
Biologically-Inspired Computing 
at Sandia Labs

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security 
Administration under contract DE-AC04-94AL85000.

SAND2015-0602PE



HAANA: Real-time, low-power, small footprint, 
embedded threat-detection system
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Neural computation and artificial 
neural networks are not the same
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Algorithms Core Objective - Theory

1. Devise machine learning algorithms with functional neural concepts

– SpikeSort: trade space for computational complexity (time domain); 
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Algorithms Core Objective - Design

2. Incorporate neuroscience concepts (e.g. structural plasticity) to provide 
machine learning methods with novel capabilities (e.g. evolving feature sets)

5



Algorithms Core Objective - Model

3. Extract novel algorithms from neural circuit models

– multimodal integration and historical context referencing 
based on hippocampal circuit

Deng, Aimone, and Gage, 2010
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Integration - learning algorithm accelerator

• Learning is computationally intensive 

• Crossbar architectures are well suited to accelerate 
multiply-and-accumulate operations and store 
weights - demonstrate with candidate algorithms

Xbar learning 
circuit:
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N2A
A neuroinformatics framework



The Challenge
Society for Neuroscience
>30,000 scientists attend
>1,000 topic areas presented

Need to integrate all this 
knowledge.  Beyond capacity of 
anyone to comprehend.

Complete model of human 
cognition cannot exist as an idea 
in one person's mind.

Must be an information structure 
held in a large computer system.
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Neuroinformatics Vision
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This diagram is not 
exhaustive!
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A unified modeling framework
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Name = Hippocampus CA3 pyramidal call
Organism = Vertebrata
Neurotransmitter released = Glutamate
Dendrite Length = 12481.9 +- 2998.9 um
V’ = (G * (V_rest - V) + I_inj) / C
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Example: Cable Model
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Connection

Ion Channel
$up.V' += I / C

Passive Membrane
V'     = (G * (V_rest - V) + I_inj) / C
G      = 0.3
V_rest = 10.613
C      = 1

Sodium Channel
parent   = $inherit (“Ion Channel”)
I        = G * m^3 * h * (E – V)
m’       = alpha_m * (1 – m) – beta_m * m
h’       = alpha_h * (1 – h) – beta_h * h
alpha_m := (25 – V) / (10 * (exp ((25 – V) / 10) – 1))
beta_m := 4 * exp (- V / 18)
alpha_h := 0.07 * exp (- V / 20)
beta_h := 1 / (exp ((30 – V) / 10) + 1)
G        = 120
E        = 115

HH Compartment
parent = $inherit (“Passive Membrane”)
K      = $include (“Potassium Channel”)
Na     = $include (“Sodium Channel”)

HH Connection
A     = $connect (“HH Compartment”)
B     = $connect (“HH Compartment”)
A.V' += (B.V – A.V) / R
B.V' += (A.V – B.V) / R
R     = 10

Cable Model
HH    = $include (“HH Compartment”)
HH.$n = 3
C     = $include (“HH Connection”)
C.A   = HH
C.B   = HH
C.$p = C.A.$index == C.B.$index - 1



Neural Compiler

Neuroscience 
Results

Device 
Engineering

NiCE
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Neural Compiler Outputs
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Xyce
* seed:  1380077478872
.tran 0 0.0

* initial condition equations for HHmod

* remaining equations for HHmod
CV_1 V_1_node 0 1
BV_1_equ 0 V_1_node I={ (G_m_1 * (V_rest_1 - V(V_1_node)) + I_inj_1) / C_m_1}
.param I_inj_1 = {10.0}
.param C_m_1 = {1.0}
.param V_rest_1 = {10.613}
.param G_m_1 = {0.3}
CV_2 V_2_node 0 1
BV_2_equ 0 V_2_node I={ (G_m_1 * (V_rest_1 - V(V_2_node)) + I_inj_1) / C_m_1}
CV_3 V_3_node 0 1
BV_3_equ 0 V_3_node I={ (G_m_1 * (V_rest_1 - V(V_3_node)) + I_inj_1) / C_m_1}

* initial condition equations for HHmodHHmod

* remaining equations for HHmodHHmod
BB.V_4_equ 0 V_2_node I={ (V(V_1_node) - V(V_2_node)) / (C_m_1 * R_4)}
.param R_4 = {10.0}
BA.V_4_equ 0 V_1_node I={ (V(V_2_node) - V(V_1_node)) / (C_m_1 * R_4)}
BB.V_5_equ 0 V_3_node I={ (V(V_2_node) - V(V_3_node)) / (C_m_1 * R_4)}
BA.V_5_equ 0 V_2_node I={ (V(V_3_node) - V(V_2_node)) / (C_m_1 * R_4)}

* outputs
.print tran

C++
class Model : public _Compartment
{
public:

class HHmod : public _Compartment
{
public:

… 
virtual void update (float _24t, float & _24dt)
{

float Na_2ealpha_5fh;
Na_2ealpha_5fh = 0.07f * exp(-V / 20.0f);
float Na_2ealpha_5fm;
Na_2ealpha_5fm = (25.0f - V) / (10.0f * (exp((25.0f - V) / 10.0f) - 1.0f));
float K_2ealpha_5fn;
K_2ealpha_5fn = (10.0f - V) / (100.0f * (exp((10.0f - V) / 10.0f) - 1.0f));
float Na_2ebeta_5fh;
Na_2ebeta_5fh = 1.0f / (exp((30.0f - V) / 10.0f) + 1.0f);
float Na_2ebeta_5fm;
Na_2ebeta_5fm = 4.0f * exp(-V / 18.0f);
float K_2ebeta_5fn;
K_2ebeta_5fn = 0.125f * exp(-V / 80.0f);
_nextV_27 += (0.3f * (10.613f - V) + I_5finj) / 1.0f + K_2eI / 1.0f + Na_2eI / 1.0f;
Na_2eh_27 = Na_2ealpha_5fh * (1.0f - Na_2eh) - Na_2ebeta_5fh * Na_2eh;
Na_2eI = 120.0f * pow (Na_2em, 3.0f) * Na_2eh * (115.0f - V);
K_2eI = 36.0f * pow (K_2en, 4.0f) * (-12.0f - V);
Na_2em_27 = Na_2ealpha_5fm * (1.0f - Na_2em) - Na_2ebeta_5fm * Na_2em;
K_2en_27 = K_2ealpha_5fn * (1.0f - K_2en) - K_2ebeta_5fn * K_2en;
if (_24index == 0.0f)

I_5finj = 10.0f;
}
…

};
};



Typical behavior
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Backup Slides
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Workflow

• Contributed models
• Neurophysiology literature
• Online databases

Database of 
Neural 

Structure &
Dynamics

Simulate

Algorithmic 
motifs

• Visualization
• Automatic analysis

Characterize 
model behavior

Fit 
parameters
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Simulate spike propagation through a 
Hodgkin-Huxley cable
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Neuroscience Representation:

N2A Representation:
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