbrs
for vertex pair (i,j)

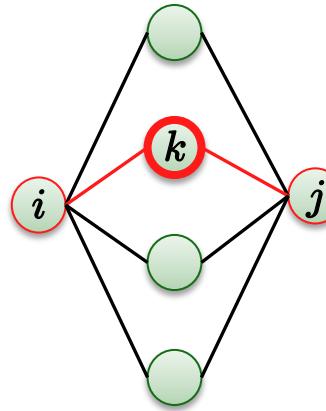
Finding Large Entries of A^2 (Binary)



$(A^2)_{ij} = \text{number common nhbrs}$
for vertex pair (i, j)

- Exact algorithm ($C = A^2$)
 - Sparse matrix-matrix multiply
 - Use Csparse (`cs_multiply` function) from Tim Davis
 - Computes one column of C at a time
 - May run out of memory
 - Modifications
 - Added user-defined threshold to remove small entries from each column as it is computed and therefore avoid out-of-memory errors
 - Exploit symmetry (only fill in upper portion of each column)

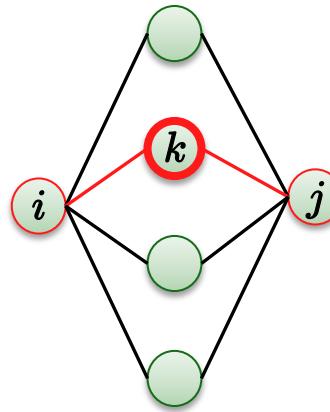
Wedge Sampling for Top-t Entries of $C=A^2$ (Binary)



Wedge Sampling for Top-t Entries of $C=A^2$ (Binary)

Algorithm Sample Wedges

```
1:  $X \leftarrow 0$ 
2: for  $\alpha = 1, \dots, s$  do
3:   Choose  $k \propto d_k(d_k - 1)/2$ 
4:   Choose  $i \in \mathcal{N}(k)$ 
5:   Choose  $j \in \mathcal{N}(k) \setminus \{i\}$ 
6:    $x_{ij} \leftarrow x_{ij} + 1$ 
7: end for
8:  $X \leftarrow X + X^T$ 
```



- Basic Idea
 - $s = \# \text{ samples}$
 - $t = \# \text{ top dot products desired}$
 - $\beta t = \text{budget for dot products}$
 - Choose wedges uniformly at random

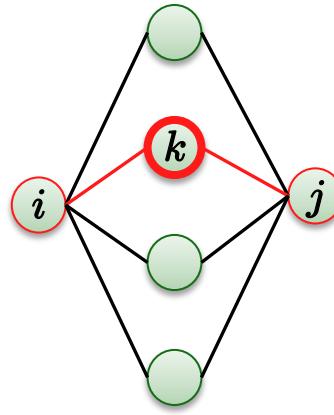
Wedge Sampling for Top- t Entries of $C=A^2$ (Binary)

Algorithm Sample Wedges

- 1: $X \leftarrow 0$
- 2: **for** $\alpha = 1, \dots, s$ **do**
- 3: Choose $k \propto d_k(d_k - 1)/2$
- 4: Choose $i \in \mathcal{N}(k)$
- 5: Choose $j \in \mathcal{N}(k) \setminus \{i\}$
- 6: $x_{ij} \leftarrow x_{ij} + 1$
- 7: **end for**
- 8: $X \leftarrow X + X^T$

Algorithm Postprocess

- 1: $\mathcal{B} \leftarrow$ indices (i, j) corresponding to largest βt entries in `triu`(X)
- 2: Compute $\langle a_i, a_j \rangle \forall (i, j) \in \mathcal{B}$
- 3: Return top- t dot products and indices



$$\mathbb{E}(x_{ij}) \propto c_{ij} = \langle a_i, a_j \rangle$$

- Basic Idea
 - $s = \#$ samples
 - $t = \#$ top dot products desired
 - $\beta t =$ budget for dot products
 - Choose wedges uniformly at random

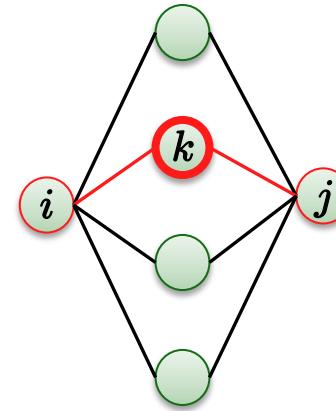
Wedge Sampling for Top- t Entries of $C=A^2$ (Binary)

Algorithm Sample Wedges

- 1: $X \leftarrow 0$
- 2: **for** $\alpha = 1, \dots, s$ **do**
- 3: Choose $k \propto d_k(d_k - 1)/2$
- 4: Choose $i \in \mathcal{N}(k)$
- 5: Choose $j \in \mathcal{N}(k) \setminus \{i\}$
- 6: $x_{ij} \leftarrow x_{ij} + 1$
- 7: **end for**
- 8: $X \leftarrow X + X^T$

Algorithm Postprocess

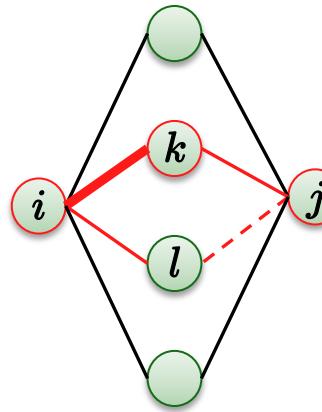
- 1: $\mathcal{B} \leftarrow$ indices (i, j) corresponding to largest βt entries in `triu`(X)
- 2: Compute $\langle a_i, a_j \rangle \forall (i, j) \in \mathcal{B}$
- 3: Return top- t dot products and indices



$$\mathbb{E}(x_{ij}) \propto c_{ij} = \langle a_i, a_j \rangle$$

- Basic Idea
 - $s = \#$ samples
 - $t = \#$ top dot products desired
 - $\beta t =$ budget for dot products
 - Choose wedges uniformly at random
- Cost
 - Preprocess: $O(|E|)$
 - Sampling: $O(s \log(n))$
 - Postprocess: $O(s \log(s) + \beta tn)$

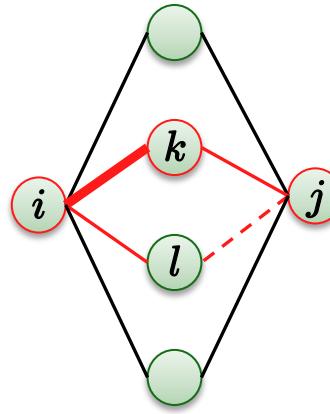
Diamond Sampling for Large Entries of A^2 (Binary)



Diamond Sampling for Large Entries of A^2 (Binary)

Algorithm Diamond Sampling

```
1:  $X \leftarrow 0$ 
2: for  $\alpha = 1, \dots, s$  do
3:   Choose  $(i, k) \in E$ 
    $\propto (d_i - 1)(d_k - 1)$ 
4:   Choose  $l \in \mathcal{N}(i) \setminus \{k\}$ 
5:   Choose  $j \in \mathcal{N}(k) \setminus \{i\}$ 
6:   if  $(l, j) \in E$  then
7:      $x_{ij} \leftarrow x_{ij} + 1$ 
8:      $x_{kl} \leftarrow x_{kl} + 1$ 
9:   end if
10: end for
11:  $X \leftarrow X + X^T$ 
```



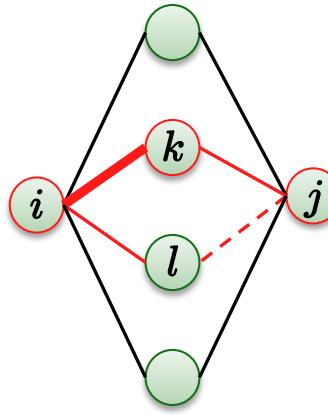
$$\mathbb{E}(x_{ij}) \propto c_{ij}^2 = (\langle a_i, a_j \rangle)^2$$

- Basic Idea
 - Choose three-path uniformly at random
 - Reject if not a 4-cycle
 - Result is uniform random 4-cycle

Diamond Sampling for Large Entries of A^2 (Binary)

Algorithm Diamond Sampling

```
1:  $X \leftarrow 0$ 
2: for  $\alpha = 1, \dots, s$  do
3:   Choose  $(i, k) \in E$ 
    $\propto (d_i - 1)(d_k - 1)$ 
4:   Choose  $l \in \mathcal{N}(i) \setminus \{k\}$ 
5:   Choose  $j \in \mathcal{N}(k) \setminus \{i\}$ 
6:   if  $(l, j) \in E$  then
7:      $x_{ij} \leftarrow x_{ij} + 1$ 
8:      $x_{kl} \leftarrow x_{kl} + 1$ 
9:   end if
10: end for
11:  $X \leftarrow X + X^T$ 
```



$$\mathbb{E}(x_{ij}) \propto c_{ij}^2 = (\langle a_i, a_j \rangle)^2$$

- Basic Idea
 - Choose three-path uniformly at random
 - Reject if not a 4-cycle
 - Result is uniform random 4-cycle
- Cost
 - Preprocess: $O(|E|)$
 - Sampling: $O(s \log(|E|))$
 - Postprocess: $O(s \log(s) + \beta tn)$

C=A² (Binary) Experiments

- s = # of samples
- t = # of top entries
- β = multiplier for dot-product budget
- \mathcal{B} = set of most βt most frequent (i, j) pairs in sampling

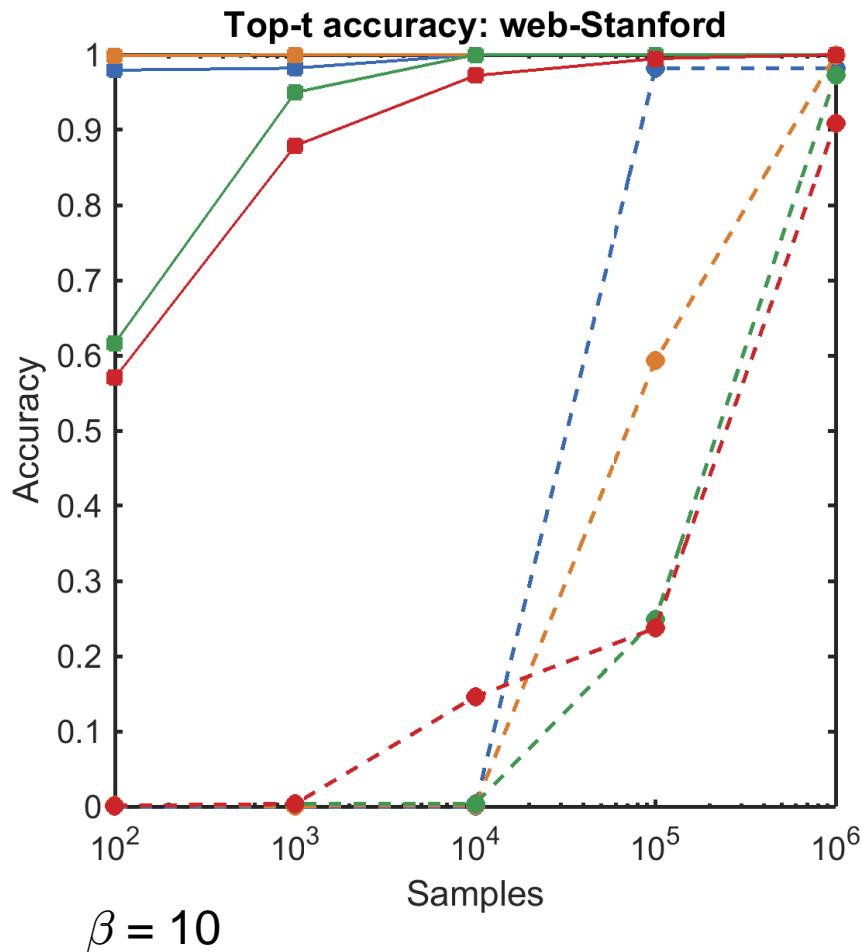
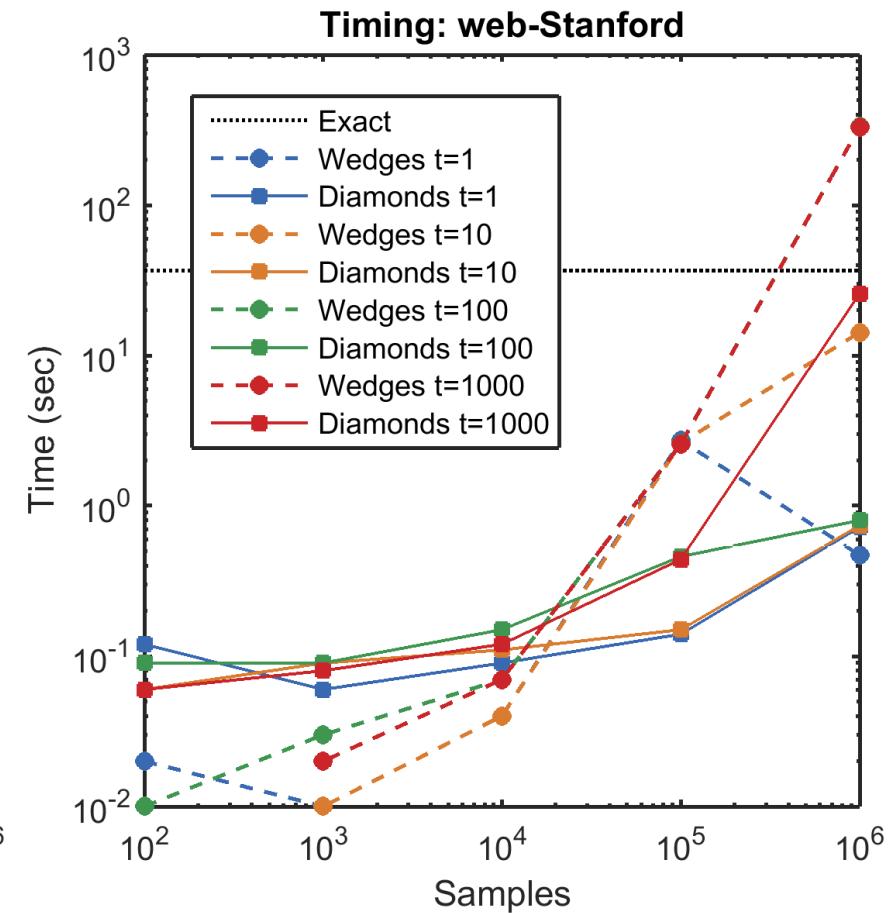
$$C = A^2$$

$$\hat{c}_{ij} = \begin{cases} c_{ij} & \text{if } (i, j) \in \mathcal{B} \\ 0 & \text{otherwise} \end{cases}$$

$$\text{score} = \frac{\max_{|\hat{\Omega}|=t} \left(\sum_{(i,j) \in \hat{\Omega}} \hat{c}_{ij}^2 \right)^{1/2}}{\max_{|\Omega|=t} \left(\sum_{(i,j) \in \Omega} c_{ij}^2 \right)^{1/2}}$$

Results: web-Stanford

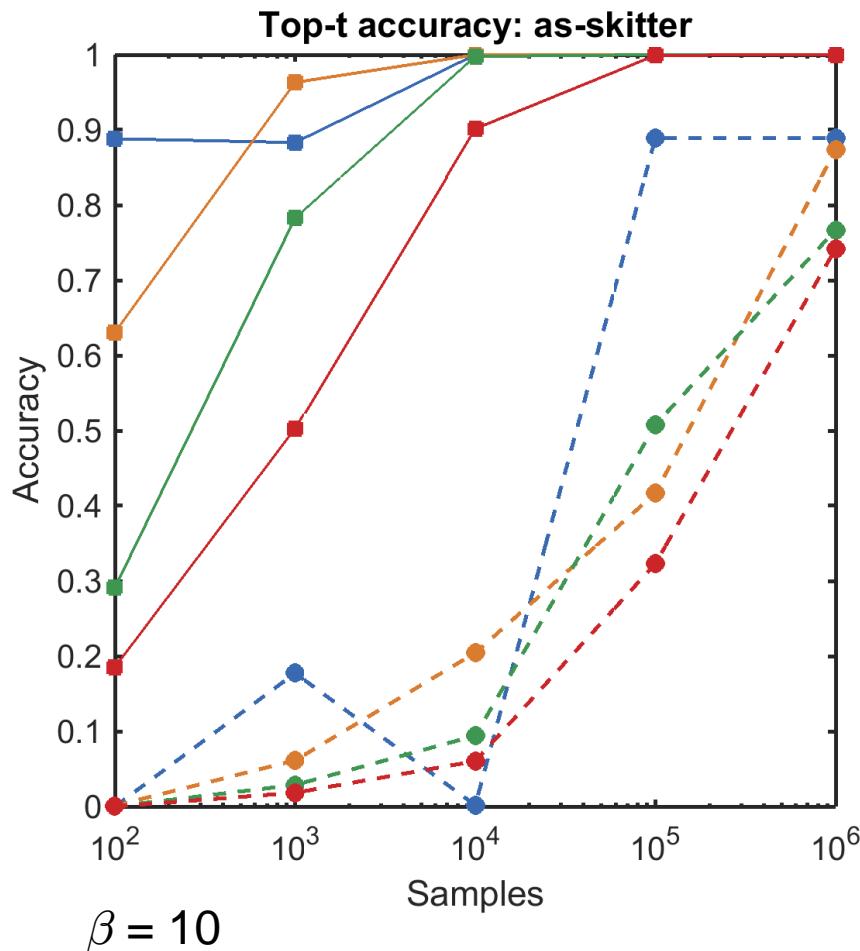
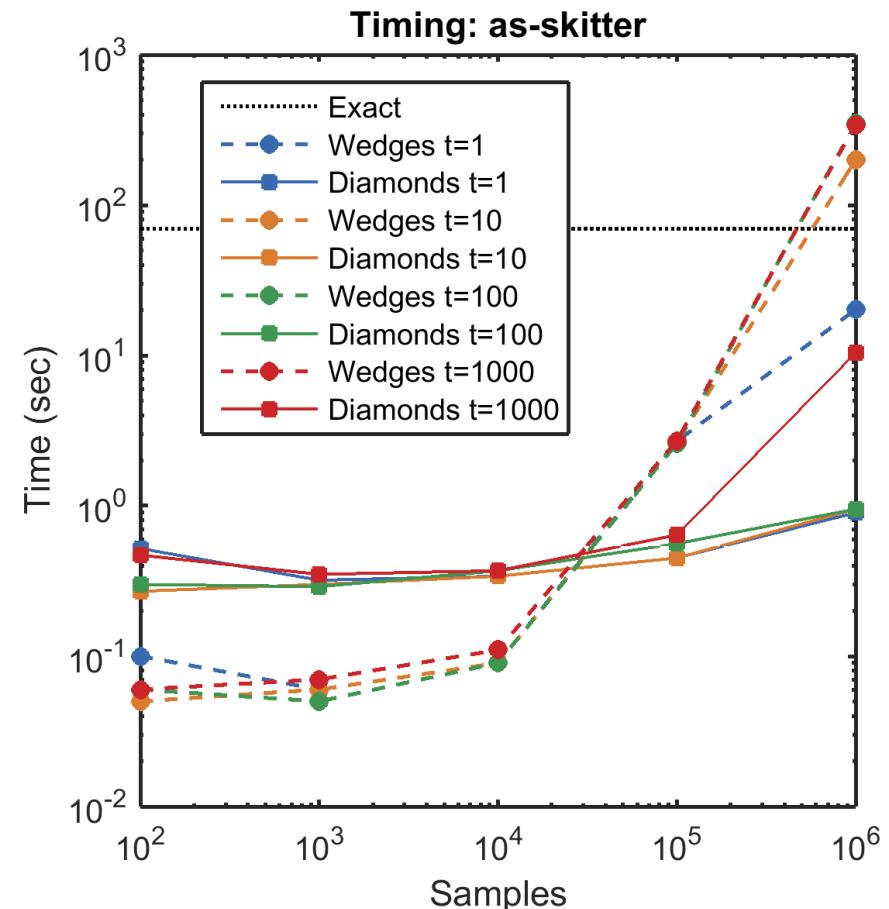
Nodes: 2.82e+05 Edges: 1.99e+06



3-cycle closure rate: 30%

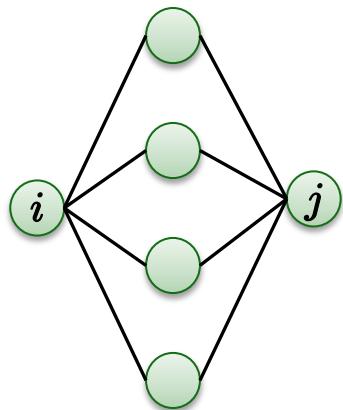
Results: as-skitter

Nodes: 1.70e+06 Edges: 2.22e+07 Wedges: 1.60e+10



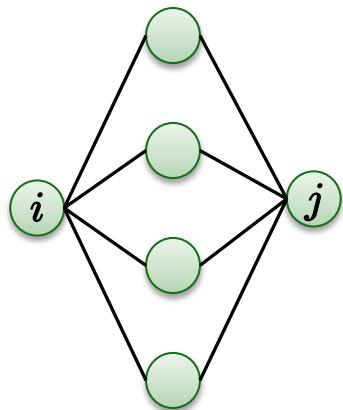
3-cycle closure rate: 17%

Finding Large Entries of A^2 (Weighted)



$$(A^2)_{ij} = \sum_k a_{ik}a_{kj} = \text{sum of all 2-path weight products for vertex pair } (i,j)$$

Finding Large Entries of A^2 (Weighted)



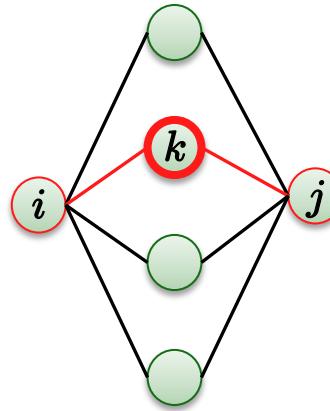
$$(A^2)_{ij} = \sum_k a_{ik} a_{kj} = \text{sum of all 2-path weight products for vertex pair } (i, j)$$

$$\gamma = \sum_{i=1}^n \|a_i\|_1^2 = \sum_{ij} a_i^T a_j = \|A^2\|_1$$

Wedge Sampling for Top-t Entries of $C=A^2$ (Weighted)

Algorithm Sample Wedges

```
1:  $X \leftarrow 0$ 
2: for  $\alpha = 1, \dots, s$  do
3:   Choose  $k \propto \|a_k\|_1^2 / \gamma$ 
4:   Choose  $i \propto a_{ik} / \|a_k\|_1$ 
5:   Choose  $j \propto a_{jk} / \|a_k\|_1$ 
6:    $x_{ij} \leftarrow x_{ij} + 1$ 
7: end for
8:  $X \leftarrow X + X^T$ 
```



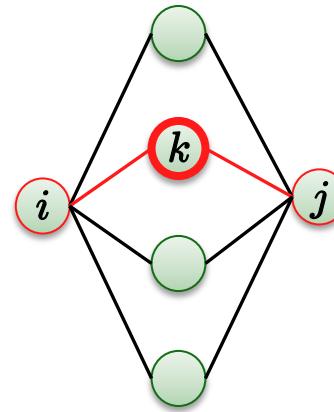
- Basic Idea
 - Weighted samples
 - Including diagonal entries of C
- Cost
 - Preprocess: $O(|E|)$
 - Sampling: $O(s \log(n))$
 - Postprocess: $O(s \log(s) + \beta tn)$

Wedge Sampling for Top-t Entries of $C=A^2$ (Weighted)

Algorithm Sample Wedges

```
1:  $X \leftarrow 0$ 
2: for  $\alpha = 1, \dots, s$  do
3:   Choose  $k \propto \|a_k\|_1^2 / \gamma$ 
4:   Choose  $i \propto a_{ik} / \|a_k\|_1$ 
5:   Choose  $j \propto a_{jk} / \|a_k\|_1$ 
6:    $x_{ij} \leftarrow x_{ij} + 1$ 
7: end for
8:  $X \leftarrow X + X^T$ 
```

$$\begin{aligned} P(i, j) &= \sum_k P(i, k, j) \\ &= \sum_k \frac{\|a_k\|_1^2}{\gamma} \frac{a_{ik}}{\|a_k\|_1} \frac{a_{jk}}{\|a_k\|_1} \\ &= a_i^T a_j / \gamma \end{aligned}$$



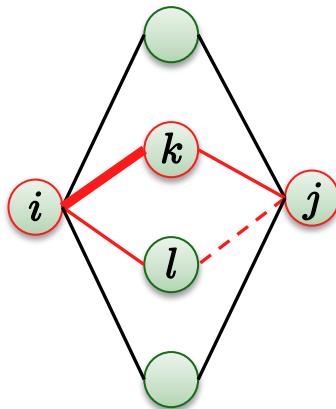
$$\mathbb{E}(x_{ij}) \propto c_{ij} = \langle a_i, a_j \rangle$$

- Basic Idea
 - Weighted samples
 - Including diagonal entries of C
- Cost
 - Preprocess: $O(|E|)$
 - Sampling: $O(s \log(n))$
 - Postprocess: $O(s \log(s) + \beta tn)$

Diamond Sampling for Large Entries of A^2 (Weighted)

Algorithm Diamond Sampling

```
1:  $X \leftarrow 0$ 
2: for  $(i, k) \in E$  do
3:    $w_{ik} \leftarrow a_{ik} \|a_i\|_1 \|a_k\|_1$ 
4: end for
5:  $\omega \leftarrow \sum_{ik} w_{ik}$ 
6: for  $\alpha = 1, \dots, s$  do
7:   Choose  $(i, k) \propto w_{ik}/\omega$ 
8:   Choose  $l \propto a_{il}/\|a_i\|_1$ 
9:   Choose  $j \propto a_{kj}/\|a_k\|_1$ 
10:   $x_{ij} \leftarrow x_{ij} + a_{jl}$ 
11:   $x_{kl} \leftarrow x_{kl} + a_{jl}$ 
12: end for
13:  $X \leftarrow X + X^T$ 
```



Note: Can also be adapted for negative entries, but omitting here due to space.

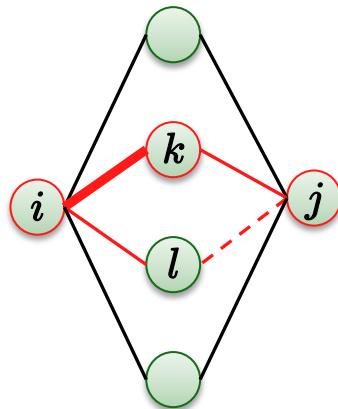
- Cost

- Preprocess: $O(|E|)$
- Sampling: $O(s \log(|E|) + s \log(n))$
- Postprocess: $O(s \log(s) + \beta tn)$

Diamond Sampling for Large Entries of A^2 (Weighted)

Algorithm Diamond Sampling

```
1:  $X \leftarrow 0$ 
2: for  $(i, k) \in E$  do
3:    $w_{ik} \leftarrow a_{ik} \|a_i\|_1 \|a_k\|_1$ 
4: end for
5:  $\omega \leftarrow \sum_{ik} w_{ik}$ 
6: for  $\alpha = 1, \dots, s$  do
7:   Choose  $(i, k) \propto w_{ik}/\omega$ 
8:   Choose  $l \propto a_{il}/\|a_i\|_1$ 
9:   Choose  $j \propto a_{kj}/\|a_k\|_1$ 
10:   $x_{ij} \leftarrow x_{ij} + a_{jl}$ 
11:   $x_{kl} \leftarrow x_{kl} + a_{jl}$ 
12: end for
13:  $X \leftarrow X + X^T$ 
```



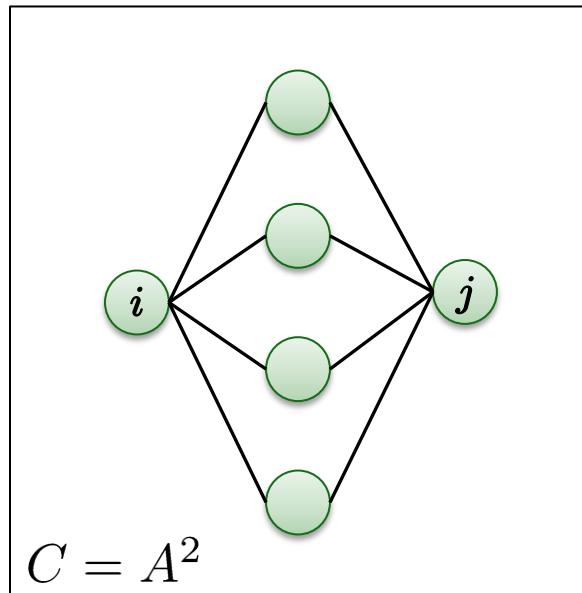
$$\begin{aligned}\mathbb{E}(x_{kl}) &= \sum_{ij} P(l - i - k - j) a_{jl} \\ &= \sum_{ij} \frac{a_{ik} \|a_i\|_1 \|a_k\|_1}{\omega} \frac{a_{il}}{\|a_i\|_1} \frac{a_{kj}}{\|a_k\|_1} a_{jl} \\ &= \frac{1}{\omega} \sum_{ij} a_{ik} a_{il} a_{jk} a_{jl} \\ &= \frac{1}{\omega} \sum_i a_{ik} a_{il} \sum_j a_{jk} a_{jl} \\ &= \frac{(a_k^T a_l)^2}{\omega} \propto c_{kl}^2\end{aligned}$$

- Cost
 - Preprocess: $O(|E|)$
 - Sampling: $O(s \log(|E|) + s \log(n))$
 - Postprocess: $O(s \log(s) + \beta tn)$

Note: Can also be adapted for negative entries, but omitting here due to space.

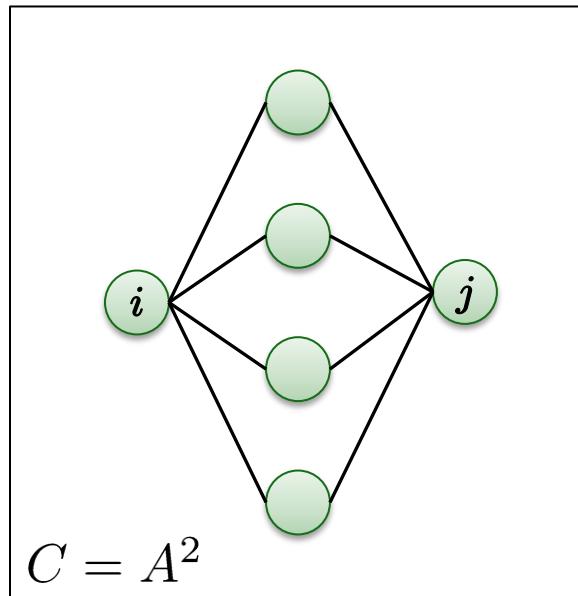
Extensions: $A^T A$ and $A^T B$

Case 1: Undirected Graph

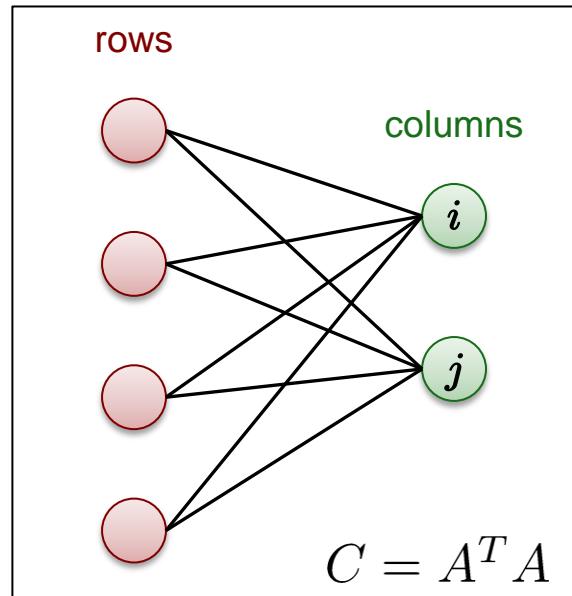


Extensions: $A^T A$ and $A^T B$

Case 1: Undirected Graph

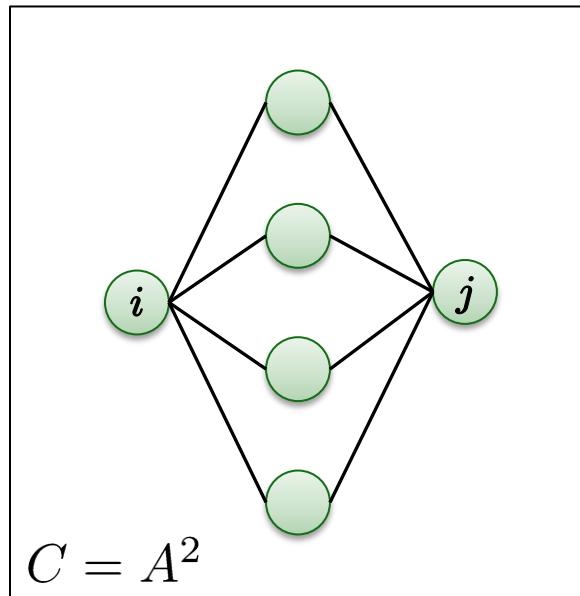


Case 2: Bipartite Graph

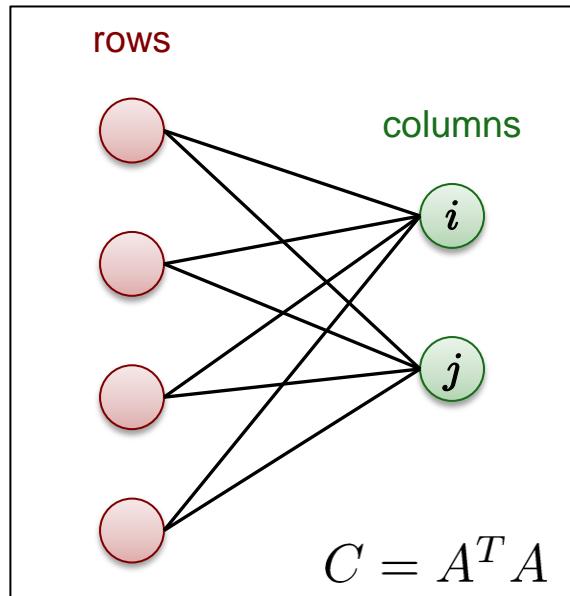


Extensions: $A^T A$ and $A^T B$

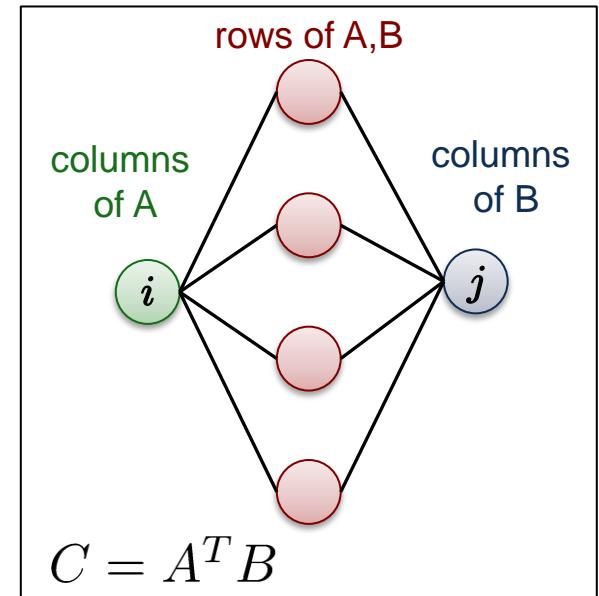
Case 1: Undirected Graph



Case 2: Bipartite Graph



Case 3: Tripartite Graph



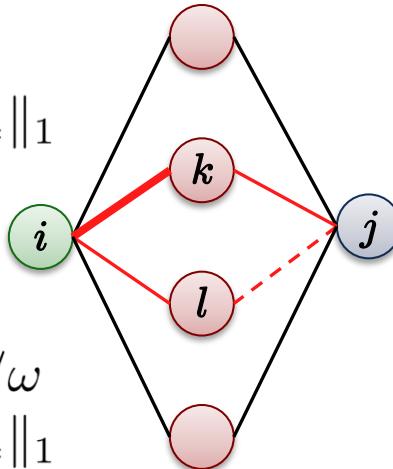
Diamond Sampling for Large Entries of $A^T B$ (Weighted)

Algorithm Diamond Sampling

```

1:  $X \leftarrow 0$ 
2: for  $(i, k) \in E_A$  do
3:    $w_{ik} \leftarrow a_{ki} \|a_{*i}\|_1 \|b_{k*}\|_1$ 
4: end for
5:  $\omega \leftarrow \sum_{ik} w_{ik}$ 
6: for  $\alpha = 1, \dots, s$  do
7:   Choose  $(i, k) \propto w_{ik}/\omega$ 
8:   Choose  $j \propto b_{kj}/\|b_{k*}\|_1$ 
9:   Choose  $l \propto a_{li}/\|a_{*i}\|_1$ 
10:   $x_{ij} \leftarrow x_{ij} + b_{lj}$ 
11: end for

```

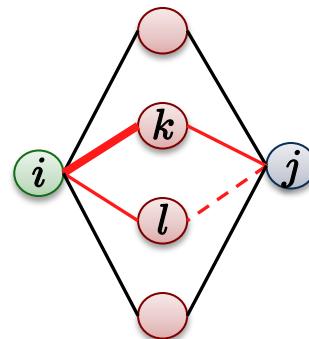


$$\begin{aligned}
 \mathbb{E}(x_{ij}) &= \sum_{kl} P(l - i - k - j) b_{lj} \\
 &= \sum_{kl} \frac{a_{ki} \|a_{*i}\|_1 \|b_{k*}\|_1}{\omega} \frac{b_{kj}}{\|b_{k*}\|_1} \frac{a_{li}}{\|a_{*i}\|_1} b_{lj} \\
 &= \frac{1}{\omega} \sum_{kl} a_{ki} b_{kj} a_{li} b_{lj} \\
 &= \frac{1}{\omega} \sum_k a_{ki} b_{kj} \sum_l a_{li} b_{lj} \\
 &= \frac{(a_i^T b_j)^2}{\omega} \propto c_{ij}^2
 \end{aligned}$$

- Cost
 - Preprocess: $O(|E|)$
 - Sampling: $O(s \log(|E|) + s \log(n))$
 - Postprocess: $O(s \log(s) + \beta tn)$

Sampling on Graphs is a Powerful Tool for Big Data

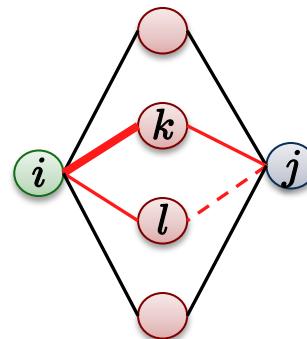
- Sampling methods have proved useful for...
 - Triangle Counting
 - Four-vertex Patterns
- Currently developing sampling methods for calculating largest entries
 - $C = A^2$, $C = A^T B$
 - Determine number of samples
 - Bound error
 - Efficient implementation
 - Seeking more applications



- Co-authors
 - Grey Ballard
 - Ali Pinar
 - C. "Sesh" Seshadhri
- Acknowledgments
 - Madhav Jha
 - Kevin Matulef
 - Jon Berry
 - Cindy Phillips
 - Todd Plantenga

Sampling on Graphs is a Powerful Tool for Big Data

- Sampling methods have proved useful for...
 - Triangle Counting
 - Four-vertex Patterns
- Currently developing sampling methods for calculating largest entries
 - $C = A^2, C = A^T B$
 - Determine number of samples
 - Bound error
 - Efficient implementation
 - Seeking more applications



- Co-authors
 - Grey Ballard
 - Ali Pinar
 - C. "Sesh" Seshadhri
- Acknowledgments
 - Madhav Jha
 - Kevin Matulef
 - Jon Berry
 - Cindy Phillips
 - Todd Plantenga

Alias Method

- Reference: Vose, Michael D., A Linear Algorithm For Generating Random Numbers With a Given Distribution. *IEEE Transactions on Software Engineering*, **17**(9) (September 1991):972-975.
- <https://possiblywrong.wordpress.com/2012/02/05/the-alias-method-and-double-precision/>

Back-up slide: Number 4-cycles

F. Harary and B. Manvel, *On the number of cycles in a graph*,
 Matematický časopis 21(1):1971, <http://dml.cz/dmlcz/126802>

Theorem 1. If G is a (p, q) graph with adjacency matrix A , then the number of 4-cycles in G is:

$$(2) \quad c_4(G) = \frac{1}{8} [\text{tr}(A^4) - 2q - 2 \sum_{i \neq j} a_{ij}^{(2)}].$$

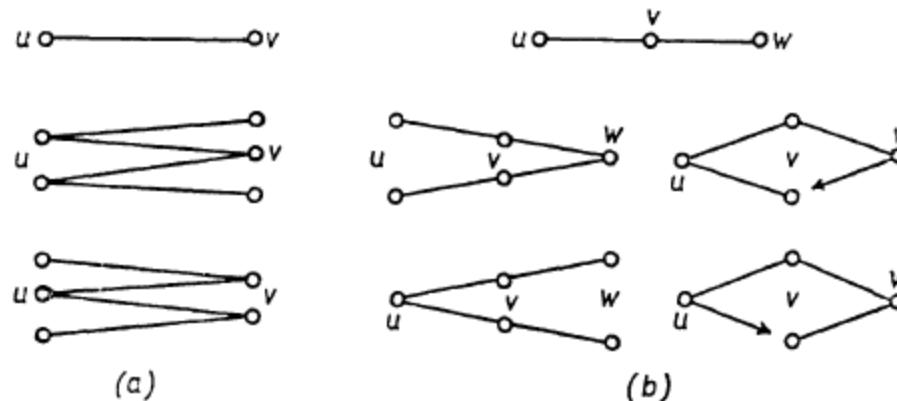


Fig. 1. Shapes of non-cyclic closed 4-walks in a graph.