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Model for the observations

» Consider a discrete-time nonlinear dynamical systems
generated by the recursion on the state space

Xp+1 = f(xn), n=1,2,3,...

The function f is known.



Model for the observations

» Consider a discrete-time nonlinear dynamical systems
generated by the recursion on the state space

Xp+1 = f(xn), n=1,2,3,...

The function f is known.
» Observe
Yn = g(Xn; 0) + en.

The disturbances ¢ are independent mean zero and finite
variance. The parameter 6 is unknown.

Nonparametric estimation of g?



Problem (Extension of Kalman filtering, data assimilation)

Given the observed sequence

Yi,¥2,---3¥n

without x1, ..., X,, but knowing f,

1. Denoise the sequence to estimate the series to estimate the
sequence g(x1), g(x2), - - -, &(%n)
2. Predict future observations, e.g., g(xn+1), &(Xn+2), ...

3. Predict past observations, e.g., g(x0),g(x-1), ...

Easier problem than estimating the dynamical systems series
X1, X2, ..., Xp, but still hard.



Simple example: Discrete epidemic evolution model (SIR)

Susceptible-Infected-Recovered epidemic model (Sk, Ik, Rk)

Skv1 = Sk — BSklk
hkgr = I+ BSihe — vk
Rky1i = R+l

State-space xx = (Sk, Sk—1, Ik, Rk)

Observe a "fraction of new cases”.
Y = Poisson(a(Sk—1 — Sk))

Want to make predictions for the number of new cases.



A real data example

date range 2002/10/21-2002/10/21 date range 2002/10121-2002/10:21
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Upper atmospheric densities observational data collected by two
satellites, shaded area indicates night side at time of observation
collection

Complex global weather evolution model, data are local probing.



Challenging problem...

Because we know f, estimating the unobserved series xi, ..., x, is
equivalent to estimating xg.

This is an inverse problem.

When g is known, we can estimate the initial state xp of the
dynamical system by non-linear least squares

%o =argmin ) ()/j - g(f*(j)(Xo)))2
j=1

where £*0)(xg) = f(F*U=1)(x0)) is the j composition of f.

Potentially ill-posed numerical optimization problem.



Having a good representation is the key to success...

» Qur aim is to identify the well posed questions in this ill posed
problem.

A really clever trick! Koopman (PNAS 1931)
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» Let H be a Hilbert space of functions defined on X. For a
discrete-time dynamical system x,t1 = f(x,), consider for
x € X fixed the linear operator

L, : H—R
h — h(f(x)).



Having a good representation is the key to success...

» Qur aim is to identify the well posed questions in this ill posed
problem.

A really clever trick! Koopman (PNAS 1931)

» Let H be a Hilbert space of functions defined on X. For a
discrete-time dynamical system x,t1 = f(x,), consider for
x € X fixed the linear operator

L, : H—R
h — h(f(x)).

» For a fixed x € X, if L is bounded, is has a discrete spectrum
A1(x) > Aa2(x) > ... and right-hand side eigenfunctions

Lpj = A (x)9;.



Implications
» If 4; is a (right-hand) eigenfunction of Ly, then

L £ 4(F(x)) = A (x)us(x).
Suppose

g(x) = ajiy(x).
j=1



Implications
» If 4; is a (right-hand) eigenfunction of Ly, then

L £ 4(F(x)) = A (x)us(x).
Suppose

x) =Y ay(x)
j=1

> If )\j(X) = )\j, then

g(Xk) = Xk 1 ZO{/¢J Xk 1
p
= > ad(f(xu-1)) = Z%‘@/J(Xo) CAf
j=1 j=1
p

_ N
= ZCJAJ
j=1



Estimation of g(xp) (data assimilation):

If g € span(41,...,1p), we estimate g(xg) by first minimizing

2

(ci1, .. ) = arg min Z yk—ch

Cl,-- 7CP

and set

P
g(0)=>_g.
j=1



Remarks

1. Only knowledge of the spectrum A1, A2, ... and the
assumption that g € span(v1, 42, ...,1p) is required.

2. Numerical optimization is easy.
3. If |f(x)] < B < o0, then \; < 1.

4. Information from later observations exponentially small.



Denoising and prediction:

> Fix ko. If g(x) = Zf:l aj1hj(x), then

p

g0a) =D AT0(x).

Jj=1



Denoising and prediction:

> Fix ko. If g(x) = ZJ 1 0j(x), then

g0xk) = DA ()

Jj=1
» Denoising reduces to solving (via least squares)

2

min Z Vi — chAk_k"

C1,- 7CP

and set g(xx) = >_7_; G-

How can we calculate the Koopman basis?
And can we show that indeed, \;(x) = A;7



A short primer of reproducing kernel Hilbert space (rkhs).

1. A Hilbert space H, endowed with an inner product < -|- > is a
rkhs if and only if the valuation function

Hy : h — h(x)

is a bounded linear functional.
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A short primer of reproducing kernel Hilbert space (rkhs).

1. A Hilbert space H, endowed with an inner product < -|- > is a
rkhs if and only if the valuation function

Hy : h — h(x)

is a bounded linear functional.

2. The Riesz representation theorem says that there exists
0 € H, such that for all h € H, Hyh =< lx|h >.

3. The kernel K(x,y) =< {x|{, > is non-negative definite,
symmetric, and satisfies

h(x) =< K(x,-)|h > .
4. The functional < K(x,-)|f > is the projection of f € L, onto
the space H.

5. Let ¢1,¢2,...,¢p be any orthonormal basis for a finite
dimensional Hilbert space H, then the reproducing kernel is

k(x,y) = Z@(X)@(ﬂ-



The Koopman operator is the valuation functional of h
evaluated in f(x)

» Proposition 1. If H is a reproducing kernel Hilbert space,
then the Koopman operator over that space is bounded. It
follows that the Koopman operator on that space can be

written as
Lih =< K(f(x),-)|h>.



The Koopman operator is the valuation functional of h
evaluated in f(x)
» Proposition 1. If H is a reproducing kernel Hilbert space,
then the Koopman operator over that space is bounded. It

follows that the Koopman operator on that space can be

written as
Lih =< K(f(x),-)|h>.

» Proposition 2. If H is finite dimensional, then the Koopman
operator can be written as

Lyh = <Z¢j(f(><))¢j(y) h(y)>

Jj=1

Z ) < B )lA(y) > .
=1



Towards calculating the Koopman basis and spectrum

Write, for each j,

o;(f(x) Zﬂjﬂbe (x) + &j(x).

The terms ej(x) is nonzero when the Hilbert space H is not closed
under the dynamics of the system.
Write

B=(8.0) =1 0(x)=(d1(x);--.,8p(x)"
Then
K(x,y) = o(y)Bo(x) + e'(x)d(y),
which implies that for h(y) = a*¢(y)

Lyh = ¢(x)Ba + a'e(x)



Controlling the approximation error

The construction holds for any orthonormal basis {¢1,...,¢p}.

Idea: Control the error by selecting a convenient basis.
Given g1 € H, define

8k(x) = gr—1(f(x))-

Use Gram-Schmidt to build an orthonormal basis {¢1,...,¢p}
such that

span(g1,...,8k) =span(¢1,...,0k) k=1,2,...,p.



Controlling the error
Proposition 3 Let vi(x) = gk(x)/|lgx(x)]|-

ex(x) = vi(f(x)) = projg, ... ¢, (vi(f(x)).
For k < p, ex(x) =0, and for k = p
lep(x)] — 0
Expect e, ~ P for some 0 < v < 1.

Justification: power method of linear algebra. If
g1(x) = Y aj(x)
j=1

then

go(x) =) oA ().
j=1



Approximate Koopman spectrum and basis

If we can neglect the approximation term a’e(x), then Koopman
basis and eigenvalues are derived from the right-hand eigenvectors
of the matrix BY.

Proposition 4 Let

B¢ = ;.
Then the (approximate) Koopman spectrum is Aq,..., A, and the
(approximate) Koopman basis are

Y = & d(x).

Remark: The (approximate) Koopman eigenvalues do not depend
on x.



Remark

Matrix B is triangular,obviously not symmetric.
Eigenvalues are the roots of the characteristic polynomial

det(B — Al).

Eigenvectors solve
th. — N.d:
B ¢j = Aj¢;-

Eigenvectors are linearly independent but are NOT orthogonal.



Implementation

» Recall, all we need are the eigenvalues.

» Select xél), .. ,xém)

initial conditions, m > n, possibly as

uniformly as possible over the parameter space (i.e., latin

hypercube design).

» Compute the generated dynamical system x

» Compute the m x n matrix

X =

=f

k+1 —

().

» Calculate the SVD of X to get approximate Koopman

eigenvectors.



Conclusion

» Cavalier's principle of "finding the well posed questions in ill
posed problems” remain true.

» Another example of where embedding a problem into a larger
space is helpful

» Opens the door for starting to think how to solve other
nonlinear problems using linear methods.
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