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HAANA: Real-time, low-power, small footprint,
embedded threat-detection system
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Neural computation and artificial
neural networks are not the same

Population coding,

Neuroscience Hebb Dan & Poo; Markram (STDP) synapto- and neuro-genesis
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Algorithms Core Objective - Theory

1. Devise machine learning algorithms with functional neural concepts
— SpikeSort: trade space for computational complexity (time domain);
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Algorithms Core Objective - Design

2. Incorporate neuroscience concepts (e.g. structural plasticity) to provide
machine learning methods with novel capabilities (e.g. evolving feature sets)
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Algorithms Core Objective - Model

3. Extract novel algorithms from neural circuit models

— multimodal integration and historical context referencing
based on hippocampal circuit
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Integration - learning algorithm accelerator

« Learning is computationally intensive UNIVERSITY o

« Crossbar architectures are well suited to accelerate
multiply-and-accumulate operations and store
weights - demonstrate with candidate algorithms
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N2A
A neuroinformatics framework



The Challenge

Society for Neuroscience
>30,000 scientists attend
>1,000 topic areas presented

Need to integrate all this
knowledge. Beyond capacity of
anyone to comprehend.

Complete model of human
cognition cannot exist as an idea
in one person's mind.

Must be an information structure
held in a large computer system.




Neuroinformatics Vision

NEUROSCIENCE

This diagram is not

: exhaustive!
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Runs on lower level Simulation

N simulation platform Xyce

Y Neuro- . MATLAB
construct

Python

C++

10



11

A unified modeling framework

Synapse

Hippocampus Neuron

is

Progenitor becomes 4TI Mossy
Cell Cell Terminal

Pyramidal
Cell

connects

Attributes Name = Hippocampus CA3 pyramidal call
Organism = Vertebrata
Neurotransmitter released = Glutamate
Dendrite Length = 12481.9 +- 2998.9 um
Equations > V' =(G*(V_rest-V)+1inj)/C
(a type of attribute) G=0.73




Example: Cable Model

Cable Model

HH = Sinclude (“HH Compartment”)

HH.Sn = 3_ . Passive Membrane

C = S$include (“HH Connection”) NE = (G * (V rest - V) + I inj) / C
C.A =HH G =03 - -
¢.B=HHE . V rest = 10.613

C.Sp = C.A.Sindex == C.B.$index - 1 c -1

Passive

Membrane

Potassium i Ton Channel
Channel Sup.V' += I / C

Hodgkin-Huxley Hodgkin-Huxley
Connection Compartment

lon Channel

Sodium
Channel

HH Connection Sodium Channel
A = Sconnect (“HH Compartment”) parent = Sinherit (“Ion Channel”)
B = Sconnect (“HH Compartment”) I =G *m*"3 * h* (E - V)
A.V' += (B.V - A.V) / R m’ = alpham* (1L - m) - betam *m
B.V' += (A.V - B.V) / R h’ _ alpha:h * (1 - h) - beta:h * B
R = 10 alpha m := (25 - V) / (10 * (exp ((25 - V) / 10) - 1))
HH Compartment beta m :=4 * exp (- V / 18)
parent = S$inherit (“Passive Membrane”) alpha_h := 0.07 * exp (- V / 20)
K — $include (“Potassium Channel”) Pefta h =1/ (exp ((30 - V) / 10) + 1)
Na = $include (“Sodium Channel”) G = 120

E = 115
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Neural Compiler Outputs

C++

class Model : public_Compartment

Xyce

* seed: 1380077478872
.tran00.0

* initial condition equations for HHmod

* remaining equations for HHmod
CV_1V_1 node0O1

BV_1 equOV_1 nodel={(G_m_1*(V_rest_1-V(V_1_node))+ | _inj_1)/C_m_1}

.param |_inj_1 = {10.0}
.param C_m_1={1.0}
.paramV_rest_1 ={10.613}
.param G_m_1={0.3}
CV_2V_2 node01

BV_2 equOV_2 nodeI={(G_m_1*(V_rest_1-V(V_2_node))+|_inj_1)/C_m_1}

CV_3V_3 node01

BV_3_equOV_3_node I={(G_m_1*(V_rest_1-V(V_3_node))+_inj_1)/C_m_1}

* initial condition equations for HHmodHHmod

* remaining equations for HHmodHHmMod

BB.V_4_equ 0V_2_node I={ (V(V_1_node)-V(V_2_node))/(C_m_1 * R_4)}
.paramR_4 = {10.0}

BA.V_4 equ0V_1_node I={(V(V_2_node)-V(V_1_node))/(C_m_1*R_4)}
BB.V_5_equ 0V_3_node I={ (V(V_2_node)-V(V_3_node))/ (C_m_1 * R_4)}
BA.V_5 equ0V_2_node I={(V(V_3_node)-V(V_2_node))/(C_m_1*R_4)}

* outputs
.print tran
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{

public:

C

{

lass HHmod : public _Compartment

public:

virtual void update (float _24t, float & _24dt)
{
float Na_2ealpha_5fh;
Na_2ealpha_5fh = 0.07f * exp(-V / 20.0f);
float Na_2ealpha_5fm;
Na_2ealpha_5fm=(25.0f - V) / (10.0f * (exp((25.0f - V) / 10.0f) - 1.0f));
float K_2ealpha_5fn;
K_2ealpha_5fn=(10.0f - V) / (100.0f * (exp((10.0f - V) / 10.0f) - 1.0f));
float Na_2ebeta_5fh;
Na_2ebeta_5fh = 1.0f / (exp((30.0f - V) / 10.0f) + 1.0f);
float Na_2ebeta_5fm;
Na_2ebeta_5fm = 4.0f * exp(-V / 18.0f);
float K_2ebeta_5fn;
K_2ebeta_5fn = 0.125f * exp(-V / 80.0f);
_nextV_27 +=(0.3f * (10.613f - V) + |_5finj) / 1.0f + K_2el / 1.0f + Na_2el / 1.0f;
Na_2eh_27 = Na_2ealpha_5fh * (1.0f - Na_2eh) - Na_2ebeta_5fh * Na_2eh;
Na_2el = 120.0f * pow (Na_2em, 3.0f) * Na_2eh * (115.0f - V);
K_2el = 36.0f * pow (K_2en, 4.0f) * (-12.0f - V);
Na_2em_27 = Na_2ealpha_5fm * (1.0f - Na_2em) - Na_2ebeta_5fm * Na_2em;
K_2en_27 = K_2ealpha_5fn * (1.0f - K_2en) - K_2ebeta_5fn * K_2en;
if (_24index == 0.0f)
|_Sfinj = 10.0f;
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* Contributed models
* Neurophysiology literature
* Online databases

* Visualization

e Automatic analysis
L /

3.

Workflow
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Algorithmic
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Simulate spike propagation through a
Hodgkin-Huxley cable

Neuroscience Representation:

N2A Representation:

Connections
NN
fal H

Parts [H][H] [H] [H]
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