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Sandia
Matrices and Graphs ) =

4 Simple Undirected Graph N
V = set of vertices, n = |V|

E = set of undirected edges
G = (V,E) = graph
o /

I —————
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f“ : Sandia
Matrices and Graphs ) =
-

V = set of vertices, n = |V|

\

Simple Undirected Graph

FE = set of undirected edges a Adjacency Matrix A
\G = (V, E) = graph - A = n x n symmetric matrix
_ {1 if (i,) € B, i #

A5 = .
0 otherwise j

U
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- Sandia
Matrices and Graphs ) =
-

V' = set of vertices, n = |V|

\

Simple Undirected Graph

E = set of undirected edges a Adjacency Matrix A
G = (V, F) = graph A = n x n symmetric matrix

“ / L o
1 if (4,5) € B, i #

0 otherwise
J

az-j =

. <

& Vertex Degree

d; = Z a;; = degree of node %
—— Y,
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5 Sandia
Matrices and Graphs ) =
-

V' = set of vertices, n = |V|

\

Simple Undirected Graph

E = set of undirected edges a Adjacency Matrix A
G = (V, F) = graph A = n x n symmetric matrix

“ / L o
1 if (4,5) € B, i #

0 otherwise
J

az-j =

. <

& Vertex Degree

d; = Z a;; = degree of node %

j=1
- / Cycles and Paths

Py = set of paths of length K
C'ix = set of cycles of length K
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"Matrix Computations for Graphs ) &=

Key Well-Known Result

(A%);; = number of paths of length K
between vertex pair (z,5)

I —————
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"~ Matrix Computations for Graphs ) .

Key Well-Known Result

(A%);; = number of paths of length K
between vertex pair (i,7)

@)ij = number common ngth

for vertex pair (4,7)
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Sandia
National

~ Matrix Computations for Graphs ) .

Key Well-Known Result

(A%);; = number of paths of length K
between vertex pair (i,7)

C 1 ™
— 3y, — -
@)ij = number common nghlg Csl = 6 Z(A Jii = #of triangles

=1

for vertex pair (4,7) 553
\_ /
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' Matrix Computations for Graphs ) .

Key Well-Known Result

(A%);; = number of paths of length K
between vertex pair (i,7)

7 A

4 1
Csl = = E (A%)y = '
@)ij = number common ngth Cs] 6 @'—1( )i = # of triangles
for vertex pair (4,7) =

N é( )b Y

f n . \

1 1
Ca| = 3 § (A%)is — 1 E (A*);;

/ i=1 i j=1
= number of 4-cycles
N %
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Computing matrix products is foo expensive in
computation and memory!

I —————
Feb 10, 2105 Kolda - Fields Wksp Big Data




National

.’ = 5 . Sandia
Counting Triangles Exactly )

= Basicidea
1: x <0 -
2. for (j,i,k) € P, do = Check eac.h wedge to see if it
3. if (j, k) € E then forms a triangle
4: T x+1 = Counts each triangle 3X
5: end if
6: end for

I —————
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2 Sandia
Counting Triangles Exactly )

= Basicidea
1: x <0 -
2. for (j,i,k) € P, do = Check eac.h wedge to see if it
3. if (j, k) € E then forms a triangle
4: T x+1 = Counts each triangle 3X
5: end if = Cost
6: end for

= Proportional to number of
wedges | P, |

1P| = Zdi(di —1)/2
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Counting Triangles Exactly
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Laboratories

™)

<+ 0

r+—x+1
end if
end for

ST e

1P| = Zdi(di —1)/2

. for (j,i,k) € P, do
if (j, k) € E then

Basic idea

= Check each wedge to see if it
forms a triangle

= Counts each triangle 3X
Cost

= Proportional to number of
wedges | P, |

Improvements
= Reject wedges i >j or i>k
* Count each triangle 1X
= Eliminates many wedges

= QOrder nodes by incr. degree

= Even fewer wedges

Feb 10, 2105
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Example Wedge & Triangle Counts Gl

15

10 | .
10"l B = mazon-2008 .
i B ljournal-2008

10 "+ ] hollywood-2011 .

y B uk-union
10

10

10° |
10° |
10" }
10° |
10° |
10° |
10° |
10° |
10' |
10°

Nodes Edges WedgesTriangles

10|

Count
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WEdge POIIlng @ Plabnrattllries

3|Cs]

Define 7 = = proportion of wedges that are closed.

Py

E-F-G is an open wedge
D-C-E is a closed wedge P d

Enumeration: Find every wedge. Check if each is closed.
T = # closed wedges / # wedges

Seshadhri, Pinar, Kolda, SIAM Intl. Conf. Data Mining, 2013; Seshadhri, Pinar, Kolda, Statistical Analysis and Data Mining, 2014
-
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F. Sandia
Wedge Polling () i

3|Cs]

Define 7 = = proportion of wedges that are closed.

Py

E-F-G is an open wedge
D-C-E is a closed wedge P d

Enumeration: Find every wedge. Check if each is closed.
T = # closed wedges / # wedges

Sampling: Sample a few wedges (uniformly). Check if each is closed.
T~ # closed sampled wedges / # sampled wedges

Seshadhri, Pinar, Kolda, SIAM Intl. Conf. Data Mining, 2013; Seshadhri, Pinar, Kolda, Statistical Analysis and Data Mining, 2014
-
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"Counting Triangles via Sampling ) .

= Basicldea
= s =4#wedge samples
= 1 =# closed sample wedges
= /s =estimate of 7

= Pick uniformly random wedge
without explicit enumeration

Feb 10, 2105 Kolda - Fields Wksp Big Data
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 Counting Triangles via Sampling )

Algorithm Compute degrees
1: d<0
2: for (i,7) € F do
3: dz<—dz—|—1,d3<—d3—|-1
4: end for

= Basicldea
= s =4#wedge samples
= 1 =# closed sample wedges
= /s =estimate of 7

= Pick uniformly random wedge
without explicit enumeration

I —————
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Counting Triangles Via Sampling @laburaturies
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National

Algorithm Compute degrees

1: d<0
2: for (i,7) € E do
3: d@<—dz—|—1,dj<—d3—|-1
4: end for
Algorithm Sample = Basic Idea
L: 2+ = s =# wedge samples
2: fora=1,...,sdo
N Choose i o di(d; — 1)/2 = 1 =# closed sample wedges
A: Choose j € N (i) = z/s=estimate of T
5: Choose k € N (i) \ {j} = Pick uniformly random wedge
6: if (j, k) € E then without explicit enumeration
7 T x+1
8: end if

9: end for

10: = + (|P3|/3) - (z/s)

Feb 10, 2105 Kolda - Fields Wksp Big Data
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T Counting Triangles Via Sampling @laburaturies

Algorithm Compute degrees
1: d<0
2: for (i,7) € E do
3: d@<—dz—|—1,dj<—d3—|-1

4: end for

Algorithm Sample = Basic Idea
A = s=#wedge samples
2: fora=1,...,sdo & P
N Choose i o di(d; — 1)/2 = 1 =# closed sample wedges
A: Choose j € N (i) = z/s=estimate of T
5: Choose k € N (i) \ {j} = Pick uniformly random wedge
6: if (j, k) € E then without explicit enumeration
7 r+—x+1 = Cost
8: end if

= Preprocess: O(| E|)

9: end for = Sample: O(s log(n))

10: = + (|P3|/3) - (z/s)

Feb 10, 2105 Kolda - Fields Wksp Big Data
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~ Counting Triangles via Sampling }=>

Algorithm Compute degrees
1: d<0
2: for (i,7) € E do
3: d@<—dz—|—1,dj<—d3—|-1

4: end for

Algorithm Sample = Basic Idea
A = s=#wedge samples
2: fora=1,...,sdo & P
N Choose i o di(d; — 1)/2 = 1 =# closed sample wedges
A: Choose j € N (i) = z/s=estimate of T
5: Choose k € N (i) \ {j} = Pick uniformly random wedge
6: if (j, k) € E then without explicit enumeration
7 r+—x+1 = Cost
8: end if

= Preprocess: O(| E|)
= Sample: O(s log(n))

Linear with “alias” method

9: end for

10: = + (|P3|/3) - (z/s)

Feb 10, 2105 Kolda - Fields Wksp Big Data 22
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= Sandia
Sampling Theory @ Laboratories

Bounded Error: Hoeffding’s Inequality Degree-wise Computation
1 .
Theorem: (Hoeffding 1963) Let X, X, ..., X, € [0,1] Py 2 E;gcéamples
be independent random variables. Define the sample £ 08¢ R % 2000 Samples ||
v 1k 2
mean: X = 3" X, E 06|
Let  be the true mean. Then for € € (0,1-p), £ oal
2
\ _ — 92 E
Prob {|X — p| > €} <6 = 2exp(—2ke?) S o,
Hence, for a given error € and confidence 1-6, we -
just need to set k£ = [0.5¢ 2 log(2/6)] 10° Deres
9 . .
10 ' ' ' — We also have a MapReduce implementation: Kolda,
10° = 90.0% Confidence | Pinar, Plantenga, Seshadhri, Task, SISC 2014.
o 7 99.0% Confidence o eadonn
e 10 | 3800451 (e=107) 99.9% Confidence |1 o, e
% 6 3300 _Phase1a
$ 10 [ —faee
o 5 I - | 2700 r| T Phace 2¢
& 104 38005 (e=10"9) 2000 | | = Phase o
£ 10} g 2100\ [ Phase 4b
z Rl
10°} 380 (e=107 £ 1500| | RmOer__
5 1200 |
10 L L L L — 500 |
0 0.02 0.04 0.06 0.08 0.1 600
Error (g) 300

1 2 3 4 5 8 7 8 9 10 11 12 13
Dataset
I —————
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COU ntlng 4-cyC|es @ Plabnrattllries

A KX

C,+chord

= Basicidea

= For each 3-path (%,7,7,0), if edge (k,[) exists, increment count

appropriately
® @
Omm©

" Fach 4-cycle is counted multiple times, depending on 4-vertex pattern

= Reduce work by just considering “centered 3-paths”

Jha, Seshadhri, Pinar, WWW ‘15

Feb 10, 2105 Kolda - Fields Wksp Big Data



“fast and accurate

1

~ New 3- path sampling algorithm is

—

0.8
0.6

0.4

Percent Error

0.2

bl

Al

Web-Berk 2 hrs 3 sec
Flickr 60 hrs 2 Sec
Orkut 19 hrs 16 sec

Jha, Seshadhri, Pinar, WWW ‘15

0 -t A ‘
P R

Sandia
National
Laboratories

@ 3-star

| 3-path
Otailed-triangle
@oC4

m C4+chord
OK4

Feb 10, 2105
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(A%);; = number common nghbrs
for vertex pair (z,7)

Feb 10, 2105 Kolda - Fields Wksp Big Data
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(A%);; = number common nghbrs
for vertex pair (z,7)

= Exact algorithm (C=A42)
= Sparse matrix-matrix multiply
= Use Csparse (cs_multiply function) from Tim Davis
= Computes one column of C at a time
= May run out of memory
= Modifications

;Ll_m = Added user-defined threshold to remove small

’lmmﬂIMH[ entries from each column as it is computed and
y vy Ty therefore avoid out-of-memory errors

= Exploit symmetry (only fill in upper portion of each
column)

4

‘ ¢ -°/—7J

Feb 10, 2105 Kolda - Fields Wksp Big Data
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~ Top-t Entries of C=A2 (Binary)

I —————
Feb 10, 2105 Kolda - Fields Wksp Big Data




~ Wedge Sampling for @

‘Top-t Entries of C=A? (Binary)

Algorithm Sample Wedges

: X+ 0
cfora=1,...,s5sdo

Choose k o< dy(d — 1)/2

1
2
3
4: Choose i € N (k)
5: Choose j € N (k) \ {i}
6 Tij < Tj; + 1
7: end for
8 X +— X+ X1

=  Basic ldea

Feb 10, 2105

=  s=#samples

t = # top dot products desired

(G t = budget for dot products
Choose wedges uniformly at random

Kolda - Fields Wksp Big Data
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Laboratories




,&,,&?E:,-;‘Wedge Sampling for ) i
Top-t Entries of C=A? (Binary)

Laboratories

Algorithm Sample Wedges
1: X 0
2: fora=1,...,sdo
3 Choose k o< di(dy, —1)/2
4: Choose i € N (k)
5: Choose j € N (k) \ {i}
6
7
8

Tij — Lij + 1
. end for
X — X+ X7 = Basic ldea

E(zij) o cij = (ai, aj)

= s=#samples
= {=#top dot products desired
1: B < indices (%, j) corresponding = (1t =budget for dot products
to largest /Bt entries in triu(X) = Choose wedges uniformly at random
2: Compute (a;,a;)V(i,j) € B
3: Return top-t dot products and
indices

Algorithm Postprocess

Feb 10, 2105 Kolda - Fields Wksp Big Data



‘Wedge Sampling for )
Top-t Entries of C=AZ (Binary) '

Laboratories

Algorithm Sample Wedges
1: X 0
2: fora=1,...,sdo
3 Choose k o< di(dy, —1)/2
4: Choose i € N (k)
5: Choose j € N (k) \ {i}
6
7
8

ZC@'j<—ZCij+1
. end for
: X<—X+XT

E(Q?m) X C?;j = <CLZ',CLj>

Basic Idea
=  s=#samples

Algorithm Postprocess

= {=#top dot products desired
1: B < indices (i, j) corresponding = [ t=budget for dot products
to largest Bt entries in triu(X) = Choose wedges uniformly at random
2: Compute (a;,a;)V(i,j) € B " Cost
3: Return top-t dot products and " Preprocess: O(| £1)

=  Sampling: O(s log(n))

indices = Postprocess: O(s log(s) + Gtn)

Feb 10, 2105 Kolda - Fields Wksp Big Data



Diamond Sampling for )
Large Entries of A% (Binary)

Laboratories

I —————
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“‘C\A%Dviamond Sampling for ) iz
Large Entries of A% (Binary)

Laboratories

Algorithm Diamond Sampling
1: X+ 0
2: fora=1,...,sdo
3 Choose (i, k) € &
x (d; — 1)(dx — 1)

4: Choose | € N (i) \ {k} E(z:;) o 2 = ((ag, a:))?

5: Choose j € N (k) \ {i} " “J v

6: if (/,j) € E then = Basic Idea

T Tij < Tij + 1 * Choose three-path uniformly at random
8: Tl < Tkl + 1 = Reject if not a 4-cycle

9: end if = Result is uniform random 4-cycle
10: end for

11: X+ X+ X7T

Feb 10, 2105 Kolda - Fields Wksp Big Data



”,?D'iamond Sampling for ) iz
Large Entries of A% (Binary)

Laboratories

Algorithm Diamond Sampling
1: X+ 0
2: fora=1,...,sdo
3 Choose (i, k) € &
x (d; — 1)(dx — 1)

4: Choose | € N (i) \ {k} E(z::) o 2 = ({a;, a;))?

5: Choose j € N (k) \ {i} “ Y v

6: if ({,j) € E then . Basic Idea

& Tij < Tij + 1 = Choose three-path uniformly at random
8: Tl < Tkl + 1 = Reject if not a 4-cycle

9: end if = Result is uniform random 4-cycle
10: end for = Cost
11: X «— X —I—XT =  Preprocess: O(| F|)

=  Sampling: O(s log(| £]))
= Postprocess: O(s log(s) + G tn)

Feb 10, 2105 Kolda - Fields Wksp Big Data



C=A’? (Binary) Experiments () .

= s=4#of samples

= t=#of top entries

= G =multiplier for dot-product budget

= B =set of most 5t most frequent (z,7) pairs in sampling

1/2
C = A2 max ( Z E?J)

2| =t

B (i,5)€Q
£ e B score = 73
. Cii 1 (2,7) €
Cij = Y ’ : max Z 2.
0  otherwise Ol ij
SN

Feb 10, 2105 Kolda - Fields Wksp Big Data



F Sandia
Results: web-Stanford () i,

Nodes: 2.82e+05 Edges: 1.99e+06

Top-t accuracy: web-Stanford Timing: web-Stanford

1 10°
'
................ Exact ®
- =& - Wedges t=1 /,
102} | —®— Diamonds t=1 r
- -® - Wedges t=10 /.
------ —4&— Diamonds t=10 /I
- -& - Wedges t=100 )
- S 10" —&— Diamonds t=100 ,f
8 % - -& - Wedges t=1000 r
= ~ —&— Diamonds t=1000
3 [0)
8 £
= 100
-1
Jr ’ 10
,. Iy ’ ‘:: ‘
0.1} e 1r s § -l ‘:’ -
. - I ,, - P - - -
Pae ¥, I 5<% -~ -7 j
0e % - - L ea— '
102 10% 104 105 108 102 103 10* 10° 10°
Samples Samples

6=10
3-cycle closure rate: 30%

Feb 10, 2105 Kolda - Fields Wksp Big Data
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F i . @ Sandia
Results: as-skitter omis

Nodes: 1.70e+06 Edges: 2.22e+07 Wedges: 1.60e+10

Top-t accuracy: as-skitter Timing: as-skitter

1 » 10°
................ Exact
- -® - Wedges t=1 :;
—=&— Diamonds t=1 /
107 | 3
......... - -® - Wedges t=10 ,’r
—#— Diamonds t=10 /l’,
- =& - Wedges t=100 Pl
—&— Diamonds t=100 ,” e
10" e
- -& - \Wedges t=1000 / L’
—#— Diamonds t=1000

Accuracy
Time (sec)

102 103 10* 10° 10°
Samples

3-cycle closure rate: 17%
I —————

Feb 10, 2105 Kolda - Fields Wksp Big Data 38




inding Large Entries of A2 )
(Weighted)

Laboratories

(A2 Z a;kak; = sum of all 2-path weight
k products for vertex pair (z,7)

I —————
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'-inding Large Entries of A2 e
(Weighted)

Laboratories

(A2 Z a;kak; = sum of all 2-path weight
k products for vertex pair (z,7)

T
y= llallf => afa; =A%
i=1 ij

I —————
Feb 10, 2105 Kolda - Fields Wksp Big Data




Top-t Entries of

M%"Wedge Sampling for @ rirod

Laboratories

C=A?(Weighted)

Algorithm Sample Wedges

: X 0

. fora=1,...,sdo
Choose k o ||ax||$/~
Choose © < a;r/||ax||1
Choose j < a;i/||ak|1
Tij < x5 + 1

7: end for

8: X X‘I‘XT

Sy O = W N =

= Basic ldea

= Weighted samples
* Including diagonal entries of C

= Cost
= Preprocess: O(| E|)
= Sampling: O(s log(n))
= Postprocess: O(s log(s) + G tn)

Feb 10, 2105
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,%??Wedge Sampling for @ Sandi
Top-t Entries of C=A? (Weighted)

National
Laboratories

Algorithm Sample Wedges

1
2
3
4
D
6
7
8

: X+ 0
. fora=1,...,sdo
Choose k o ||ax||$/~
Choose © < a;r/||ax||1
Choose j < a;i/||ak|1
Tij < x5 + 1

E(Q?m) X C?;j = <CLZ',CLj>

. end for
. T ,
A A+A = Basicldea
= Weighted samples
P(i,j) = Z P(i, k,j) = Including diagonal entries of C
k = Cost
_ Z larli ai  aji = Preprocess: O(| E|)
~ 7 |ag |1 ||ax]|1 = Sampling: O(s log(n))
o = Postprocess: O(s log(s) + B3tn)
= a; aj/vy

Feb 10, 2105
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._}-.?:?'D'iamond Sampling for )
Large Entries of A2 (Weighted)

National
Laboratories

Algorithm Diamond Sampling

—_ = =
N = O

13

. end for

X <0
for (i, k) € F do
Wik < @ik |ail1]lak |
end for
W 4 D ik Wik
fora=1,...,sdo
Choose (i, k) o< w;j/w
Choose | o< a;/||a;||1
Choose j o ag;/||ak|1
Tij < T4 + a;i
Tgl < Tkl + A i

= (Cost
= Preprocess: O(| E)

T
X~ X+ X = Sampling: O(s log(| E'|) + s log(n))

Note: Can also be adapted for negative entries, but " Postprocess: O(s log(s) + Gtn)
omitting here due to space.

Feb 10, 2105 Kolda - Fields Wksp Big Data



,ﬁ:'”"i“')'iamond Sampling for ) i
Large Entries of A2 (Weighted)

Laboratories

Algorithm Diamond Sampling E(ey) = > P —i—k—j)ay
1: X <0 ij
2: fOI‘ (Z,k’) - ) dO . Z aik“aiHlHakHl a;l AL g
— a;
30 Wik < aikl|ail|1]lak])1 - w lail[1 [[aklx
4: end for 1
5r w4 ) Wik = 2 @ikl
6: fora=1,...,s5do . *
7: Choose (i, k) o< w;j/w = - Zaikai[ Zajkaﬂ
8: Choose [ < a;;/||a;i||1 i j
9: Choose j o ag;/||ak|1 ~(afa)®

10: Tij < T4 + a;i N w ki
11: Tkl < Tl + aj;
kl kl jl . Cost
12: end for - ol El)
= Preprocess:
13 X « X+ X1 _
T = Sampling: O(s log(| £|) + s log(n))
Note: Can also be adapted for negative entries, but " Postprocess: O(s log(s) + Gtn)

omitting here due to space.

Feb 10, 2105 Kolda - Fields Wksp Big Data



| - Sandia
Extensions: ATA and ATB () i,

Case 1: Undirected Graph

Feb 10, 2105 Kolda - Fields Wksp Big Data



Extensions: ATA and ATB @L”amménes

Case 1: Undirected Graph  Case 2: Bipartite Graph

rows

Feb 10, 2105 Kolda - Fields Wksp Big Data



" Extensions: ATA and ATB

Case 1: Undirected Graph  Case 2: Bipartite Graph

™)

Sandia
National

Case 3: Tripartite Graph

rows

rows of A,B

columnscolumns
of A ‘ of B

Feb 10, 2105 Kolda - Fields Wksp Big Data
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‘Diamond Sampling for )
Large Entries of ATB (Weighted)

National
Laboratories

Algorithm Diamond Sampling

E(zi;) ZPZ—Z— — J)bi;

1: X «<0
2: for (i,k) € E4 do agillawill1 bl bry  au
— Z by

3: Wik < aki|]a*i||1||bk*||1 W ||bk*||1 ||G*z||1
4: end for

D W < Zz’k Wik 0 - Zaklbkﬂa“blﬁ’

6: fora=1,...,sdo

7 Choose (i, k) o< w;p /w =7 Z@kz’bkj > by

8: Choose j o< by /| br«||1 TI; 2 z

9: Choose | < ay; /||axi||1 _ (@i by)” &,

10: Tij < Tij + blj “

11: end for . Cost

= Preprocess: O(| E)
= Sampling: O(s log(| £|) + s log(n))
= Postprocess: O(s log(s) + Btn)
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- Sampling on Graphs is a Powerful (1) i
Tool for Big Data

Laboratories

=  Sampling methods have = Co-authors

= Grey Ballard
proved useful for... e Al Pinar

= Triangle Counting = C. “Sesh” Seshadhri

= Four-vertex Patterns
=  Acknowledgments

_ * MadhavJha
= Currently developing =  Kevin Matulef
sampling methods for * JonBerry
calculating largest entries = Cindy Phillips

Todd Plantenga
s C= AZ; C=ATB g

= Determine number of

samples ;LLLL'

= Bound error llﬂtllmlml

'i"'l
%

= Efficient implementation
= Seeking more applications
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4},..Samplmg on Graphs is a Powerful ) i
Tool for Big Data

Laboratories

=  Sampling methods have = Co-authors

= Grey Ballard
proved useful for... Al

= Triangle Counting = C. “Sesh” Seshadhri

= Four-vertex Patterns
=  Acknowledgments

_ = Madhav Jha
= Currently developing =  Kevin Matulef
sampling methods for * JonBerry
calculating largest entries = Cindy Phillips
"= Todd Plantenga
= C=A?,C=A™B
= Determine number of
samples ;l—ub
= Bound error "m'

= Efficient implementation V' & 4 l'll

= Seeking more applications

J
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* = Sandia
Alias Method () i,

= Reference: Vose, Michael D., A Linear Algorithm For
Generating Random Numbers With a Given Distribution. IEEE
Transactions on Software Engineering, 17(9) (September
1991):972-975.

= https://possiblywrong.wordpress.com/2012/02/05/the-alias-
method-and-double-precision/
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National

? e . Sandia
Back-up slide: Number 4-cycles () s

F. Harary and B. Manvel, On the number of cycles in a graph,
Matematicky casopis 21(1):1971, http://dml.cz/dmicz/126802

Theorem 1. If G is a (p, q) graph with adjacency matrix A, then the number
of 4-cycles in G 1s:

(2) aa(6) = § [tr(4%) — 2¢ — 2 3 aff)].
i#j
U o— Oy uo—~—t§—-ow

Fig. 1. Shapes of non-cyclic closed 4-walks in a graph.
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