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Model for the observations

I Consider a discrete-time nonlinear dynamical systems
generated by the recursion on the state space

xn+1 = f (xn), n = 1, 2, 3, . . .

The function f is known.

I Observe
yn = g(xn; θ) + εn.

The disturbances ε are independent mean zero and finite
variance. The parameter θ is unknown.

Nonparametric estimation of g?
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Problem (Extension of Kalman filtering, data assimilation)

Given the observed sequence

y1, y2, . . . , yn

without x1, . . . , xn, but knowing f ,

1. Denoise the sequence to estimate the series to estimate the
sequence g(x1), g(x2), . . . , g(xn)

2. Predict future observations, e.g., g(xn+1), g(xn+2), ...

3. Predict past observations, e.g., g(x0), g(x−1), ....

Easier problem than estimating the dynamical systems series
x1, x2, . . . , xn, but still hard.



Simple example: Discrete epidemic evolution model (SIR)

Susceptible-Infected-Recovered epidemic model (Sk , Ik ,Rk)

Sk+1 = Sk − βSk Ik
Ik+1 = Ik + βSk Ik − γIk
Rk+1 = Rk + γIk

State-space xk = (Sk , Sk−1, Ik ,Rk)

Observe a ”fraction of new cases”.

Yk = Poisson(α(Sk−1 − Sk))

Want to make predictions for the number of new cases.



A real data example
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Upper atmospheric densities observational data collected by two
satellites, shaded area indicates night side at time of observation
collection

Complex global weather evolution model, data are local probing.



Challenging problem...

Because we know f , estimating the unobserved series x1, . . . , xn is
equivalent to estimating x0.

This is an inverse problem.

When g is known, we can estimate the initial state x0 of the
dynamical system by non-linear least squares

x̂0 = arg min
x0

n∑
j=1

(
yj − g(f ∗(j)(x0))

)2
where f ∗(j)(x0) = f (f ∗(j−1)(x0)) is the j th composition of f .

Potentially ill-posed numerical optimization problem.



Having a good representation is the key to success...

I Our aim is to identify the well posed questions in this ill posed
problem.

A really clever trick! Koopman (PNAS 1931)

I Let H be a Hilbert space of functions defined on X. For a
discrete-time dynamical system xn+1 = f (xn), consider for
x ∈ X fixed the linear operator

Lx : H −→ R
h −→ h(f (x)).

I For a fixed x ∈ X, if Lx is bounded, is has a discrete spectrum
λ1(x) ≥ λ2(x) ≥ . . . and right-hand side eigenfunctions

Lxψj = λj(x)ψj .



Having a good representation is the key to success...

I Our aim is to identify the well posed questions in this ill posed
problem.

A really clever trick! Koopman (PNAS 1931)

I Let H be a Hilbert space of functions defined on X. For a
discrete-time dynamical system xn+1 = f (xn), consider for
x ∈ X fixed the linear operator

Lx : H −→ R
h −→ h(f (x)).

I For a fixed x ∈ X, if Lx is bounded, is has a discrete spectrum
λ1(x) ≥ λ2(x) ≥ . . . and right-hand side eigenfunctions

Lxψj = λj(x)ψj .



Having a good representation is the key to success...

I Our aim is to identify the well posed questions in this ill posed
problem.

A really clever trick! Koopman (PNAS 1931)

I Let H be a Hilbert space of functions defined on X. For a
discrete-time dynamical system xn+1 = f (xn), consider for
x ∈ X fixed the linear operator

Lx : H −→ R
h −→ h(f (x)).

I For a fixed x ∈ X, if Lx is bounded, is has a discrete spectrum
λ1(x) ≥ λ2(x) ≥ . . . and right-hand side eigenfunctions

Lxψj = λj(x)ψj .



Implications
I If ψj is a (right-hand) eigenfunction of Lx , then

Lxψj
4
= ψj(f (x)) = λj(x)ψj(x).

Suppose

g(x) =

p∑
j=1

αjψj(x).

I If λj(x) ≡ λj , then

g(xk) = g(f (xk−1)) =

p∑
j=1

αjψj(f (xk−1))

=

p∑
j=1

αjλjψj(f (xk−1)) =

p∑
j=1

αjψ(x0) · λkj

=

p∑
j=1

cjλ
k
j .
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Estimation of g(x0) (data assimilation):

If g ∈ span(ψ1, . . . , ψp), we estimate g(x0) by first minimizing

(ĉ1, . . . , ĉp) = arg min
c1,...,cp

n∑
k=1

yk −
p∑

j=1

cjλ
k
j

2

and set

ĝ(x0) =

p∑
j=1

ĉj .



Remarks

1. Only knowledge of the spectrum λ1, λ2, . . . and the
assumption that g ∈ span(ψ1, ψ2, . . . , ψp) is required.

2. Numerical optimization is easy.

3. If |f (x)| ≤ B <∞, then λ1 ≤ 1.

4. Information from later observations exponentially small.



Denoising and prediction:

I Fix k0. If g(x) =
∑p

j=1 αjψj(x), then

g(xk) =

p∑
j=1

λk−k0j ψj(xk0).

I Denoising reduces to solving (via least squares)

min
c1,...,cp

n∑
k=1

yk −
p∑

j=1

cjλ
k−k0
j

2

and set ĝ(xk) =
∑p

j=1 ĉj .

How can we calculate the Koopman basis?
And can we show that indeed, λj(x) ≡ λj?
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A short primer of reproducing kernel Hilbert space (rkhs).
1. A Hilbert space H, endowed with an inner product < ·|· > is a

rkhs if and only if the valuation function

Hx : h −→ h(x)

is a bounded linear functional.

2. The Riesz representation theorem says that there exists
`x ∈ H, such that for all h ∈ H, Hxh =< `x |h >.

3. The kernel K (x , y) =< `x |`y > is non-negative definite,
symmetric, and satisfies

h(x) =< K (x , ·)|h > .

4. The functional < K (x , ·)|f > is the projection of f ∈ L2 onto
the space H.

5. Let φ1, φ2, . . . , φp be any orthonormal basis for a finite
dimensional Hilbert space H, then the reproducing kernel is

k(x , y) =

p∑
j=1

φj(x)φj(y).
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The Koopman operator is the valuation functional of h
evaluated in f (x)

I Proposition 1. If H is a reproducing kernel Hilbert space,
then the Koopman operator over that space is bounded. It
follows that the Koopman operator on that space can be
written as

Lxh =< K (f (x), ·)|h > .

I Proposition 2. If H is finite dimensional, then the Koopman
operator can be written as

Lxh =

〈
p∑

j=1

φj(f (x))φj(y)

∣∣∣∣∣∣ h(y)

〉

=

p∑
j=1

φj(f (x)) < φj(y)|h(y) > .
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Towards calculating the Koopman basis and spectrum

Write, for each j ,

φj(f (x)) =

p∑
`=1

βj`φ`(x) + ej(x).

The terms ej(x) is nonzero when the Hilbert space H is not closed
under the dynamics of the system.
Write

B = (βj ,`)
p
j ,`=1 φ(x) = (φ1(x), . . . , φp(x))t

Then
K (x , y) = φ(y)Bφ(x) + et(x)φ(y),

which implies that for h(y) = atφ(y)

Lxh = φ(x)Bta + ate(x)



Controlling the approximation error

The construction holds for any orthonormal basis {φ1, . . . , φp}.
Idea: Control the error by selecting a convenient basis.
Given g1 ∈ H, define

gk(x) = gk−1(f (x)).

Use Gram-Schmidt to build an orthonormal basis {φ1, . . . , φp}
such that

span(g1, . . . , gk) = span(φ1, . . . , φk) k = 1, 2, . . . , p.



Controlling the error
Proposition 3 Let vk(x) = gk(x)/‖gk(x)‖.

ek(x) = vk(f (x))− projφ1,...,φp(vk(f (x)).

For k < p, ek(x) = 0, and for k = p

|ep(x)| −→ 0

Expect ep ∼ γp for some 0 < γ < 1.

Justification: power method of linear algebra. If

g1(x) =
∞∑
j=1

αjψj(x)

then

gp(x) =
∞∑
j=1

αjλ
p−1
j ψj(x).



Approximate Koopman spectrum and basis

If we can neglect the approximation term ate(x), then Koopman
basis and eigenvalues are derived from the right-hand eigenvectors
of the matrix Bt .

Proposition 4 Let
Btξj = λjξj .

Then the (approximate) Koopman spectrum is λ1, . . . , λp and the
(approximate) Koopman basis are

ψj = ξtj φ(x).

Remark: The (approximate) Koopman eigenvalues do not depend
on x .



Remark

Matrix B is triangular,obviously not symmetric.
Eigenvalues are the roots of the characteristic polynomial

det(B − λI ).

Eigenvectors solve
Btφj = λjφj .

Eigenvectors are linearly independent but are NOT orthogonal.



Implementation

I Recall, all we need are the eigenvalues.

I Select x
(1)
0 , . . . , x

(m)
0 initial conditions, m ≥ n, possibly as

uniformly as possible over the parameter space (i.e., latin
hypercube design).

I Compute the generated dynamical system x
(`)
k+1 = f (x

(`)
k ).

I Compute the m × n matrix

X =


x
(1)
1 x

(1)
2 . . . x

(1)
n

x
(2)
1 x

(2)
2 . . . x

(2)
n

...
...

x
(m)
1 x

(m)
2 . . . x

(m)
n


I Calculate the SVD of X to get approximate Koopman

eigenvectors.



Conclusion

I Cavalier’s principle of ”finding the well posed questions in ill
posed problems” remain true.

I Another example of where embedding a problem into a larger
space is helpful

I Opens the door for starting to think how to solve other
nonlinear problems using linear methods.
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